Introduce common/symbol.h
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 per-BFD storage obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* Bunch currently being filled up.
68 The next field points to chain of filled bunches. */
69
70 static struct msym_bunch *msym_bunch;
71
72 /* Number of slots filled in current bunch. */
73
74 static int msym_bunch_index;
75
76 /* Total number of minimal symbols recorded so far for the objfile. */
77
78 static int msym_count;
79
80 /* See minsyms.h. */
81
82 unsigned int
83 msymbol_hash_iw (const char *string)
84 {
85 unsigned int hash = 0;
86
87 while (*string && *string != '(')
88 {
89 string = skip_spaces_const (string);
90 if (*string && *string != '(')
91 {
92 hash = SYMBOL_HASH_NEXT (hash, *string);
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* See minsyms.h. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = SYMBOL_HASH_NEXT (hash, *string);
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 static void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
135 % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142 /* Look through all the current minimal symbol tables and find the
143 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
144 the search to that objfile. If SFILE is non-NULL, the only file-scope
145 symbols considered will be from that source file (global symbols are
146 still preferred). Returns a pointer to the minimal symbol that
147 matches, or NULL if no match is found.
148
149 Note: One instance where there may be duplicate minimal symbols with
150 the same name is when the symbol tables for a shared library and the
151 symbol tables for an executable contain global symbols with the same
152 names (the dynamic linker deals with the duplication).
153
154 It's also possible to have minimal symbols with different mangled
155 names, but identical demangled names. For example, the GNU C++ v3
156 ABI requires the generation of two (or perhaps three) copies of
157 constructor functions --- "in-charge", "not-in-charge", and
158 "allocate" copies; destructors may be duplicated as well.
159 Obviously, there must be distinct mangled names for each of these,
160 but the demangled names are all the same: S::S or S::~S. */
161
162 struct bound_minimal_symbol
163 lookup_minimal_symbol (const char *name, const char *sfile,
164 struct objfile *objf)
165 {
166 struct objfile *objfile;
167 struct bound_minimal_symbol found_symbol = { NULL, NULL };
168 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
169 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
170
171 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
172 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
173
174 int needtofreename = 0;
175 const char *modified_name;
176
177 if (sfile != NULL)
178 sfile = lbasename (sfile);
179
180 /* For C++, canonicalize the input name. */
181 modified_name = name;
182 if (current_language->la_language == language_cplus)
183 {
184 char *cname = cp_canonicalize_string (name);
185
186 if (cname)
187 {
188 modified_name = cname;
189 needtofreename = 1;
190 }
191 }
192
193 for (objfile = object_files;
194 objfile != NULL && found_symbol.minsym == NULL;
195 objfile = objfile->next)
196 {
197 struct minimal_symbol *msymbol;
198
199 if (objf == NULL || objf == objfile
200 || objf == objfile->separate_debug_objfile_backlink)
201 {
202 /* Do two passes: the first over the ordinary hash table,
203 and the second over the demangled hash table. */
204 int pass;
205
206 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
207 {
208 /* Select hash list according to pass. */
209 if (pass == 1)
210 msymbol = objfile->per_bfd->msymbol_hash[hash];
211 else
212 msymbol = objfile->per_bfd->msymbol_demangled_hash[dem_hash];
213
214 while (msymbol != NULL && found_symbol.minsym == NULL)
215 {
216 int match;
217
218 if (pass == 1)
219 {
220 int (*cmp) (const char *, const char *);
221
222 cmp = (case_sensitivity == case_sensitive_on
223 ? strcmp : strcasecmp);
224 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
225 modified_name) == 0;
226 }
227 else
228 {
229 /* The function respects CASE_SENSITIVITY. */
230 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
231 modified_name);
232 }
233
234 if (match)
235 {
236 switch (MSYMBOL_TYPE (msymbol))
237 {
238 case mst_file_text:
239 case mst_file_data:
240 case mst_file_bss:
241 if (sfile == NULL
242 || filename_cmp (msymbol->filename, sfile) == 0)
243 {
244 found_file_symbol.minsym = msymbol;
245 found_file_symbol.objfile = objfile;
246 }
247 break;
248
249 case mst_solib_trampoline:
250
251 /* If a trampoline symbol is found, we prefer to
252 keep looking for the *real* symbol. If the
253 actual symbol is not found, then we'll use the
254 trampoline entry. */
255 if (trampoline_symbol.minsym == NULL)
256 {
257 trampoline_symbol.minsym = msymbol;
258 trampoline_symbol.objfile = objfile;
259 }
260 break;
261
262 case mst_unknown:
263 default:
264 found_symbol.minsym = msymbol;
265 found_symbol.objfile = objfile;
266 break;
267 }
268 }
269
270 /* Find the next symbol on the hash chain. */
271 if (pass == 1)
272 msymbol = msymbol->hash_next;
273 else
274 msymbol = msymbol->demangled_hash_next;
275 }
276 }
277 }
278 }
279
280 if (needtofreename)
281 xfree ((void *) modified_name);
282
283 /* External symbols are best. */
284 if (found_symbol.minsym != NULL)
285 return found_symbol;
286
287 /* File-local symbols are next best. */
288 if (found_file_symbol.minsym != NULL)
289 return found_file_symbol;
290
291 /* Symbols for shared library trampolines are next best. */
292 return trampoline_symbol;
293 }
294
295 /* See minsyms.h. */
296
297 struct bound_minimal_symbol
298 lookup_bound_minimal_symbol (const char *name)
299 {
300 return lookup_minimal_symbol (name, NULL, NULL);
301 }
302
303 /* See common/symbol.h. */
304
305 int
306 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
307 struct objfile *objfile)
308 {
309 struct bound_minimal_symbol sym
310 = lookup_minimal_symbol (name, NULL, objfile);
311
312 if (sym.minsym != NULL)
313 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
314
315 return sym.minsym == NULL;
316 }
317
318 /* See minsyms.h. */
319
320 void
321 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
322 void (*callback) (struct minimal_symbol *,
323 void *),
324 void *user_data)
325 {
326 unsigned int hash;
327 struct minimal_symbol *iter;
328 int (*cmp) (const char *, const char *);
329
330 /* The first pass is over the ordinary hash table. */
331 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
332 iter = objf->per_bfd->msymbol_hash[hash];
333 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
334 while (iter)
335 {
336 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
337 (*callback) (iter, user_data);
338 iter = iter->hash_next;
339 }
340
341 /* The second pass is over the demangled table. */
342 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
343 iter = objf->per_bfd->msymbol_demangled_hash[hash];
344 while (iter)
345 {
346 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
347 (*callback) (iter, user_data);
348 iter = iter->demangled_hash_next;
349 }
350 }
351
352 /* See minsyms.h. */
353
354 struct bound_minimal_symbol
355 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
356 {
357 struct objfile *objfile;
358 struct minimal_symbol *msymbol;
359 struct bound_minimal_symbol found_symbol = { NULL, NULL };
360 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
361
362 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
363
364 for (objfile = object_files;
365 objfile != NULL && found_symbol.minsym == NULL;
366 objfile = objfile->next)
367 {
368 if (objf == NULL || objf == objfile
369 || objf == objfile->separate_debug_objfile_backlink)
370 {
371 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
372 msymbol != NULL && found_symbol.minsym == NULL;
373 msymbol = msymbol->hash_next)
374 {
375 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
376 (MSYMBOL_TYPE (msymbol) == mst_text
377 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
378 || MSYMBOL_TYPE (msymbol) == mst_file_text))
379 {
380 switch (MSYMBOL_TYPE (msymbol))
381 {
382 case mst_file_text:
383 found_file_symbol.minsym = msymbol;
384 found_file_symbol.objfile = objfile;
385 break;
386 default:
387 found_symbol.minsym = msymbol;
388 found_symbol.objfile = objfile;
389 break;
390 }
391 }
392 }
393 }
394 }
395 /* External symbols are best. */
396 if (found_symbol.minsym)
397 return found_symbol;
398
399 /* File-local symbols are next best. */
400 return found_file_symbol;
401 }
402
403 /* See minsyms.h. */
404
405 struct minimal_symbol *
406 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
407 struct objfile *objf)
408 {
409 struct objfile *objfile;
410 struct minimal_symbol *msymbol;
411
412 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
413
414 for (objfile = object_files;
415 objfile != NULL;
416 objfile = objfile->next)
417 {
418 if (objf == NULL || objf == objfile
419 || objf == objfile->separate_debug_objfile_backlink)
420 {
421 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
422 msymbol != NULL;
423 msymbol = msymbol->hash_next)
424 {
425 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
426 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
427 return msymbol;
428 }
429 }
430 }
431
432 return NULL;
433 }
434
435 /* See minsyms.h. */
436
437 struct bound_minimal_symbol
438 lookup_minimal_symbol_solib_trampoline (const char *name,
439 struct objfile *objf)
440 {
441 struct objfile *objfile;
442 struct minimal_symbol *msymbol;
443 struct bound_minimal_symbol found_symbol = { NULL, NULL };
444
445 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
446
447 for (objfile = object_files;
448 objfile != NULL;
449 objfile = objfile->next)
450 {
451 if (objf == NULL || objf == objfile
452 || objf == objfile->separate_debug_objfile_backlink)
453 {
454 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
455 msymbol != NULL;
456 msymbol = msymbol->hash_next)
457 {
458 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
459 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
460 {
461 found_symbol.objfile = objfile;
462 found_symbol.minsym = msymbol;
463 return found_symbol;
464 }
465 }
466 }
467 }
468
469 return found_symbol;
470 }
471
472 /* A helper function that makes *PC section-relative. This searches
473 the sections of OBJFILE and if *PC is in a section, it subtracts
474 the section offset and returns true. Otherwise it returns
475 false. */
476
477 static int
478 frob_address (struct objfile *objfile, CORE_ADDR *pc)
479 {
480 struct obj_section *iter;
481
482 ALL_OBJFILE_OSECTIONS (objfile, iter)
483 {
484 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
485 {
486 *pc -= obj_section_offset (iter);
487 return 1;
488 }
489 }
490
491 return 0;
492 }
493
494 /* Search through the minimal symbol table for each objfile and find
495 the symbol whose address is the largest address that is still less
496 than or equal to PC, and matches SECTION (which is not NULL).
497 Returns a pointer to the minimal symbol if such a symbol is found,
498 or NULL if PC is not in a suitable range.
499 Note that we need to look through ALL the minimal symbol tables
500 before deciding on the symbol that comes closest to the specified PC.
501 This is because objfiles can overlap, for example objfile A has .text
502 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
503 .data at 0x40048.
504
505 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
506 there are text and trampoline symbols at the same address.
507 Otherwise prefer mst_text symbols. */
508
509 static struct bound_minimal_symbol
510 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
511 struct obj_section *section,
512 int want_trampoline)
513 {
514 int lo;
515 int hi;
516 int new;
517 struct objfile *objfile;
518 struct minimal_symbol *msymbol;
519 struct minimal_symbol *best_symbol = NULL;
520 struct objfile *best_objfile = NULL;
521 struct bound_minimal_symbol result;
522 enum minimal_symbol_type want_type, other_type;
523
524 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
525 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
526
527 /* We can not require the symbol found to be in section, because
528 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
529 symbol - but find_pc_section won't return an absolute section and
530 hence the code below would skip over absolute symbols. We can
531 still take advantage of the call to find_pc_section, though - the
532 object file still must match. In case we have separate debug
533 files, search both the file and its separate debug file. There's
534 no telling which one will have the minimal symbols. */
535
536 gdb_assert (section != NULL);
537
538 for (objfile = section->objfile;
539 objfile != NULL;
540 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
541 {
542 CORE_ADDR pc = pc_in;
543
544 /* If this objfile has a minimal symbol table, go search it using
545 a binary search. Note that a minimal symbol table always consists
546 of at least two symbols, a "real" symbol and the terminating
547 "null symbol". If there are no real symbols, then there is no
548 minimal symbol table at all. */
549
550 if (objfile->per_bfd->minimal_symbol_count > 0)
551 {
552 int best_zero_sized = -1;
553
554 msymbol = objfile->per_bfd->msymbols;
555 lo = 0;
556 hi = objfile->per_bfd->minimal_symbol_count - 1;
557
558 /* This code assumes that the minimal symbols are sorted by
559 ascending address values. If the pc value is greater than or
560 equal to the first symbol's address, then some symbol in this
561 minimal symbol table is a suitable candidate for being the
562 "best" symbol. This includes the last real symbol, for cases
563 where the pc value is larger than any address in this vector.
564
565 By iterating until the address associated with the current
566 hi index (the endpoint of the test interval) is less than
567 or equal to the desired pc value, we accomplish two things:
568 (1) the case where the pc value is larger than any minimal
569 symbol address is trivially solved, (2) the address associated
570 with the hi index is always the one we want when the interation
571 terminates. In essence, we are iterating the test interval
572 down until the pc value is pushed out of it from the high end.
573
574 Warning: this code is trickier than it would appear at first. */
575
576 if (frob_address (objfile, &pc)
577 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
578 {
579 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
580 {
581 /* pc is still strictly less than highest address. */
582 /* Note "new" will always be >= lo. */
583 new = (lo + hi) / 2;
584 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[new]) >= pc)
585 || (lo == new))
586 {
587 hi = new;
588 }
589 else
590 {
591 lo = new;
592 }
593 }
594
595 /* If we have multiple symbols at the same address, we want
596 hi to point to the last one. That way we can find the
597 right symbol if it has an index greater than hi. */
598 while (hi < objfile->per_bfd->minimal_symbol_count - 1
599 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
600 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
601 hi++;
602
603 /* Skip various undesirable symbols. */
604 while (hi >= 0)
605 {
606 /* Skip any absolute symbols. This is apparently
607 what adb and dbx do, and is needed for the CM-5.
608 There are two known possible problems: (1) on
609 ELF, apparently end, edata, etc. are absolute.
610 Not sure ignoring them here is a big deal, but if
611 we want to use them, the fix would go in
612 elfread.c. (2) I think shared library entry
613 points on the NeXT are absolute. If we want
614 special handling for this it probably should be
615 triggered by a special mst_abs_or_lib or some
616 such. */
617
618 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
619 {
620 hi--;
621 continue;
622 }
623
624 /* If SECTION was specified, skip any symbol from
625 wrong section. */
626 if (section
627 /* Some types of debug info, such as COFF,
628 don't fill the bfd_section member, so don't
629 throw away symbols on those platforms. */
630 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
631 && (!matching_obj_sections
632 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
633 section)))
634 {
635 hi--;
636 continue;
637 }
638
639 /* If we are looking for a trampoline and this is a
640 text symbol, or the other way around, check the
641 preceding symbol too. If they are otherwise
642 identical prefer that one. */
643 if (hi > 0
644 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
645 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
646 && (MSYMBOL_SIZE (&msymbol[hi])
647 == MSYMBOL_SIZE (&msymbol[hi - 1]))
648 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
649 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
650 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
651 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
652 {
653 hi--;
654 continue;
655 }
656
657 /* If the minimal symbol has a zero size, save it
658 but keep scanning backwards looking for one with
659 a non-zero size. A zero size may mean that the
660 symbol isn't an object or function (e.g. a
661 label), or it may just mean that the size was not
662 specified. */
663 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
664 && best_zero_sized == -1)
665 {
666 best_zero_sized = hi;
667 hi--;
668 continue;
669 }
670
671 /* If we are past the end of the current symbol, try
672 the previous symbol if it has a larger overlapping
673 size. This happens on i686-pc-linux-gnu with glibc;
674 the nocancel variants of system calls are inside
675 the cancellable variants, but both have sizes. */
676 if (hi > 0
677 && MSYMBOL_SIZE (&msymbol[hi]) != 0
678 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
679 + MSYMBOL_SIZE (&msymbol[hi]))
680 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
681 + MSYMBOL_SIZE (&msymbol[hi - 1])))
682 {
683 hi--;
684 continue;
685 }
686
687 /* Otherwise, this symbol must be as good as we're going
688 to get. */
689 break;
690 }
691
692 /* If HI has a zero size, and best_zero_sized is set,
693 then we had two or more zero-sized symbols; prefer
694 the first one we found (which may have a higher
695 address). Also, if we ran off the end, be sure
696 to back up. */
697 if (best_zero_sized != -1
698 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
699 hi = best_zero_sized;
700
701 /* If the minimal symbol has a non-zero size, and this
702 PC appears to be outside the symbol's contents, then
703 refuse to use this symbol. If we found a zero-sized
704 symbol with an address greater than this symbol's,
705 use that instead. We assume that if symbols have
706 specified sizes, they do not overlap. */
707
708 if (hi >= 0
709 && MSYMBOL_SIZE (&msymbol[hi]) != 0
710 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
711 + MSYMBOL_SIZE (&msymbol[hi])))
712 {
713 if (best_zero_sized != -1)
714 hi = best_zero_sized;
715 else
716 /* Go on to the next object file. */
717 continue;
718 }
719
720 /* The minimal symbol indexed by hi now is the best one in this
721 objfile's minimal symbol table. See if it is the best one
722 overall. */
723
724 if (hi >= 0
725 && ((best_symbol == NULL) ||
726 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
727 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
728 {
729 best_symbol = &msymbol[hi];
730 best_objfile = objfile;
731 }
732 }
733 }
734 }
735
736 result.minsym = best_symbol;
737 result.objfile = best_objfile;
738 return result;
739 }
740
741 struct bound_minimal_symbol
742 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
743 {
744 if (section == NULL)
745 {
746 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
747 force the section but that (well unless you're doing overlay
748 debugging) always returns NULL making the call somewhat useless. */
749 section = find_pc_section (pc);
750 if (section == NULL)
751 {
752 struct bound_minimal_symbol result;
753
754 memset (&result, 0, sizeof (result));
755 return result;
756 }
757 }
758 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
759 }
760
761 /* See minsyms.h. */
762
763 struct bound_minimal_symbol
764 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
765 {
766 struct obj_section *section = find_pc_section (pc);
767
768 if (section == NULL)
769 {
770 struct bound_minimal_symbol result;
771
772 memset (&result, 0, sizeof (result));
773 return result;
774 }
775 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
776 }
777
778 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
779
780 int
781 in_gnu_ifunc_stub (CORE_ADDR pc)
782 {
783 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
784
785 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
786 }
787
788 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
789
790 static CORE_ADDR
791 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
792 {
793 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
794 "the ELF support compiled in."),
795 paddress (gdbarch, pc));
796 }
797
798 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
799
800 static int
801 stub_gnu_ifunc_resolve_name (const char *function_name,
802 CORE_ADDR *function_address_p)
803 {
804 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
805 "the ELF support compiled in."),
806 function_name);
807 }
808
809 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
810
811 static void
812 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
813 {
814 internal_error (__FILE__, __LINE__,
815 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
816 }
817
818 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
819
820 static void
821 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
822 {
823 internal_error (__FILE__, __LINE__,
824 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
825 }
826
827 /* See elf_gnu_ifunc_fns for its real implementation. */
828
829 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
830 {
831 stub_gnu_ifunc_resolve_addr,
832 stub_gnu_ifunc_resolve_name,
833 stub_gnu_ifunc_resolver_stop,
834 stub_gnu_ifunc_resolver_return_stop,
835 };
836
837 /* A placeholder for &elf_gnu_ifunc_fns. */
838
839 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
840
841 /* See minsyms.h. */
842
843 struct bound_minimal_symbol
844 lookup_minimal_symbol_and_objfile (const char *name)
845 {
846 struct bound_minimal_symbol result;
847 struct objfile *objfile;
848 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
849
850 ALL_OBJFILES (objfile)
851 {
852 struct minimal_symbol *msym;
853
854 for (msym = objfile->per_bfd->msymbol_hash[hash];
855 msym != NULL;
856 msym = msym->hash_next)
857 {
858 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
859 {
860 result.minsym = msym;
861 result.objfile = objfile;
862 return result;
863 }
864 }
865 }
866
867 memset (&result, 0, sizeof (result));
868 return result;
869 }
870 \f
871
872 /* Return leading symbol character for a BFD. If BFD is NULL,
873 return the leading symbol character from the main objfile. */
874
875 static int
876 get_symbol_leading_char (bfd *abfd)
877 {
878 if (abfd != NULL)
879 return bfd_get_symbol_leading_char (abfd);
880 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
881 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
882 return 0;
883 }
884
885 /* See minsyms.h. */
886
887 void
888 init_minimal_symbol_collection (void)
889 {
890 msym_count = 0;
891 msym_bunch = NULL;
892 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
893 first call to save a minimal symbol to allocate the memory for
894 the first bunch. */
895 msym_bunch_index = BUNCH_SIZE;
896 }
897
898 /* See minsyms.h. */
899
900 void
901 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
902 enum minimal_symbol_type ms_type,
903 struct objfile *objfile)
904 {
905 int section;
906
907 switch (ms_type)
908 {
909 case mst_text:
910 case mst_text_gnu_ifunc:
911 case mst_file_text:
912 case mst_solib_trampoline:
913 section = SECT_OFF_TEXT (objfile);
914 break;
915 case mst_data:
916 case mst_file_data:
917 section = SECT_OFF_DATA (objfile);
918 break;
919 case mst_bss:
920 case mst_file_bss:
921 section = SECT_OFF_BSS (objfile);
922 break;
923 default:
924 section = -1;
925 }
926
927 prim_record_minimal_symbol_and_info (name, address, ms_type,
928 section, objfile);
929 }
930
931 /* See minsyms.h. */
932
933 struct minimal_symbol *
934 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
935 CORE_ADDR address,
936 enum minimal_symbol_type ms_type,
937 int section,
938 struct objfile *objfile)
939 {
940 struct obj_section *obj_section;
941 struct msym_bunch *new;
942 struct minimal_symbol *msymbol;
943
944 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
945 the minimal symbols, because if there is also another symbol
946 at the same address (e.g. the first function of the file),
947 lookup_minimal_symbol_by_pc would have no way of getting the
948 right one. */
949 if (ms_type == mst_file_text && name[0] == 'g'
950 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
951 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
952 return (NULL);
953
954 /* It's safe to strip the leading char here once, since the name
955 is also stored stripped in the minimal symbol table. */
956 if (name[0] == get_symbol_leading_char (objfile->obfd))
957 {
958 ++name;
959 --name_len;
960 }
961
962 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
963 return (NULL);
964
965 if (msym_bunch_index == BUNCH_SIZE)
966 {
967 new = XCNEW (struct msym_bunch);
968 msym_bunch_index = 0;
969 new->next = msym_bunch;
970 msym_bunch = new;
971 }
972 msymbol = &msym_bunch->contents[msym_bunch_index];
973 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
974 &objfile->per_bfd->storage_obstack);
975 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
976
977 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
978 MSYMBOL_SECTION (msymbol) = section;
979
980 MSYMBOL_TYPE (msymbol) = ms_type;
981 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
982 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
983 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
984 as it would also set the has_size flag. */
985 msymbol->size = 0;
986
987 /* The hash pointers must be cleared! If they're not,
988 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
989 msymbol->hash_next = NULL;
990 msymbol->demangled_hash_next = NULL;
991
992 /* If we already read minimal symbols for this objfile, then don't
993 ever allocate a new one. */
994 if (!objfile->per_bfd->minsyms_read)
995 {
996 msym_bunch_index++;
997 objfile->per_bfd->n_minsyms++;
998 }
999 msym_count++;
1000 return msymbol;
1001 }
1002
1003 /* See minsyms.h. */
1004
1005 struct minimal_symbol *
1006 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
1007 enum minimal_symbol_type ms_type,
1008 int section,
1009 struct objfile *objfile)
1010 {
1011 return prim_record_minimal_symbol_full (name, strlen (name), 1,
1012 address, ms_type,
1013 section, objfile);
1014 }
1015
1016 /* Compare two minimal symbols by address and return a signed result based
1017 on unsigned comparisons, so that we sort into unsigned numeric order.
1018 Within groups with the same address, sort by name. */
1019
1020 static int
1021 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1022 {
1023 const struct minimal_symbol *fn1;
1024 const struct minimal_symbol *fn2;
1025
1026 fn1 = (const struct minimal_symbol *) fn1p;
1027 fn2 = (const struct minimal_symbol *) fn2p;
1028
1029 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1030 {
1031 return (-1); /* addr 1 is less than addr 2. */
1032 }
1033 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1034 {
1035 return (1); /* addr 1 is greater than addr 2. */
1036 }
1037 else
1038 /* addrs are equal: sort by name */
1039 {
1040 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1041 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1042
1043 if (name1 && name2) /* both have names */
1044 return strcmp (name1, name2);
1045 else if (name2)
1046 return 1; /* fn1 has no name, so it is "less". */
1047 else if (name1) /* fn2 has no name, so it is "less". */
1048 return -1;
1049 else
1050 return (0); /* Neither has a name, so they're equal. */
1051 }
1052 }
1053
1054 /* Discard the currently collected minimal symbols, if any. If we wish
1055 to save them for later use, we must have already copied them somewhere
1056 else before calling this function.
1057
1058 FIXME: We could allocate the minimal symbol bunches on their own
1059 obstack and then simply blow the obstack away when we are done with
1060 it. Is it worth the extra trouble though? */
1061
1062 static void
1063 do_discard_minimal_symbols_cleanup (void *arg)
1064 {
1065 struct msym_bunch *next;
1066
1067 while (msym_bunch != NULL)
1068 {
1069 next = msym_bunch->next;
1070 xfree (msym_bunch);
1071 msym_bunch = next;
1072 }
1073 }
1074
1075 /* See minsyms.h. */
1076
1077 struct cleanup *
1078 make_cleanup_discard_minimal_symbols (void)
1079 {
1080 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1081 }
1082
1083
1084
1085 /* Compact duplicate entries out of a minimal symbol table by walking
1086 through the table and compacting out entries with duplicate addresses
1087 and matching names. Return the number of entries remaining.
1088
1089 On entry, the table resides between msymbol[0] and msymbol[mcount].
1090 On exit, it resides between msymbol[0] and msymbol[result_count].
1091
1092 When files contain multiple sources of symbol information, it is
1093 possible for the minimal symbol table to contain many duplicate entries.
1094 As an example, SVR4 systems use ELF formatted object files, which
1095 usually contain at least two different types of symbol tables (a
1096 standard ELF one and a smaller dynamic linking table), as well as
1097 DWARF debugging information for files compiled with -g.
1098
1099 Without compacting, the minimal symbol table for gdb itself contains
1100 over a 1000 duplicates, about a third of the total table size. Aside
1101 from the potential trap of not noticing that two successive entries
1102 identify the same location, this duplication impacts the time required
1103 to linearly scan the table, which is done in a number of places. So we
1104 just do one linear scan here and toss out the duplicates.
1105
1106 Note that we are not concerned here about recovering the space that
1107 is potentially freed up, because the strings themselves are allocated
1108 on the storage_obstack, and will get automatically freed when the symbol
1109 table is freed. The caller can free up the unused minimal symbols at
1110 the end of the compacted region if their allocation strategy allows it.
1111
1112 Also note we only go up to the next to last entry within the loop
1113 and then copy the last entry explicitly after the loop terminates.
1114
1115 Since the different sources of information for each symbol may
1116 have different levels of "completeness", we may have duplicates
1117 that have one entry with type "mst_unknown" and the other with a
1118 known type. So if the one we are leaving alone has type mst_unknown,
1119 overwrite its type with the type from the one we are compacting out. */
1120
1121 static int
1122 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1123 struct objfile *objfile)
1124 {
1125 struct minimal_symbol *copyfrom;
1126 struct minimal_symbol *copyto;
1127
1128 if (mcount > 0)
1129 {
1130 copyfrom = copyto = msymbol;
1131 while (copyfrom < msymbol + mcount - 1)
1132 {
1133 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1134 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1135 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1136 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1137 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1138 {
1139 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1140 {
1141 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1142 }
1143 copyfrom++;
1144 }
1145 else
1146 *copyto++ = *copyfrom++;
1147 }
1148 *copyto++ = *copyfrom++;
1149 mcount = copyto - msymbol;
1150 }
1151 return (mcount);
1152 }
1153
1154 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1155 after compacting or sorting the table since the entries move around
1156 thus causing the internal minimal_symbol pointers to become jumbled. */
1157
1158 static void
1159 build_minimal_symbol_hash_tables (struct objfile *objfile)
1160 {
1161 int i;
1162 struct minimal_symbol *msym;
1163
1164 /* Clear the hash tables. */
1165 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1166 {
1167 objfile->per_bfd->msymbol_hash[i] = 0;
1168 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1169 }
1170
1171 /* Now, (re)insert the actual entries. */
1172 for ((i = objfile->per_bfd->minimal_symbol_count,
1173 msym = objfile->per_bfd->msymbols);
1174 i > 0;
1175 i--, msym++)
1176 {
1177 msym->hash_next = 0;
1178 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1179
1180 msym->demangled_hash_next = 0;
1181 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1182 add_minsym_to_demangled_hash_table (msym,
1183 objfile->per_bfd->msymbol_demangled_hash);
1184 }
1185 }
1186
1187 /* Add the minimal symbols in the existing bunches to the objfile's official
1188 minimal symbol table. In most cases there is no minimal symbol table yet
1189 for this objfile, and the existing bunches are used to create one. Once
1190 in a while (for shared libraries for example), we add symbols (e.g. common
1191 symbols) to an existing objfile.
1192
1193 Because of the way minimal symbols are collected, we generally have no way
1194 of knowing what source language applies to any particular minimal symbol.
1195 Specifically, we have no way of knowing if the minimal symbol comes from a
1196 C++ compilation unit or not. So for the sake of supporting cached
1197 demangled C++ names, we have no choice but to try and demangle each new one
1198 that comes in. If the demangling succeeds, then we assume it is a C++
1199 symbol and set the symbol's language and demangled name fields
1200 appropriately. Note that in order to avoid unnecessary demanglings, and
1201 allocating obstack space that subsequently can't be freed for the demangled
1202 names, we mark all newly added symbols with language_auto. After
1203 compaction of the minimal symbols, we go back and scan the entire minimal
1204 symbol table looking for these new symbols. For each new symbol we attempt
1205 to demangle it, and if successful, record it as a language_cplus symbol
1206 and cache the demangled form on the symbol obstack. Symbols which don't
1207 demangle are marked as language_unknown symbols, which inhibits future
1208 attempts to demangle them if we later add more minimal symbols. */
1209
1210 void
1211 install_minimal_symbols (struct objfile *objfile)
1212 {
1213 int bindex;
1214 int mcount;
1215 struct msym_bunch *bunch;
1216 struct minimal_symbol *msymbols;
1217 int alloc_count;
1218
1219 if (objfile->per_bfd->minsyms_read)
1220 return;
1221
1222 if (msym_count > 0)
1223 {
1224 if (symtab_create_debug)
1225 {
1226 fprintf_unfiltered (gdb_stdlog,
1227 "Installing %d minimal symbols of objfile %s.\n",
1228 msym_count, objfile_name (objfile));
1229 }
1230
1231 /* Allocate enough space in the obstack, into which we will gather the
1232 bunches of new and existing minimal symbols, sort them, and then
1233 compact out the duplicate entries. Once we have a final table,
1234 we will give back the excess space. */
1235
1236 alloc_count = msym_count + objfile->per_bfd->minimal_symbol_count + 1;
1237 obstack_blank (&objfile->per_bfd->storage_obstack,
1238 alloc_count * sizeof (struct minimal_symbol));
1239 msymbols = (struct minimal_symbol *)
1240 obstack_base (&objfile->per_bfd->storage_obstack);
1241
1242 /* Copy in the existing minimal symbols, if there are any. */
1243
1244 if (objfile->per_bfd->minimal_symbol_count)
1245 memcpy ((char *) msymbols, (char *) objfile->per_bfd->msymbols,
1246 objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1247
1248 /* Walk through the list of minimal symbol bunches, adding each symbol
1249 to the new contiguous array of symbols. Note that we start with the
1250 current, possibly partially filled bunch (thus we use the current
1251 msym_bunch_index for the first bunch we copy over), and thereafter
1252 each bunch is full. */
1253
1254 mcount = objfile->per_bfd->minimal_symbol_count;
1255
1256 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1257 {
1258 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1259 msymbols[mcount] = bunch->contents[bindex];
1260 msym_bunch_index = BUNCH_SIZE;
1261 }
1262
1263 /* Sort the minimal symbols by address. */
1264
1265 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1266 compare_minimal_symbols);
1267
1268 /* Compact out any duplicates, and free up whatever space we are
1269 no longer using. */
1270
1271 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1272
1273 obstack_blank (&objfile->per_bfd->storage_obstack,
1274 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1275 msymbols = (struct minimal_symbol *)
1276 obstack_finish (&objfile->per_bfd->storage_obstack);
1277
1278 /* We also terminate the minimal symbol table with a "null symbol",
1279 which is *not* included in the size of the table. This makes it
1280 easier to find the end of the table when we are handed a pointer
1281 to some symbol in the middle of it. Zero out the fields in the
1282 "null symbol" allocated at the end of the array. Note that the
1283 symbol count does *not* include this null symbol, which is why it
1284 is indexed by mcount and not mcount-1. */
1285
1286 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1287
1288 /* Attach the minimal symbol table to the specified objfile.
1289 The strings themselves are also located in the storage_obstack
1290 of this objfile. */
1291
1292 objfile->per_bfd->minimal_symbol_count = mcount;
1293 objfile->per_bfd->msymbols = msymbols;
1294
1295 /* Now build the hash tables; we can't do this incrementally
1296 at an earlier point since we weren't finished with the obstack
1297 yet. (And if the msymbol obstack gets moved, all the internal
1298 pointers to other msymbols need to be adjusted.) */
1299 build_minimal_symbol_hash_tables (objfile);
1300 }
1301 }
1302
1303 /* See minsyms.h. */
1304
1305 void
1306 terminate_minimal_symbol_table (struct objfile *objfile)
1307 {
1308 if (! objfile->per_bfd->msymbols)
1309 objfile->per_bfd->msymbols
1310 = ((struct minimal_symbol *)
1311 obstack_alloc (&objfile->per_bfd->storage_obstack,
1312 sizeof (struct minimal_symbol)));
1313
1314 {
1315 struct minimal_symbol *m
1316 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1317
1318 memset (m, 0, sizeof (*m));
1319 /* Don't rely on these enumeration values being 0's. */
1320 MSYMBOL_TYPE (m) = mst_unknown;
1321 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1322 &objfile->per_bfd->storage_obstack);
1323 }
1324 }
1325
1326 /* Check if PC is in a shared library trampoline code stub.
1327 Return minimal symbol for the trampoline entry or NULL if PC is not
1328 in a trampoline code stub. */
1329
1330 static struct minimal_symbol *
1331 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1332 {
1333 struct obj_section *section = find_pc_section (pc);
1334 struct bound_minimal_symbol msymbol;
1335
1336 if (section == NULL)
1337 return NULL;
1338 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1339
1340 if (msymbol.minsym != NULL
1341 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1342 return msymbol.minsym;
1343 return NULL;
1344 }
1345
1346 /* If PC is in a shared library trampoline code stub, return the
1347 address of the `real' function belonging to the stub.
1348 Return 0 if PC is not in a trampoline code stub or if the real
1349 function is not found in the minimal symbol table.
1350
1351 We may fail to find the right function if a function with the
1352 same name is defined in more than one shared library, but this
1353 is considered bad programming style. We could return 0 if we find
1354 a duplicate function in case this matters someday. */
1355
1356 CORE_ADDR
1357 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1358 {
1359 struct objfile *objfile;
1360 struct minimal_symbol *msymbol;
1361 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1362
1363 if (tsymbol != NULL)
1364 {
1365 ALL_MSYMBOLS (objfile, msymbol)
1366 {
1367 if ((MSYMBOL_TYPE (msymbol) == mst_text
1368 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1369 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1370 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1371 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1372
1373 /* Also handle minimal symbols pointing to function descriptors. */
1374 if (MSYMBOL_TYPE (msymbol) == mst_data
1375 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1376 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1377 {
1378 CORE_ADDR func;
1379
1380 func = gdbarch_convert_from_func_ptr_addr
1381 (get_objfile_arch (objfile),
1382 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1383 &current_target);
1384
1385 /* Ignore data symbols that are not function descriptors. */
1386 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1387 return func;
1388 }
1389 }
1390 }
1391 return 0;
1392 }
1393
1394 /* See minsyms.h. */
1395
1396 CORE_ADDR
1397 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1398 {
1399 int i;
1400 short section;
1401 struct obj_section *obj_section;
1402 CORE_ADDR result;
1403 struct minimal_symbol *msymbol;
1404
1405 gdb_assert (minsym.minsym != NULL);
1406
1407 /* If the minimal symbol has a size, use it. Otherwise use the
1408 lesser of the next minimal symbol in the same section, or the end
1409 of the section, as the end of the function. */
1410
1411 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1412 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1413
1414 /* Step over other symbols at this same address, and symbols in
1415 other sections, to find the next symbol in this section with a
1416 different address. */
1417
1418 msymbol = minsym.minsym;
1419 section = MSYMBOL_SECTION (msymbol);
1420 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1421 {
1422 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1423 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1424 && MSYMBOL_SECTION (msymbol + i) == section)
1425 break;
1426 }
1427
1428 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1429 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1430 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1431 < obj_section_endaddr (obj_section)))
1432 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1433 else
1434 /* We got the start address from the last msymbol in the objfile.
1435 So the end address is the end of the section. */
1436 result = obj_section_endaddr (obj_section);
1437
1438 return result;
1439 }
This page took 0.069294 seconds and 5 git commands to generate.