x86: Silence -fsanitize=undefined
[deliverable/binutils-gdb.git] / gdb / microblaze-tdep.c
1 /* Target-dependent code for Xilinx MicroBlaze.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "trad-frame.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "breakpoint.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "target.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "dwarf2/frame.h"
35 #include "osabi.h"
36 #include "target-descriptions.h"
37 #include "opcodes/microblaze-opcm.h"
38 #include "opcodes/microblaze-dis.h"
39 #include "microblaze-tdep.h"
40 #include "remote.h"
41
42 #include "features/microblaze-with-stack-protect.c"
43 #include "features/microblaze.c"
44 \f
45 /* Instruction macros used for analyzing the prologue. */
46 /* This set of instruction macros need to be changed whenever the
47 prologue generated by the compiler could have more instructions or
48 different type of instructions.
49 This set also needs to be verified if it is complete. */
50 #define IS_RETURN(op) (op == rtsd || op == rtid)
51 #define IS_UPDATE_SP(op, rd, ra) \
52 ((op == addik || op == addi) && rd == REG_SP && ra == REG_SP)
53 #define IS_SPILL_SP(op, rd, ra) \
54 ((op == swi || op == sw) && rd == REG_SP && ra == REG_SP)
55 #define IS_SPILL_REG(op, rd, ra) \
56 ((op == swi || op == sw) && rd != REG_SP && ra == REG_SP)
57 #define IS_ALSO_SPILL_REG(op, rd, ra, rb) \
58 ((op == swi || op == sw) && rd != REG_SP && ra == 0 && rb == REG_SP)
59 #define IS_SETUP_FP(op, ra, rb) \
60 ((op == add || op == addik || op == addk) && ra == REG_SP && rb == 0)
61 #define IS_SPILL_REG_FP(op, rd, ra, fpregnum) \
62 ((op == swi || op == sw) && rd != REG_SP && ra == fpregnum && ra != 0)
63 #define IS_SAVE_HIDDEN_PTR(op, rd, ra, rb) \
64 ((op == add || op == addik) && ra == MICROBLAZE_FIRST_ARGREG && rb == 0)
65
66 /* The registers of the Xilinx microblaze processor. */
67
68 static const char *microblaze_register_names[] =
69 {
70 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
71 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
72 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
73 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
74 "rpc", "rmsr", "rear", "resr", "rfsr", "rbtr",
75 "rpvr0", "rpvr1", "rpvr2", "rpvr3", "rpvr4", "rpvr5", "rpvr6",
76 "rpvr7", "rpvr8", "rpvr9", "rpvr10", "rpvr11",
77 "redr", "rpid", "rzpr", "rtlbx", "rtlbsx", "rtlblo", "rtlbhi",
78 "rslr", "rshr"
79 };
80
81 #define MICROBLAZE_NUM_REGS ARRAY_SIZE (microblaze_register_names)
82 \f
83 static unsigned int microblaze_debug_flag = 0;
84
85 static void ATTRIBUTE_PRINTF (1, 2)
86 microblaze_debug (const char *fmt, ...)
87 {
88 if (microblaze_debug_flag)
89 {
90 va_list args;
91
92 va_start (args, fmt);
93 printf_unfiltered ("MICROBLAZE: ");
94 vprintf_unfiltered (fmt, args);
95 va_end (args);
96 }
97 }
98 \f
99 /* Return the name of register REGNUM. */
100
101 static const char *
102 microblaze_register_name (struct gdbarch *gdbarch, int regnum)
103 {
104 if (regnum >= 0 && regnum < MICROBLAZE_NUM_REGS)
105 return microblaze_register_names[regnum];
106 return NULL;
107 }
108
109 static struct type *
110 microblaze_register_type (struct gdbarch *gdbarch, int regnum)
111 {
112 if (regnum == MICROBLAZE_SP_REGNUM)
113 return builtin_type (gdbarch)->builtin_data_ptr;
114
115 if (regnum == MICROBLAZE_PC_REGNUM)
116 return builtin_type (gdbarch)->builtin_func_ptr;
117
118 return builtin_type (gdbarch)->builtin_int;
119 }
120
121 \f
122 /* Fetch the instruction at PC. */
123
124 static unsigned long
125 microblaze_fetch_instruction (CORE_ADDR pc)
126 {
127 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
128 gdb_byte buf[4];
129
130 /* If we can't read the instruction at PC, return zero. */
131 if (target_read_code (pc, buf, sizeof (buf)))
132 return 0;
133
134 return extract_unsigned_integer (buf, 4, byte_order);
135 }
136 \f
137 constexpr gdb_byte microblaze_break_insn[] = MICROBLAZE_BREAKPOINT;
138
139 typedef BP_MANIPULATION (microblaze_break_insn) microblaze_breakpoint;
140
141 \f
142 /* Allocate and initialize a frame cache. */
143
144 static struct microblaze_frame_cache *
145 microblaze_alloc_frame_cache (void)
146 {
147 struct microblaze_frame_cache *cache;
148
149 cache = FRAME_OBSTACK_ZALLOC (struct microblaze_frame_cache);
150
151 /* Base address. */
152 cache->base = 0;
153 cache->pc = 0;
154
155 /* Frameless until proven otherwise. */
156 cache->frameless_p = 1;
157
158 return cache;
159 }
160
161 /* The base of the current frame is actually in the stack pointer.
162 This happens when there is no frame pointer (microblaze ABI does not
163 require a frame pointer) or when we're stopped in the prologue or
164 epilogue itself. In these cases, microblaze_analyze_prologue will need
165 to update fi->frame before returning or analyzing the register
166 save instructions. */
167 #define MICROBLAZE_MY_FRAME_IN_SP 0x1
168
169 /* The base of the current frame is in a frame pointer register.
170 This register is noted in frame_extra_info->fp_regnum.
171
172 Note that the existance of an FP might also indicate that the
173 function has called alloca. */
174 #define MICROBLAZE_MY_FRAME_IN_FP 0x2
175
176 /* Function prologues on the Xilinx microblaze processors consist of:
177
178 - adjustments to the stack pointer (r1) (addi r1, r1, imm)
179 - making a copy of r1 into another register (a "frame" pointer)
180 (add r?, r1, r0)
181 - store word/multiples that use r1 or the frame pointer as the
182 base address (swi r?, r1, imm OR swi r?, fp, imm)
183
184 Note that microblaze really doesn't have a real frame pointer.
185 Instead, the compiler may copy the SP into a register (usually
186 r19) to act as an arg pointer. For our target-dependent purposes,
187 the frame info's "frame" member will be the beginning of the
188 frame. The SP could, in fact, point below this.
189
190 The prologue ends when an instruction fails to meet either of
191 these criteria. */
192
193 /* Analyze the prologue to determine where registers are saved,
194 the end of the prologue, etc. Return the address of the first line
195 of "real" code (i.e., the end of the prologue). */
196
197 static CORE_ADDR
198 microblaze_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
199 CORE_ADDR current_pc,
200 struct microblaze_frame_cache *cache)
201 {
202 const char *name;
203 CORE_ADDR func_addr, func_end, addr, stop, prologue_end_addr = 0;
204 unsigned long insn;
205 int rd, ra, rb, imm;
206 enum microblaze_instr op;
207 int flags = 0;
208 int save_hidden_pointer_found = 0;
209 int non_stack_instruction_found = 0;
210
211 /* Find the start of this function. */
212 find_pc_partial_function (pc, &name, &func_addr, &func_end);
213 if (func_addr < pc)
214 pc = func_addr;
215
216 if (current_pc < pc)
217 return current_pc;
218
219 /* Initialize info about frame. */
220 cache->framesize = 0;
221 cache->fp_regnum = MICROBLAZE_SP_REGNUM;
222 cache->frameless_p = 1;
223
224 /* Start decoding the prologue. We start by checking two special cases:
225
226 1. We're about to return
227 2. We're at the first insn of the prologue.
228
229 If we're about to return, our frame has already been deallocated.
230 If we are stopped at the first instruction of a prologue,
231 then our frame has not yet been set up. */
232
233 /* Get the first insn from memory. */
234
235 insn = microblaze_fetch_instruction (pc);
236 op = microblaze_decode_insn (insn, &rd, &ra, &rb, &imm);
237
238 if (IS_RETURN(op))
239 return pc;
240
241 /* Start at beginning of function and analyze until we get to the
242 current pc, or the end of the function, whichever is first. */
243 stop = (current_pc < func_end ? current_pc : func_end);
244
245 microblaze_debug ("Scanning prologue: name=%s, func_addr=%s, stop=%s\n",
246 name, paddress (gdbarch, func_addr),
247 paddress (gdbarch, stop));
248
249 for (addr = func_addr; addr < stop; addr += INST_WORD_SIZE)
250 {
251 insn = microblaze_fetch_instruction (addr);
252 op = microblaze_decode_insn (insn, &rd, &ra, &rb, &imm);
253 microblaze_debug ("%s %08lx\n", paddress (gdbarch, pc), insn);
254
255 /* This code is very sensitive to what functions are present in the
256 prologue. It assumes that the (addi, addik, swi, sw) can be the
257 only instructions in the prologue. */
258 if (IS_UPDATE_SP(op, rd, ra))
259 {
260 microblaze_debug ("got addi r1,r1,%d; contnuing\n", imm);
261 if (cache->framesize)
262 break; /* break if framesize already computed. */
263 cache->framesize = -imm; /* stack grows towards low memory. */
264 cache->frameless_p = 0; /* Frame found. */
265 save_hidden_pointer_found = 0;
266 non_stack_instruction_found = 0;
267 continue;
268 }
269 else if (IS_SPILL_SP(op, rd, ra))
270 {
271 /* Spill stack pointer. */
272 cache->register_offsets[rd] = imm; /* SP spilled before updating. */
273
274 microblaze_debug ("swi r1 r1 %d, continuing\n", imm);
275 save_hidden_pointer_found = 0;
276 if (!cache->framesize)
277 non_stack_instruction_found = 0;
278 continue;
279 }
280 else if (IS_SPILL_REG(op, rd, ra))
281 {
282 /* Spill register. */
283 cache->register_offsets[rd] = imm - cache->framesize;
284
285 microblaze_debug ("swi %d r1 %d, continuing\n", rd, imm);
286 save_hidden_pointer_found = 0;
287 if (!cache->framesize)
288 non_stack_instruction_found = 0;
289 continue;
290 }
291 else if (IS_ALSO_SPILL_REG(op, rd, ra, rb))
292 {
293 /* Spill register. */
294 cache->register_offsets[rd] = 0 - cache->framesize;
295
296 microblaze_debug ("sw %d r0 r1, continuing\n", rd);
297 save_hidden_pointer_found = 0;
298 if (!cache->framesize)
299 non_stack_instruction_found = 0;
300 continue;
301 }
302 else if (IS_SETUP_FP(op, ra, rb))
303 {
304 /* We have a frame pointer. Note the register which is
305 acting as the frame pointer. */
306 flags |= MICROBLAZE_MY_FRAME_IN_FP;
307 flags &= ~MICROBLAZE_MY_FRAME_IN_SP;
308 cache->fp_regnum = rd;
309 microblaze_debug ("Found a frame pointer: r%d\n", cache->fp_regnum);
310 save_hidden_pointer_found = 0;
311 if (!cache->framesize)
312 non_stack_instruction_found = 0;
313 continue;
314 }
315 else if (IS_SPILL_REG_FP(op, rd, ra, cache->fp_regnum))
316 {
317 /* reg spilled after updating. */
318 cache->register_offsets[rd] = imm - cache->framesize;
319
320 microblaze_debug ("swi %d %d %d, continuing\n", rd, ra, imm);
321 save_hidden_pointer_found = 0;
322 if (!cache->framesize)
323 non_stack_instruction_found = 0;
324 continue;
325 }
326 else if (IS_SAVE_HIDDEN_PTR(op, rd, ra, rb))
327 {
328 /* If the first argument is a hidden pointer to the area where the
329 return structure is to be saved, then it is saved as part of the
330 prologue. */
331
332 microblaze_debug ("add %d %d %d, continuing\n", rd, ra, rb);
333 save_hidden_pointer_found = 1;
334 if (!cache->framesize)
335 non_stack_instruction_found = 0;
336 continue;
337 }
338
339 /* As a result of the modification in the next step where we continue
340 to analyze the prologue till we reach a control flow instruction,
341 we need another variable to store when exactly a non-stack
342 instruction was encountered, which is the current definition
343 of a prologue. */
344 if (!non_stack_instruction_found)
345 prologue_end_addr = addr;
346 non_stack_instruction_found = 1;
347
348 /* When optimizations are enabled, it is not guaranteed that prologue
349 instructions are not mixed in with other instructions from the
350 program. Some programs show this behavior at -O2. This can be
351 avoided by adding -fno-schedule-insns2 switch as of now (edk 8.1)
352 In such cases, we scan the function until we see the first control
353 instruction. */
354
355 {
356 unsigned ctrl_op = (unsigned)insn >> 26;
357
358 /* continue if not control flow (branch, return). */
359 if (ctrl_op != 0x26 && ctrl_op != 0x27 && ctrl_op != 0x2d
360 && ctrl_op != 0x2e && ctrl_op != 0x2f)
361 continue;
362 else if (ctrl_op == 0x2c)
363 continue; /* continue if imm. */
364 }
365
366 /* This is not a prologue insn, so stop here. */
367 microblaze_debug ("insn is not a prologue insn -- ending scan\n");
368 break;
369 }
370
371 microblaze_debug ("done analyzing prologue\n");
372 microblaze_debug ("prologue end = 0x%x\n", (int) addr);
373
374 /* If the last instruction was an add rd, r5, r0 then don't count it as
375 part of the prologue. */
376 if (save_hidden_pointer_found)
377 prologue_end_addr -= INST_WORD_SIZE;
378
379 return prologue_end_addr;
380 }
381
382 static CORE_ADDR
383 microblaze_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
384 {
385 gdb_byte buf[4];
386 CORE_ADDR pc;
387
388 frame_unwind_register (next_frame, MICROBLAZE_PC_REGNUM, buf);
389 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
390 /* For sentinel frame, return address is actual PC. For other frames,
391 return address is pc+8. This is a workaround because gcc does not
392 generate correct return address in CIE. */
393 if (frame_relative_level (next_frame) >= 0)
394 pc += 8;
395 return pc;
396 }
397
398 /* Return PC of first real instruction of the function starting at
399 START_PC. */
400
401 static CORE_ADDR
402 microblaze_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
403 {
404 struct symtab_and_line sal;
405 CORE_ADDR func_start, func_end, ostart_pc;
406 struct microblaze_frame_cache cache;
407
408 /* This is the preferred method, find the end of the prologue by
409 using the debugging information. Debugging info does not always
410 give the right answer since parameters are stored on stack after this.
411 Always analyze the prologue. */
412 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
413 {
414 sal = find_pc_line (func_start, 0);
415
416 if (sal.end < func_end
417 && start_pc <= sal.end)
418 start_pc = sal.end;
419 }
420
421 ostart_pc = microblaze_analyze_prologue (gdbarch, func_start, 0xffffffffUL,
422 &cache);
423
424 if (ostart_pc > start_pc)
425 return ostart_pc;
426 return start_pc;
427 }
428
429 /* Normal frames. */
430
431 static struct microblaze_frame_cache *
432 microblaze_frame_cache (struct frame_info *next_frame, void **this_cache)
433 {
434 struct microblaze_frame_cache *cache;
435 struct gdbarch *gdbarch = get_frame_arch (next_frame);
436 int rn;
437
438 if (*this_cache)
439 return (struct microblaze_frame_cache *) *this_cache;
440
441 cache = microblaze_alloc_frame_cache ();
442 *this_cache = cache;
443 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
444
445 /* Clear offsets to saved regs in frame. */
446 for (rn = 0; rn < gdbarch_num_regs (gdbarch); rn++)
447 cache->register_offsets[rn] = -1;
448
449 /* Call for side effects. */
450 get_frame_func (next_frame);
451
452 cache->pc = get_frame_address_in_block (next_frame);
453
454 return cache;
455 }
456
457 static void
458 microblaze_frame_this_id (struct frame_info *next_frame, void **this_cache,
459 struct frame_id *this_id)
460 {
461 struct microblaze_frame_cache *cache =
462 microblaze_frame_cache (next_frame, this_cache);
463
464 /* This marks the outermost frame. */
465 if (cache->base == 0)
466 return;
467
468 (*this_id) = frame_id_build (cache->base, cache->pc);
469 }
470
471 static struct value *
472 microblaze_frame_prev_register (struct frame_info *this_frame,
473 void **this_cache, int regnum)
474 {
475 struct microblaze_frame_cache *cache =
476 microblaze_frame_cache (this_frame, this_cache);
477
478 if (cache->frameless_p)
479 {
480 if (regnum == MICROBLAZE_PC_REGNUM)
481 regnum = 15;
482 if (regnum == MICROBLAZE_SP_REGNUM)
483 regnum = 1;
484 return trad_frame_get_prev_register (this_frame,
485 cache->saved_regs, regnum);
486 }
487 else
488 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
489 regnum);
490
491 }
492
493 static const struct frame_unwind microblaze_frame_unwind =
494 {
495 NORMAL_FRAME,
496 default_frame_unwind_stop_reason,
497 microblaze_frame_this_id,
498 microblaze_frame_prev_register,
499 NULL,
500 default_frame_sniffer
501 };
502 \f
503 static CORE_ADDR
504 microblaze_frame_base_address (struct frame_info *next_frame,
505 void **this_cache)
506 {
507 struct microblaze_frame_cache *cache =
508 microblaze_frame_cache (next_frame, this_cache);
509
510 return cache->base;
511 }
512
513 static const struct frame_base microblaze_frame_base =
514 {
515 &microblaze_frame_unwind,
516 microblaze_frame_base_address,
517 microblaze_frame_base_address,
518 microblaze_frame_base_address
519 };
520 \f
521 /* Extract from an array REGBUF containing the (raw) register state, a
522 function return value of TYPE, and copy that into VALBUF. */
523 static void
524 microblaze_extract_return_value (struct type *type, struct regcache *regcache,
525 gdb_byte *valbuf)
526 {
527 gdb_byte buf[8];
528
529 /* Copy the return value (starting) in RETVAL_REGNUM to VALBUF. */
530 switch (TYPE_LENGTH (type))
531 {
532 case 1: /* return last byte in the register. */
533 regcache->cooked_read (MICROBLAZE_RETVAL_REGNUM, buf);
534 memcpy(valbuf, buf + MICROBLAZE_REGISTER_SIZE - 1, 1);
535 return;
536 case 2: /* return last 2 bytes in register. */
537 regcache->cooked_read (MICROBLAZE_RETVAL_REGNUM, buf);
538 memcpy(valbuf, buf + MICROBLAZE_REGISTER_SIZE - 2, 2);
539 return;
540 case 4: /* for sizes 4 or 8, copy the required length. */
541 case 8:
542 regcache->cooked_read (MICROBLAZE_RETVAL_REGNUM, buf);
543 regcache->cooked_read (MICROBLAZE_RETVAL_REGNUM + 1, buf+4);
544 memcpy (valbuf, buf, TYPE_LENGTH (type));
545 return;
546 default:
547 internal_error (__FILE__, __LINE__,
548 _("Unsupported return value size requested"));
549 }
550 }
551
552 /* Store the return value in VALBUF (of type TYPE) where the caller
553 expects to see it.
554
555 Integers up to four bytes are stored in r3.
556
557 Longs are stored in r3 (most significant word) and r4 (least
558 significant word).
559
560 Small structures are always returned on stack. */
561
562 static void
563 microblaze_store_return_value (struct type *type, struct regcache *regcache,
564 const gdb_byte *valbuf)
565 {
566 int len = TYPE_LENGTH (type);
567 gdb_byte buf[8];
568
569 memset (buf, 0, sizeof(buf));
570
571 /* Integral and pointer return values. */
572
573 if (len > 4)
574 {
575 gdb_assert (len == 8);
576 memcpy (buf, valbuf, 8);
577 regcache->cooked_write (MICROBLAZE_RETVAL_REGNUM+1, buf + 4);
578 }
579 else
580 /* ??? Do we need to do any sign-extension here? */
581 memcpy (buf + 4 - len, valbuf, len);
582
583 regcache->cooked_write (MICROBLAZE_RETVAL_REGNUM, buf);
584 }
585
586 static enum return_value_convention
587 microblaze_return_value (struct gdbarch *gdbarch, struct value *function,
588 struct type *type, struct regcache *regcache,
589 gdb_byte *readbuf, const gdb_byte *writebuf)
590 {
591 if (readbuf)
592 microblaze_extract_return_value (type, regcache, readbuf);
593 if (writebuf)
594 microblaze_store_return_value (type, regcache, writebuf);
595
596 return RETURN_VALUE_REGISTER_CONVENTION;
597 }
598
599 static int
600 microblaze_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
601 {
602 return (TYPE_LENGTH (type) == 16);
603 }
604
605 \f
606 static int dwarf2_to_reg_map[78] =
607 { 0 /* r0 */, 1 /* r1 */, 2 /* r2 */, 3 /* r3 */, /* 0- 3 */
608 4 /* r4 */, 5 /* r5 */, 6 /* r6 */, 7 /* r7 */, /* 4- 7 */
609 8 /* r8 */, 9 /* r9 */, 10 /* r10 */, 11 /* r11 */, /* 8-11 */
610 12 /* r12 */, 13 /* r13 */, 14 /* r14 */, 15 /* r15 */, /* 12-15 */
611 16 /* r16 */, 17 /* r17 */, 18 /* r18 */, 19 /* r19 */, /* 16-19 */
612 20 /* r20 */, 21 /* r21 */, 22 /* r22 */, 23 /* r23 */, /* 20-23 */
613 24 /* r24 */, 25 /* r25 */, 26 /* r26 */, 27 /* r27 */, /* 24-25 */
614 28 /* r28 */, 29 /* r29 */, 30 /* r30 */, 31 /* r31 */, /* 28-31 */
615 -1 /* $f0 */, -1 /* $f1 */, -1 /* $f2 */, -1 /* $f3 */, /* 32-35 */
616 -1 /* $f4 */, -1 /* $f5 */, -1 /* $f6 */, -1 /* $f7 */, /* 36-39 */
617 -1 /* $f8 */, -1 /* $f9 */, -1 /* $f10 */, -1 /* $f11 */, /* 40-43 */
618 -1 /* $f12 */, -1 /* $f13 */, -1 /* $f14 */, -1 /* $f15 */, /* 44-47 */
619 -1 /* $f16 */, -1 /* $f17 */, -1 /* $f18 */, -1 /* $f19 */, /* 48-51 */
620 -1 /* $f20 */, -1 /* $f21 */, -1 /* $f22 */, -1 /* $f23 */, /* 52-55 */
621 -1 /* $f24 */, -1 /* $f25 */, -1 /* $f26 */, -1 /* $f27 */, /* 56-59 */
622 -1 /* $f28 */, -1 /* $f29 */, -1 /* $f30 */, -1 /* $f31 */, /* 60-63 */
623 -1 /* hi */, -1 /* lo */, -1 /* accum*/, 33 /* rmsr */, /* 64-67 */
624 -1 /* $fcc1*/, -1 /* $fcc2*/, -1 /* $fcc3*/, -1 /* $fcc4*/, /* 68-71 */
625 -1 /* $fcc5*/, -1 /* $fcc6*/, -1 /* $fcc7*/, -1 /* $ap */, /* 72-75 */
626 -1 /* $rap */, -1 /* $frp */ /* 76-77 */
627 };
628
629 static int
630 microblaze_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
631 {
632 if (reg >= 0 && reg < sizeof (dwarf2_to_reg_map))
633 return dwarf2_to_reg_map[reg];
634 return -1;
635 }
636
637 static void
638 microblaze_register_g_packet_guesses (struct gdbarch *gdbarch)
639 {
640 register_remote_g_packet_guess (gdbarch,
641 4 * MICROBLAZE_NUM_CORE_REGS,
642 tdesc_microblaze);
643
644 register_remote_g_packet_guess (gdbarch,
645 4 * MICROBLAZE_NUM_REGS,
646 tdesc_microblaze_with_stack_protect);
647 }
648
649 static struct gdbarch *
650 microblaze_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
651 {
652 struct gdbarch_tdep *tdep;
653 struct gdbarch *gdbarch;
654 struct tdesc_arch_data *tdesc_data = NULL;
655 const struct target_desc *tdesc = info.target_desc;
656
657 /* If there is already a candidate, use it. */
658 arches = gdbarch_list_lookup_by_info (arches, &info);
659 if (arches != NULL)
660 return arches->gdbarch;
661 if (tdesc == NULL)
662 tdesc = tdesc_microblaze;
663
664 /* Check any target description for validity. */
665 if (tdesc_has_registers (tdesc))
666 {
667 const struct tdesc_feature *feature;
668 int valid_p;
669 int i;
670
671 feature = tdesc_find_feature (tdesc,
672 "org.gnu.gdb.microblaze.core");
673 if (feature == NULL)
674 return NULL;
675 tdesc_data = tdesc_data_alloc ();
676
677 valid_p = 1;
678 for (i = 0; i < MICROBLAZE_NUM_CORE_REGS; i++)
679 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
680 microblaze_register_names[i]);
681 feature = tdesc_find_feature (tdesc,
682 "org.gnu.gdb.microblaze.stack-protect");
683 if (feature != NULL)
684 {
685 valid_p = 1;
686 valid_p &= tdesc_numbered_register (feature, tdesc_data,
687 MICROBLAZE_SLR_REGNUM,
688 "rslr");
689 valid_p &= tdesc_numbered_register (feature, tdesc_data,
690 MICROBLAZE_SHR_REGNUM,
691 "rshr");
692 }
693
694 if (!valid_p)
695 {
696 tdesc_data_cleanup (tdesc_data);
697 return NULL;
698 }
699 }
700
701 /* Allocate space for the new architecture. */
702 tdep = XCNEW (struct gdbarch_tdep);
703 gdbarch = gdbarch_alloc (&info, tdep);
704
705 set_gdbarch_long_double_bit (gdbarch, 128);
706
707 set_gdbarch_num_regs (gdbarch, MICROBLAZE_NUM_REGS);
708 set_gdbarch_register_name (gdbarch, microblaze_register_name);
709 set_gdbarch_register_type (gdbarch, microblaze_register_type);
710
711 /* Register numbers of various important registers. */
712 set_gdbarch_sp_regnum (gdbarch, MICROBLAZE_SP_REGNUM);
713 set_gdbarch_pc_regnum (gdbarch, MICROBLAZE_PC_REGNUM);
714
715 /* Map Dwarf2 registers to GDB registers. */
716 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, microblaze_dwarf2_reg_to_regnum);
717
718 /* Call dummy code. */
719 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
720
721 set_gdbarch_return_value (gdbarch, microblaze_return_value);
722 set_gdbarch_stabs_argument_has_addr
723 (gdbarch, microblaze_stabs_argument_has_addr);
724
725 set_gdbarch_skip_prologue (gdbarch, microblaze_skip_prologue);
726
727 /* Stack grows downward. */
728 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
729
730 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
731 microblaze_breakpoint::kind_from_pc);
732 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
733 microblaze_breakpoint::bp_from_kind);
734
735 set_gdbarch_frame_args_skip (gdbarch, 8);
736
737 set_gdbarch_unwind_pc (gdbarch, microblaze_unwind_pc);
738
739 microblaze_register_g_packet_guesses (gdbarch);
740
741 frame_base_set_default (gdbarch, &microblaze_frame_base);
742
743 /* Hook in ABI-specific overrides, if they have been registered. */
744 gdbarch_init_osabi (info, gdbarch);
745
746 /* Unwind the frame. */
747 dwarf2_append_unwinders (gdbarch);
748 frame_unwind_append_unwinder (gdbarch, &microblaze_frame_unwind);
749 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
750 if (tdesc_data != NULL)
751 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
752
753 return gdbarch;
754 }
755
756 void _initialize_microblaze_tdep ();
757 void
758 _initialize_microblaze_tdep ()
759 {
760 register_gdbarch_init (bfd_arch_microblaze, microblaze_gdbarch_init);
761
762 initialize_tdesc_microblaze_with_stack_protect ();
763 initialize_tdesc_microblaze ();
764 /* Debug this files internals. */
765 add_setshow_zuinteger_cmd ("microblaze", class_maintenance,
766 &microblaze_debug_flag, _("\
767 Set microblaze debugging."), _("\
768 Show microblaze debugging."), _("\
769 When non-zero, microblaze specific debugging is enabled."),
770 NULL,
771 NULL,
772 &setdebuglist, &showdebuglist);
773
774 }
This page took 0.045232 seconds and 4 git commands to generate.