* gdb.texinfo (Ada Tasks): Add documentation about task-specific
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying minimal symbol tables.
24
25 Minimal symbol tables are used to hold some very basic information about
26 all defined global symbols (text, data, bss, abs, etc). The only two
27 required pieces of information are the symbol's name and the address
28 associated with that symbol.
29
30 In many cases, even if a file was compiled with no special options for
31 debugging at all, as long as was not stripped it will contain sufficient
32 information to build useful minimal symbol tables using this structure.
33
34 Even when a file contains enough debugging information to build a full
35 symbol table, these minimal symbols are still useful for quickly mapping
36 between names and addresses, and vice versa. They are also sometimes used
37 to figure out what full symbol table entries need to be read in. */
38
39
40 #include "defs.h"
41 #include <ctype.h>
42 #include "gdb_string.h"
43 #include "symtab.h"
44 #include "bfd.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51
52 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
53 At the end, copy them all into one newly allocated location on an objfile's
54 symbol obstack. */
55
56 #define BUNCH_SIZE 127
57
58 struct msym_bunch
59 {
60 struct msym_bunch *next;
61 struct minimal_symbol contents[BUNCH_SIZE];
62 };
63
64 /* Bunch currently being filled up.
65 The next field points to chain of filled bunches. */
66
67 static struct msym_bunch *msym_bunch;
68
69 /* Number of slots filled in current bunch. */
70
71 static int msym_bunch_index;
72
73 /* Total number of minimal symbols recorded so far for the objfile. */
74
75 static int msym_count;
76
77 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
78
79 unsigned int
80 msymbol_hash_iw (const char *string)
81 {
82 unsigned int hash = 0;
83 while (*string && *string != '(')
84 {
85 while (isspace (*string))
86 ++string;
87 if (*string && *string != '(')
88 {
89 hash = hash * 67 + *string - 113;
90 ++string;
91 }
92 }
93 return hash;
94 }
95
96 /* Compute a hash code for a string. */
97
98 unsigned int
99 msymbol_hash (const char *string)
100 {
101 unsigned int hash = 0;
102 for (; *string; ++string)
103 hash = hash * 67 + *string - 113;
104 return hash;
105 }
106
107 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
108 void
109 add_minsym_to_hash_table (struct minimal_symbol *sym,
110 struct minimal_symbol **table)
111 {
112 if (sym->hash_next == NULL)
113 {
114 unsigned int hash
115 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
116 sym->hash_next = table[hash];
117 table[hash] = sym;
118 }
119 }
120
121 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
122 TABLE. */
123 static void
124 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
125 struct minimal_symbol **table)
126 {
127 if (sym->demangled_hash_next == NULL)
128 {
129 unsigned int hash
130 = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
131 sym->demangled_hash_next = table[hash];
132 table[hash] = sym;
133 }
134 }
135
136
137 /* Return OBJFILE where minimal symbol SYM is defined. */
138 struct objfile *
139 msymbol_objfile (struct minimal_symbol *sym)
140 {
141 struct objfile *objf;
142 struct minimal_symbol *tsym;
143
144 unsigned int hash
145 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
146
147 for (objf = object_files; objf; objf = objf->next)
148 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
149 if (tsym == sym)
150 return objf;
151
152 /* We should always be able to find the objfile ... */
153 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
154 }
155
156
157 /* Look through all the current minimal symbol tables and find the
158 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
159 the search to that objfile. If SFILE is non-NULL, the only file-scope
160 symbols considered will be from that source file (global symbols are
161 still preferred). Returns a pointer to the minimal symbol that
162 matches, or NULL if no match is found.
163
164 Note: One instance where there may be duplicate minimal symbols with
165 the same name is when the symbol tables for a shared library and the
166 symbol tables for an executable contain global symbols with the same
167 names (the dynamic linker deals with the duplication).
168
169 It's also possible to have minimal symbols with different mangled
170 names, but identical demangled names. For example, the GNU C++ v3
171 ABI requires the generation of two (or perhaps three) copies of
172 constructor functions --- "in-charge", "not-in-charge", and
173 "allocate" copies; destructors may be duplicated as well.
174 Obviously, there must be distinct mangled names for each of these,
175 but the demangled names are all the same: S::S or S::~S. */
176
177 struct minimal_symbol *
178 lookup_minimal_symbol (const char *name, const char *sfile,
179 struct objfile *objf)
180 {
181 struct objfile *objfile;
182 struct minimal_symbol *msymbol;
183 struct minimal_symbol *found_symbol = NULL;
184 struct minimal_symbol *found_file_symbol = NULL;
185 struct minimal_symbol *trampoline_symbol = NULL;
186
187 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
188 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
189
190 if (sfile != NULL)
191 {
192 char *p = strrchr (sfile, '/');
193 if (p != NULL)
194 sfile = p + 1;
195 }
196
197 for (objfile = object_files;
198 objfile != NULL && found_symbol == NULL;
199 objfile = objfile->next)
200 {
201 if (objf == NULL || objf == objfile
202 || objf->separate_debug_objfile == objfile)
203 {
204 /* Do two passes: the first over the ordinary hash table,
205 and the second over the demangled hash table. */
206 int pass;
207
208 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
209 {
210 /* Select hash list according to pass. */
211 if (pass == 1)
212 msymbol = objfile->msymbol_hash[hash];
213 else
214 msymbol = objfile->msymbol_demangled_hash[dem_hash];
215
216 while (msymbol != NULL && found_symbol == NULL)
217 {
218 int match;
219
220 if (pass == 1)
221 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0;
222 else
223 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol, name);
224 if (match)
225 {
226 switch (MSYMBOL_TYPE (msymbol))
227 {
228 case mst_file_text:
229 case mst_file_data:
230 case mst_file_bss:
231 if (sfile == NULL
232 || strcmp (msymbol->filename, sfile) == 0)
233 found_file_symbol = msymbol;
234 break;
235
236 case mst_solib_trampoline:
237
238 /* If a trampoline symbol is found, we prefer to
239 keep looking for the *real* symbol. If the
240 actual symbol is not found, then we'll use the
241 trampoline entry. */
242 if (trampoline_symbol == NULL)
243 trampoline_symbol = msymbol;
244 break;
245
246 case mst_unknown:
247 default:
248 found_symbol = msymbol;
249 break;
250 }
251 }
252
253 /* Find the next symbol on the hash chain. */
254 if (pass == 1)
255 msymbol = msymbol->hash_next;
256 else
257 msymbol = msymbol->demangled_hash_next;
258 }
259 }
260 }
261 }
262 /* External symbols are best. */
263 if (found_symbol)
264 return found_symbol;
265
266 /* File-local symbols are next best. */
267 if (found_file_symbol)
268 return found_file_symbol;
269
270 /* Symbols for shared library trampolines are next best. */
271 if (trampoline_symbol)
272 return trampoline_symbol;
273
274 return NULL;
275 }
276
277 /* Look through all the current minimal symbol tables and find the
278 first minimal symbol that matches NAME and has text type. If OBJF
279 is non-NULL, limit the search to that objfile. Returns a pointer
280 to the minimal symbol that matches, or NULL if no match is found.
281
282 This function only searches the mangled (linkage) names. */
283
284 struct minimal_symbol *
285 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
286 {
287 struct objfile *objfile;
288 struct minimal_symbol *msymbol;
289 struct minimal_symbol *found_symbol = NULL;
290 struct minimal_symbol *found_file_symbol = NULL;
291
292 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
293
294 for (objfile = object_files;
295 objfile != NULL && found_symbol == NULL;
296 objfile = objfile->next)
297 {
298 if (objf == NULL || objf == objfile
299 || objf->separate_debug_objfile == objfile)
300 {
301 for (msymbol = objfile->msymbol_hash[hash];
302 msymbol != NULL && found_symbol == NULL;
303 msymbol = msymbol->hash_next)
304 {
305 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
306 (MSYMBOL_TYPE (msymbol) == mst_text ||
307 MSYMBOL_TYPE (msymbol) == mst_file_text))
308 {
309 switch (MSYMBOL_TYPE (msymbol))
310 {
311 case mst_file_text:
312 found_file_symbol = msymbol;
313 break;
314 default:
315 found_symbol = msymbol;
316 break;
317 }
318 }
319 }
320 }
321 }
322 /* External symbols are best. */
323 if (found_symbol)
324 return found_symbol;
325
326 /* File-local symbols are next best. */
327 if (found_file_symbol)
328 return found_file_symbol;
329
330 return NULL;
331 }
332
333 /* Look through all the current minimal symbol tables and find the
334 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
335 limit the search to that objfile. Returns a pointer to the minimal
336 symbol that matches, or NULL if no match is found. */
337
338 struct minimal_symbol *
339 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
340 struct objfile *objf)
341 {
342 struct objfile *objfile;
343 struct minimal_symbol *msymbol;
344
345 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
346
347 for (objfile = object_files;
348 objfile != NULL;
349 objfile = objfile->next)
350 {
351 if (objf == NULL || objf == objfile
352 || objf->separate_debug_objfile == objfile)
353 {
354 for (msymbol = objfile->msymbol_hash[hash];
355 msymbol != NULL;
356 msymbol = msymbol->hash_next)
357 {
358 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
359 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
360 return msymbol;
361 }
362 }
363 }
364
365 return NULL;
366 }
367
368 /* Look through all the current minimal symbol tables and find the
369 first minimal symbol that matches NAME and is a solib trampoline.
370 If OBJF is non-NULL, limit the search to that objfile. Returns a
371 pointer to the minimal symbol that matches, or NULL if no match is
372 found.
373
374 This function only searches the mangled (linkage) names. */
375
376 struct minimal_symbol *
377 lookup_minimal_symbol_solib_trampoline (const char *name,
378 struct objfile *objf)
379 {
380 struct objfile *objfile;
381 struct minimal_symbol *msymbol;
382 struct minimal_symbol *found_symbol = NULL;
383
384 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
385
386 for (objfile = object_files;
387 objfile != NULL && found_symbol == NULL;
388 objfile = objfile->next)
389 {
390 if (objf == NULL || objf == objfile
391 || objf->separate_debug_objfile == objfile)
392 {
393 for (msymbol = objfile->msymbol_hash[hash];
394 msymbol != NULL && found_symbol == NULL;
395 msymbol = msymbol->hash_next)
396 {
397 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
398 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
399 return msymbol;
400 }
401 }
402 }
403
404 return NULL;
405 }
406
407 /* Search through the minimal symbol table for each objfile and find
408 the symbol whose address is the largest address that is still less
409 than or equal to PC, and matches SECTION (if non-NULL). Returns a
410 pointer to the minimal symbol if such a symbol is found, or NULL if
411 PC is not in a suitable range. Note that we need to look through
412 ALL the minimal symbol tables before deciding on the symbol that
413 comes closest to the specified PC. This is because objfiles can
414 overlap, for example objfile A has .text at 0x100 and .data at
415 0x40000 and objfile B has .text at 0x234 and .data at 0x40048.
416
417 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
418 there are text and trampoline symbols at the same address.
419 Otherwise prefer mst_text symbols. */
420
421 static struct minimal_symbol *
422 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
423 struct obj_section *section,
424 int want_trampoline)
425 {
426 int lo;
427 int hi;
428 int new;
429 struct objfile *objfile;
430 struct minimal_symbol *msymbol;
431 struct minimal_symbol *best_symbol = NULL;
432 struct obj_section *pc_section;
433 enum minimal_symbol_type want_type, other_type;
434
435 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
436 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
437
438 /* PC has to be in a known section. This ensures that anything
439 beyond the end of the last segment doesn't appear to be part of
440 the last function in the last segment. */
441 pc_section = find_pc_section (pc);
442 if (pc_section == NULL)
443 return NULL;
444
445 /* We can not require the symbol found to be in pc_section, because
446 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
447 symbol - but find_pc_section won't return an absolute section and
448 hence the code below would skip over absolute symbols. We can
449 still take advantage of the call to find_pc_section, though - the
450 object file still must match. In case we have separate debug
451 files, search both the file and its separate debug file. There's
452 no telling which one will have the minimal symbols. */
453
454 objfile = pc_section->objfile;
455 if (objfile->separate_debug_objfile)
456 objfile = objfile->separate_debug_objfile;
457
458 for (; objfile != NULL; objfile = objfile->separate_debug_objfile_backlink)
459 {
460 /* If this objfile has a minimal symbol table, go search it using
461 a binary search. Note that a minimal symbol table always consists
462 of at least two symbols, a "real" symbol and the terminating
463 "null symbol". If there are no real symbols, then there is no
464 minimal symbol table at all. */
465
466 if (objfile->minimal_symbol_count > 0)
467 {
468 int best_zero_sized = -1;
469
470 msymbol = objfile->msymbols;
471 lo = 0;
472 hi = objfile->minimal_symbol_count - 1;
473
474 /* This code assumes that the minimal symbols are sorted by
475 ascending address values. If the pc value is greater than or
476 equal to the first symbol's address, then some symbol in this
477 minimal symbol table is a suitable candidate for being the
478 "best" symbol. This includes the last real symbol, for cases
479 where the pc value is larger than any address in this vector.
480
481 By iterating until the address associated with the current
482 hi index (the endpoint of the test interval) is less than
483 or equal to the desired pc value, we accomplish two things:
484 (1) the case where the pc value is larger than any minimal
485 symbol address is trivially solved, (2) the address associated
486 with the hi index is always the one we want when the interation
487 terminates. In essence, we are iterating the test interval
488 down until the pc value is pushed out of it from the high end.
489
490 Warning: this code is trickier than it would appear at first. */
491
492 /* Should also require that pc is <= end of objfile. FIXME! */
493 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
494 {
495 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
496 {
497 /* pc is still strictly less than highest address */
498 /* Note "new" will always be >= lo */
499 new = (lo + hi) / 2;
500 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
501 (lo == new))
502 {
503 hi = new;
504 }
505 else
506 {
507 lo = new;
508 }
509 }
510
511 /* If we have multiple symbols at the same address, we want
512 hi to point to the last one. That way we can find the
513 right symbol if it has an index greater than hi. */
514 while (hi < objfile->minimal_symbol_count - 1
515 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
516 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
517 hi++;
518
519 /* Skip various undesirable symbols. */
520 while (hi >= 0)
521 {
522 /* Skip any absolute symbols. This is apparently
523 what adb and dbx do, and is needed for the CM-5.
524 There are two known possible problems: (1) on
525 ELF, apparently end, edata, etc. are absolute.
526 Not sure ignoring them here is a big deal, but if
527 we want to use them, the fix would go in
528 elfread.c. (2) I think shared library entry
529 points on the NeXT are absolute. If we want
530 special handling for this it probably should be
531 triggered by a special mst_abs_or_lib or some
532 such. */
533
534 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
535 {
536 hi--;
537 continue;
538 }
539
540 /* If SECTION was specified, skip any symbol from
541 wrong section. */
542 if (section
543 /* Some types of debug info, such as COFF,
544 don't fill the bfd_section member, so don't
545 throw away symbols on those platforms. */
546 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
547 && (!matching_obj_sections
548 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
549 {
550 hi--;
551 continue;
552 }
553
554 /* If we are looking for a trampoline and this is a
555 text symbol, or the other way around, check the
556 preceeding symbol too. If they are otherwise
557 identical prefer that one. */
558 if (hi > 0
559 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
560 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
561 && (MSYMBOL_SIZE (&msymbol[hi])
562 == MSYMBOL_SIZE (&msymbol[hi - 1]))
563 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
564 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
565 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
566 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
567 {
568 hi--;
569 continue;
570 }
571
572 /* If the minimal symbol has a zero size, save it
573 but keep scanning backwards looking for one with
574 a non-zero size. A zero size may mean that the
575 symbol isn't an object or function (e.g. a
576 label), or it may just mean that the size was not
577 specified. */
578 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
579 && best_zero_sized == -1)
580 {
581 best_zero_sized = hi;
582 hi--;
583 continue;
584 }
585
586 /* If we are past the end of the current symbol, try
587 the previous symbol if it has a larger overlapping
588 size. This happens on i686-pc-linux-gnu with glibc;
589 the nocancel variants of system calls are inside
590 the cancellable variants, but both have sizes. */
591 if (hi > 0
592 && MSYMBOL_SIZE (&msymbol[hi]) != 0
593 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
594 + MSYMBOL_SIZE (&msymbol[hi]))
595 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
596 + MSYMBOL_SIZE (&msymbol[hi - 1])))
597 {
598 hi--;
599 continue;
600 }
601
602 /* Otherwise, this symbol must be as good as we're going
603 to get. */
604 break;
605 }
606
607 /* If HI has a zero size, and best_zero_sized is set,
608 then we had two or more zero-sized symbols; prefer
609 the first one we found (which may have a higher
610 address). Also, if we ran off the end, be sure
611 to back up. */
612 if (best_zero_sized != -1
613 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
614 hi = best_zero_sized;
615
616 /* If the minimal symbol has a non-zero size, and this
617 PC appears to be outside the symbol's contents, then
618 refuse to use this symbol. If we found a zero-sized
619 symbol with an address greater than this symbol's,
620 use that instead. We assume that if symbols have
621 specified sizes, they do not overlap. */
622
623 if (hi >= 0
624 && MSYMBOL_SIZE (&msymbol[hi]) != 0
625 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
626 + MSYMBOL_SIZE (&msymbol[hi])))
627 {
628 if (best_zero_sized != -1)
629 hi = best_zero_sized;
630 else
631 /* Go on to the next object file. */
632 continue;
633 }
634
635 /* The minimal symbol indexed by hi now is the best one in this
636 objfile's minimal symbol table. See if it is the best one
637 overall. */
638
639 if (hi >= 0
640 && ((best_symbol == NULL) ||
641 (SYMBOL_VALUE_ADDRESS (best_symbol) <
642 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
643 {
644 best_symbol = &msymbol[hi];
645 }
646 }
647 }
648 }
649 return (best_symbol);
650 }
651
652 struct minimal_symbol *
653 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
654 {
655 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
656 }
657
658 /* Backward compatibility: search through the minimal symbol table
659 for a matching PC (no section given) */
660
661 struct minimal_symbol *
662 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
663 {
664 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
665 force the section but that (well unless you're doing overlay
666 debugging) always returns NULL making the call somewhat useless. */
667 struct obj_section *section = find_pc_section (pc);
668 if (section == NULL)
669 return NULL;
670 return lookup_minimal_symbol_by_pc_section (pc, section);
671 }
672 \f
673
674 /* Return leading symbol character for a BFD. If BFD is NULL,
675 return the leading symbol character from the main objfile. */
676
677 static int get_symbol_leading_char (bfd *);
678
679 static int
680 get_symbol_leading_char (bfd *abfd)
681 {
682 if (abfd != NULL)
683 return bfd_get_symbol_leading_char (abfd);
684 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
685 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
686 return 0;
687 }
688
689 /* Prepare to start collecting minimal symbols. Note that presetting
690 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
691 symbol to allocate the memory for the first bunch. */
692
693 void
694 init_minimal_symbol_collection (void)
695 {
696 msym_count = 0;
697 msym_bunch = NULL;
698 msym_bunch_index = BUNCH_SIZE;
699 }
700
701 void
702 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
703 enum minimal_symbol_type ms_type,
704 struct objfile *objfile)
705 {
706 int section;
707
708 switch (ms_type)
709 {
710 case mst_text:
711 case mst_file_text:
712 case mst_solib_trampoline:
713 section = SECT_OFF_TEXT (objfile);
714 break;
715 case mst_data:
716 case mst_file_data:
717 section = SECT_OFF_DATA (objfile);
718 break;
719 case mst_bss:
720 case mst_file_bss:
721 section = SECT_OFF_BSS (objfile);
722 break;
723 default:
724 section = -1;
725 }
726
727 prim_record_minimal_symbol_and_info (name, address, ms_type,
728 section, NULL, objfile);
729 }
730
731 /* Record a minimal symbol in the msym bunches. Returns the symbol
732 newly created. */
733
734 struct minimal_symbol *
735 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
736 enum minimal_symbol_type ms_type,
737 int section,
738 asection *bfd_section,
739 struct objfile *objfile)
740 {
741 struct obj_section *obj_section;
742 struct msym_bunch *new;
743 struct minimal_symbol *msymbol;
744
745 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
746 the minimal symbols, because if there is also another symbol
747 at the same address (e.g. the first function of the file),
748 lookup_minimal_symbol_by_pc would have no way of getting the
749 right one. */
750 if (ms_type == mst_file_text && name[0] == 'g'
751 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
752 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
753 return (NULL);
754
755 /* It's safe to strip the leading char here once, since the name
756 is also stored stripped in the minimal symbol table. */
757 if (name[0] == get_symbol_leading_char (objfile->obfd))
758 ++name;
759
760 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
761 return (NULL);
762
763 if (msym_bunch_index == BUNCH_SIZE)
764 {
765 new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch));
766 msym_bunch_index = 0;
767 new->next = msym_bunch;
768 msym_bunch = new;
769 }
770 msymbol = &msym_bunch->contents[msym_bunch_index];
771 SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
772 SYMBOL_LANGUAGE (msymbol) = language_auto;
773 SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile);
774
775 SYMBOL_VALUE_ADDRESS (msymbol) = address;
776 SYMBOL_SECTION (msymbol) = section;
777 SYMBOL_OBJ_SECTION (msymbol) = NULL;
778
779 /* Find obj_section corresponding to bfd_section. */
780 if (bfd_section)
781 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
782 {
783 if (obj_section->the_bfd_section == bfd_section)
784 {
785 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
786 break;
787 }
788 }
789
790 MSYMBOL_TYPE (msymbol) = ms_type;
791 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
792 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
793 MSYMBOL_SIZE (msymbol) = 0;
794
795 /* The hash pointers must be cleared! If they're not,
796 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
797 msymbol->hash_next = NULL;
798 msymbol->demangled_hash_next = NULL;
799
800 msym_bunch_index++;
801 msym_count++;
802 OBJSTAT (objfile, n_minsyms++);
803 return msymbol;
804 }
805
806 /* Compare two minimal symbols by address and return a signed result based
807 on unsigned comparisons, so that we sort into unsigned numeric order.
808 Within groups with the same address, sort by name. */
809
810 static int
811 compare_minimal_symbols (const void *fn1p, const void *fn2p)
812 {
813 const struct minimal_symbol *fn1;
814 const struct minimal_symbol *fn2;
815
816 fn1 = (const struct minimal_symbol *) fn1p;
817 fn2 = (const struct minimal_symbol *) fn2p;
818
819 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
820 {
821 return (-1); /* addr 1 is less than addr 2 */
822 }
823 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
824 {
825 return (1); /* addr 1 is greater than addr 2 */
826 }
827 else
828 /* addrs are equal: sort by name */
829 {
830 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
831 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
832
833 if (name1 && name2) /* both have names */
834 return strcmp (name1, name2);
835 else if (name2)
836 return 1; /* fn1 has no name, so it is "less" */
837 else if (name1) /* fn2 has no name, so it is "less" */
838 return -1;
839 else
840 return (0); /* neither has a name, so they're equal. */
841 }
842 }
843
844 /* Discard the currently collected minimal symbols, if any. If we wish
845 to save them for later use, we must have already copied them somewhere
846 else before calling this function.
847
848 FIXME: We could allocate the minimal symbol bunches on their own
849 obstack and then simply blow the obstack away when we are done with
850 it. Is it worth the extra trouble though? */
851
852 static void
853 do_discard_minimal_symbols_cleanup (void *arg)
854 {
855 struct msym_bunch *next;
856
857 while (msym_bunch != NULL)
858 {
859 next = msym_bunch->next;
860 xfree (msym_bunch);
861 msym_bunch = next;
862 }
863 }
864
865 struct cleanup *
866 make_cleanup_discard_minimal_symbols (void)
867 {
868 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
869 }
870
871
872
873 /* Compact duplicate entries out of a minimal symbol table by walking
874 through the table and compacting out entries with duplicate addresses
875 and matching names. Return the number of entries remaining.
876
877 On entry, the table resides between msymbol[0] and msymbol[mcount].
878 On exit, it resides between msymbol[0] and msymbol[result_count].
879
880 When files contain multiple sources of symbol information, it is
881 possible for the minimal symbol table to contain many duplicate entries.
882 As an example, SVR4 systems use ELF formatted object files, which
883 usually contain at least two different types of symbol tables (a
884 standard ELF one and a smaller dynamic linking table), as well as
885 DWARF debugging information for files compiled with -g.
886
887 Without compacting, the minimal symbol table for gdb itself contains
888 over a 1000 duplicates, about a third of the total table size. Aside
889 from the potential trap of not noticing that two successive entries
890 identify the same location, this duplication impacts the time required
891 to linearly scan the table, which is done in a number of places. So we
892 just do one linear scan here and toss out the duplicates.
893
894 Note that we are not concerned here about recovering the space that
895 is potentially freed up, because the strings themselves are allocated
896 on the objfile_obstack, and will get automatically freed when the symbol
897 table is freed. The caller can free up the unused minimal symbols at
898 the end of the compacted region if their allocation strategy allows it.
899
900 Also note we only go up to the next to last entry within the loop
901 and then copy the last entry explicitly after the loop terminates.
902
903 Since the different sources of information for each symbol may
904 have different levels of "completeness", we may have duplicates
905 that have one entry with type "mst_unknown" and the other with a
906 known type. So if the one we are leaving alone has type mst_unknown,
907 overwrite its type with the type from the one we are compacting out. */
908
909 static int
910 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
911 struct objfile *objfile)
912 {
913 struct minimal_symbol *copyfrom;
914 struct minimal_symbol *copyto;
915
916 if (mcount > 0)
917 {
918 copyfrom = copyto = msymbol;
919 while (copyfrom < msymbol + mcount - 1)
920 {
921 if (SYMBOL_VALUE_ADDRESS (copyfrom)
922 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
923 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
924 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
925 {
926 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
927 {
928 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
929 }
930 copyfrom++;
931 }
932 else
933 *copyto++ = *copyfrom++;
934 }
935 *copyto++ = *copyfrom++;
936 mcount = copyto - msymbol;
937 }
938 return (mcount);
939 }
940
941 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
942 after compacting or sorting the table since the entries move around
943 thus causing the internal minimal_symbol pointers to become jumbled. */
944
945 static void
946 build_minimal_symbol_hash_tables (struct objfile *objfile)
947 {
948 int i;
949 struct minimal_symbol *msym;
950
951 /* Clear the hash tables. */
952 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
953 {
954 objfile->msymbol_hash[i] = 0;
955 objfile->msymbol_demangled_hash[i] = 0;
956 }
957
958 /* Now, (re)insert the actual entries. */
959 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
960 i > 0;
961 i--, msym++)
962 {
963 msym->hash_next = 0;
964 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
965
966 msym->demangled_hash_next = 0;
967 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
968 add_minsym_to_demangled_hash_table (msym,
969 objfile->msymbol_demangled_hash);
970 }
971 }
972
973 /* Add the minimal symbols in the existing bunches to the objfile's official
974 minimal symbol table. In most cases there is no minimal symbol table yet
975 for this objfile, and the existing bunches are used to create one. Once
976 in a while (for shared libraries for example), we add symbols (e.g. common
977 symbols) to an existing objfile.
978
979 Because of the way minimal symbols are collected, we generally have no way
980 of knowing what source language applies to any particular minimal symbol.
981 Specifically, we have no way of knowing if the minimal symbol comes from a
982 C++ compilation unit or not. So for the sake of supporting cached
983 demangled C++ names, we have no choice but to try and demangle each new one
984 that comes in. If the demangling succeeds, then we assume it is a C++
985 symbol and set the symbol's language and demangled name fields
986 appropriately. Note that in order to avoid unnecessary demanglings, and
987 allocating obstack space that subsequently can't be freed for the demangled
988 names, we mark all newly added symbols with language_auto. After
989 compaction of the minimal symbols, we go back and scan the entire minimal
990 symbol table looking for these new symbols. For each new symbol we attempt
991 to demangle it, and if successful, record it as a language_cplus symbol
992 and cache the demangled form on the symbol obstack. Symbols which don't
993 demangle are marked as language_unknown symbols, which inhibits future
994 attempts to demangle them if we later add more minimal symbols. */
995
996 void
997 install_minimal_symbols (struct objfile *objfile)
998 {
999 int bindex;
1000 int mcount;
1001 struct msym_bunch *bunch;
1002 struct minimal_symbol *msymbols;
1003 int alloc_count;
1004
1005 if (msym_count > 0)
1006 {
1007 /* Allocate enough space in the obstack, into which we will gather the
1008 bunches of new and existing minimal symbols, sort them, and then
1009 compact out the duplicate entries. Once we have a final table,
1010 we will give back the excess space. */
1011
1012 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1013 obstack_blank (&objfile->objfile_obstack,
1014 alloc_count * sizeof (struct minimal_symbol));
1015 msymbols = (struct minimal_symbol *)
1016 obstack_base (&objfile->objfile_obstack);
1017
1018 /* Copy in the existing minimal symbols, if there are any. */
1019
1020 if (objfile->minimal_symbol_count)
1021 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1022 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1023
1024 /* Walk through the list of minimal symbol bunches, adding each symbol
1025 to the new contiguous array of symbols. Note that we start with the
1026 current, possibly partially filled bunch (thus we use the current
1027 msym_bunch_index for the first bunch we copy over), and thereafter
1028 each bunch is full. */
1029
1030 mcount = objfile->minimal_symbol_count;
1031
1032 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1033 {
1034 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1035 msymbols[mcount] = bunch->contents[bindex];
1036 msym_bunch_index = BUNCH_SIZE;
1037 }
1038
1039 /* Sort the minimal symbols by address. */
1040
1041 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1042 compare_minimal_symbols);
1043
1044 /* Compact out any duplicates, and free up whatever space we are
1045 no longer using. */
1046
1047 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1048
1049 obstack_blank (&objfile->objfile_obstack,
1050 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1051 msymbols = (struct minimal_symbol *)
1052 obstack_finish (&objfile->objfile_obstack);
1053
1054 /* We also terminate the minimal symbol table with a "null symbol",
1055 which is *not* included in the size of the table. This makes it
1056 easier to find the end of the table when we are handed a pointer
1057 to some symbol in the middle of it. Zero out the fields in the
1058 "null symbol" allocated at the end of the array. Note that the
1059 symbol count does *not* include this null symbol, which is why it
1060 is indexed by mcount and not mcount-1. */
1061
1062 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1063 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1064 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1065 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1066 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1067 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1068 SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
1069
1070 /* Attach the minimal symbol table to the specified objfile.
1071 The strings themselves are also located in the objfile_obstack
1072 of this objfile. */
1073
1074 objfile->minimal_symbol_count = mcount;
1075 objfile->msymbols = msymbols;
1076
1077 /* Try to guess the appropriate C++ ABI by looking at the names
1078 of the minimal symbols in the table. */
1079 {
1080 int i;
1081
1082 for (i = 0; i < mcount; i++)
1083 {
1084 /* If a symbol's name starts with _Z and was successfully
1085 demangled, then we can assume we've found a GNU v3 symbol.
1086 For now we set the C++ ABI globally; if the user is
1087 mixing ABIs then the user will need to "set cp-abi"
1088 manually. */
1089 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1090 if (name[0] == '_' && name[1] == 'Z'
1091 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1092 {
1093 set_cp_abi_as_auto_default ("gnu-v3");
1094 break;
1095 }
1096 }
1097 }
1098
1099 /* Now build the hash tables; we can't do this incrementally
1100 at an earlier point since we weren't finished with the obstack
1101 yet. (And if the msymbol obstack gets moved, all the internal
1102 pointers to other msymbols need to be adjusted.) */
1103 build_minimal_symbol_hash_tables (objfile);
1104 }
1105 }
1106
1107 /* Sort all the minimal symbols in OBJFILE. */
1108
1109 void
1110 msymbols_sort (struct objfile *objfile)
1111 {
1112 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1113 sizeof (struct minimal_symbol), compare_minimal_symbols);
1114 build_minimal_symbol_hash_tables (objfile);
1115 }
1116
1117 /* Check if PC is in a shared library trampoline code stub.
1118 Return minimal symbol for the trampoline entry or NULL if PC is not
1119 in a trampoline code stub. */
1120
1121 struct minimal_symbol *
1122 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1123 {
1124 struct obj_section *section = find_pc_section (pc);
1125 struct minimal_symbol *msymbol;
1126
1127 if (section == NULL)
1128 return NULL;
1129 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1130
1131 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1132 return msymbol;
1133 return NULL;
1134 }
1135
1136 /* If PC is in a shared library trampoline code stub, return the
1137 address of the `real' function belonging to the stub.
1138 Return 0 if PC is not in a trampoline code stub or if the real
1139 function is not found in the minimal symbol table.
1140
1141 We may fail to find the right function if a function with the
1142 same name is defined in more than one shared library, but this
1143 is considered bad programming style. We could return 0 if we find
1144 a duplicate function in case this matters someday. */
1145
1146 CORE_ADDR
1147 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1148 {
1149 struct objfile *objfile;
1150 struct minimal_symbol *msymbol;
1151 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1152
1153 if (tsymbol != NULL)
1154 {
1155 ALL_MSYMBOLS (objfile, msymbol)
1156 {
1157 if (MSYMBOL_TYPE (msymbol) == mst_text
1158 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1159 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1160 return SYMBOL_VALUE_ADDRESS (msymbol);
1161
1162 /* Also handle minimal symbols pointing to function descriptors. */
1163 if (MSYMBOL_TYPE (msymbol) == mst_data
1164 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1165 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1166 {
1167 CORE_ADDR func;
1168 func = gdbarch_convert_from_func_ptr_addr
1169 (get_objfile_arch (objfile),
1170 SYMBOL_VALUE_ADDRESS (msymbol),
1171 &current_target);
1172
1173 /* Ignore data symbols that are not function descriptors. */
1174 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1175 return func;
1176 }
1177 }
1178 }
1179 return 0;
1180 }
This page took 0.067591 seconds and 5 git commands to generate.