gdb/
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying minimal symbol tables.
25
26 Minimal symbol tables are used to hold some very basic information about
27 all defined global symbols (text, data, bss, abs, etc). The only two
28 required pieces of information are the symbol's name and the address
29 associated with that symbol.
30
31 In many cases, even if a file was compiled with no special options for
32 debugging at all, as long as was not stripped it will contain sufficient
33 information to build useful minimal symbol tables using this structure.
34
35 Even when a file contains enough debugging information to build a full
36 symbol table, these minimal symbols are still useful for quickly mapping
37 between names and addresses, and vice versa. They are also sometimes used
38 to figure out what full symbol table entries need to be read in. */
39
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "gdb_string.h"
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "filenames.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "demangle.h"
50 #include "value.h"
51 #include "cp-abi.h"
52 #include "target.h"
53 #include "cp-support.h"
54 #include "language.h"
55
56 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
57 At the end, copy them all into one newly allocated location on an objfile's
58 symbol obstack. */
59
60 #define BUNCH_SIZE 127
61
62 struct msym_bunch
63 {
64 struct msym_bunch *next;
65 struct minimal_symbol contents[BUNCH_SIZE];
66 };
67
68 /* Bunch currently being filled up.
69 The next field points to chain of filled bunches. */
70
71 static struct msym_bunch *msym_bunch;
72
73 /* Number of slots filled in current bunch. */
74
75 static int msym_bunch_index;
76
77 /* Total number of minimal symbols recorded so far for the objfile. */
78
79 static int msym_count;
80
81 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
82
83 unsigned int
84 msymbol_hash_iw (const char *string)
85 {
86 unsigned int hash = 0;
87
88 while (*string && *string != '(')
89 {
90 while (isspace (*string))
91 ++string;
92 if (*string && *string != '(')
93 {
94 hash = SYMBOL_HASH_NEXT (hash, *string);
95 ++string;
96 }
97 }
98 return hash;
99 }
100
101 /* Compute a hash code for a string. */
102
103 unsigned int
104 msymbol_hash (const char *string)
105 {
106 unsigned int hash = 0;
107
108 for (; *string; ++string)
109 hash = SYMBOL_HASH_NEXT (hash, *string);
110 return hash;
111 }
112
113 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
114 void
115 add_minsym_to_hash_table (struct minimal_symbol *sym,
116 struct minimal_symbol **table)
117 {
118 if (sym->hash_next == NULL)
119 {
120 unsigned int hash
121 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
122
123 sym->hash_next = table[hash];
124 table[hash] = sym;
125 }
126 }
127
128 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
129 TABLE. */
130 static void
131 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
132 struct minimal_symbol **table)
133 {
134 if (sym->demangled_hash_next == NULL)
135 {
136 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
137 % MINIMAL_SYMBOL_HASH_SIZE;
138
139 sym->demangled_hash_next = table[hash];
140 table[hash] = sym;
141 }
142 }
143
144
145 /* Return OBJFILE where minimal symbol SYM is defined. */
146 struct objfile *
147 msymbol_objfile (struct minimal_symbol *sym)
148 {
149 struct objfile *objf;
150 struct minimal_symbol *tsym;
151
152 unsigned int hash
153 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
154
155 for (objf = object_files; objf; objf = objf->next)
156 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
157 if (tsym == sym)
158 return objf;
159
160 /* We should always be able to find the objfile ... */
161 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
162 }
163
164
165 /* Look through all the current minimal symbol tables and find the
166 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
167 the search to that objfile. If SFILE is non-NULL, the only file-scope
168 symbols considered will be from that source file (global symbols are
169 still preferred). Returns a pointer to the minimal symbol that
170 matches, or NULL if no match is found.
171
172 Note: One instance where there may be duplicate minimal symbols with
173 the same name is when the symbol tables for a shared library and the
174 symbol tables for an executable contain global symbols with the same
175 names (the dynamic linker deals with the duplication).
176
177 It's also possible to have minimal symbols with different mangled
178 names, but identical demangled names. For example, the GNU C++ v3
179 ABI requires the generation of two (or perhaps three) copies of
180 constructor functions --- "in-charge", "not-in-charge", and
181 "allocate" copies; destructors may be duplicated as well.
182 Obviously, there must be distinct mangled names for each of these,
183 but the demangled names are all the same: S::S or S::~S. */
184
185 struct minimal_symbol *
186 lookup_minimal_symbol (const char *name, const char *sfile,
187 struct objfile *objf)
188 {
189 struct objfile *objfile;
190 struct minimal_symbol *msymbol;
191 struct minimal_symbol *found_symbol = NULL;
192 struct minimal_symbol *found_file_symbol = NULL;
193 struct minimal_symbol *trampoline_symbol = NULL;
194
195 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
196 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
197
198 int needtofreename = 0;
199 const char *modified_name;
200
201 if (sfile != NULL)
202 sfile = lbasename (sfile);
203
204 /* For C++, canonicalize the input name. */
205 modified_name = name;
206 if (current_language->la_language == language_cplus)
207 {
208 char *cname = cp_canonicalize_string (name);
209
210 if (cname)
211 {
212 modified_name = cname;
213 needtofreename = 1;
214 }
215 }
216
217 for (objfile = object_files;
218 objfile != NULL && found_symbol == NULL;
219 objfile = objfile->next)
220 {
221 if (objf == NULL || objf == objfile
222 || objf == objfile->separate_debug_objfile_backlink)
223 {
224 /* Do two passes: the first over the ordinary hash table,
225 and the second over the demangled hash table. */
226 int pass;
227
228 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
229 {
230 /* Select hash list according to pass. */
231 if (pass == 1)
232 msymbol = objfile->msymbol_hash[hash];
233 else
234 msymbol = objfile->msymbol_demangled_hash[dem_hash];
235
236 while (msymbol != NULL && found_symbol == NULL)
237 {
238 int match;
239
240 if (pass == 1)
241 {
242 int (*cmp) (const char *, const char *);
243
244 cmp = (case_sensitivity == case_sensitive_on
245 ? strcmp : strcasecmp);
246 match = cmp (SYMBOL_LINKAGE_NAME (msymbol),
247 modified_name) == 0;
248 }
249 else
250 {
251 /* The function respects CASE_SENSITIVITY. */
252 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
253 modified_name);
254 }
255
256 if (match)
257 {
258 switch (MSYMBOL_TYPE (msymbol))
259 {
260 case mst_file_text:
261 case mst_file_data:
262 case mst_file_bss:
263 if (sfile == NULL
264 || filename_cmp (msymbol->filename, sfile) == 0)
265 found_file_symbol = msymbol;
266 break;
267
268 case mst_solib_trampoline:
269
270 /* If a trampoline symbol is found, we prefer to
271 keep looking for the *real* symbol. If the
272 actual symbol is not found, then we'll use the
273 trampoline entry. */
274 if (trampoline_symbol == NULL)
275 trampoline_symbol = msymbol;
276 break;
277
278 case mst_unknown:
279 default:
280 found_symbol = msymbol;
281 break;
282 }
283 }
284
285 /* Find the next symbol on the hash chain. */
286 if (pass == 1)
287 msymbol = msymbol->hash_next;
288 else
289 msymbol = msymbol->demangled_hash_next;
290 }
291 }
292 }
293 }
294
295 if (needtofreename)
296 xfree ((void *) modified_name);
297
298 /* External symbols are best. */
299 if (found_symbol)
300 return found_symbol;
301
302 /* File-local symbols are next best. */
303 if (found_file_symbol)
304 return found_file_symbol;
305
306 /* Symbols for shared library trampolines are next best. */
307 if (trampoline_symbol)
308 return trampoline_symbol;
309
310 return NULL;
311 }
312
313 /* Look through all the current minimal symbol tables and find the
314 first minimal symbol that matches NAME and has text type. If OBJF
315 is non-NULL, limit the search to that objfile. Returns a pointer
316 to the minimal symbol that matches, or NULL if no match is found.
317
318 This function only searches the mangled (linkage) names. */
319
320 struct minimal_symbol *
321 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
322 {
323 struct objfile *objfile;
324 struct minimal_symbol *msymbol;
325 struct minimal_symbol *found_symbol = NULL;
326 struct minimal_symbol *found_file_symbol = NULL;
327
328 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
329
330 for (objfile = object_files;
331 objfile != NULL && found_symbol == NULL;
332 objfile = objfile->next)
333 {
334 if (objf == NULL || objf == objfile
335 || objf == objfile->separate_debug_objfile_backlink)
336 {
337 for (msymbol = objfile->msymbol_hash[hash];
338 msymbol != NULL && found_symbol == NULL;
339 msymbol = msymbol->hash_next)
340 {
341 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
342 (MSYMBOL_TYPE (msymbol) == mst_text
343 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
344 || MSYMBOL_TYPE (msymbol) == mst_file_text))
345 {
346 switch (MSYMBOL_TYPE (msymbol))
347 {
348 case mst_file_text:
349 found_file_symbol = msymbol;
350 break;
351 default:
352 found_symbol = msymbol;
353 break;
354 }
355 }
356 }
357 }
358 }
359 /* External symbols are best. */
360 if (found_symbol)
361 return found_symbol;
362
363 /* File-local symbols are next best. */
364 if (found_file_symbol)
365 return found_file_symbol;
366
367 return NULL;
368 }
369
370 /* Look through all the current minimal symbol tables and find the
371 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
372 limit the search to that objfile. Returns a pointer to the minimal
373 symbol that matches, or NULL if no match is found. */
374
375 struct minimal_symbol *
376 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
377 struct objfile *objf)
378 {
379 struct objfile *objfile;
380 struct minimal_symbol *msymbol;
381
382 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
383
384 for (objfile = object_files;
385 objfile != NULL;
386 objfile = objfile->next)
387 {
388 if (objf == NULL || objf == objfile
389 || objf == objfile->separate_debug_objfile_backlink)
390 {
391 for (msymbol = objfile->msymbol_hash[hash];
392 msymbol != NULL;
393 msymbol = msymbol->hash_next)
394 {
395 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
396 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
397 return msymbol;
398 }
399 }
400 }
401
402 return NULL;
403 }
404
405 /* Look through all the current minimal symbol tables and find the
406 first minimal symbol that matches NAME and is a solib trampoline.
407 If OBJF is non-NULL, limit the search to that objfile. Returns a
408 pointer to the minimal symbol that matches, or NULL if no match is
409 found.
410
411 This function only searches the mangled (linkage) names. */
412
413 struct minimal_symbol *
414 lookup_minimal_symbol_solib_trampoline (const char *name,
415 struct objfile *objf)
416 {
417 struct objfile *objfile;
418 struct minimal_symbol *msymbol;
419 struct minimal_symbol *found_symbol = NULL;
420
421 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
422
423 for (objfile = object_files;
424 objfile != NULL && found_symbol == NULL;
425 objfile = objfile->next)
426 {
427 if (objf == NULL || objf == objfile
428 || objf == objfile->separate_debug_objfile_backlink)
429 {
430 for (msymbol = objfile->msymbol_hash[hash];
431 msymbol != NULL && found_symbol == NULL;
432 msymbol = msymbol->hash_next)
433 {
434 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
435 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
436 return msymbol;
437 }
438 }
439 }
440
441 return NULL;
442 }
443
444 /* Search through the minimal symbol table for each objfile and find
445 the symbol whose address is the largest address that is still less
446 than or equal to PC, and matches SECTION (which is not NULL).
447 Returns a pointer to the minimal symbol if such a symbol is found,
448 or NULL if PC is not in a suitable range.
449 Note that we need to look through ALL the minimal symbol tables
450 before deciding on the symbol that comes closest to the specified PC.
451 This is because objfiles can overlap, for example objfile A has .text
452 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
453 .data at 0x40048.
454
455 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
456 there are text and trampoline symbols at the same address.
457 Otherwise prefer mst_text symbols. */
458
459 static struct minimal_symbol *
460 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
461 struct obj_section *section,
462 int want_trampoline)
463 {
464 int lo;
465 int hi;
466 int new;
467 struct objfile *objfile;
468 struct minimal_symbol *msymbol;
469 struct minimal_symbol *best_symbol = NULL;
470 enum minimal_symbol_type want_type, other_type;
471
472 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
473 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
474
475 /* We can not require the symbol found to be in section, because
476 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
477 symbol - but find_pc_section won't return an absolute section and
478 hence the code below would skip over absolute symbols. We can
479 still take advantage of the call to find_pc_section, though - the
480 object file still must match. In case we have separate debug
481 files, search both the file and its separate debug file. There's
482 no telling which one will have the minimal symbols. */
483
484 gdb_assert (section != NULL);
485
486 for (objfile = section->objfile;
487 objfile != NULL;
488 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
489 {
490 /* If this objfile has a minimal symbol table, go search it using
491 a binary search. Note that a minimal symbol table always consists
492 of at least two symbols, a "real" symbol and the terminating
493 "null symbol". If there are no real symbols, then there is no
494 minimal symbol table at all. */
495
496 if (objfile->minimal_symbol_count > 0)
497 {
498 int best_zero_sized = -1;
499
500 msymbol = objfile->msymbols;
501 lo = 0;
502 hi = objfile->minimal_symbol_count - 1;
503
504 /* This code assumes that the minimal symbols are sorted by
505 ascending address values. If the pc value is greater than or
506 equal to the first symbol's address, then some symbol in this
507 minimal symbol table is a suitable candidate for being the
508 "best" symbol. This includes the last real symbol, for cases
509 where the pc value is larger than any address in this vector.
510
511 By iterating until the address associated with the current
512 hi index (the endpoint of the test interval) is less than
513 or equal to the desired pc value, we accomplish two things:
514 (1) the case where the pc value is larger than any minimal
515 symbol address is trivially solved, (2) the address associated
516 with the hi index is always the one we want when the interation
517 terminates. In essence, we are iterating the test interval
518 down until the pc value is pushed out of it from the high end.
519
520 Warning: this code is trickier than it would appear at first. */
521
522 /* Should also require that pc is <= end of objfile. FIXME! */
523 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
524 {
525 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
526 {
527 /* pc is still strictly less than highest address. */
528 /* Note "new" will always be >= lo. */
529 new = (lo + hi) / 2;
530 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
531 (lo == new))
532 {
533 hi = new;
534 }
535 else
536 {
537 lo = new;
538 }
539 }
540
541 /* If we have multiple symbols at the same address, we want
542 hi to point to the last one. That way we can find the
543 right symbol if it has an index greater than hi. */
544 while (hi < objfile->minimal_symbol_count - 1
545 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
546 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
547 hi++;
548
549 /* Skip various undesirable symbols. */
550 while (hi >= 0)
551 {
552 /* Skip any absolute symbols. This is apparently
553 what adb and dbx do, and is needed for the CM-5.
554 There are two known possible problems: (1) on
555 ELF, apparently end, edata, etc. are absolute.
556 Not sure ignoring them here is a big deal, but if
557 we want to use them, the fix would go in
558 elfread.c. (2) I think shared library entry
559 points on the NeXT are absolute. If we want
560 special handling for this it probably should be
561 triggered by a special mst_abs_or_lib or some
562 such. */
563
564 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
565 {
566 hi--;
567 continue;
568 }
569
570 /* If SECTION was specified, skip any symbol from
571 wrong section. */
572 if (section
573 /* Some types of debug info, such as COFF,
574 don't fill the bfd_section member, so don't
575 throw away symbols on those platforms. */
576 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
577 && (!matching_obj_sections
578 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
579 {
580 hi--;
581 continue;
582 }
583
584 /* If we are looking for a trampoline and this is a
585 text symbol, or the other way around, check the
586 preceding symbol too. If they are otherwise
587 identical prefer that one. */
588 if (hi > 0
589 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
590 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
591 && (MSYMBOL_SIZE (&msymbol[hi])
592 == MSYMBOL_SIZE (&msymbol[hi - 1]))
593 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
594 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
595 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
596 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
597 {
598 hi--;
599 continue;
600 }
601
602 /* If the minimal symbol has a zero size, save it
603 but keep scanning backwards looking for one with
604 a non-zero size. A zero size may mean that the
605 symbol isn't an object or function (e.g. a
606 label), or it may just mean that the size was not
607 specified. */
608 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
609 && best_zero_sized == -1)
610 {
611 best_zero_sized = hi;
612 hi--;
613 continue;
614 }
615
616 /* If we are past the end of the current symbol, try
617 the previous symbol if it has a larger overlapping
618 size. This happens on i686-pc-linux-gnu with glibc;
619 the nocancel variants of system calls are inside
620 the cancellable variants, but both have sizes. */
621 if (hi > 0
622 && MSYMBOL_SIZE (&msymbol[hi]) != 0
623 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
624 + MSYMBOL_SIZE (&msymbol[hi]))
625 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
626 + MSYMBOL_SIZE (&msymbol[hi - 1])))
627 {
628 hi--;
629 continue;
630 }
631
632 /* Otherwise, this symbol must be as good as we're going
633 to get. */
634 break;
635 }
636
637 /* If HI has a zero size, and best_zero_sized is set,
638 then we had two or more zero-sized symbols; prefer
639 the first one we found (which may have a higher
640 address). Also, if we ran off the end, be sure
641 to back up. */
642 if (best_zero_sized != -1
643 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
644 hi = best_zero_sized;
645
646 /* If the minimal symbol has a non-zero size, and this
647 PC appears to be outside the symbol's contents, then
648 refuse to use this symbol. If we found a zero-sized
649 symbol with an address greater than this symbol's,
650 use that instead. We assume that if symbols have
651 specified sizes, they do not overlap. */
652
653 if (hi >= 0
654 && MSYMBOL_SIZE (&msymbol[hi]) != 0
655 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
656 + MSYMBOL_SIZE (&msymbol[hi])))
657 {
658 if (best_zero_sized != -1)
659 hi = best_zero_sized;
660 else
661 /* Go on to the next object file. */
662 continue;
663 }
664
665 /* The minimal symbol indexed by hi now is the best one in this
666 objfile's minimal symbol table. See if it is the best one
667 overall. */
668
669 if (hi >= 0
670 && ((best_symbol == NULL) ||
671 (SYMBOL_VALUE_ADDRESS (best_symbol) <
672 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
673 {
674 best_symbol = &msymbol[hi];
675 }
676 }
677 }
678 }
679 return (best_symbol);
680 }
681
682 struct minimal_symbol *
683 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
684 {
685 if (section == NULL)
686 {
687 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
688 force the section but that (well unless you're doing overlay
689 debugging) always returns NULL making the call somewhat useless. */
690 section = find_pc_section (pc);
691 if (section == NULL)
692 return NULL;
693 }
694 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
695 }
696
697 /* Backward compatibility: search through the minimal symbol table
698 for a matching PC (no section given). */
699
700 struct minimal_symbol *
701 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
702 {
703 return lookup_minimal_symbol_by_pc_section (pc, NULL);
704 }
705
706 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
707
708 int
709 in_gnu_ifunc_stub (CORE_ADDR pc)
710 {
711 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
712
713 return msymbol && MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc;
714 }
715
716 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
717
718 static CORE_ADDR
719 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
720 {
721 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
722 "the ELF support compiled in."),
723 paddress (gdbarch, pc));
724 }
725
726 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
727
728 static int
729 stub_gnu_ifunc_resolve_name (const char *function_name,
730 CORE_ADDR *function_address_p)
731 {
732 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
733 "the ELF support compiled in."),
734 function_name);
735 }
736
737 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
738
739 static void
740 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
741 {
742 internal_error (__FILE__, __LINE__,
743 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
744 }
745
746 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
747
748 static void
749 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
750 {
751 internal_error (__FILE__, __LINE__,
752 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
753 }
754
755 /* See elf_gnu_ifunc_fns for its real implementation. */
756
757 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
758 {
759 stub_gnu_ifunc_resolve_addr,
760 stub_gnu_ifunc_resolve_name,
761 stub_gnu_ifunc_resolver_stop,
762 stub_gnu_ifunc_resolver_return_stop,
763 };
764
765 /* A placeholder for &elf_gnu_ifunc_fns. */
766
767 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
768
769 /* Find the minimal symbol named NAME, and return both the minsym
770 struct and its objfile. This only checks the linkage name. Sets
771 *OBJFILE_P and returns the minimal symbol, if it is found. If it
772 is not found, returns NULL. */
773
774 struct minimal_symbol *
775 lookup_minimal_symbol_and_objfile (const char *name,
776 struct objfile **objfile_p)
777 {
778 struct objfile *objfile;
779 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
780
781 ALL_OBJFILES (objfile)
782 {
783 struct minimal_symbol *msym;
784
785 for (msym = objfile->msymbol_hash[hash];
786 msym != NULL;
787 msym = msym->hash_next)
788 {
789 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
790 {
791 *objfile_p = objfile;
792 return msym;
793 }
794 }
795 }
796
797 return 0;
798 }
799 \f
800
801 /* Return leading symbol character for a BFD. If BFD is NULL,
802 return the leading symbol character from the main objfile. */
803
804 static int get_symbol_leading_char (bfd *);
805
806 static int
807 get_symbol_leading_char (bfd *abfd)
808 {
809 if (abfd != NULL)
810 return bfd_get_symbol_leading_char (abfd);
811 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
812 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
813 return 0;
814 }
815
816 /* Prepare to start collecting minimal symbols. Note that presetting
817 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
818 symbol to allocate the memory for the first bunch. */
819
820 void
821 init_minimal_symbol_collection (void)
822 {
823 msym_count = 0;
824 msym_bunch = NULL;
825 msym_bunch_index = BUNCH_SIZE;
826 }
827
828 void
829 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
830 enum minimal_symbol_type ms_type,
831 struct objfile *objfile)
832 {
833 int section;
834
835 switch (ms_type)
836 {
837 case mst_text:
838 case mst_text_gnu_ifunc:
839 case mst_file_text:
840 case mst_solib_trampoline:
841 section = SECT_OFF_TEXT (objfile);
842 break;
843 case mst_data:
844 case mst_file_data:
845 section = SECT_OFF_DATA (objfile);
846 break;
847 case mst_bss:
848 case mst_file_bss:
849 section = SECT_OFF_BSS (objfile);
850 break;
851 default:
852 section = -1;
853 }
854
855 prim_record_minimal_symbol_and_info (name, address, ms_type,
856 section, NULL, objfile);
857 }
858
859 /* Record a minimal symbol in the msym bunches. Returns the symbol
860 newly created. */
861
862 struct minimal_symbol *
863 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
864 CORE_ADDR address,
865 enum minimal_symbol_type ms_type,
866 int section,
867 asection *bfd_section,
868 struct objfile *objfile)
869 {
870 struct obj_section *obj_section;
871 struct msym_bunch *new;
872 struct minimal_symbol *msymbol;
873
874 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
875 the minimal symbols, because if there is also another symbol
876 at the same address (e.g. the first function of the file),
877 lookup_minimal_symbol_by_pc would have no way of getting the
878 right one. */
879 if (ms_type == mst_file_text && name[0] == 'g'
880 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
881 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
882 return (NULL);
883
884 /* It's safe to strip the leading char here once, since the name
885 is also stored stripped in the minimal symbol table. */
886 if (name[0] == get_symbol_leading_char (objfile->obfd))
887 {
888 ++name;
889 --name_len;
890 }
891
892 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
893 return (NULL);
894
895 if (msym_bunch_index == BUNCH_SIZE)
896 {
897 new = XCALLOC (1, struct msym_bunch);
898 msym_bunch_index = 0;
899 new->next = msym_bunch;
900 msym_bunch = new;
901 }
902 msymbol = &msym_bunch->contents[msym_bunch_index];
903 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
904 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
905
906 SYMBOL_VALUE_ADDRESS (msymbol) = address;
907 SYMBOL_SECTION (msymbol) = section;
908 SYMBOL_OBJ_SECTION (msymbol) = NULL;
909
910 /* Find obj_section corresponding to bfd_section. */
911 if (bfd_section)
912 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
913 {
914 if (obj_section->the_bfd_section == bfd_section)
915 {
916 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
917 break;
918 }
919 }
920
921 MSYMBOL_TYPE (msymbol) = ms_type;
922 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
923 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
924 MSYMBOL_SIZE (msymbol) = 0;
925
926 /* The hash pointers must be cleared! If they're not,
927 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
928 msymbol->hash_next = NULL;
929 msymbol->demangled_hash_next = NULL;
930
931 msym_bunch_index++;
932 msym_count++;
933 OBJSTAT (objfile, n_minsyms++);
934 return msymbol;
935 }
936
937 /* Record a minimal symbol in the msym bunches. Returns the symbol
938 newly created. */
939
940 struct minimal_symbol *
941 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
942 enum minimal_symbol_type ms_type,
943 int section,
944 asection *bfd_section,
945 struct objfile *objfile)
946 {
947 return prim_record_minimal_symbol_full (name, strlen (name), 1,
948 address, ms_type, section,
949 bfd_section, objfile);
950 }
951
952 /* Compare two minimal symbols by address and return a signed result based
953 on unsigned comparisons, so that we sort into unsigned numeric order.
954 Within groups with the same address, sort by name. */
955
956 static int
957 compare_minimal_symbols (const void *fn1p, const void *fn2p)
958 {
959 const struct minimal_symbol *fn1;
960 const struct minimal_symbol *fn2;
961
962 fn1 = (const struct minimal_symbol *) fn1p;
963 fn2 = (const struct minimal_symbol *) fn2p;
964
965 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
966 {
967 return (-1); /* addr 1 is less than addr 2. */
968 }
969 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
970 {
971 return (1); /* addr 1 is greater than addr 2. */
972 }
973 else
974 /* addrs are equal: sort by name */
975 {
976 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
977 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
978
979 if (name1 && name2) /* both have names */
980 return strcmp (name1, name2);
981 else if (name2)
982 return 1; /* fn1 has no name, so it is "less". */
983 else if (name1) /* fn2 has no name, so it is "less". */
984 return -1;
985 else
986 return (0); /* Neither has a name, so they're equal. */
987 }
988 }
989
990 /* Discard the currently collected minimal symbols, if any. If we wish
991 to save them for later use, we must have already copied them somewhere
992 else before calling this function.
993
994 FIXME: We could allocate the minimal symbol bunches on their own
995 obstack and then simply blow the obstack away when we are done with
996 it. Is it worth the extra trouble though? */
997
998 static void
999 do_discard_minimal_symbols_cleanup (void *arg)
1000 {
1001 struct msym_bunch *next;
1002
1003 while (msym_bunch != NULL)
1004 {
1005 next = msym_bunch->next;
1006 xfree (msym_bunch);
1007 msym_bunch = next;
1008 }
1009 }
1010
1011 struct cleanup *
1012 make_cleanup_discard_minimal_symbols (void)
1013 {
1014 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1015 }
1016
1017
1018
1019 /* Compact duplicate entries out of a minimal symbol table by walking
1020 through the table and compacting out entries with duplicate addresses
1021 and matching names. Return the number of entries remaining.
1022
1023 On entry, the table resides between msymbol[0] and msymbol[mcount].
1024 On exit, it resides between msymbol[0] and msymbol[result_count].
1025
1026 When files contain multiple sources of symbol information, it is
1027 possible for the minimal symbol table to contain many duplicate entries.
1028 As an example, SVR4 systems use ELF formatted object files, which
1029 usually contain at least two different types of symbol tables (a
1030 standard ELF one and a smaller dynamic linking table), as well as
1031 DWARF debugging information for files compiled with -g.
1032
1033 Without compacting, the minimal symbol table for gdb itself contains
1034 over a 1000 duplicates, about a third of the total table size. Aside
1035 from the potential trap of not noticing that two successive entries
1036 identify the same location, this duplication impacts the time required
1037 to linearly scan the table, which is done in a number of places. So we
1038 just do one linear scan here and toss out the duplicates.
1039
1040 Note that we are not concerned here about recovering the space that
1041 is potentially freed up, because the strings themselves are allocated
1042 on the objfile_obstack, and will get automatically freed when the symbol
1043 table is freed. The caller can free up the unused minimal symbols at
1044 the end of the compacted region if their allocation strategy allows it.
1045
1046 Also note we only go up to the next to last entry within the loop
1047 and then copy the last entry explicitly after the loop terminates.
1048
1049 Since the different sources of information for each symbol may
1050 have different levels of "completeness", we may have duplicates
1051 that have one entry with type "mst_unknown" and the other with a
1052 known type. So if the one we are leaving alone has type mst_unknown,
1053 overwrite its type with the type from the one we are compacting out. */
1054
1055 static int
1056 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1057 struct objfile *objfile)
1058 {
1059 struct minimal_symbol *copyfrom;
1060 struct minimal_symbol *copyto;
1061
1062 if (mcount > 0)
1063 {
1064 copyfrom = copyto = msymbol;
1065 while (copyfrom < msymbol + mcount - 1)
1066 {
1067 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1068 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1069 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1070 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1071 {
1072 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1073 {
1074 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1075 }
1076 copyfrom++;
1077 }
1078 else
1079 *copyto++ = *copyfrom++;
1080 }
1081 *copyto++ = *copyfrom++;
1082 mcount = copyto - msymbol;
1083 }
1084 return (mcount);
1085 }
1086
1087 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1088 after compacting or sorting the table since the entries move around
1089 thus causing the internal minimal_symbol pointers to become jumbled. */
1090
1091 static void
1092 build_minimal_symbol_hash_tables (struct objfile *objfile)
1093 {
1094 int i;
1095 struct minimal_symbol *msym;
1096
1097 /* Clear the hash tables. */
1098 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1099 {
1100 objfile->msymbol_hash[i] = 0;
1101 objfile->msymbol_demangled_hash[i] = 0;
1102 }
1103
1104 /* Now, (re)insert the actual entries. */
1105 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1106 i > 0;
1107 i--, msym++)
1108 {
1109 msym->hash_next = 0;
1110 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1111
1112 msym->demangled_hash_next = 0;
1113 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1114 add_minsym_to_demangled_hash_table (msym,
1115 objfile->msymbol_demangled_hash);
1116 }
1117 }
1118
1119 /* Add the minimal symbols in the existing bunches to the objfile's official
1120 minimal symbol table. In most cases there is no minimal symbol table yet
1121 for this objfile, and the existing bunches are used to create one. Once
1122 in a while (for shared libraries for example), we add symbols (e.g. common
1123 symbols) to an existing objfile.
1124
1125 Because of the way minimal symbols are collected, we generally have no way
1126 of knowing what source language applies to any particular minimal symbol.
1127 Specifically, we have no way of knowing if the minimal symbol comes from a
1128 C++ compilation unit or not. So for the sake of supporting cached
1129 demangled C++ names, we have no choice but to try and demangle each new one
1130 that comes in. If the demangling succeeds, then we assume it is a C++
1131 symbol and set the symbol's language and demangled name fields
1132 appropriately. Note that in order to avoid unnecessary demanglings, and
1133 allocating obstack space that subsequently can't be freed for the demangled
1134 names, we mark all newly added symbols with language_auto. After
1135 compaction of the minimal symbols, we go back and scan the entire minimal
1136 symbol table looking for these new symbols. For each new symbol we attempt
1137 to demangle it, and if successful, record it as a language_cplus symbol
1138 and cache the demangled form on the symbol obstack. Symbols which don't
1139 demangle are marked as language_unknown symbols, which inhibits future
1140 attempts to demangle them if we later add more minimal symbols. */
1141
1142 void
1143 install_minimal_symbols (struct objfile *objfile)
1144 {
1145 int bindex;
1146 int mcount;
1147 struct msym_bunch *bunch;
1148 struct minimal_symbol *msymbols;
1149 int alloc_count;
1150
1151 if (msym_count > 0)
1152 {
1153 /* Allocate enough space in the obstack, into which we will gather the
1154 bunches of new and existing minimal symbols, sort them, and then
1155 compact out the duplicate entries. Once we have a final table,
1156 we will give back the excess space. */
1157
1158 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1159 obstack_blank (&objfile->objfile_obstack,
1160 alloc_count * sizeof (struct minimal_symbol));
1161 msymbols = (struct minimal_symbol *)
1162 obstack_base (&objfile->objfile_obstack);
1163
1164 /* Copy in the existing minimal symbols, if there are any. */
1165
1166 if (objfile->minimal_symbol_count)
1167 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1168 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1169
1170 /* Walk through the list of minimal symbol bunches, adding each symbol
1171 to the new contiguous array of symbols. Note that we start with the
1172 current, possibly partially filled bunch (thus we use the current
1173 msym_bunch_index for the first bunch we copy over), and thereafter
1174 each bunch is full. */
1175
1176 mcount = objfile->minimal_symbol_count;
1177
1178 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1179 {
1180 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1181 msymbols[mcount] = bunch->contents[bindex];
1182 msym_bunch_index = BUNCH_SIZE;
1183 }
1184
1185 /* Sort the minimal symbols by address. */
1186
1187 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1188 compare_minimal_symbols);
1189
1190 /* Compact out any duplicates, and free up whatever space we are
1191 no longer using. */
1192
1193 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1194
1195 obstack_blank (&objfile->objfile_obstack,
1196 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1197 msymbols = (struct minimal_symbol *)
1198 obstack_finish (&objfile->objfile_obstack);
1199
1200 /* We also terminate the minimal symbol table with a "null symbol",
1201 which is *not* included in the size of the table. This makes it
1202 easier to find the end of the table when we are handed a pointer
1203 to some symbol in the middle of it. Zero out the fields in the
1204 "null symbol" allocated at the end of the array. Note that the
1205 symbol count does *not* include this null symbol, which is why it
1206 is indexed by mcount and not mcount-1. */
1207
1208 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1209 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1210 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1211 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1212 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1213 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1214 SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1215
1216 /* Attach the minimal symbol table to the specified objfile.
1217 The strings themselves are also located in the objfile_obstack
1218 of this objfile. */
1219
1220 objfile->minimal_symbol_count = mcount;
1221 objfile->msymbols = msymbols;
1222
1223 /* Try to guess the appropriate C++ ABI by looking at the names
1224 of the minimal symbols in the table. */
1225 {
1226 int i;
1227
1228 for (i = 0; i < mcount; i++)
1229 {
1230 /* If a symbol's name starts with _Z and was successfully
1231 demangled, then we can assume we've found a GNU v3 symbol.
1232 For now we set the C++ ABI globally; if the user is
1233 mixing ABIs then the user will need to "set cp-abi"
1234 manually. */
1235 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1236
1237 if (name[0] == '_' && name[1] == 'Z'
1238 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1239 {
1240 set_cp_abi_as_auto_default ("gnu-v3");
1241 break;
1242 }
1243 }
1244 }
1245
1246 /* Now build the hash tables; we can't do this incrementally
1247 at an earlier point since we weren't finished with the obstack
1248 yet. (And if the msymbol obstack gets moved, all the internal
1249 pointers to other msymbols need to be adjusted.) */
1250 build_minimal_symbol_hash_tables (objfile);
1251 }
1252 }
1253
1254 /* Sort all the minimal symbols in OBJFILE. */
1255
1256 void
1257 msymbols_sort (struct objfile *objfile)
1258 {
1259 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1260 sizeof (struct minimal_symbol), compare_minimal_symbols);
1261 build_minimal_symbol_hash_tables (objfile);
1262 }
1263
1264 /* Check if PC is in a shared library trampoline code stub.
1265 Return minimal symbol for the trampoline entry or NULL if PC is not
1266 in a trampoline code stub. */
1267
1268 struct minimal_symbol *
1269 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1270 {
1271 struct obj_section *section = find_pc_section (pc);
1272 struct minimal_symbol *msymbol;
1273
1274 if (section == NULL)
1275 return NULL;
1276 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1277
1278 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1279 return msymbol;
1280 return NULL;
1281 }
1282
1283 /* If PC is in a shared library trampoline code stub, return the
1284 address of the `real' function belonging to the stub.
1285 Return 0 if PC is not in a trampoline code stub or if the real
1286 function is not found in the minimal symbol table.
1287
1288 We may fail to find the right function if a function with the
1289 same name is defined in more than one shared library, but this
1290 is considered bad programming style. We could return 0 if we find
1291 a duplicate function in case this matters someday. */
1292
1293 CORE_ADDR
1294 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1295 {
1296 struct objfile *objfile;
1297 struct minimal_symbol *msymbol;
1298 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1299
1300 if (tsymbol != NULL)
1301 {
1302 ALL_MSYMBOLS (objfile, msymbol)
1303 {
1304 if ((MSYMBOL_TYPE (msymbol) == mst_text
1305 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1306 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1307 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1308 return SYMBOL_VALUE_ADDRESS (msymbol);
1309
1310 /* Also handle minimal symbols pointing to function descriptors. */
1311 if (MSYMBOL_TYPE (msymbol) == mst_data
1312 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1313 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1314 {
1315 CORE_ADDR func;
1316
1317 func = gdbarch_convert_from_func_ptr_addr
1318 (get_objfile_arch (objfile),
1319 SYMBOL_VALUE_ADDRESS (msymbol),
1320 &current_target);
1321
1322 /* Ignore data symbols that are not function descriptors. */
1323 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1324 return func;
1325 }
1326 }
1327 }
1328 return 0;
1329 }
This page took 0.106381 seconds and 5 git commands to generate.