* minsyms.h: Rearrange. Document header and all functions.
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying minimal symbol tables.
25
26 Minimal symbol tables are used to hold some very basic information about
27 all defined global symbols (text, data, bss, abs, etc). The only two
28 required pieces of information are the symbol's name and the address
29 associated with that symbol.
30
31 In many cases, even if a file was compiled with no special options for
32 debugging at all, as long as was not stripped it will contain sufficient
33 information to build useful minimal symbol tables using this structure.
34
35 Even when a file contains enough debugging information to build a full
36 symbol table, these minimal symbols are still useful for quickly mapping
37 between names and addresses, and vice versa. They are also sometimes used
38 to figure out what full symbol table entries need to be read in. */
39
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "gdb_string.h"
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "filenames.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "demangle.h"
50 #include "value.h"
51 #include "cp-abi.h"
52 #include "target.h"
53 #include "cp-support.h"
54 #include "language.h"
55
56 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
57 At the end, copy them all into one newly allocated location on an objfile's
58 symbol obstack. */
59
60 #define BUNCH_SIZE 127
61
62 struct msym_bunch
63 {
64 struct msym_bunch *next;
65 struct minimal_symbol contents[BUNCH_SIZE];
66 };
67
68 /* Bunch currently being filled up.
69 The next field points to chain of filled bunches. */
70
71 static struct msym_bunch *msym_bunch;
72
73 /* Number of slots filled in current bunch. */
74
75 static int msym_bunch_index;
76
77 /* Total number of minimal symbols recorded so far for the objfile. */
78
79 static int msym_count;
80
81 /* See minsyms.h. */
82
83 unsigned int
84 msymbol_hash_iw (const char *string)
85 {
86 unsigned int hash = 0;
87
88 while (*string && *string != '(')
89 {
90 while (isspace (*string))
91 ++string;
92 if (*string && *string != '(')
93 {
94 hash = SYMBOL_HASH_NEXT (hash, *string);
95 ++string;
96 }
97 }
98 return hash;
99 }
100
101 /* See minsyms.h. */
102
103 unsigned int
104 msymbol_hash (const char *string)
105 {
106 unsigned int hash = 0;
107
108 for (; *string; ++string)
109 hash = SYMBOL_HASH_NEXT (hash, *string);
110 return hash;
111 }
112
113 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
114 static void
115 add_minsym_to_hash_table (struct minimal_symbol *sym,
116 struct minimal_symbol **table)
117 {
118 if (sym->hash_next == NULL)
119 {
120 unsigned int hash
121 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
122
123 sym->hash_next = table[hash];
124 table[hash] = sym;
125 }
126 }
127
128 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
129 TABLE. */
130 static void
131 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
132 struct minimal_symbol **table)
133 {
134 if (sym->demangled_hash_next == NULL)
135 {
136 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
137 % MINIMAL_SYMBOL_HASH_SIZE;
138
139 sym->demangled_hash_next = table[hash];
140 table[hash] = sym;
141 }
142 }
143
144 /* See minsyms.h. */
145
146 struct objfile *
147 msymbol_objfile (struct minimal_symbol *sym)
148 {
149 struct objfile *objf;
150 struct minimal_symbol *tsym;
151
152 unsigned int hash
153 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
154
155 for (objf = object_files; objf; objf = objf->next)
156 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
157 if (tsym == sym)
158 return objf;
159
160 /* We should always be able to find the objfile ... */
161 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
162 }
163
164
165 /* Look through all the current minimal symbol tables and find the
166 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
167 the search to that objfile. If SFILE is non-NULL, the only file-scope
168 symbols considered will be from that source file (global symbols are
169 still preferred). Returns a pointer to the minimal symbol that
170 matches, or NULL if no match is found.
171
172 Note: One instance where there may be duplicate minimal symbols with
173 the same name is when the symbol tables for a shared library and the
174 symbol tables for an executable contain global symbols with the same
175 names (the dynamic linker deals with the duplication).
176
177 It's also possible to have minimal symbols with different mangled
178 names, but identical demangled names. For example, the GNU C++ v3
179 ABI requires the generation of two (or perhaps three) copies of
180 constructor functions --- "in-charge", "not-in-charge", and
181 "allocate" copies; destructors may be duplicated as well.
182 Obviously, there must be distinct mangled names for each of these,
183 but the demangled names are all the same: S::S or S::~S. */
184
185 struct minimal_symbol *
186 lookup_minimal_symbol (const char *name, const char *sfile,
187 struct objfile *objf)
188 {
189 struct objfile *objfile;
190 struct minimal_symbol *msymbol;
191 struct minimal_symbol *found_symbol = NULL;
192 struct minimal_symbol *found_file_symbol = NULL;
193 struct minimal_symbol *trampoline_symbol = NULL;
194
195 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
196 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
197
198 int needtofreename = 0;
199 const char *modified_name;
200
201 if (sfile != NULL)
202 sfile = lbasename (sfile);
203
204 /* For C++, canonicalize the input name. */
205 modified_name = name;
206 if (current_language->la_language == language_cplus)
207 {
208 char *cname = cp_canonicalize_string (name);
209
210 if (cname)
211 {
212 modified_name = cname;
213 needtofreename = 1;
214 }
215 }
216
217 for (objfile = object_files;
218 objfile != NULL && found_symbol == NULL;
219 objfile = objfile->next)
220 {
221 if (objf == NULL || objf == objfile
222 || objf == objfile->separate_debug_objfile_backlink)
223 {
224 /* Do two passes: the first over the ordinary hash table,
225 and the second over the demangled hash table. */
226 int pass;
227
228 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
229 {
230 /* Select hash list according to pass. */
231 if (pass == 1)
232 msymbol = objfile->msymbol_hash[hash];
233 else
234 msymbol = objfile->msymbol_demangled_hash[dem_hash];
235
236 while (msymbol != NULL && found_symbol == NULL)
237 {
238 int match;
239
240 if (pass == 1)
241 {
242 int (*cmp) (const char *, const char *);
243
244 cmp = (case_sensitivity == case_sensitive_on
245 ? strcmp : strcasecmp);
246 match = cmp (SYMBOL_LINKAGE_NAME (msymbol),
247 modified_name) == 0;
248 }
249 else
250 {
251 /* The function respects CASE_SENSITIVITY. */
252 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
253 modified_name);
254 }
255
256 if (match)
257 {
258 switch (MSYMBOL_TYPE (msymbol))
259 {
260 case mst_file_text:
261 case mst_file_data:
262 case mst_file_bss:
263 if (sfile == NULL
264 || filename_cmp (msymbol->filename, sfile) == 0)
265 found_file_symbol = msymbol;
266 break;
267
268 case mst_solib_trampoline:
269
270 /* If a trampoline symbol is found, we prefer to
271 keep looking for the *real* symbol. If the
272 actual symbol is not found, then we'll use the
273 trampoline entry. */
274 if (trampoline_symbol == NULL)
275 trampoline_symbol = msymbol;
276 break;
277
278 case mst_unknown:
279 default:
280 found_symbol = msymbol;
281 break;
282 }
283 }
284
285 /* Find the next symbol on the hash chain. */
286 if (pass == 1)
287 msymbol = msymbol->hash_next;
288 else
289 msymbol = msymbol->demangled_hash_next;
290 }
291 }
292 }
293 }
294
295 if (needtofreename)
296 xfree ((void *) modified_name);
297
298 /* External symbols are best. */
299 if (found_symbol)
300 return found_symbol;
301
302 /* File-local symbols are next best. */
303 if (found_file_symbol)
304 return found_file_symbol;
305
306 /* Symbols for shared library trampolines are next best. */
307 if (trampoline_symbol)
308 return trampoline_symbol;
309
310 return NULL;
311 }
312
313 /* See minsyms.h. */
314
315 void
316 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
317 void (*callback) (struct minimal_symbol *,
318 void *),
319 void *user_data)
320 {
321 unsigned int hash;
322 struct minimal_symbol *iter;
323 int (*cmp) (const char *, const char *);
324
325 /* The first pass is over the ordinary hash table. */
326 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
327 iter = objf->msymbol_hash[hash];
328 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
329 while (iter)
330 {
331 if (cmp (SYMBOL_LINKAGE_NAME (iter), name) == 0)
332 (*callback) (iter, user_data);
333 iter = iter->hash_next;
334 }
335
336 /* The second pass is over the demangled table. */
337 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
338 iter = objf->msymbol_demangled_hash[hash];
339 while (iter)
340 {
341 if (SYMBOL_MATCHES_SEARCH_NAME (iter, name))
342 (*callback) (iter, user_data);
343 iter = iter->demangled_hash_next;
344 }
345 }
346
347 /* See minsyms.h. */
348
349 struct minimal_symbol *
350 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
351 {
352 struct objfile *objfile;
353 struct minimal_symbol *msymbol;
354 struct minimal_symbol *found_symbol = NULL;
355 struct minimal_symbol *found_file_symbol = NULL;
356
357 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
358
359 for (objfile = object_files;
360 objfile != NULL && found_symbol == NULL;
361 objfile = objfile->next)
362 {
363 if (objf == NULL || objf == objfile
364 || objf == objfile->separate_debug_objfile_backlink)
365 {
366 for (msymbol = objfile->msymbol_hash[hash];
367 msymbol != NULL && found_symbol == NULL;
368 msymbol = msymbol->hash_next)
369 {
370 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
371 (MSYMBOL_TYPE (msymbol) == mst_text
372 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
373 || MSYMBOL_TYPE (msymbol) == mst_file_text))
374 {
375 switch (MSYMBOL_TYPE (msymbol))
376 {
377 case mst_file_text:
378 found_file_symbol = msymbol;
379 break;
380 default:
381 found_symbol = msymbol;
382 break;
383 }
384 }
385 }
386 }
387 }
388 /* External symbols are best. */
389 if (found_symbol)
390 return found_symbol;
391
392 /* File-local symbols are next best. */
393 if (found_file_symbol)
394 return found_file_symbol;
395
396 return NULL;
397 }
398
399 /* See minsyms.h. */
400
401 struct minimal_symbol *
402 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
403 struct objfile *objf)
404 {
405 struct objfile *objfile;
406 struct minimal_symbol *msymbol;
407
408 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
409
410 for (objfile = object_files;
411 objfile != NULL;
412 objfile = objfile->next)
413 {
414 if (objf == NULL || objf == objfile
415 || objf == objfile->separate_debug_objfile_backlink)
416 {
417 for (msymbol = objfile->msymbol_hash[hash];
418 msymbol != NULL;
419 msymbol = msymbol->hash_next)
420 {
421 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
422 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
423 return msymbol;
424 }
425 }
426 }
427
428 return NULL;
429 }
430
431 /* See minsyms.h. */
432
433 struct minimal_symbol *
434 lookup_minimal_symbol_solib_trampoline (const char *name,
435 struct objfile *objf)
436 {
437 struct objfile *objfile;
438 struct minimal_symbol *msymbol;
439 struct minimal_symbol *found_symbol = NULL;
440
441 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
442
443 for (objfile = object_files;
444 objfile != NULL && found_symbol == NULL;
445 objfile = objfile->next)
446 {
447 if (objf == NULL || objf == objfile
448 || objf == objfile->separate_debug_objfile_backlink)
449 {
450 for (msymbol = objfile->msymbol_hash[hash];
451 msymbol != NULL && found_symbol == NULL;
452 msymbol = msymbol->hash_next)
453 {
454 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
455 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
456 return msymbol;
457 }
458 }
459 }
460
461 return NULL;
462 }
463
464 /* Search through the minimal symbol table for each objfile and find
465 the symbol whose address is the largest address that is still less
466 than or equal to PC, and matches SECTION (which is not NULL).
467 Returns a pointer to the minimal symbol if such a symbol is found,
468 or NULL if PC is not in a suitable range.
469 Note that we need to look through ALL the minimal symbol tables
470 before deciding on the symbol that comes closest to the specified PC.
471 This is because objfiles can overlap, for example objfile A has .text
472 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
473 .data at 0x40048.
474
475 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
476 there are text and trampoline symbols at the same address.
477 Otherwise prefer mst_text symbols. */
478
479 static struct minimal_symbol *
480 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
481 struct obj_section *section,
482 int want_trampoline)
483 {
484 int lo;
485 int hi;
486 int new;
487 struct objfile *objfile;
488 struct minimal_symbol *msymbol;
489 struct minimal_symbol *best_symbol = NULL;
490 enum minimal_symbol_type want_type, other_type;
491
492 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
493 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
494
495 /* We can not require the symbol found to be in section, because
496 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
497 symbol - but find_pc_section won't return an absolute section and
498 hence the code below would skip over absolute symbols. We can
499 still take advantage of the call to find_pc_section, though - the
500 object file still must match. In case we have separate debug
501 files, search both the file and its separate debug file. There's
502 no telling which one will have the minimal symbols. */
503
504 gdb_assert (section != NULL);
505
506 for (objfile = section->objfile;
507 objfile != NULL;
508 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
509 {
510 /* If this objfile has a minimal symbol table, go search it using
511 a binary search. Note that a minimal symbol table always consists
512 of at least two symbols, a "real" symbol and the terminating
513 "null symbol". If there are no real symbols, then there is no
514 minimal symbol table at all. */
515
516 if (objfile->minimal_symbol_count > 0)
517 {
518 int best_zero_sized = -1;
519
520 msymbol = objfile->msymbols;
521 lo = 0;
522 hi = objfile->minimal_symbol_count - 1;
523
524 /* This code assumes that the minimal symbols are sorted by
525 ascending address values. If the pc value is greater than or
526 equal to the first symbol's address, then some symbol in this
527 minimal symbol table is a suitable candidate for being the
528 "best" symbol. This includes the last real symbol, for cases
529 where the pc value is larger than any address in this vector.
530
531 By iterating until the address associated with the current
532 hi index (the endpoint of the test interval) is less than
533 or equal to the desired pc value, we accomplish two things:
534 (1) the case where the pc value is larger than any minimal
535 symbol address is trivially solved, (2) the address associated
536 with the hi index is always the one we want when the interation
537 terminates. In essence, we are iterating the test interval
538 down until the pc value is pushed out of it from the high end.
539
540 Warning: this code is trickier than it would appear at first. */
541
542 /* Should also require that pc is <= end of objfile. FIXME! */
543 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
544 {
545 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
546 {
547 /* pc is still strictly less than highest address. */
548 /* Note "new" will always be >= lo. */
549 new = (lo + hi) / 2;
550 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
551 (lo == new))
552 {
553 hi = new;
554 }
555 else
556 {
557 lo = new;
558 }
559 }
560
561 /* If we have multiple symbols at the same address, we want
562 hi to point to the last one. That way we can find the
563 right symbol if it has an index greater than hi. */
564 while (hi < objfile->minimal_symbol_count - 1
565 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
566 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
567 hi++;
568
569 /* Skip various undesirable symbols. */
570 while (hi >= 0)
571 {
572 /* Skip any absolute symbols. This is apparently
573 what adb and dbx do, and is needed for the CM-5.
574 There are two known possible problems: (1) on
575 ELF, apparently end, edata, etc. are absolute.
576 Not sure ignoring them here is a big deal, but if
577 we want to use them, the fix would go in
578 elfread.c. (2) I think shared library entry
579 points on the NeXT are absolute. If we want
580 special handling for this it probably should be
581 triggered by a special mst_abs_or_lib or some
582 such. */
583
584 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
585 {
586 hi--;
587 continue;
588 }
589
590 /* If SECTION was specified, skip any symbol from
591 wrong section. */
592 if (section
593 /* Some types of debug info, such as COFF,
594 don't fill the bfd_section member, so don't
595 throw away symbols on those platforms. */
596 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
597 && (!matching_obj_sections
598 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
599 {
600 hi--;
601 continue;
602 }
603
604 /* If we are looking for a trampoline and this is a
605 text symbol, or the other way around, check the
606 preceding symbol too. If they are otherwise
607 identical prefer that one. */
608 if (hi > 0
609 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
610 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
611 && (MSYMBOL_SIZE (&msymbol[hi])
612 == MSYMBOL_SIZE (&msymbol[hi - 1]))
613 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
614 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
615 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
616 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
617 {
618 hi--;
619 continue;
620 }
621
622 /* If the minimal symbol has a zero size, save it
623 but keep scanning backwards looking for one with
624 a non-zero size. A zero size may mean that the
625 symbol isn't an object or function (e.g. a
626 label), or it may just mean that the size was not
627 specified. */
628 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
629 && best_zero_sized == -1)
630 {
631 best_zero_sized = hi;
632 hi--;
633 continue;
634 }
635
636 /* If we are past the end of the current symbol, try
637 the previous symbol if it has a larger overlapping
638 size. This happens on i686-pc-linux-gnu with glibc;
639 the nocancel variants of system calls are inside
640 the cancellable variants, but both have sizes. */
641 if (hi > 0
642 && MSYMBOL_SIZE (&msymbol[hi]) != 0
643 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
644 + MSYMBOL_SIZE (&msymbol[hi]))
645 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
646 + MSYMBOL_SIZE (&msymbol[hi - 1])))
647 {
648 hi--;
649 continue;
650 }
651
652 /* Otherwise, this symbol must be as good as we're going
653 to get. */
654 break;
655 }
656
657 /* If HI has a zero size, and best_zero_sized is set,
658 then we had two or more zero-sized symbols; prefer
659 the first one we found (which may have a higher
660 address). Also, if we ran off the end, be sure
661 to back up. */
662 if (best_zero_sized != -1
663 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
664 hi = best_zero_sized;
665
666 /* If the minimal symbol has a non-zero size, and this
667 PC appears to be outside the symbol's contents, then
668 refuse to use this symbol. If we found a zero-sized
669 symbol with an address greater than this symbol's,
670 use that instead. We assume that if symbols have
671 specified sizes, they do not overlap. */
672
673 if (hi >= 0
674 && MSYMBOL_SIZE (&msymbol[hi]) != 0
675 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
676 + MSYMBOL_SIZE (&msymbol[hi])))
677 {
678 if (best_zero_sized != -1)
679 hi = best_zero_sized;
680 else
681 /* Go on to the next object file. */
682 continue;
683 }
684
685 /* The minimal symbol indexed by hi now is the best one in this
686 objfile's minimal symbol table. See if it is the best one
687 overall. */
688
689 if (hi >= 0
690 && ((best_symbol == NULL) ||
691 (SYMBOL_VALUE_ADDRESS (best_symbol) <
692 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
693 {
694 best_symbol = &msymbol[hi];
695 }
696 }
697 }
698 }
699 return (best_symbol);
700 }
701
702 struct minimal_symbol *
703 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
704 {
705 if (section == NULL)
706 {
707 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
708 force the section but that (well unless you're doing overlay
709 debugging) always returns NULL making the call somewhat useless. */
710 section = find_pc_section (pc);
711 if (section == NULL)
712 return NULL;
713 }
714 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
715 }
716
717 /* See minsyms.h. */
718
719 struct minimal_symbol *
720 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
721 {
722 return lookup_minimal_symbol_by_pc_section (pc, NULL);
723 }
724
725 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
726
727 int
728 in_gnu_ifunc_stub (CORE_ADDR pc)
729 {
730 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
731
732 return msymbol && MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc;
733 }
734
735 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
736
737 static CORE_ADDR
738 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
739 {
740 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
741 "the ELF support compiled in."),
742 paddress (gdbarch, pc));
743 }
744
745 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
746
747 static int
748 stub_gnu_ifunc_resolve_name (const char *function_name,
749 CORE_ADDR *function_address_p)
750 {
751 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
752 "the ELF support compiled in."),
753 function_name);
754 }
755
756 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
757
758 static void
759 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
760 {
761 internal_error (__FILE__, __LINE__,
762 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
763 }
764
765 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
766
767 static void
768 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
769 {
770 internal_error (__FILE__, __LINE__,
771 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
772 }
773
774 /* See elf_gnu_ifunc_fns for its real implementation. */
775
776 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
777 {
778 stub_gnu_ifunc_resolve_addr,
779 stub_gnu_ifunc_resolve_name,
780 stub_gnu_ifunc_resolver_stop,
781 stub_gnu_ifunc_resolver_return_stop,
782 };
783
784 /* A placeholder for &elf_gnu_ifunc_fns. */
785
786 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
787
788 /* See minsyms.h. */
789
790 struct minimal_symbol *
791 lookup_minimal_symbol_and_objfile (const char *name,
792 struct objfile **objfile_p)
793 {
794 struct objfile *objfile;
795 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
796
797 ALL_OBJFILES (objfile)
798 {
799 struct minimal_symbol *msym;
800
801 for (msym = objfile->msymbol_hash[hash];
802 msym != NULL;
803 msym = msym->hash_next)
804 {
805 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
806 {
807 *objfile_p = objfile;
808 return msym;
809 }
810 }
811 }
812
813 return 0;
814 }
815 \f
816
817 /* Return leading symbol character for a BFD. If BFD is NULL,
818 return the leading symbol character from the main objfile. */
819
820 static int get_symbol_leading_char (bfd *);
821
822 static int
823 get_symbol_leading_char (bfd *abfd)
824 {
825 if (abfd != NULL)
826 return bfd_get_symbol_leading_char (abfd);
827 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
828 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
829 return 0;
830 }
831
832 /* See minsyms.h. */
833
834 void
835 init_minimal_symbol_collection (void)
836 {
837 msym_count = 0;
838 msym_bunch = NULL;
839 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
840 first call to save a minimal symbol to allocate the memory for
841 the first bunch. */
842 msym_bunch_index = BUNCH_SIZE;
843 }
844
845 /* See minsyms.h. */
846
847 void
848 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
849 enum minimal_symbol_type ms_type,
850 struct objfile *objfile)
851 {
852 int section;
853
854 switch (ms_type)
855 {
856 case mst_text:
857 case mst_text_gnu_ifunc:
858 case mst_file_text:
859 case mst_solib_trampoline:
860 section = SECT_OFF_TEXT (objfile);
861 break;
862 case mst_data:
863 case mst_file_data:
864 section = SECT_OFF_DATA (objfile);
865 break;
866 case mst_bss:
867 case mst_file_bss:
868 section = SECT_OFF_BSS (objfile);
869 break;
870 default:
871 section = -1;
872 }
873
874 prim_record_minimal_symbol_and_info (name, address, ms_type,
875 section, NULL, objfile);
876 }
877
878 /* See minsyms.h. */
879
880 struct minimal_symbol *
881 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
882 CORE_ADDR address,
883 enum minimal_symbol_type ms_type,
884 int section,
885 asection *bfd_section,
886 struct objfile *objfile)
887 {
888 struct obj_section *obj_section;
889 struct msym_bunch *new;
890 struct minimal_symbol *msymbol;
891
892 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
893 the minimal symbols, because if there is also another symbol
894 at the same address (e.g. the first function of the file),
895 lookup_minimal_symbol_by_pc would have no way of getting the
896 right one. */
897 if (ms_type == mst_file_text && name[0] == 'g'
898 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
899 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
900 return (NULL);
901
902 /* It's safe to strip the leading char here once, since the name
903 is also stored stripped in the minimal symbol table. */
904 if (name[0] == get_symbol_leading_char (objfile->obfd))
905 {
906 ++name;
907 --name_len;
908 }
909
910 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
911 return (NULL);
912
913 if (msym_bunch_index == BUNCH_SIZE)
914 {
915 new = XCALLOC (1, struct msym_bunch);
916 msym_bunch_index = 0;
917 new->next = msym_bunch;
918 msym_bunch = new;
919 }
920 msymbol = &msym_bunch->contents[msym_bunch_index];
921 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
922 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
923
924 SYMBOL_VALUE_ADDRESS (msymbol) = address;
925 SYMBOL_SECTION (msymbol) = section;
926 SYMBOL_OBJ_SECTION (msymbol) = NULL;
927
928 /* Find obj_section corresponding to bfd_section. */
929 if (bfd_section)
930 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
931 {
932 if (obj_section->the_bfd_section == bfd_section)
933 {
934 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
935 break;
936 }
937 }
938
939 MSYMBOL_TYPE (msymbol) = ms_type;
940 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
941 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
942 MSYMBOL_SIZE (msymbol) = 0;
943
944 /* The hash pointers must be cleared! If they're not,
945 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
946 msymbol->hash_next = NULL;
947 msymbol->demangled_hash_next = NULL;
948
949 msym_bunch_index++;
950 msym_count++;
951 OBJSTAT (objfile, n_minsyms++);
952 return msymbol;
953 }
954
955 /* See minsyms.h. */
956
957 struct minimal_symbol *
958 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
959 enum minimal_symbol_type ms_type,
960 int section,
961 asection *bfd_section,
962 struct objfile *objfile)
963 {
964 return prim_record_minimal_symbol_full (name, strlen (name), 1,
965 address, ms_type, section,
966 bfd_section, objfile);
967 }
968
969 /* Compare two minimal symbols by address and return a signed result based
970 on unsigned comparisons, so that we sort into unsigned numeric order.
971 Within groups with the same address, sort by name. */
972
973 static int
974 compare_minimal_symbols (const void *fn1p, const void *fn2p)
975 {
976 const struct minimal_symbol *fn1;
977 const struct minimal_symbol *fn2;
978
979 fn1 = (const struct minimal_symbol *) fn1p;
980 fn2 = (const struct minimal_symbol *) fn2p;
981
982 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
983 {
984 return (-1); /* addr 1 is less than addr 2. */
985 }
986 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
987 {
988 return (1); /* addr 1 is greater than addr 2. */
989 }
990 else
991 /* addrs are equal: sort by name */
992 {
993 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
994 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
995
996 if (name1 && name2) /* both have names */
997 return strcmp (name1, name2);
998 else if (name2)
999 return 1; /* fn1 has no name, so it is "less". */
1000 else if (name1) /* fn2 has no name, so it is "less". */
1001 return -1;
1002 else
1003 return (0); /* Neither has a name, so they're equal. */
1004 }
1005 }
1006
1007 /* Discard the currently collected minimal symbols, if any. If we wish
1008 to save them for later use, we must have already copied them somewhere
1009 else before calling this function.
1010
1011 FIXME: We could allocate the minimal symbol bunches on their own
1012 obstack and then simply blow the obstack away when we are done with
1013 it. Is it worth the extra trouble though? */
1014
1015 static void
1016 do_discard_minimal_symbols_cleanup (void *arg)
1017 {
1018 struct msym_bunch *next;
1019
1020 while (msym_bunch != NULL)
1021 {
1022 next = msym_bunch->next;
1023 xfree (msym_bunch);
1024 msym_bunch = next;
1025 }
1026 }
1027
1028 /* See minsyms.h. */
1029
1030 struct cleanup *
1031 make_cleanup_discard_minimal_symbols (void)
1032 {
1033 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1034 }
1035
1036
1037
1038 /* Compact duplicate entries out of a minimal symbol table by walking
1039 through the table and compacting out entries with duplicate addresses
1040 and matching names. Return the number of entries remaining.
1041
1042 On entry, the table resides between msymbol[0] and msymbol[mcount].
1043 On exit, it resides between msymbol[0] and msymbol[result_count].
1044
1045 When files contain multiple sources of symbol information, it is
1046 possible for the minimal symbol table to contain many duplicate entries.
1047 As an example, SVR4 systems use ELF formatted object files, which
1048 usually contain at least two different types of symbol tables (a
1049 standard ELF one and a smaller dynamic linking table), as well as
1050 DWARF debugging information for files compiled with -g.
1051
1052 Without compacting, the minimal symbol table for gdb itself contains
1053 over a 1000 duplicates, about a third of the total table size. Aside
1054 from the potential trap of not noticing that two successive entries
1055 identify the same location, this duplication impacts the time required
1056 to linearly scan the table, which is done in a number of places. So we
1057 just do one linear scan here and toss out the duplicates.
1058
1059 Note that we are not concerned here about recovering the space that
1060 is potentially freed up, because the strings themselves are allocated
1061 on the objfile_obstack, and will get automatically freed when the symbol
1062 table is freed. The caller can free up the unused minimal symbols at
1063 the end of the compacted region if their allocation strategy allows it.
1064
1065 Also note we only go up to the next to last entry within the loop
1066 and then copy the last entry explicitly after the loop terminates.
1067
1068 Since the different sources of information for each symbol may
1069 have different levels of "completeness", we may have duplicates
1070 that have one entry with type "mst_unknown" and the other with a
1071 known type. So if the one we are leaving alone has type mst_unknown,
1072 overwrite its type with the type from the one we are compacting out. */
1073
1074 static int
1075 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1076 struct objfile *objfile)
1077 {
1078 struct minimal_symbol *copyfrom;
1079 struct minimal_symbol *copyto;
1080
1081 if (mcount > 0)
1082 {
1083 copyfrom = copyto = msymbol;
1084 while (copyfrom < msymbol + mcount - 1)
1085 {
1086 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1087 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1088 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1089 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1090 {
1091 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1092 {
1093 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1094 }
1095 copyfrom++;
1096 }
1097 else
1098 *copyto++ = *copyfrom++;
1099 }
1100 *copyto++ = *copyfrom++;
1101 mcount = copyto - msymbol;
1102 }
1103 return (mcount);
1104 }
1105
1106 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1107 after compacting or sorting the table since the entries move around
1108 thus causing the internal minimal_symbol pointers to become jumbled. */
1109
1110 static void
1111 build_minimal_symbol_hash_tables (struct objfile *objfile)
1112 {
1113 int i;
1114 struct minimal_symbol *msym;
1115
1116 /* Clear the hash tables. */
1117 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1118 {
1119 objfile->msymbol_hash[i] = 0;
1120 objfile->msymbol_demangled_hash[i] = 0;
1121 }
1122
1123 /* Now, (re)insert the actual entries. */
1124 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1125 i > 0;
1126 i--, msym++)
1127 {
1128 msym->hash_next = 0;
1129 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1130
1131 msym->demangled_hash_next = 0;
1132 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1133 add_minsym_to_demangled_hash_table (msym,
1134 objfile->msymbol_demangled_hash);
1135 }
1136 }
1137
1138 /* Add the minimal symbols in the existing bunches to the objfile's official
1139 minimal symbol table. In most cases there is no minimal symbol table yet
1140 for this objfile, and the existing bunches are used to create one. Once
1141 in a while (for shared libraries for example), we add symbols (e.g. common
1142 symbols) to an existing objfile.
1143
1144 Because of the way minimal symbols are collected, we generally have no way
1145 of knowing what source language applies to any particular minimal symbol.
1146 Specifically, we have no way of knowing if the minimal symbol comes from a
1147 C++ compilation unit or not. So for the sake of supporting cached
1148 demangled C++ names, we have no choice but to try and demangle each new one
1149 that comes in. If the demangling succeeds, then we assume it is a C++
1150 symbol and set the symbol's language and demangled name fields
1151 appropriately. Note that in order to avoid unnecessary demanglings, and
1152 allocating obstack space that subsequently can't be freed for the demangled
1153 names, we mark all newly added symbols with language_auto. After
1154 compaction of the minimal symbols, we go back and scan the entire minimal
1155 symbol table looking for these new symbols. For each new symbol we attempt
1156 to demangle it, and if successful, record it as a language_cplus symbol
1157 and cache the demangled form on the symbol obstack. Symbols which don't
1158 demangle are marked as language_unknown symbols, which inhibits future
1159 attempts to demangle them if we later add more minimal symbols. */
1160
1161 void
1162 install_minimal_symbols (struct objfile *objfile)
1163 {
1164 int bindex;
1165 int mcount;
1166 struct msym_bunch *bunch;
1167 struct minimal_symbol *msymbols;
1168 int alloc_count;
1169
1170 if (msym_count > 0)
1171 {
1172 /* Allocate enough space in the obstack, into which we will gather the
1173 bunches of new and existing minimal symbols, sort them, and then
1174 compact out the duplicate entries. Once we have a final table,
1175 we will give back the excess space. */
1176
1177 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1178 obstack_blank (&objfile->objfile_obstack,
1179 alloc_count * sizeof (struct minimal_symbol));
1180 msymbols = (struct minimal_symbol *)
1181 obstack_base (&objfile->objfile_obstack);
1182
1183 /* Copy in the existing minimal symbols, if there are any. */
1184
1185 if (objfile->minimal_symbol_count)
1186 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1187 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1188
1189 /* Walk through the list of minimal symbol bunches, adding each symbol
1190 to the new contiguous array of symbols. Note that we start with the
1191 current, possibly partially filled bunch (thus we use the current
1192 msym_bunch_index for the first bunch we copy over), and thereafter
1193 each bunch is full. */
1194
1195 mcount = objfile->minimal_symbol_count;
1196
1197 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1198 {
1199 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1200 msymbols[mcount] = bunch->contents[bindex];
1201 msym_bunch_index = BUNCH_SIZE;
1202 }
1203
1204 /* Sort the minimal symbols by address. */
1205
1206 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1207 compare_minimal_symbols);
1208
1209 /* Compact out any duplicates, and free up whatever space we are
1210 no longer using. */
1211
1212 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1213
1214 obstack_blank (&objfile->objfile_obstack,
1215 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1216 msymbols = (struct minimal_symbol *)
1217 obstack_finish (&objfile->objfile_obstack);
1218
1219 /* We also terminate the minimal symbol table with a "null symbol",
1220 which is *not* included in the size of the table. This makes it
1221 easier to find the end of the table when we are handed a pointer
1222 to some symbol in the middle of it. Zero out the fields in the
1223 "null symbol" allocated at the end of the array. Note that the
1224 symbol count does *not* include this null symbol, which is why it
1225 is indexed by mcount and not mcount-1. */
1226
1227 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1228 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1229 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1230 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1231 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1232 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1233 SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1234
1235 /* Attach the minimal symbol table to the specified objfile.
1236 The strings themselves are also located in the objfile_obstack
1237 of this objfile. */
1238
1239 objfile->minimal_symbol_count = mcount;
1240 objfile->msymbols = msymbols;
1241
1242 /* Try to guess the appropriate C++ ABI by looking at the names
1243 of the minimal symbols in the table. */
1244 {
1245 int i;
1246
1247 for (i = 0; i < mcount; i++)
1248 {
1249 /* If a symbol's name starts with _Z and was successfully
1250 demangled, then we can assume we've found a GNU v3 symbol.
1251 For now we set the C++ ABI globally; if the user is
1252 mixing ABIs then the user will need to "set cp-abi"
1253 manually. */
1254 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1255
1256 if (name[0] == '_' && name[1] == 'Z'
1257 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1258 {
1259 set_cp_abi_as_auto_default ("gnu-v3");
1260 break;
1261 }
1262 }
1263 }
1264
1265 /* Now build the hash tables; we can't do this incrementally
1266 at an earlier point since we weren't finished with the obstack
1267 yet. (And if the msymbol obstack gets moved, all the internal
1268 pointers to other msymbols need to be adjusted.) */
1269 build_minimal_symbol_hash_tables (objfile);
1270 }
1271 }
1272
1273 /* See minsyms.h. */
1274
1275 void
1276 terminate_minimal_symbol_table (struct objfile *objfile)
1277 {
1278 if (! objfile->msymbols)
1279 objfile->msymbols = ((struct minimal_symbol *)
1280 obstack_alloc (&objfile->objfile_obstack,
1281 sizeof (objfile->msymbols[0])));
1282
1283 {
1284 struct minimal_symbol *m
1285 = &objfile->msymbols[objfile->minimal_symbol_count];
1286
1287 memset (m, 0, sizeof (*m));
1288 /* Don't rely on these enumeration values being 0's. */
1289 MSYMBOL_TYPE (m) = mst_unknown;
1290 SYMBOL_SET_LANGUAGE (m, language_unknown);
1291 }
1292 }
1293
1294 /* Sort all the minimal symbols in OBJFILE. */
1295
1296 void
1297 msymbols_sort (struct objfile *objfile)
1298 {
1299 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1300 sizeof (struct minimal_symbol), compare_minimal_symbols);
1301 build_minimal_symbol_hash_tables (objfile);
1302 }
1303
1304 /* See minsyms.h. */
1305
1306 struct minimal_symbol *
1307 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1308 {
1309 struct obj_section *section = find_pc_section (pc);
1310 struct minimal_symbol *msymbol;
1311
1312 if (section == NULL)
1313 return NULL;
1314 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1315
1316 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1317 return msymbol;
1318 return NULL;
1319 }
1320
1321 /* If PC is in a shared library trampoline code stub, return the
1322 address of the `real' function belonging to the stub.
1323 Return 0 if PC is not in a trampoline code stub or if the real
1324 function is not found in the minimal symbol table.
1325
1326 We may fail to find the right function if a function with the
1327 same name is defined in more than one shared library, but this
1328 is considered bad programming style. We could return 0 if we find
1329 a duplicate function in case this matters someday. */
1330
1331 CORE_ADDR
1332 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1333 {
1334 struct objfile *objfile;
1335 struct minimal_symbol *msymbol;
1336 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1337
1338 if (tsymbol != NULL)
1339 {
1340 ALL_MSYMBOLS (objfile, msymbol)
1341 {
1342 if ((MSYMBOL_TYPE (msymbol) == mst_text
1343 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1344 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1345 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1346 return SYMBOL_VALUE_ADDRESS (msymbol);
1347
1348 /* Also handle minimal symbols pointing to function descriptors. */
1349 if (MSYMBOL_TYPE (msymbol) == mst_data
1350 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1351 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1352 {
1353 CORE_ADDR func;
1354
1355 func = gdbarch_convert_from_func_ptr_addr
1356 (get_objfile_arch (objfile),
1357 SYMBOL_VALUE_ADDRESS (msymbol),
1358 &current_target);
1359
1360 /* Ignore data symbols that are not function descriptors. */
1361 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1362 return func;
1363 }
1364 }
1365 }
1366 return 0;
1367 }
This page took 0.082112 seconds and 5 git commands to generate.