Rename _const functions to use overloading instead
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54
55 /* See minsyms.h. */
56
57 bool
58 msymbol_is_text (minimal_symbol *msymbol)
59 {
60 switch (MSYMBOL_TYPE (msymbol))
61 {
62 case mst_text:
63 case mst_text_gnu_ifunc:
64 case mst_solib_trampoline:
65 case mst_file_text:
66 return true;
67 default:
68 return false;
69 }
70 }
71
72 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
73 At the end, copy them all into one newly allocated location on an objfile's
74 per-BFD storage obstack. */
75
76 #define BUNCH_SIZE 127
77
78 struct msym_bunch
79 {
80 struct msym_bunch *next;
81 struct minimal_symbol contents[BUNCH_SIZE];
82 };
83
84 /* See minsyms.h. */
85
86 unsigned int
87 msymbol_hash_iw (const char *string)
88 {
89 unsigned int hash = 0;
90
91 while (*string && *string != '(')
92 {
93 string = skip_spaces (string);
94 if (*string && *string != '(')
95 {
96 hash = SYMBOL_HASH_NEXT (hash, *string);
97 ++string;
98 }
99 }
100 return hash;
101 }
102
103 /* See minsyms.h. */
104
105 unsigned int
106 msymbol_hash (const char *string)
107 {
108 unsigned int hash = 0;
109
110 for (; *string; ++string)
111 hash = SYMBOL_HASH_NEXT (hash, *string);
112 return hash;
113 }
114
115 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
116 static void
117 add_minsym_to_hash_table (struct minimal_symbol *sym,
118 struct minimal_symbol **table)
119 {
120 if (sym->hash_next == NULL)
121 {
122 unsigned int hash
123 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
124
125 sym->hash_next = table[hash];
126 table[hash] = sym;
127 }
128 }
129
130 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
131 TABLE. */
132 static void
133 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
134 struct minimal_symbol **table)
135 {
136 if (sym->demangled_hash_next == NULL)
137 {
138 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
139 % MINIMAL_SYMBOL_HASH_SIZE;
140
141 sym->demangled_hash_next = table[hash];
142 table[hash] = sym;
143 }
144 }
145
146 /* Look through all the current minimal symbol tables and find the
147 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
148 the search to that objfile. If SFILE is non-NULL, the only file-scope
149 symbols considered will be from that source file (global symbols are
150 still preferred). Returns a pointer to the minimal symbol that
151 matches, or NULL if no match is found.
152
153 Note: One instance where there may be duplicate minimal symbols with
154 the same name is when the symbol tables for a shared library and the
155 symbol tables for an executable contain global symbols with the same
156 names (the dynamic linker deals with the duplication).
157
158 It's also possible to have minimal symbols with different mangled
159 names, but identical demangled names. For example, the GNU C++ v3
160 ABI requires the generation of two (or perhaps three) copies of
161 constructor functions --- "in-charge", "not-in-charge", and
162 "allocate" copies; destructors may be duplicated as well.
163 Obviously, there must be distinct mangled names for each of these,
164 but the demangled names are all the same: S::S or S::~S. */
165
166 struct bound_minimal_symbol
167 lookup_minimal_symbol (const char *name, const char *sfile,
168 struct objfile *objf)
169 {
170 struct objfile *objfile;
171 struct bound_minimal_symbol found_symbol = { NULL, NULL };
172 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
173 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
174
175 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
176 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
177
178 const char *modified_name = name;
179
180 if (sfile != NULL)
181 sfile = lbasename (sfile);
182
183 /* For C++, canonicalize the input name. */
184 std::string modified_name_storage;
185 if (current_language->la_language == language_cplus)
186 {
187 std::string cname = cp_canonicalize_string (name);
188 if (!cname.empty ())
189 {
190 std::swap (modified_name_storage, cname);
191 modified_name = modified_name_storage.c_str ();
192 }
193 }
194
195 for (objfile = object_files;
196 objfile != NULL && found_symbol.minsym == NULL;
197 objfile = objfile->next)
198 {
199 struct minimal_symbol *msymbol;
200
201 if (objf == NULL || objf == objfile
202 || objf == objfile->separate_debug_objfile_backlink)
203 {
204 /* Do two passes: the first over the ordinary hash table,
205 and the second over the demangled hash table. */
206 int pass;
207
208 if (symbol_lookup_debug)
209 {
210 fprintf_unfiltered (gdb_stdlog,
211 "lookup_minimal_symbol (%s, %s, %s)\n",
212 name, sfile != NULL ? sfile : "NULL",
213 objfile_debug_name (objfile));
214 }
215
216 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
217 {
218 /* Select hash list according to pass. */
219 if (pass == 1)
220 msymbol = objfile->per_bfd->msymbol_hash[hash];
221 else
222 msymbol = objfile->per_bfd->msymbol_demangled_hash[dem_hash];
223
224 while (msymbol != NULL && found_symbol.minsym == NULL)
225 {
226 int match;
227
228 if (pass == 1)
229 {
230 int (*cmp) (const char *, const char *);
231
232 cmp = (case_sensitivity == case_sensitive_on
233 ? strcmp : strcasecmp);
234 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
235 modified_name) == 0;
236 }
237 else
238 {
239 /* The function respects CASE_SENSITIVITY. */
240 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
241 modified_name);
242 }
243
244 if (match)
245 {
246 switch (MSYMBOL_TYPE (msymbol))
247 {
248 case mst_file_text:
249 case mst_file_data:
250 case mst_file_bss:
251 if (sfile == NULL
252 || filename_cmp (msymbol->filename, sfile) == 0)
253 {
254 found_file_symbol.minsym = msymbol;
255 found_file_symbol.objfile = objfile;
256 }
257 break;
258
259 case mst_solib_trampoline:
260
261 /* If a trampoline symbol is found, we prefer to
262 keep looking for the *real* symbol. If the
263 actual symbol is not found, then we'll use the
264 trampoline entry. */
265 if (trampoline_symbol.minsym == NULL)
266 {
267 trampoline_symbol.minsym = msymbol;
268 trampoline_symbol.objfile = objfile;
269 }
270 break;
271
272 case mst_unknown:
273 default:
274 found_symbol.minsym = msymbol;
275 found_symbol.objfile = objfile;
276 break;
277 }
278 }
279
280 /* Find the next symbol on the hash chain. */
281 if (pass == 1)
282 msymbol = msymbol->hash_next;
283 else
284 msymbol = msymbol->demangled_hash_next;
285 }
286 }
287 }
288 }
289
290 /* External symbols are best. */
291 if (found_symbol.minsym != NULL)
292 {
293 if (symbol_lookup_debug)
294 {
295 fprintf_unfiltered (gdb_stdlog,
296 "lookup_minimal_symbol (...) = %s"
297 " (external)\n",
298 host_address_to_string (found_symbol.minsym));
299 }
300 return found_symbol;
301 }
302
303 /* File-local symbols are next best. */
304 if (found_file_symbol.minsym != NULL)
305 {
306 if (symbol_lookup_debug)
307 {
308 fprintf_unfiltered (gdb_stdlog,
309 "lookup_minimal_symbol (...) = %s"
310 " (file-local)\n",
311 host_address_to_string
312 (found_file_symbol.minsym));
313 }
314 return found_file_symbol;
315 }
316
317 /* Symbols for shared library trampolines are next best. */
318 if (symbol_lookup_debug)
319 {
320 fprintf_unfiltered (gdb_stdlog,
321 "lookup_minimal_symbol (...) = %s%s\n",
322 trampoline_symbol.minsym != NULL
323 ? host_address_to_string (trampoline_symbol.minsym)
324 : "NULL",
325 trampoline_symbol.minsym != NULL
326 ? " (trampoline)" : "");
327 }
328 return trampoline_symbol;
329 }
330
331 /* See minsyms.h. */
332
333 struct bound_minimal_symbol
334 lookup_bound_minimal_symbol (const char *name)
335 {
336 return lookup_minimal_symbol (name, NULL, NULL);
337 }
338
339 /* See common/symbol.h. */
340
341 int
342 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
343 struct objfile *objfile)
344 {
345 struct bound_minimal_symbol sym
346 = lookup_minimal_symbol (name, NULL, objfile);
347
348 if (sym.minsym != NULL)
349 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
350
351 return sym.minsym == NULL;
352 }
353
354 /* See minsyms.h. */
355
356 void
357 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
358 void (*callback) (struct minimal_symbol *,
359 void *),
360 void *user_data)
361 {
362 unsigned int hash;
363 struct minimal_symbol *iter;
364 int (*cmp) (const char *, const char *);
365
366 /* The first pass is over the ordinary hash table. */
367 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
368 iter = objf->per_bfd->msymbol_hash[hash];
369 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
370 while (iter)
371 {
372 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
373 (*callback) (iter, user_data);
374 iter = iter->hash_next;
375 }
376
377 /* The second pass is over the demangled table. */
378 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
379 iter = objf->per_bfd->msymbol_demangled_hash[hash];
380 while (iter)
381 {
382 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
383 (*callback) (iter, user_data);
384 iter = iter->demangled_hash_next;
385 }
386 }
387
388 /* See minsyms.h. */
389
390 struct bound_minimal_symbol
391 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
392 {
393 struct objfile *objfile;
394 struct minimal_symbol *msymbol;
395 struct bound_minimal_symbol found_symbol = { NULL, NULL };
396 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
397
398 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
399
400 for (objfile = object_files;
401 objfile != NULL && found_symbol.minsym == NULL;
402 objfile = objfile->next)
403 {
404 if (objf == NULL || objf == objfile
405 || objf == objfile->separate_debug_objfile_backlink)
406 {
407 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
408 msymbol != NULL && found_symbol.minsym == NULL;
409 msymbol = msymbol->hash_next)
410 {
411 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
412 (MSYMBOL_TYPE (msymbol) == mst_text
413 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
414 || MSYMBOL_TYPE (msymbol) == mst_file_text))
415 {
416 switch (MSYMBOL_TYPE (msymbol))
417 {
418 case mst_file_text:
419 found_file_symbol.minsym = msymbol;
420 found_file_symbol.objfile = objfile;
421 break;
422 default:
423 found_symbol.minsym = msymbol;
424 found_symbol.objfile = objfile;
425 break;
426 }
427 }
428 }
429 }
430 }
431 /* External symbols are best. */
432 if (found_symbol.minsym)
433 return found_symbol;
434
435 /* File-local symbols are next best. */
436 return found_file_symbol;
437 }
438
439 /* See minsyms.h. */
440
441 struct minimal_symbol *
442 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
443 struct objfile *objf)
444 {
445 struct objfile *objfile;
446 struct minimal_symbol *msymbol;
447
448 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
449
450 for (objfile = object_files;
451 objfile != NULL;
452 objfile = objfile->next)
453 {
454 if (objf == NULL || objf == objfile
455 || objf == objfile->separate_debug_objfile_backlink)
456 {
457 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
458 msymbol != NULL;
459 msymbol = msymbol->hash_next)
460 {
461 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
462 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
463 return msymbol;
464 }
465 }
466 }
467
468 return NULL;
469 }
470
471 /* See minsyms.h. */
472
473 struct bound_minimal_symbol
474 lookup_minimal_symbol_solib_trampoline (const char *name,
475 struct objfile *objf)
476 {
477 struct objfile *objfile;
478 struct minimal_symbol *msymbol;
479 struct bound_minimal_symbol found_symbol = { NULL, NULL };
480
481 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
482
483 for (objfile = object_files;
484 objfile != NULL;
485 objfile = objfile->next)
486 {
487 if (objf == NULL || objf == objfile
488 || objf == objfile->separate_debug_objfile_backlink)
489 {
490 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
491 msymbol != NULL;
492 msymbol = msymbol->hash_next)
493 {
494 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
495 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
496 {
497 found_symbol.objfile = objfile;
498 found_symbol.minsym = msymbol;
499 return found_symbol;
500 }
501 }
502 }
503 }
504
505 return found_symbol;
506 }
507
508 /* A helper function that makes *PC section-relative. This searches
509 the sections of OBJFILE and if *PC is in a section, it subtracts
510 the section offset and returns true. Otherwise it returns
511 false. */
512
513 static int
514 frob_address (struct objfile *objfile, CORE_ADDR *pc)
515 {
516 struct obj_section *iter;
517
518 ALL_OBJFILE_OSECTIONS (objfile, iter)
519 {
520 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
521 {
522 *pc -= obj_section_offset (iter);
523 return 1;
524 }
525 }
526
527 return 0;
528 }
529
530 /* Search through the minimal symbol table for each objfile and find
531 the symbol whose address is the largest address that is still less
532 than or equal to PC, and matches SECTION (which is not NULL).
533 Returns a pointer to the minimal symbol if such a symbol is found,
534 or NULL if PC is not in a suitable range.
535 Note that we need to look through ALL the minimal symbol tables
536 before deciding on the symbol that comes closest to the specified PC.
537 This is because objfiles can overlap, for example objfile A has .text
538 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
539 .data at 0x40048.
540
541 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
542 there are text and trampoline symbols at the same address.
543 Otherwise prefer mst_text symbols. */
544
545 static struct bound_minimal_symbol
546 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
547 struct obj_section *section,
548 int want_trampoline)
549 {
550 int lo;
551 int hi;
552 int newobj;
553 struct objfile *objfile;
554 struct minimal_symbol *msymbol;
555 struct minimal_symbol *best_symbol = NULL;
556 struct objfile *best_objfile = NULL;
557 struct bound_minimal_symbol result;
558 enum minimal_symbol_type want_type, other_type;
559
560 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
561 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
562
563 /* We can not require the symbol found to be in section, because
564 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
565 symbol - but find_pc_section won't return an absolute section and
566 hence the code below would skip over absolute symbols. We can
567 still take advantage of the call to find_pc_section, though - the
568 object file still must match. In case we have separate debug
569 files, search both the file and its separate debug file. There's
570 no telling which one will have the minimal symbols. */
571
572 gdb_assert (section != NULL);
573
574 for (objfile = section->objfile;
575 objfile != NULL;
576 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
577 {
578 CORE_ADDR pc = pc_in;
579
580 /* If this objfile has a minimal symbol table, go search it using
581 a binary search. Note that a minimal symbol table always consists
582 of at least two symbols, a "real" symbol and the terminating
583 "null symbol". If there are no real symbols, then there is no
584 minimal symbol table at all. */
585
586 if (objfile->per_bfd->minimal_symbol_count > 0)
587 {
588 int best_zero_sized = -1;
589
590 msymbol = objfile->per_bfd->msymbols;
591 lo = 0;
592 hi = objfile->per_bfd->minimal_symbol_count - 1;
593
594 /* This code assumes that the minimal symbols are sorted by
595 ascending address values. If the pc value is greater than or
596 equal to the first symbol's address, then some symbol in this
597 minimal symbol table is a suitable candidate for being the
598 "best" symbol. This includes the last real symbol, for cases
599 where the pc value is larger than any address in this vector.
600
601 By iterating until the address associated with the current
602 hi index (the endpoint of the test interval) is less than
603 or equal to the desired pc value, we accomplish two things:
604 (1) the case where the pc value is larger than any minimal
605 symbol address is trivially solved, (2) the address associated
606 with the hi index is always the one we want when the interation
607 terminates. In essence, we are iterating the test interval
608 down until the pc value is pushed out of it from the high end.
609
610 Warning: this code is trickier than it would appear at first. */
611
612 if (frob_address (objfile, &pc)
613 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
614 {
615 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
616 {
617 /* pc is still strictly less than highest address. */
618 /* Note "new" will always be >= lo. */
619 newobj = (lo + hi) / 2;
620 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
621 || (lo == newobj))
622 {
623 hi = newobj;
624 }
625 else
626 {
627 lo = newobj;
628 }
629 }
630
631 /* If we have multiple symbols at the same address, we want
632 hi to point to the last one. That way we can find the
633 right symbol if it has an index greater than hi. */
634 while (hi < objfile->per_bfd->minimal_symbol_count - 1
635 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
636 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
637 hi++;
638
639 /* Skip various undesirable symbols. */
640 while (hi >= 0)
641 {
642 /* Skip any absolute symbols. This is apparently
643 what adb and dbx do, and is needed for the CM-5.
644 There are two known possible problems: (1) on
645 ELF, apparently end, edata, etc. are absolute.
646 Not sure ignoring them here is a big deal, but if
647 we want to use them, the fix would go in
648 elfread.c. (2) I think shared library entry
649 points on the NeXT are absolute. If we want
650 special handling for this it probably should be
651 triggered by a special mst_abs_or_lib or some
652 such. */
653
654 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
655 {
656 hi--;
657 continue;
658 }
659
660 /* If SECTION was specified, skip any symbol from
661 wrong section. */
662 if (section
663 /* Some types of debug info, such as COFF,
664 don't fill the bfd_section member, so don't
665 throw away symbols on those platforms. */
666 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
667 && (!matching_obj_sections
668 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
669 section)))
670 {
671 hi--;
672 continue;
673 }
674
675 /* If we are looking for a trampoline and this is a
676 text symbol, or the other way around, check the
677 preceding symbol too. If they are otherwise
678 identical prefer that one. */
679 if (hi > 0
680 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
681 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
682 && (MSYMBOL_SIZE (&msymbol[hi])
683 == MSYMBOL_SIZE (&msymbol[hi - 1]))
684 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
685 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
686 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
687 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
688 {
689 hi--;
690 continue;
691 }
692
693 /* If the minimal symbol has a zero size, save it
694 but keep scanning backwards looking for one with
695 a non-zero size. A zero size may mean that the
696 symbol isn't an object or function (e.g. a
697 label), or it may just mean that the size was not
698 specified. */
699 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
700 {
701 if (best_zero_sized == -1)
702 best_zero_sized = hi;
703 hi--;
704 continue;
705 }
706
707 /* If we are past the end of the current symbol, try
708 the previous symbol if it has a larger overlapping
709 size. This happens on i686-pc-linux-gnu with glibc;
710 the nocancel variants of system calls are inside
711 the cancellable variants, but both have sizes. */
712 if (hi > 0
713 && MSYMBOL_SIZE (&msymbol[hi]) != 0
714 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
715 + MSYMBOL_SIZE (&msymbol[hi]))
716 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
717 + MSYMBOL_SIZE (&msymbol[hi - 1])))
718 {
719 hi--;
720 continue;
721 }
722
723 /* Otherwise, this symbol must be as good as we're going
724 to get. */
725 break;
726 }
727
728 /* If HI has a zero size, and best_zero_sized is set,
729 then we had two or more zero-sized symbols; prefer
730 the first one we found (which may have a higher
731 address). Also, if we ran off the end, be sure
732 to back up. */
733 if (best_zero_sized != -1
734 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
735 hi = best_zero_sized;
736
737 /* If the minimal symbol has a non-zero size, and this
738 PC appears to be outside the symbol's contents, then
739 refuse to use this symbol. If we found a zero-sized
740 symbol with an address greater than this symbol's,
741 use that instead. We assume that if symbols have
742 specified sizes, they do not overlap. */
743
744 if (hi >= 0
745 && MSYMBOL_SIZE (&msymbol[hi]) != 0
746 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
747 + MSYMBOL_SIZE (&msymbol[hi])))
748 {
749 if (best_zero_sized != -1)
750 hi = best_zero_sized;
751 else
752 /* Go on to the next object file. */
753 continue;
754 }
755
756 /* The minimal symbol indexed by hi now is the best one in this
757 objfile's minimal symbol table. See if it is the best one
758 overall. */
759
760 if (hi >= 0
761 && ((best_symbol == NULL) ||
762 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
763 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
764 {
765 best_symbol = &msymbol[hi];
766 best_objfile = objfile;
767 }
768 }
769 }
770 }
771
772 result.minsym = best_symbol;
773 result.objfile = best_objfile;
774 return result;
775 }
776
777 struct bound_minimal_symbol
778 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
779 {
780 if (section == NULL)
781 {
782 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
783 force the section but that (well unless you're doing overlay
784 debugging) always returns NULL making the call somewhat useless. */
785 section = find_pc_section (pc);
786 if (section == NULL)
787 {
788 struct bound_minimal_symbol result;
789
790 memset (&result, 0, sizeof (result));
791 return result;
792 }
793 }
794 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
795 }
796
797 /* See minsyms.h. */
798
799 struct bound_minimal_symbol
800 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
801 {
802 struct obj_section *section = find_pc_section (pc);
803
804 if (section == NULL)
805 {
806 struct bound_minimal_symbol result;
807
808 memset (&result, 0, sizeof (result));
809 return result;
810 }
811 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
812 }
813
814 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
815
816 int
817 in_gnu_ifunc_stub (CORE_ADDR pc)
818 {
819 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
820
821 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
822 }
823
824 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
825
826 static CORE_ADDR
827 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
828 {
829 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
830 "the ELF support compiled in."),
831 paddress (gdbarch, pc));
832 }
833
834 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
835
836 static int
837 stub_gnu_ifunc_resolve_name (const char *function_name,
838 CORE_ADDR *function_address_p)
839 {
840 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
841 "the ELF support compiled in."),
842 function_name);
843 }
844
845 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
846
847 static void
848 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
849 {
850 internal_error (__FILE__, __LINE__,
851 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
852 }
853
854 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
855
856 static void
857 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
858 {
859 internal_error (__FILE__, __LINE__,
860 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
861 }
862
863 /* See elf_gnu_ifunc_fns for its real implementation. */
864
865 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
866 {
867 stub_gnu_ifunc_resolve_addr,
868 stub_gnu_ifunc_resolve_name,
869 stub_gnu_ifunc_resolver_stop,
870 stub_gnu_ifunc_resolver_return_stop,
871 };
872
873 /* A placeholder for &elf_gnu_ifunc_fns. */
874
875 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
876
877 /* See minsyms.h. */
878
879 struct bound_minimal_symbol
880 lookup_minimal_symbol_and_objfile (const char *name)
881 {
882 struct bound_minimal_symbol result;
883 struct objfile *objfile;
884 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
885
886 ALL_OBJFILES (objfile)
887 {
888 struct minimal_symbol *msym;
889
890 for (msym = objfile->per_bfd->msymbol_hash[hash];
891 msym != NULL;
892 msym = msym->hash_next)
893 {
894 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
895 {
896 result.minsym = msym;
897 result.objfile = objfile;
898 return result;
899 }
900 }
901 }
902
903 memset (&result, 0, sizeof (result));
904 return result;
905 }
906 \f
907
908 /* Return leading symbol character for a BFD. If BFD is NULL,
909 return the leading symbol character from the main objfile. */
910
911 static int
912 get_symbol_leading_char (bfd *abfd)
913 {
914 if (abfd != NULL)
915 return bfd_get_symbol_leading_char (abfd);
916 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
917 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
918 return 0;
919 }
920
921 /* See minsyms.h. */
922
923 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
924 : m_objfile (obj),
925 m_msym_bunch (NULL),
926 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
927 first call to save a minimal symbol to allocate the memory for
928 the first bunch. */
929 m_msym_bunch_index (BUNCH_SIZE),
930 m_msym_count (0)
931 {
932 }
933
934 /* Discard the currently collected minimal symbols, if any. If we wish
935 to save them for later use, we must have already copied them somewhere
936 else before calling this function.
937
938 FIXME: We could allocate the minimal symbol bunches on their own
939 obstack and then simply blow the obstack away when we are done with
940 it. Is it worth the extra trouble though? */
941
942 minimal_symbol_reader::~minimal_symbol_reader ()
943 {
944 struct msym_bunch *next;
945
946 while (m_msym_bunch != NULL)
947 {
948 next = m_msym_bunch->next;
949 xfree (m_msym_bunch);
950 m_msym_bunch = next;
951 }
952 }
953
954 /* See minsyms.h. */
955
956 void
957 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
958 enum minimal_symbol_type ms_type)
959 {
960 int section;
961
962 switch (ms_type)
963 {
964 case mst_text:
965 case mst_text_gnu_ifunc:
966 case mst_file_text:
967 case mst_solib_trampoline:
968 section = SECT_OFF_TEXT (m_objfile);
969 break;
970 case mst_data:
971 case mst_file_data:
972 section = SECT_OFF_DATA (m_objfile);
973 break;
974 case mst_bss:
975 case mst_file_bss:
976 section = SECT_OFF_BSS (m_objfile);
977 break;
978 default:
979 section = -1;
980 }
981
982 record_with_info (name, address, ms_type, section);
983 }
984
985 /* See minsyms.h. */
986
987 struct minimal_symbol *
988 minimal_symbol_reader::record_full (const char *name, int name_len,
989 bool copy_name, CORE_ADDR address,
990 enum minimal_symbol_type ms_type,
991 int section)
992 {
993 struct msym_bunch *newobj;
994 struct minimal_symbol *msymbol;
995
996 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
997 the minimal symbols, because if there is also another symbol
998 at the same address (e.g. the first function of the file),
999 lookup_minimal_symbol_by_pc would have no way of getting the
1000 right one. */
1001 if (ms_type == mst_file_text && name[0] == 'g'
1002 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1003 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1004 return (NULL);
1005
1006 /* It's safe to strip the leading char here once, since the name
1007 is also stored stripped in the minimal symbol table. */
1008 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1009 {
1010 ++name;
1011 --name_len;
1012 }
1013
1014 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1015 return (NULL);
1016
1017 if (m_msym_bunch_index == BUNCH_SIZE)
1018 {
1019 newobj = XCNEW (struct msym_bunch);
1020 m_msym_bunch_index = 0;
1021 newobj->next = m_msym_bunch;
1022 m_msym_bunch = newobj;
1023 }
1024 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1025 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1026 &m_objfile->per_bfd->storage_obstack);
1027 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1028
1029 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1030 MSYMBOL_SECTION (msymbol) = section;
1031
1032 MSYMBOL_TYPE (msymbol) = ms_type;
1033 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1034 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1035 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1036 as it would also set the has_size flag. */
1037 msymbol->size = 0;
1038
1039 /* The hash pointers must be cleared! If they're not,
1040 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1041 msymbol->hash_next = NULL;
1042 msymbol->demangled_hash_next = NULL;
1043
1044 /* If we already read minimal symbols for this objfile, then don't
1045 ever allocate a new one. */
1046 if (!m_objfile->per_bfd->minsyms_read)
1047 {
1048 m_msym_bunch_index++;
1049 m_objfile->per_bfd->n_minsyms++;
1050 }
1051 m_msym_count++;
1052 return msymbol;
1053 }
1054
1055 /* Compare two minimal symbols by address and return a signed result based
1056 on unsigned comparisons, so that we sort into unsigned numeric order.
1057 Within groups with the same address, sort by name. */
1058
1059 static int
1060 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1061 {
1062 const struct minimal_symbol *fn1;
1063 const struct minimal_symbol *fn2;
1064
1065 fn1 = (const struct minimal_symbol *) fn1p;
1066 fn2 = (const struct minimal_symbol *) fn2p;
1067
1068 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1069 {
1070 return (-1); /* addr 1 is less than addr 2. */
1071 }
1072 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1073 {
1074 return (1); /* addr 1 is greater than addr 2. */
1075 }
1076 else
1077 /* addrs are equal: sort by name */
1078 {
1079 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1080 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1081
1082 if (name1 && name2) /* both have names */
1083 return strcmp (name1, name2);
1084 else if (name2)
1085 return 1; /* fn1 has no name, so it is "less". */
1086 else if (name1) /* fn2 has no name, so it is "less". */
1087 return -1;
1088 else
1089 return (0); /* Neither has a name, so they're equal. */
1090 }
1091 }
1092
1093 /* Compact duplicate entries out of a minimal symbol table by walking
1094 through the table and compacting out entries with duplicate addresses
1095 and matching names. Return the number of entries remaining.
1096
1097 On entry, the table resides between msymbol[0] and msymbol[mcount].
1098 On exit, it resides between msymbol[0] and msymbol[result_count].
1099
1100 When files contain multiple sources of symbol information, it is
1101 possible for the minimal symbol table to contain many duplicate entries.
1102 As an example, SVR4 systems use ELF formatted object files, which
1103 usually contain at least two different types of symbol tables (a
1104 standard ELF one and a smaller dynamic linking table), as well as
1105 DWARF debugging information for files compiled with -g.
1106
1107 Without compacting, the minimal symbol table for gdb itself contains
1108 over a 1000 duplicates, about a third of the total table size. Aside
1109 from the potential trap of not noticing that two successive entries
1110 identify the same location, this duplication impacts the time required
1111 to linearly scan the table, which is done in a number of places. So we
1112 just do one linear scan here and toss out the duplicates.
1113
1114 Note that we are not concerned here about recovering the space that
1115 is potentially freed up, because the strings themselves are allocated
1116 on the storage_obstack, and will get automatically freed when the symbol
1117 table is freed. The caller can free up the unused minimal symbols at
1118 the end of the compacted region if their allocation strategy allows it.
1119
1120 Also note we only go up to the next to last entry within the loop
1121 and then copy the last entry explicitly after the loop terminates.
1122
1123 Since the different sources of information for each symbol may
1124 have different levels of "completeness", we may have duplicates
1125 that have one entry with type "mst_unknown" and the other with a
1126 known type. So if the one we are leaving alone has type mst_unknown,
1127 overwrite its type with the type from the one we are compacting out. */
1128
1129 static int
1130 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1131 struct objfile *objfile)
1132 {
1133 struct minimal_symbol *copyfrom;
1134 struct minimal_symbol *copyto;
1135
1136 if (mcount > 0)
1137 {
1138 copyfrom = copyto = msymbol;
1139 while (copyfrom < msymbol + mcount - 1)
1140 {
1141 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1142 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1143 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1144 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1145 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1146 {
1147 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1148 {
1149 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1150 }
1151 copyfrom++;
1152 }
1153 else
1154 *copyto++ = *copyfrom++;
1155 }
1156 *copyto++ = *copyfrom++;
1157 mcount = copyto - msymbol;
1158 }
1159 return (mcount);
1160 }
1161
1162 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1163 after compacting or sorting the table since the entries move around
1164 thus causing the internal minimal_symbol pointers to become jumbled. */
1165
1166 static void
1167 build_minimal_symbol_hash_tables (struct objfile *objfile)
1168 {
1169 int i;
1170 struct minimal_symbol *msym;
1171
1172 /* Clear the hash tables. */
1173 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1174 {
1175 objfile->per_bfd->msymbol_hash[i] = 0;
1176 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1177 }
1178
1179 /* Now, (re)insert the actual entries. */
1180 for ((i = objfile->per_bfd->minimal_symbol_count,
1181 msym = objfile->per_bfd->msymbols);
1182 i > 0;
1183 i--, msym++)
1184 {
1185 msym->hash_next = 0;
1186 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1187
1188 msym->demangled_hash_next = 0;
1189 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1190 add_minsym_to_demangled_hash_table (msym,
1191 objfile->per_bfd->msymbol_demangled_hash);
1192 }
1193 }
1194
1195 /* Add the minimal symbols in the existing bunches to the objfile's official
1196 minimal symbol table. In most cases there is no minimal symbol table yet
1197 for this objfile, and the existing bunches are used to create one. Once
1198 in a while (for shared libraries for example), we add symbols (e.g. common
1199 symbols) to an existing objfile.
1200
1201 Because of the way minimal symbols are collected, we generally have no way
1202 of knowing what source language applies to any particular minimal symbol.
1203 Specifically, we have no way of knowing if the minimal symbol comes from a
1204 C++ compilation unit or not. So for the sake of supporting cached
1205 demangled C++ names, we have no choice but to try and demangle each new one
1206 that comes in. If the demangling succeeds, then we assume it is a C++
1207 symbol and set the symbol's language and demangled name fields
1208 appropriately. Note that in order to avoid unnecessary demanglings, and
1209 allocating obstack space that subsequently can't be freed for the demangled
1210 names, we mark all newly added symbols with language_auto. After
1211 compaction of the minimal symbols, we go back and scan the entire minimal
1212 symbol table looking for these new symbols. For each new symbol we attempt
1213 to demangle it, and if successful, record it as a language_cplus symbol
1214 and cache the demangled form on the symbol obstack. Symbols which don't
1215 demangle are marked as language_unknown symbols, which inhibits future
1216 attempts to demangle them if we later add more minimal symbols. */
1217
1218 void
1219 minimal_symbol_reader::install ()
1220 {
1221 int bindex;
1222 int mcount;
1223 struct msym_bunch *bunch;
1224 struct minimal_symbol *msymbols;
1225 int alloc_count;
1226
1227 if (m_objfile->per_bfd->minsyms_read)
1228 return;
1229
1230 if (m_msym_count > 0)
1231 {
1232 if (symtab_create_debug)
1233 {
1234 fprintf_unfiltered (gdb_stdlog,
1235 "Installing %d minimal symbols of objfile %s.\n",
1236 m_msym_count, objfile_name (m_objfile));
1237 }
1238
1239 /* Allocate enough space in the obstack, into which we will gather the
1240 bunches of new and existing minimal symbols, sort them, and then
1241 compact out the duplicate entries. Once we have a final table,
1242 we will give back the excess space. */
1243
1244 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1245 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1246 alloc_count * sizeof (struct minimal_symbol));
1247 msymbols = (struct minimal_symbol *)
1248 obstack_base (&m_objfile->per_bfd->storage_obstack);
1249
1250 /* Copy in the existing minimal symbols, if there are any. */
1251
1252 if (m_objfile->per_bfd->minimal_symbol_count)
1253 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1254 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1255
1256 /* Walk through the list of minimal symbol bunches, adding each symbol
1257 to the new contiguous array of symbols. Note that we start with the
1258 current, possibly partially filled bunch (thus we use the current
1259 msym_bunch_index for the first bunch we copy over), and thereafter
1260 each bunch is full. */
1261
1262 mcount = m_objfile->per_bfd->minimal_symbol_count;
1263
1264 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1265 {
1266 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1267 msymbols[mcount] = bunch->contents[bindex];
1268 m_msym_bunch_index = BUNCH_SIZE;
1269 }
1270
1271 /* Sort the minimal symbols by address. */
1272
1273 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1274 compare_minimal_symbols);
1275
1276 /* Compact out any duplicates, and free up whatever space we are
1277 no longer using. */
1278
1279 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1280
1281 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1282 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1283 msymbols = (struct minimal_symbol *)
1284 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1285
1286 /* We also terminate the minimal symbol table with a "null symbol",
1287 which is *not* included in the size of the table. This makes it
1288 easier to find the end of the table when we are handed a pointer
1289 to some symbol in the middle of it. Zero out the fields in the
1290 "null symbol" allocated at the end of the array. Note that the
1291 symbol count does *not* include this null symbol, which is why it
1292 is indexed by mcount and not mcount-1. */
1293
1294 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1295
1296 /* Attach the minimal symbol table to the specified objfile.
1297 The strings themselves are also located in the storage_obstack
1298 of this objfile. */
1299
1300 m_objfile->per_bfd->minimal_symbol_count = mcount;
1301 m_objfile->per_bfd->msymbols = msymbols;
1302
1303 /* Now build the hash tables; we can't do this incrementally
1304 at an earlier point since we weren't finished with the obstack
1305 yet. (And if the msymbol obstack gets moved, all the internal
1306 pointers to other msymbols need to be adjusted.) */
1307 build_minimal_symbol_hash_tables (m_objfile);
1308 }
1309 }
1310
1311 /* See minsyms.h. */
1312
1313 void
1314 terminate_minimal_symbol_table (struct objfile *objfile)
1315 {
1316 if (! objfile->per_bfd->msymbols)
1317 objfile->per_bfd->msymbols
1318 = ((struct minimal_symbol *)
1319 obstack_alloc (&objfile->per_bfd->storage_obstack,
1320 sizeof (struct minimal_symbol)));
1321
1322 {
1323 struct minimal_symbol *m
1324 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1325
1326 memset (m, 0, sizeof (*m));
1327 /* Don't rely on these enumeration values being 0's. */
1328 MSYMBOL_TYPE (m) = mst_unknown;
1329 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1330 &objfile->per_bfd->storage_obstack);
1331 }
1332 }
1333
1334 /* Check if PC is in a shared library trampoline code stub.
1335 Return minimal symbol for the trampoline entry or NULL if PC is not
1336 in a trampoline code stub. */
1337
1338 static struct minimal_symbol *
1339 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1340 {
1341 struct obj_section *section = find_pc_section (pc);
1342 struct bound_minimal_symbol msymbol;
1343
1344 if (section == NULL)
1345 return NULL;
1346 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1347
1348 if (msymbol.minsym != NULL
1349 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1350 return msymbol.minsym;
1351 return NULL;
1352 }
1353
1354 /* If PC is in a shared library trampoline code stub, return the
1355 address of the `real' function belonging to the stub.
1356 Return 0 if PC is not in a trampoline code stub or if the real
1357 function is not found in the minimal symbol table.
1358
1359 We may fail to find the right function if a function with the
1360 same name is defined in more than one shared library, but this
1361 is considered bad programming style. We could return 0 if we find
1362 a duplicate function in case this matters someday. */
1363
1364 CORE_ADDR
1365 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1366 {
1367 struct objfile *objfile;
1368 struct minimal_symbol *msymbol;
1369 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1370
1371 if (tsymbol != NULL)
1372 {
1373 ALL_MSYMBOLS (objfile, msymbol)
1374 {
1375 if ((MSYMBOL_TYPE (msymbol) == mst_text
1376 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1377 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1378 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1379 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1380
1381 /* Also handle minimal symbols pointing to function descriptors. */
1382 if (MSYMBOL_TYPE (msymbol) == mst_data
1383 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1384 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1385 {
1386 CORE_ADDR func;
1387
1388 func = gdbarch_convert_from_func_ptr_addr
1389 (get_objfile_arch (objfile),
1390 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1391 &current_target);
1392
1393 /* Ignore data symbols that are not function descriptors. */
1394 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1395 return func;
1396 }
1397 }
1398 }
1399 return 0;
1400 }
1401
1402 /* See minsyms.h. */
1403
1404 CORE_ADDR
1405 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1406 {
1407 int i;
1408 short section;
1409 struct obj_section *obj_section;
1410 CORE_ADDR result;
1411 struct minimal_symbol *msymbol;
1412
1413 gdb_assert (minsym.minsym != NULL);
1414
1415 /* If the minimal symbol has a size, use it. Otherwise use the
1416 lesser of the next minimal symbol in the same section, or the end
1417 of the section, as the end of the function. */
1418
1419 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1420 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1421
1422 /* Step over other symbols at this same address, and symbols in
1423 other sections, to find the next symbol in this section with a
1424 different address. */
1425
1426 msymbol = minsym.minsym;
1427 section = MSYMBOL_SECTION (msymbol);
1428 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1429 {
1430 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1431 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1432 && MSYMBOL_SECTION (msymbol + i) == section)
1433 break;
1434 }
1435
1436 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1437 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1438 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1439 < obj_section_endaddr (obj_section)))
1440 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1441 else
1442 /* We got the start address from the last msymbol in the objfile.
1443 So the end address is the end of the section. */
1444 result = obj_section_endaddr (obj_section);
1445
1446 return result;
1447 }
This page took 0.057845 seconds and 5 git commands to generate.