use bound_minsym as result for lookup_minimal_symbol et al
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include <string.h>
42 #include "symtab.h"
43 #include "bfd.h"
44 #include "filenames.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53 #include "cli/cli-utils.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 symbol obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* Bunch currently being filled up.
68 The next field points to chain of filled bunches. */
69
70 static struct msym_bunch *msym_bunch;
71
72 /* Number of slots filled in current bunch. */
73
74 static int msym_bunch_index;
75
76 /* Total number of minimal symbols recorded so far for the objfile. */
77
78 static int msym_count;
79
80 /* See minsyms.h. */
81
82 unsigned int
83 msymbol_hash_iw (const char *string)
84 {
85 unsigned int hash = 0;
86
87 while (*string && *string != '(')
88 {
89 string = skip_spaces_const (string);
90 if (*string && *string != '(')
91 {
92 hash = SYMBOL_HASH_NEXT (hash, *string);
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* See minsyms.h. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = SYMBOL_HASH_NEXT (hash, *string);
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 static void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
135 % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142 /* Look through all the current minimal symbol tables and find the
143 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
144 the search to that objfile. If SFILE is non-NULL, the only file-scope
145 symbols considered will be from that source file (global symbols are
146 still preferred). Returns a pointer to the minimal symbol that
147 matches, or NULL if no match is found.
148
149 Note: One instance where there may be duplicate minimal symbols with
150 the same name is when the symbol tables for a shared library and the
151 symbol tables for an executable contain global symbols with the same
152 names (the dynamic linker deals with the duplication).
153
154 It's also possible to have minimal symbols with different mangled
155 names, but identical demangled names. For example, the GNU C++ v3
156 ABI requires the generation of two (or perhaps three) copies of
157 constructor functions --- "in-charge", "not-in-charge", and
158 "allocate" copies; destructors may be duplicated as well.
159 Obviously, there must be distinct mangled names for each of these,
160 but the demangled names are all the same: S::S or S::~S. */
161
162 struct bound_minimal_symbol
163 lookup_minimal_symbol (const char *name, const char *sfile,
164 struct objfile *objf)
165 {
166 struct objfile *objfile;
167 struct bound_minimal_symbol found_symbol = { NULL, NULL };
168 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
169 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
170
171 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
172 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
173
174 int needtofreename = 0;
175 const char *modified_name;
176
177 if (sfile != NULL)
178 sfile = lbasename (sfile);
179
180 /* For C++, canonicalize the input name. */
181 modified_name = name;
182 if (current_language->la_language == language_cplus)
183 {
184 char *cname = cp_canonicalize_string (name);
185
186 if (cname)
187 {
188 modified_name = cname;
189 needtofreename = 1;
190 }
191 }
192
193 for (objfile = object_files;
194 objfile != NULL && found_symbol.minsym == NULL;
195 objfile = objfile->next)
196 {
197 struct minimal_symbol *msymbol;
198
199 if (objf == NULL || objf == objfile
200 || objf == objfile->separate_debug_objfile_backlink)
201 {
202 /* Do two passes: the first over the ordinary hash table,
203 and the second over the demangled hash table. */
204 int pass;
205
206 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
207 {
208 /* Select hash list according to pass. */
209 if (pass == 1)
210 msymbol = objfile->msymbol_hash[hash];
211 else
212 msymbol = objfile->msymbol_demangled_hash[dem_hash];
213
214 while (msymbol != NULL && found_symbol.minsym == NULL)
215 {
216 int match;
217
218 if (pass == 1)
219 {
220 int (*cmp) (const char *, const char *);
221
222 cmp = (case_sensitivity == case_sensitive_on
223 ? strcmp : strcasecmp);
224 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
225 modified_name) == 0;
226 }
227 else
228 {
229 /* The function respects CASE_SENSITIVITY. */
230 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
231 modified_name);
232 }
233
234 if (match)
235 {
236 switch (MSYMBOL_TYPE (msymbol))
237 {
238 case mst_file_text:
239 case mst_file_data:
240 case mst_file_bss:
241 if (sfile == NULL
242 || filename_cmp (msymbol->filename, sfile) == 0)
243 {
244 found_file_symbol.minsym = msymbol;
245 found_file_symbol.objfile = objfile;
246 }
247 break;
248
249 case mst_solib_trampoline:
250
251 /* If a trampoline symbol is found, we prefer to
252 keep looking for the *real* symbol. If the
253 actual symbol is not found, then we'll use the
254 trampoline entry. */
255 if (trampoline_symbol.minsym == NULL)
256 {
257 trampoline_symbol.minsym = msymbol;
258 trampoline_symbol.objfile = objfile;
259 }
260 break;
261
262 case mst_unknown:
263 default:
264 found_symbol.minsym = msymbol;
265 found_symbol.objfile = objfile;
266 break;
267 }
268 }
269
270 /* Find the next symbol on the hash chain. */
271 if (pass == 1)
272 msymbol = msymbol->hash_next;
273 else
274 msymbol = msymbol->demangled_hash_next;
275 }
276 }
277 }
278 }
279
280 if (needtofreename)
281 xfree ((void *) modified_name);
282
283 /* External symbols are best. */
284 if (found_symbol.minsym != NULL)
285 return found_symbol;
286
287 /* File-local symbols are next best. */
288 if (found_file_symbol.minsym != NULL)
289 return found_file_symbol;
290
291 /* Symbols for shared library trampolines are next best. */
292 return trampoline_symbol;
293 }
294
295 /* See minsyms.h. */
296
297 struct bound_minimal_symbol
298 lookup_bound_minimal_symbol (const char *name)
299 {
300 return lookup_minimal_symbol (name, NULL, NULL);
301 }
302
303 /* See minsyms.h. */
304
305 void
306 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
307 void (*callback) (struct minimal_symbol *,
308 void *),
309 void *user_data)
310 {
311 unsigned int hash;
312 struct minimal_symbol *iter;
313 int (*cmp) (const char *, const char *);
314
315 /* The first pass is over the ordinary hash table. */
316 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
317 iter = objf->msymbol_hash[hash];
318 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
319 while (iter)
320 {
321 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
322 (*callback) (iter, user_data);
323 iter = iter->hash_next;
324 }
325
326 /* The second pass is over the demangled table. */
327 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
328 iter = objf->msymbol_demangled_hash[hash];
329 while (iter)
330 {
331 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
332 (*callback) (iter, user_data);
333 iter = iter->demangled_hash_next;
334 }
335 }
336
337 /* See minsyms.h. */
338
339 struct bound_minimal_symbol
340 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
341 {
342 struct objfile *objfile;
343 struct minimal_symbol *msymbol;
344 struct bound_minimal_symbol found_symbol = { NULL, NULL };
345 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
346
347 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
348
349 for (objfile = object_files;
350 objfile != NULL && found_symbol.minsym == NULL;
351 objfile = objfile->next)
352 {
353 if (objf == NULL || objf == objfile
354 || objf == objfile->separate_debug_objfile_backlink)
355 {
356 for (msymbol = objfile->msymbol_hash[hash];
357 msymbol != NULL && found_symbol.minsym == NULL;
358 msymbol = msymbol->hash_next)
359 {
360 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
361 (MSYMBOL_TYPE (msymbol) == mst_text
362 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
363 || MSYMBOL_TYPE (msymbol) == mst_file_text))
364 {
365 switch (MSYMBOL_TYPE (msymbol))
366 {
367 case mst_file_text:
368 found_file_symbol.minsym = msymbol;
369 found_file_symbol.objfile = objfile;
370 break;
371 default:
372 found_symbol.minsym = msymbol;
373 found_symbol.objfile = objfile;
374 break;
375 }
376 }
377 }
378 }
379 }
380 /* External symbols are best. */
381 if (found_symbol.minsym)
382 return found_symbol;
383
384 /* File-local symbols are next best. */
385 return found_file_symbol;
386 }
387
388 /* See minsyms.h. */
389
390 struct minimal_symbol *
391 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
392 struct objfile *objf)
393 {
394 struct objfile *objfile;
395 struct minimal_symbol *msymbol;
396
397 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
398
399 for (objfile = object_files;
400 objfile != NULL;
401 objfile = objfile->next)
402 {
403 if (objf == NULL || objf == objfile
404 || objf == objfile->separate_debug_objfile_backlink)
405 {
406 for (msymbol = objfile->msymbol_hash[hash];
407 msymbol != NULL;
408 msymbol = msymbol->hash_next)
409 {
410 if (MSYMBOL_VALUE_ADDRESS (msymbol) == pc
411 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
412 return msymbol;
413 }
414 }
415 }
416
417 return NULL;
418 }
419
420 /* See minsyms.h. */
421
422 struct bound_minimal_symbol
423 lookup_minimal_symbol_solib_trampoline (const char *name,
424 struct objfile *objf)
425 {
426 struct objfile *objfile;
427 struct minimal_symbol *msymbol;
428 struct bound_minimal_symbol found_symbol = { NULL, NULL };
429
430 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
431
432 for (objfile = object_files;
433 objfile != NULL;
434 objfile = objfile->next)
435 {
436 if (objf == NULL || objf == objfile
437 || objf == objfile->separate_debug_objfile_backlink)
438 {
439 for (msymbol = objfile->msymbol_hash[hash];
440 msymbol != NULL;
441 msymbol = msymbol->hash_next)
442 {
443 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
444 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
445 {
446 found_symbol.objfile = objfile;
447 found_symbol.minsym = msymbol;
448 return found_symbol;
449 }
450 }
451 }
452 }
453
454 return found_symbol;
455 }
456
457 /* Search through the minimal symbol table for each objfile and find
458 the symbol whose address is the largest address that is still less
459 than or equal to PC, and matches SECTION (which is not NULL).
460 Returns a pointer to the minimal symbol if such a symbol is found,
461 or NULL if PC is not in a suitable range.
462 Note that we need to look through ALL the minimal symbol tables
463 before deciding on the symbol that comes closest to the specified PC.
464 This is because objfiles can overlap, for example objfile A has .text
465 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
466 .data at 0x40048.
467
468 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
469 there are text and trampoline symbols at the same address.
470 Otherwise prefer mst_text symbols. */
471
472 static struct bound_minimal_symbol
473 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
474 struct obj_section *section,
475 int want_trampoline)
476 {
477 int lo;
478 int hi;
479 int new;
480 struct objfile *objfile;
481 struct minimal_symbol *msymbol;
482 struct minimal_symbol *best_symbol = NULL;
483 struct objfile *best_objfile = NULL;
484 struct bound_minimal_symbol result;
485 enum minimal_symbol_type want_type, other_type;
486
487 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
488 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
489
490 /* We can not require the symbol found to be in section, because
491 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
492 symbol - but find_pc_section won't return an absolute section and
493 hence the code below would skip over absolute symbols. We can
494 still take advantage of the call to find_pc_section, though - the
495 object file still must match. In case we have separate debug
496 files, search both the file and its separate debug file. There's
497 no telling which one will have the minimal symbols. */
498
499 gdb_assert (section != NULL);
500
501 for (objfile = section->objfile;
502 objfile != NULL;
503 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
504 {
505 /* If this objfile has a minimal symbol table, go search it using
506 a binary search. Note that a minimal symbol table always consists
507 of at least two symbols, a "real" symbol and the terminating
508 "null symbol". If there are no real symbols, then there is no
509 minimal symbol table at all. */
510
511 if (objfile->minimal_symbol_count > 0)
512 {
513 int best_zero_sized = -1;
514
515 msymbol = objfile->msymbols;
516 lo = 0;
517 hi = objfile->minimal_symbol_count - 1;
518
519 /* This code assumes that the minimal symbols are sorted by
520 ascending address values. If the pc value is greater than or
521 equal to the first symbol's address, then some symbol in this
522 minimal symbol table is a suitable candidate for being the
523 "best" symbol. This includes the last real symbol, for cases
524 where the pc value is larger than any address in this vector.
525
526 By iterating until the address associated with the current
527 hi index (the endpoint of the test interval) is less than
528 or equal to the desired pc value, we accomplish two things:
529 (1) the case where the pc value is larger than any minimal
530 symbol address is trivially solved, (2) the address associated
531 with the hi index is always the one we want when the interation
532 terminates. In essence, we are iterating the test interval
533 down until the pc value is pushed out of it from the high end.
534
535 Warning: this code is trickier than it would appear at first. */
536
537 /* Should also require that pc is <= end of objfile. FIXME! */
538 if (pc >= MSYMBOL_VALUE_ADDRESS (&msymbol[lo]))
539 {
540 while (MSYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
541 {
542 /* pc is still strictly less than highest address. */
543 /* Note "new" will always be >= lo. */
544 new = (lo + hi) / 2;
545 if ((MSYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
546 (lo == new))
547 {
548 hi = new;
549 }
550 else
551 {
552 lo = new;
553 }
554 }
555
556 /* If we have multiple symbols at the same address, we want
557 hi to point to the last one. That way we can find the
558 right symbol if it has an index greater than hi. */
559 while (hi < objfile->minimal_symbol_count - 1
560 && (MSYMBOL_VALUE_ADDRESS (&msymbol[hi])
561 == MSYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
562 hi++;
563
564 /* Skip various undesirable symbols. */
565 while (hi >= 0)
566 {
567 /* Skip any absolute symbols. This is apparently
568 what adb and dbx do, and is needed for the CM-5.
569 There are two known possible problems: (1) on
570 ELF, apparently end, edata, etc. are absolute.
571 Not sure ignoring them here is a big deal, but if
572 we want to use them, the fix would go in
573 elfread.c. (2) I think shared library entry
574 points on the NeXT are absolute. If we want
575 special handling for this it probably should be
576 triggered by a special mst_abs_or_lib or some
577 such. */
578
579 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
580 {
581 hi--;
582 continue;
583 }
584
585 /* If SECTION was specified, skip any symbol from
586 wrong section. */
587 if (section
588 /* Some types of debug info, such as COFF,
589 don't fill the bfd_section member, so don't
590 throw away symbols on those platforms. */
591 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
592 && (!matching_obj_sections
593 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
594 section)))
595 {
596 hi--;
597 continue;
598 }
599
600 /* If we are looking for a trampoline and this is a
601 text symbol, or the other way around, check the
602 preceding symbol too. If they are otherwise
603 identical prefer that one. */
604 if (hi > 0
605 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
606 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
607 && (MSYMBOL_SIZE (&msymbol[hi])
608 == MSYMBOL_SIZE (&msymbol[hi - 1]))
609 && (MSYMBOL_VALUE_ADDRESS (&msymbol[hi])
610 == MSYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
611 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
612 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
613 {
614 hi--;
615 continue;
616 }
617
618 /* If the minimal symbol has a zero size, save it
619 but keep scanning backwards looking for one with
620 a non-zero size. A zero size may mean that the
621 symbol isn't an object or function (e.g. a
622 label), or it may just mean that the size was not
623 specified. */
624 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
625 && best_zero_sized == -1)
626 {
627 best_zero_sized = hi;
628 hi--;
629 continue;
630 }
631
632 /* If we are past the end of the current symbol, try
633 the previous symbol if it has a larger overlapping
634 size. This happens on i686-pc-linux-gnu with glibc;
635 the nocancel variants of system calls are inside
636 the cancellable variants, but both have sizes. */
637 if (hi > 0
638 && MSYMBOL_SIZE (&msymbol[hi]) != 0
639 && pc >= (MSYMBOL_VALUE_ADDRESS (&msymbol[hi])
640 + MSYMBOL_SIZE (&msymbol[hi]))
641 && pc < (MSYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
642 + MSYMBOL_SIZE (&msymbol[hi - 1])))
643 {
644 hi--;
645 continue;
646 }
647
648 /* Otherwise, this symbol must be as good as we're going
649 to get. */
650 break;
651 }
652
653 /* If HI has a zero size, and best_zero_sized is set,
654 then we had two or more zero-sized symbols; prefer
655 the first one we found (which may have a higher
656 address). Also, if we ran off the end, be sure
657 to back up. */
658 if (best_zero_sized != -1
659 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
660 hi = best_zero_sized;
661
662 /* If the minimal symbol has a non-zero size, and this
663 PC appears to be outside the symbol's contents, then
664 refuse to use this symbol. If we found a zero-sized
665 symbol with an address greater than this symbol's,
666 use that instead. We assume that if symbols have
667 specified sizes, they do not overlap. */
668
669 if (hi >= 0
670 && MSYMBOL_SIZE (&msymbol[hi]) != 0
671 && pc >= (MSYMBOL_VALUE_ADDRESS (&msymbol[hi])
672 + MSYMBOL_SIZE (&msymbol[hi])))
673 {
674 if (best_zero_sized != -1)
675 hi = best_zero_sized;
676 else
677 /* Go on to the next object file. */
678 continue;
679 }
680
681 /* The minimal symbol indexed by hi now is the best one in this
682 objfile's minimal symbol table. See if it is the best one
683 overall. */
684
685 if (hi >= 0
686 && ((best_symbol == NULL) ||
687 (MSYMBOL_VALUE_ADDRESS (best_symbol) <
688 MSYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
689 {
690 best_symbol = &msymbol[hi];
691 best_objfile = objfile;
692 }
693 }
694 }
695 }
696
697 result.minsym = best_symbol;
698 result.objfile = best_objfile;
699 return result;
700 }
701
702 struct bound_minimal_symbol
703 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
704 {
705 if (section == NULL)
706 {
707 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
708 force the section but that (well unless you're doing overlay
709 debugging) always returns NULL making the call somewhat useless. */
710 section = find_pc_section (pc);
711 if (section == NULL)
712 {
713 struct bound_minimal_symbol result;
714
715 memset (&result, 0, sizeof (result));
716 return result;
717 }
718 }
719 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
720 }
721
722 /* See minsyms.h. */
723
724 struct bound_minimal_symbol
725 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
726 {
727 struct obj_section *section = find_pc_section (pc);
728
729 if (section == NULL)
730 {
731 struct bound_minimal_symbol result;
732
733 memset (&result, 0, sizeof (result));
734 return result;
735 }
736 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
737 }
738
739 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
740
741 int
742 in_gnu_ifunc_stub (CORE_ADDR pc)
743 {
744 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
745
746 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
747 }
748
749 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
750
751 static CORE_ADDR
752 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
753 {
754 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
755 "the ELF support compiled in."),
756 paddress (gdbarch, pc));
757 }
758
759 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
760
761 static int
762 stub_gnu_ifunc_resolve_name (const char *function_name,
763 CORE_ADDR *function_address_p)
764 {
765 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
766 "the ELF support compiled in."),
767 function_name);
768 }
769
770 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
771
772 static void
773 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
774 {
775 internal_error (__FILE__, __LINE__,
776 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
777 }
778
779 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
780
781 static void
782 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
783 {
784 internal_error (__FILE__, __LINE__,
785 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
786 }
787
788 /* See elf_gnu_ifunc_fns for its real implementation. */
789
790 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
791 {
792 stub_gnu_ifunc_resolve_addr,
793 stub_gnu_ifunc_resolve_name,
794 stub_gnu_ifunc_resolver_stop,
795 stub_gnu_ifunc_resolver_return_stop,
796 };
797
798 /* A placeholder for &elf_gnu_ifunc_fns. */
799
800 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
801
802 /* See minsyms.h. */
803
804 struct bound_minimal_symbol
805 lookup_minimal_symbol_and_objfile (const char *name)
806 {
807 struct bound_minimal_symbol result;
808 struct objfile *objfile;
809 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
810
811 ALL_OBJFILES (objfile)
812 {
813 struct minimal_symbol *msym;
814
815 for (msym = objfile->msymbol_hash[hash];
816 msym != NULL;
817 msym = msym->hash_next)
818 {
819 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
820 {
821 result.minsym = msym;
822 result.objfile = objfile;
823 return result;
824 }
825 }
826 }
827
828 memset (&result, 0, sizeof (result));
829 return result;
830 }
831 \f
832
833 /* Return leading symbol character for a BFD. If BFD is NULL,
834 return the leading symbol character from the main objfile. */
835
836 static int
837 get_symbol_leading_char (bfd *abfd)
838 {
839 if (abfd != NULL)
840 return bfd_get_symbol_leading_char (abfd);
841 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
842 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
843 return 0;
844 }
845
846 /* See minsyms.h. */
847
848 void
849 init_minimal_symbol_collection (void)
850 {
851 msym_count = 0;
852 msym_bunch = NULL;
853 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
854 first call to save a minimal symbol to allocate the memory for
855 the first bunch. */
856 msym_bunch_index = BUNCH_SIZE;
857 }
858
859 /* See minsyms.h. */
860
861 void
862 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
863 enum minimal_symbol_type ms_type,
864 struct objfile *objfile)
865 {
866 int section;
867
868 switch (ms_type)
869 {
870 case mst_text:
871 case mst_text_gnu_ifunc:
872 case mst_file_text:
873 case mst_solib_trampoline:
874 section = SECT_OFF_TEXT (objfile);
875 break;
876 case mst_data:
877 case mst_file_data:
878 section = SECT_OFF_DATA (objfile);
879 break;
880 case mst_bss:
881 case mst_file_bss:
882 section = SECT_OFF_BSS (objfile);
883 break;
884 default:
885 section = -1;
886 }
887
888 prim_record_minimal_symbol_and_info (name, address, ms_type,
889 section, objfile);
890 }
891
892 /* See minsyms.h. */
893
894 struct minimal_symbol *
895 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
896 CORE_ADDR address,
897 enum minimal_symbol_type ms_type,
898 int section,
899 struct objfile *objfile)
900 {
901 struct obj_section *obj_section;
902 struct msym_bunch *new;
903 struct minimal_symbol *msymbol;
904
905 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
906 the minimal symbols, because if there is also another symbol
907 at the same address (e.g. the first function of the file),
908 lookup_minimal_symbol_by_pc would have no way of getting the
909 right one. */
910 if (ms_type == mst_file_text && name[0] == 'g'
911 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
912 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
913 return (NULL);
914
915 /* It's safe to strip the leading char here once, since the name
916 is also stored stripped in the minimal symbol table. */
917 if (name[0] == get_symbol_leading_char (objfile->obfd))
918 {
919 ++name;
920 --name_len;
921 }
922
923 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
924 return (NULL);
925
926 if (msym_bunch_index == BUNCH_SIZE)
927 {
928 new = XCNEW (struct msym_bunch);
929 msym_bunch_index = 0;
930 new->next = msym_bunch;
931 msym_bunch = new;
932 }
933 msymbol = &msym_bunch->contents[msym_bunch_index];
934 MSYMBOL_SET_LANGUAGE (msymbol, language_auto, &objfile->objfile_obstack);
935 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
936
937 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
938 MSYMBOL_SECTION (msymbol) = section;
939
940 MSYMBOL_TYPE (msymbol) = ms_type;
941 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
942 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
943 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
944 as it would also set the has_size flag. */
945 msymbol->size = 0;
946
947 /* The hash pointers must be cleared! If they're not,
948 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
949 msymbol->hash_next = NULL;
950 msymbol->demangled_hash_next = NULL;
951
952 msym_bunch_index++;
953 msym_count++;
954 OBJSTAT (objfile, n_minsyms++);
955 return msymbol;
956 }
957
958 /* See minsyms.h. */
959
960 struct minimal_symbol *
961 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
962 enum minimal_symbol_type ms_type,
963 int section,
964 struct objfile *objfile)
965 {
966 return prim_record_minimal_symbol_full (name, strlen (name), 1,
967 address, ms_type,
968 section, objfile);
969 }
970
971 /* Compare two minimal symbols by address and return a signed result based
972 on unsigned comparisons, so that we sort into unsigned numeric order.
973 Within groups with the same address, sort by name. */
974
975 static int
976 compare_minimal_symbols (const void *fn1p, const void *fn2p)
977 {
978 const struct minimal_symbol *fn1;
979 const struct minimal_symbol *fn2;
980
981 fn1 = (const struct minimal_symbol *) fn1p;
982 fn2 = (const struct minimal_symbol *) fn2p;
983
984 if (MSYMBOL_VALUE_ADDRESS (fn1) < MSYMBOL_VALUE_ADDRESS (fn2))
985 {
986 return (-1); /* addr 1 is less than addr 2. */
987 }
988 else if (MSYMBOL_VALUE_ADDRESS (fn1) > MSYMBOL_VALUE_ADDRESS (fn2))
989 {
990 return (1); /* addr 1 is greater than addr 2. */
991 }
992 else
993 /* addrs are equal: sort by name */
994 {
995 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
996 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
997
998 if (name1 && name2) /* both have names */
999 return strcmp (name1, name2);
1000 else if (name2)
1001 return 1; /* fn1 has no name, so it is "less". */
1002 else if (name1) /* fn2 has no name, so it is "less". */
1003 return -1;
1004 else
1005 return (0); /* Neither has a name, so they're equal. */
1006 }
1007 }
1008
1009 /* Discard the currently collected minimal symbols, if any. If we wish
1010 to save them for later use, we must have already copied them somewhere
1011 else before calling this function.
1012
1013 FIXME: We could allocate the minimal symbol bunches on their own
1014 obstack and then simply blow the obstack away when we are done with
1015 it. Is it worth the extra trouble though? */
1016
1017 static void
1018 do_discard_minimal_symbols_cleanup (void *arg)
1019 {
1020 struct msym_bunch *next;
1021
1022 while (msym_bunch != NULL)
1023 {
1024 next = msym_bunch->next;
1025 xfree (msym_bunch);
1026 msym_bunch = next;
1027 }
1028 }
1029
1030 /* See minsyms.h. */
1031
1032 struct cleanup *
1033 make_cleanup_discard_minimal_symbols (void)
1034 {
1035 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1036 }
1037
1038
1039
1040 /* Compact duplicate entries out of a minimal symbol table by walking
1041 through the table and compacting out entries with duplicate addresses
1042 and matching names. Return the number of entries remaining.
1043
1044 On entry, the table resides between msymbol[0] and msymbol[mcount].
1045 On exit, it resides between msymbol[0] and msymbol[result_count].
1046
1047 When files contain multiple sources of symbol information, it is
1048 possible for the minimal symbol table to contain many duplicate entries.
1049 As an example, SVR4 systems use ELF formatted object files, which
1050 usually contain at least two different types of symbol tables (a
1051 standard ELF one and a smaller dynamic linking table), as well as
1052 DWARF debugging information for files compiled with -g.
1053
1054 Without compacting, the minimal symbol table for gdb itself contains
1055 over a 1000 duplicates, about a third of the total table size. Aside
1056 from the potential trap of not noticing that two successive entries
1057 identify the same location, this duplication impacts the time required
1058 to linearly scan the table, which is done in a number of places. So we
1059 just do one linear scan here and toss out the duplicates.
1060
1061 Note that we are not concerned here about recovering the space that
1062 is potentially freed up, because the strings themselves are allocated
1063 on the objfile_obstack, and will get automatically freed when the symbol
1064 table is freed. The caller can free up the unused minimal symbols at
1065 the end of the compacted region if their allocation strategy allows it.
1066
1067 Also note we only go up to the next to last entry within the loop
1068 and then copy the last entry explicitly after the loop terminates.
1069
1070 Since the different sources of information for each symbol may
1071 have different levels of "completeness", we may have duplicates
1072 that have one entry with type "mst_unknown" and the other with a
1073 known type. So if the one we are leaving alone has type mst_unknown,
1074 overwrite its type with the type from the one we are compacting out. */
1075
1076 static int
1077 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1078 struct objfile *objfile)
1079 {
1080 struct minimal_symbol *copyfrom;
1081 struct minimal_symbol *copyto;
1082
1083 if (mcount > 0)
1084 {
1085 copyfrom = copyto = msymbol;
1086 while (copyfrom < msymbol + mcount - 1)
1087 {
1088 if (MSYMBOL_VALUE_ADDRESS (copyfrom)
1089 == MSYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1090 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1091 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1092 {
1093 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1094 {
1095 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1096 }
1097 copyfrom++;
1098 }
1099 else
1100 *copyto++ = *copyfrom++;
1101 }
1102 *copyto++ = *copyfrom++;
1103 mcount = copyto - msymbol;
1104 }
1105 return (mcount);
1106 }
1107
1108 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1109 after compacting or sorting the table since the entries move around
1110 thus causing the internal minimal_symbol pointers to become jumbled. */
1111
1112 static void
1113 build_minimal_symbol_hash_tables (struct objfile *objfile)
1114 {
1115 int i;
1116 struct minimal_symbol *msym;
1117
1118 /* Clear the hash tables. */
1119 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1120 {
1121 objfile->msymbol_hash[i] = 0;
1122 objfile->msymbol_demangled_hash[i] = 0;
1123 }
1124
1125 /* Now, (re)insert the actual entries. */
1126 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1127 i > 0;
1128 i--, msym++)
1129 {
1130 msym->hash_next = 0;
1131 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1132
1133 msym->demangled_hash_next = 0;
1134 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1135 add_minsym_to_demangled_hash_table (msym,
1136 objfile->msymbol_demangled_hash);
1137 }
1138 }
1139
1140 /* Add the minimal symbols in the existing bunches to the objfile's official
1141 minimal symbol table. In most cases there is no minimal symbol table yet
1142 for this objfile, and the existing bunches are used to create one. Once
1143 in a while (for shared libraries for example), we add symbols (e.g. common
1144 symbols) to an existing objfile.
1145
1146 Because of the way minimal symbols are collected, we generally have no way
1147 of knowing what source language applies to any particular minimal symbol.
1148 Specifically, we have no way of knowing if the minimal symbol comes from a
1149 C++ compilation unit or not. So for the sake of supporting cached
1150 demangled C++ names, we have no choice but to try and demangle each new one
1151 that comes in. If the demangling succeeds, then we assume it is a C++
1152 symbol and set the symbol's language and demangled name fields
1153 appropriately. Note that in order to avoid unnecessary demanglings, and
1154 allocating obstack space that subsequently can't be freed for the demangled
1155 names, we mark all newly added symbols with language_auto. After
1156 compaction of the minimal symbols, we go back and scan the entire minimal
1157 symbol table looking for these new symbols. For each new symbol we attempt
1158 to demangle it, and if successful, record it as a language_cplus symbol
1159 and cache the demangled form on the symbol obstack. Symbols which don't
1160 demangle are marked as language_unknown symbols, which inhibits future
1161 attempts to demangle them if we later add more minimal symbols. */
1162
1163 void
1164 install_minimal_symbols (struct objfile *objfile)
1165 {
1166 int bindex;
1167 int mcount;
1168 struct msym_bunch *bunch;
1169 struct minimal_symbol *msymbols;
1170 int alloc_count;
1171
1172 if (msym_count > 0)
1173 {
1174 if (symtab_create_debug)
1175 {
1176 fprintf_unfiltered (gdb_stdlog,
1177 "Installing %d minimal symbols of objfile %s.\n",
1178 msym_count, objfile_name (objfile));
1179 }
1180
1181 /* Allocate enough space in the obstack, into which we will gather the
1182 bunches of new and existing minimal symbols, sort them, and then
1183 compact out the duplicate entries. Once we have a final table,
1184 we will give back the excess space. */
1185
1186 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1187 obstack_blank (&objfile->objfile_obstack,
1188 alloc_count * sizeof (struct minimal_symbol));
1189 msymbols = (struct minimal_symbol *)
1190 obstack_base (&objfile->objfile_obstack);
1191
1192 /* Copy in the existing minimal symbols, if there are any. */
1193
1194 if (objfile->minimal_symbol_count)
1195 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1196 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1197
1198 /* Walk through the list of minimal symbol bunches, adding each symbol
1199 to the new contiguous array of symbols. Note that we start with the
1200 current, possibly partially filled bunch (thus we use the current
1201 msym_bunch_index for the first bunch we copy over), and thereafter
1202 each bunch is full. */
1203
1204 mcount = objfile->minimal_symbol_count;
1205
1206 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1207 {
1208 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1209 msymbols[mcount] = bunch->contents[bindex];
1210 msym_bunch_index = BUNCH_SIZE;
1211 }
1212
1213 /* Sort the minimal symbols by address. */
1214
1215 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1216 compare_minimal_symbols);
1217
1218 /* Compact out any duplicates, and free up whatever space we are
1219 no longer using. */
1220
1221 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1222
1223 obstack_blank (&objfile->objfile_obstack,
1224 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1225 msymbols = (struct minimal_symbol *)
1226 obstack_finish (&objfile->objfile_obstack);
1227
1228 /* We also terminate the minimal symbol table with a "null symbol",
1229 which is *not* included in the size of the table. This makes it
1230 easier to find the end of the table when we are handed a pointer
1231 to some symbol in the middle of it. Zero out the fields in the
1232 "null symbol" allocated at the end of the array. Note that the
1233 symbol count does *not* include this null symbol, which is why it
1234 is indexed by mcount and not mcount-1. */
1235
1236 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1237
1238 /* Attach the minimal symbol table to the specified objfile.
1239 The strings themselves are also located in the objfile_obstack
1240 of this objfile. */
1241
1242 objfile->minimal_symbol_count = mcount;
1243 objfile->msymbols = msymbols;
1244
1245 /* Now build the hash tables; we can't do this incrementally
1246 at an earlier point since we weren't finished with the obstack
1247 yet. (And if the msymbol obstack gets moved, all the internal
1248 pointers to other msymbols need to be adjusted.) */
1249 build_minimal_symbol_hash_tables (objfile);
1250 }
1251 }
1252
1253 /* See minsyms.h. */
1254
1255 void
1256 terminate_minimal_symbol_table (struct objfile *objfile)
1257 {
1258 if (! objfile->msymbols)
1259 objfile->msymbols = ((struct minimal_symbol *)
1260 obstack_alloc (&objfile->objfile_obstack,
1261 sizeof (objfile->msymbols[0])));
1262
1263 {
1264 struct minimal_symbol *m
1265 = &objfile->msymbols[objfile->minimal_symbol_count];
1266
1267 memset (m, 0, sizeof (*m));
1268 /* Don't rely on these enumeration values being 0's. */
1269 MSYMBOL_TYPE (m) = mst_unknown;
1270 MSYMBOL_SET_LANGUAGE (m, language_unknown, &objfile->objfile_obstack);
1271 }
1272 }
1273
1274 /* Sort all the minimal symbols in OBJFILE. */
1275
1276 void
1277 msymbols_sort (struct objfile *objfile)
1278 {
1279 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1280 sizeof (struct minimal_symbol), compare_minimal_symbols);
1281 build_minimal_symbol_hash_tables (objfile);
1282 }
1283
1284 /* Check if PC is in a shared library trampoline code stub.
1285 Return minimal symbol for the trampoline entry or NULL if PC is not
1286 in a trampoline code stub. */
1287
1288 static struct minimal_symbol *
1289 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1290 {
1291 struct obj_section *section = find_pc_section (pc);
1292 struct bound_minimal_symbol msymbol;
1293
1294 if (section == NULL)
1295 return NULL;
1296 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1297
1298 if (msymbol.minsym != NULL
1299 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1300 return msymbol.minsym;
1301 return NULL;
1302 }
1303
1304 /* If PC is in a shared library trampoline code stub, return the
1305 address of the `real' function belonging to the stub.
1306 Return 0 if PC is not in a trampoline code stub or if the real
1307 function is not found in the minimal symbol table.
1308
1309 We may fail to find the right function if a function with the
1310 same name is defined in more than one shared library, but this
1311 is considered bad programming style. We could return 0 if we find
1312 a duplicate function in case this matters someday. */
1313
1314 CORE_ADDR
1315 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1316 {
1317 struct objfile *objfile;
1318 struct minimal_symbol *msymbol;
1319 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1320
1321 if (tsymbol != NULL)
1322 {
1323 ALL_MSYMBOLS (objfile, msymbol)
1324 {
1325 if ((MSYMBOL_TYPE (msymbol) == mst_text
1326 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1327 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1328 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1329 return MSYMBOL_VALUE_ADDRESS (msymbol);
1330
1331 /* Also handle minimal symbols pointing to function descriptors. */
1332 if (MSYMBOL_TYPE (msymbol) == mst_data
1333 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1334 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1335 {
1336 CORE_ADDR func;
1337
1338 func = gdbarch_convert_from_func_ptr_addr
1339 (get_objfile_arch (objfile),
1340 MSYMBOL_VALUE_ADDRESS (msymbol),
1341 &current_target);
1342
1343 /* Ignore data symbols that are not function descriptors. */
1344 if (func != MSYMBOL_VALUE_ADDRESS (msymbol))
1345 return func;
1346 }
1347 }
1348 }
1349 return 0;
1350 }
1351
1352 /* See minsyms.h. */
1353
1354 CORE_ADDR
1355 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1356 {
1357 int i;
1358 short section;
1359 struct obj_section *obj_section;
1360 CORE_ADDR result;
1361 struct minimal_symbol *msymbol;
1362
1363 gdb_assert (minsym.minsym != NULL);
1364
1365 /* If the minimal symbol has a size, use it. Otherwise use the
1366 lesser of the next minimal symbol in the same section, or the end
1367 of the section, as the end of the function. */
1368
1369 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1370 return MSYMBOL_VALUE_ADDRESS (minsym.minsym) + MSYMBOL_SIZE (minsym.minsym);
1371
1372 /* Step over other symbols at this same address, and symbols in
1373 other sections, to find the next symbol in this section with a
1374 different address. */
1375
1376 msymbol = minsym.minsym;
1377 section = MSYMBOL_SECTION (msymbol);
1378 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1379 {
1380 if (MSYMBOL_VALUE_ADDRESS (msymbol + i) != MSYMBOL_VALUE_ADDRESS (msymbol)
1381 && MSYMBOL_SECTION (msymbol + i) == section)
1382 break;
1383 }
1384
1385 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1386 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1387 && (MSYMBOL_VALUE_ADDRESS (msymbol + i)
1388 < obj_section_endaddr (obj_section)))
1389 result = MSYMBOL_VALUE_ADDRESS (msymbol + i);
1390 else
1391 /* We got the start address from the last msymbol in the objfile.
1392 So the end address is the end of the section. */
1393 result = obj_section_endaddr (obj_section);
1394
1395 return result;
1396 }
This page took 0.237069 seconds and 5 git commands to generate.