Remove regcache_raw_write
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include "target-float.h"
59 #include <algorithm>
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68 static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
77
78 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
84
85 /* The sizes of floating point registers. */
86
87 enum
88 {
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91 };
92
93 enum
94 {
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97 };
98
99 static const char *mips_abi_string;
100
101 static const char *const mips_abi_strings[] = {
102 "auto",
103 "n32",
104 "o32",
105 "n64",
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110 };
111
112 /* Enum describing the different kinds of breakpoints. */
113
114 enum mips_breakpoint_kind
115 {
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127 };
128
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16[] = "mips16";
133 static const char mips_compression_micromips[] = "micromips";
134 static const char *const mips_compression_strings[] =
135 {
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139 };
140
141 static const char *mips_compression_string = mips_compression_mips16;
142
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
145 {
146 const char *name;
147 int regnum;
148 };
149
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156 };
157
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164 };
165
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175 #undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190 };
191
192 const struct register_alias mips_numeric_register_aliases[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198 #undef R
199 };
200
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203 #endif
204 static int mips_fpu_type_auto = 1;
205 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
206
207 static unsigned int mips_debug = 0;
208
209 /* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
214 struct target_desc *mips_tdesc_gp32;
215 struct target_desc *mips_tdesc_gp64;
216
217 const struct mips_regnum *
218 mips_regnum (struct gdbarch *gdbarch)
219 {
220 return gdbarch_tdep (gdbarch)->regnum;
221 }
222
223 static int
224 mips_fpa0_regnum (struct gdbarch *gdbarch)
225 {
226 return mips_regnum (gdbarch)->fp0 + 12;
227 }
228
229 /* Return 1 if REGNUM refers to a floating-point general register, raw
230 or cooked. Otherwise return 0. */
231
232 static int
233 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
234 {
235 int rawnum = regnum % gdbarch_num_regs (gdbarch);
236
237 return (rawnum >= mips_regnum (gdbarch)->fp0
238 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
239 }
240
241 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
242 == MIPS_ABI_EABI32 \
243 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
244
245 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
246 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
247
248 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
249 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
250
251 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
252
253 /* Return the MIPS ABI associated with GDBARCH. */
254 enum mips_abi
255 mips_abi (struct gdbarch *gdbarch)
256 {
257 return gdbarch_tdep (gdbarch)->mips_abi;
258 }
259
260 int
261 mips_isa_regsize (struct gdbarch *gdbarch)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* If we know how big the registers are, use that size. */
266 if (tdep->register_size_valid_p)
267 return tdep->register_size;
268
269 /* Fall back to the previous behavior. */
270 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
271 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
272 }
273
274 /* Max saved register size. */
275 #define MAX_MIPS_ABI_REGSIZE 8
276
277 /* Return the currently configured (or set) saved register size. */
278
279 unsigned int
280 mips_abi_regsize (struct gdbarch *gdbarch)
281 {
282 switch (mips_abi (gdbarch))
283 {
284 case MIPS_ABI_EABI32:
285 case MIPS_ABI_O32:
286 return 4;
287 case MIPS_ABI_N32:
288 case MIPS_ABI_N64:
289 case MIPS_ABI_O64:
290 case MIPS_ABI_EABI64:
291 return 8;
292 case MIPS_ABI_UNKNOWN:
293 case MIPS_ABI_LAST:
294 default:
295 internal_error (__FILE__, __LINE__, _("bad switch"));
296 }
297 }
298
299 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
300 are some functions to handle addresses associated with compressed
301 code including but not limited to testing, setting, or clearing
302 bit 0 of such addresses. */
303
304 /* Return one iff compressed code is the MIPS16 instruction set. */
305
306 static int
307 is_mips16_isa (struct gdbarch *gdbarch)
308 {
309 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
310 }
311
312 /* Return one iff compressed code is the microMIPS instruction set. */
313
314 static int
315 is_micromips_isa (struct gdbarch *gdbarch)
316 {
317 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
318 }
319
320 /* Return one iff ADDR denotes compressed code. */
321
322 static int
323 is_compact_addr (CORE_ADDR addr)
324 {
325 return ((addr) & 1);
326 }
327
328 /* Return one iff ADDR denotes standard ISA code. */
329
330 static int
331 is_mips_addr (CORE_ADDR addr)
332 {
333 return !is_compact_addr (addr);
334 }
335
336 /* Return one iff ADDR denotes MIPS16 code. */
337
338 static int
339 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
340 {
341 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
342 }
343
344 /* Return one iff ADDR denotes microMIPS code. */
345
346 static int
347 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
348 {
349 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
350 }
351
352 /* Strip the ISA (compression) bit off from ADDR. */
353
354 static CORE_ADDR
355 unmake_compact_addr (CORE_ADDR addr)
356 {
357 return ((addr) & ~(CORE_ADDR) 1);
358 }
359
360 /* Add the ISA (compression) bit to ADDR. */
361
362 static CORE_ADDR
363 make_compact_addr (CORE_ADDR addr)
364 {
365 return ((addr) | (CORE_ADDR) 1);
366 }
367
368 /* Extern version of unmake_compact_addr; we use a separate function
369 so that unmake_compact_addr can be inlined throughout this file. */
370
371 CORE_ADDR
372 mips_unmake_compact_addr (CORE_ADDR addr)
373 {
374 return unmake_compact_addr (addr);
375 }
376
377 /* Functions for setting and testing a bit in a minimal symbol that
378 marks it as MIPS16 or microMIPS function. The MSB of the minimal
379 symbol's "info" field is used for this purpose.
380
381 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
382 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
383 one of the "special" bits in a minimal symbol to mark it accordingly.
384 The test checks an ELF-private flag that is valid for true function
385 symbols only; for synthetic symbols such as for PLT stubs that have
386 no ELF-private part at all the MIPS BFD backend arranges for this
387 information to be carried in the asymbol's udata field instead.
388
389 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
390 in a minimal symbol. */
391
392 static void
393 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
394 {
395 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
396 unsigned char st_other;
397
398 if ((sym->flags & BSF_SYNTHETIC) == 0)
399 st_other = elfsym->internal_elf_sym.st_other;
400 else if ((sym->flags & BSF_FUNCTION) != 0)
401 st_other = sym->udata.i;
402 else
403 return;
404
405 if (ELF_ST_IS_MICROMIPS (st_other))
406 {
407 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
408 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
409 }
410 else if (ELF_ST_IS_MIPS16 (st_other))
411 {
412 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
413 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
414 }
415 }
416
417 /* Return one iff MSYM refers to standard ISA code. */
418
419 static int
420 msymbol_is_mips (struct minimal_symbol *msym)
421 {
422 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
423 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
424 }
425
426 /* Return one iff MSYM refers to MIPS16 code. */
427
428 static int
429 msymbol_is_mips16 (struct minimal_symbol *msym)
430 {
431 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
432 }
433
434 /* Return one iff MSYM refers to microMIPS code. */
435
436 static int
437 msymbol_is_micromips (struct minimal_symbol *msym)
438 {
439 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
440 }
441
442 /* Set the ISA bit in the main symbol too, complementing the corresponding
443 minimal symbol setting and reflecting the run-time value of the symbol.
444 The need for comes from the ISA bit having been cleared as code in
445 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
446 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
447 of symbols referring to compressed code different in GDB to the values
448 used by actual code. That in turn makes them evaluate incorrectly in
449 expressions, producing results different to what the same expressions
450 yield when compiled into the program being debugged. */
451
452 static void
453 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
454 {
455 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
456 {
457 /* We are in symbol reading so it is OK to cast away constness. */
458 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
459 CORE_ADDR compact_block_start;
460 struct bound_minimal_symbol msym;
461
462 compact_block_start = BLOCK_START (block) | 1;
463 msym = lookup_minimal_symbol_by_pc (compact_block_start);
464 if (msym.minsym && !msymbol_is_mips (msym.minsym))
465 {
466 BLOCK_START (block) = compact_block_start;
467 }
468 }
469 }
470
471 /* XFER a value from the big/little/left end of the register.
472 Depending on the size of the value it might occupy the entire
473 register or just part of it. Make an allowance for this, aligning
474 things accordingly. */
475
476 static void
477 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
478 int reg_num, int length,
479 enum bfd_endian endian, gdb_byte *in,
480 const gdb_byte *out, int buf_offset)
481 {
482 int reg_offset = 0;
483
484 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
485 /* Need to transfer the left or right part of the register, based on
486 the targets byte order. */
487 switch (endian)
488 {
489 case BFD_ENDIAN_BIG:
490 reg_offset = register_size (gdbarch, reg_num) - length;
491 break;
492 case BFD_ENDIAN_LITTLE:
493 reg_offset = 0;
494 break;
495 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
496 reg_offset = 0;
497 break;
498 default:
499 internal_error (__FILE__, __LINE__, _("bad switch"));
500 }
501 if (mips_debug)
502 fprintf_unfiltered (gdb_stderr,
503 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
504 reg_num, reg_offset, buf_offset, length);
505 if (mips_debug && out != NULL)
506 {
507 int i;
508 fprintf_unfiltered (gdb_stdlog, "out ");
509 for (i = 0; i < length; i++)
510 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
511 }
512 if (in != NULL)
513 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
514 in + buf_offset);
515 if (out != NULL)
516 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
517 out + buf_offset);
518 if (mips_debug && in != NULL)
519 {
520 int i;
521 fprintf_unfiltered (gdb_stdlog, "in ");
522 for (i = 0; i < length; i++)
523 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
524 }
525 if (mips_debug)
526 fprintf_unfiltered (gdb_stdlog, "\n");
527 }
528
529 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
530 compatiblity mode. A return value of 1 means that we have
531 physical 64-bit registers, but should treat them as 32-bit registers. */
532
533 static int
534 mips2_fp_compat (struct frame_info *frame)
535 {
536 struct gdbarch *gdbarch = get_frame_arch (frame);
537 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
538 meaningful. */
539 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
540 return 0;
541
542 #if 0
543 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
544 in all the places we deal with FP registers. PR gdb/413. */
545 /* Otherwise check the FR bit in the status register - it controls
546 the FP compatiblity mode. If it is clear we are in compatibility
547 mode. */
548 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
549 return 1;
550 #endif
551
552 return 0;
553 }
554
555 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
556
557 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
558
559 /* The list of available "set mips " and "show mips " commands. */
560
561 static struct cmd_list_element *setmipscmdlist = NULL;
562 static struct cmd_list_element *showmipscmdlist = NULL;
563
564 /* Integer registers 0 thru 31 are handled explicitly by
565 mips_register_name(). Processor specific registers 32 and above
566 are listed in the following tables. */
567
568 enum
569 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
570
571 /* Generic MIPS. */
572
573 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
574 "sr", "lo", "hi", "bad", "cause", "pc",
575 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
576 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
577 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
578 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
579 "fsr", "fir",
580 };
581
582 /* Names of tx39 registers. */
583
584 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
585 "sr", "lo", "hi", "bad", "cause", "pc",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "", "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "", "",
591 "", "", "", "", "", "", "", "",
592 "", "", "config", "cache", "debug", "depc", "epc",
593 };
594
595 /* Names of registers with Linux kernels. */
596 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
597 "sr", "lo", "hi", "bad", "cause", "pc",
598 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
599 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
600 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
601 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
602 "fsr", "fir"
603 };
604
605
606 /* Return the name of the register corresponding to REGNO. */
607 static const char *
608 mips_register_name (struct gdbarch *gdbarch, int regno)
609 {
610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
611 /* GPR names for all ABIs other than n32/n64. */
612 static const char *mips_gpr_names[] = {
613 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
614 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
615 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
616 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
617 };
618
619 /* GPR names for n32 and n64 ABIs. */
620 static const char *mips_n32_n64_gpr_names[] = {
621 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
622 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
623 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
624 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
625 };
626
627 enum mips_abi abi = mips_abi (gdbarch);
628
629 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
630 but then don't make the raw register names visible. This (upper)
631 range of user visible register numbers are the pseudo-registers.
632
633 This approach was adopted accommodate the following scenario:
634 It is possible to debug a 64-bit device using a 32-bit
635 programming model. In such instances, the raw registers are
636 configured to be 64-bits wide, while the pseudo registers are
637 configured to be 32-bits wide. The registers that the user
638 sees - the pseudo registers - match the users expectations
639 given the programming model being used. */
640 int rawnum = regno % gdbarch_num_regs (gdbarch);
641 if (regno < gdbarch_num_regs (gdbarch))
642 return "";
643
644 /* The MIPS integer registers are always mapped from 0 to 31. The
645 names of the registers (which reflects the conventions regarding
646 register use) vary depending on the ABI. */
647 if (0 <= rawnum && rawnum < 32)
648 {
649 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
650 return mips_n32_n64_gpr_names[rawnum];
651 else
652 return mips_gpr_names[rawnum];
653 }
654 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
655 return tdesc_register_name (gdbarch, rawnum);
656 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
657 {
658 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
659 if (tdep->mips_processor_reg_names[rawnum - 32])
660 return tdep->mips_processor_reg_names[rawnum - 32];
661 return "";
662 }
663 else
664 internal_error (__FILE__, __LINE__,
665 _("mips_register_name: bad register number %d"), rawnum);
666 }
667
668 /* Return the groups that a MIPS register can be categorised into. */
669
670 static int
671 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
672 struct reggroup *reggroup)
673 {
674 int vector_p;
675 int float_p;
676 int raw_p;
677 int rawnum = regnum % gdbarch_num_regs (gdbarch);
678 int pseudo = regnum / gdbarch_num_regs (gdbarch);
679 if (reggroup == all_reggroup)
680 return pseudo;
681 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
682 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
683 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
684 (gdbarch), as not all architectures are multi-arch. */
685 raw_p = rawnum < gdbarch_num_regs (gdbarch);
686 if (gdbarch_register_name (gdbarch, regnum) == NULL
687 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
688 return 0;
689 if (reggroup == float_reggroup)
690 return float_p && pseudo;
691 if (reggroup == vector_reggroup)
692 return vector_p && pseudo;
693 if (reggroup == general_reggroup)
694 return (!vector_p && !float_p) && pseudo;
695 /* Save the pseudo registers. Need to make certain that any code
696 extracting register values from a saved register cache also uses
697 pseudo registers. */
698 if (reggroup == save_reggroup)
699 return raw_p && pseudo;
700 /* Restore the same pseudo register. */
701 if (reggroup == restore_reggroup)
702 return raw_p && pseudo;
703 return 0;
704 }
705
706 /* Return the groups that a MIPS register can be categorised into.
707 This version is only used if we have a target description which
708 describes real registers (and their groups). */
709
710 static int
711 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
712 struct reggroup *reggroup)
713 {
714 int rawnum = regnum % gdbarch_num_regs (gdbarch);
715 int pseudo = regnum / gdbarch_num_regs (gdbarch);
716 int ret;
717
718 /* Only save, restore, and display the pseudo registers. Need to
719 make certain that any code extracting register values from a
720 saved register cache also uses pseudo registers.
721
722 Note: saving and restoring the pseudo registers is slightly
723 strange; if we have 64 bits, we should save and restore all
724 64 bits. But this is hard and has little benefit. */
725 if (!pseudo)
726 return 0;
727
728 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
729 if (ret != -1)
730 return ret;
731
732 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
733 }
734
735 /* Map the symbol table registers which live in the range [1 *
736 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
737 registers. Take care of alignment and size problems. */
738
739 static enum register_status
740 mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
741 int cookednum, gdb_byte *buf)
742 {
743 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
744 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
745 && cookednum < 2 * gdbarch_num_regs (gdbarch));
746 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
747 return regcache->raw_read (rawnum, buf);
748 else if (register_size (gdbarch, rawnum) >
749 register_size (gdbarch, cookednum))
750 {
751 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
752 return regcache->raw_read_part (rawnum, 0, 4, buf);
753 else
754 {
755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
756 LONGEST regval;
757 enum register_status status;
758
759 status = regcache->raw_read (rawnum, &regval);
760 if (status == REG_VALID)
761 store_signed_integer (buf, 4, byte_order, regval);
762 return status;
763 }
764 }
765 else
766 internal_error (__FILE__, __LINE__, _("bad register size"));
767 }
768
769 static void
770 mips_pseudo_register_write (struct gdbarch *gdbarch,
771 struct regcache *regcache, int cookednum,
772 const gdb_byte *buf)
773 {
774 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
775 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
776 && cookednum < 2 * gdbarch_num_regs (gdbarch));
777 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
778 regcache->raw_write (rawnum, buf);
779 else if (register_size (gdbarch, rawnum) >
780 register_size (gdbarch, cookednum))
781 {
782 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
783 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
784 else
785 {
786 /* Sign extend the shortened version of the register prior
787 to placing it in the raw register. This is required for
788 some mips64 parts in order to avoid unpredictable behavior. */
789 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
790 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
791 regcache_raw_write_signed (regcache, rawnum, regval);
792 }
793 }
794 else
795 internal_error (__FILE__, __LINE__, _("bad register size"));
796 }
797
798 static int
799 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
800 struct agent_expr *ax, int reg)
801 {
802 int rawnum = reg % gdbarch_num_regs (gdbarch);
803 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
804 && reg < 2 * gdbarch_num_regs (gdbarch));
805
806 ax_reg_mask (ax, rawnum);
807
808 return 0;
809 }
810
811 static int
812 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
813 struct agent_expr *ax, int reg)
814 {
815 int rawnum = reg % gdbarch_num_regs (gdbarch);
816 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
817 && reg < 2 * gdbarch_num_regs (gdbarch));
818 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
819 {
820 ax_reg (ax, rawnum);
821
822 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
823 {
824 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
825 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
826 {
827 ax_const_l (ax, 32);
828 ax_simple (ax, aop_lsh);
829 }
830 ax_const_l (ax, 32);
831 ax_simple (ax, aop_rsh_signed);
832 }
833 }
834 else
835 internal_error (__FILE__, __LINE__, _("bad register size"));
836
837 return 0;
838 }
839
840 /* Table to translate 3-bit register field to actual register number. */
841 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
842
843 /* Heuristic_proc_start may hunt through the text section for a long
844 time across a 2400 baud serial line. Allows the user to limit this
845 search. */
846
847 static int heuristic_fence_post = 0;
848
849 /* Number of bytes of storage in the actual machine representation for
850 register N. NOTE: This defines the pseudo register type so need to
851 rebuild the architecture vector. */
852
853 static int mips64_transfers_32bit_regs_p = 0;
854
855 static void
856 set_mips64_transfers_32bit_regs (const char *args, int from_tty,
857 struct cmd_list_element *c)
858 {
859 struct gdbarch_info info;
860 gdbarch_info_init (&info);
861 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
862 instead of relying on globals. Doing that would let generic code
863 handle the search for this specific architecture. */
864 if (!gdbarch_update_p (info))
865 {
866 mips64_transfers_32bit_regs_p = 0;
867 error (_("32-bit compatibility mode not supported"));
868 }
869 }
870
871 /* Convert to/from a register and the corresponding memory value. */
872
873 /* This predicate tests for the case of an 8 byte floating point
874 value that is being transferred to or from a pair of floating point
875 registers each of which are (or are considered to be) only 4 bytes
876 wide. */
877 static int
878 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
879 struct type *type)
880 {
881 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
882 && register_size (gdbarch, regnum) == 4
883 && mips_float_register_p (gdbarch, regnum)
884 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
885 }
886
887 /* This predicate tests for the case of a value of less than 8
888 bytes in width that is being transfered to or from an 8 byte
889 general purpose register. */
890 static int
891 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
892 struct type *type)
893 {
894 int num_regs = gdbarch_num_regs (gdbarch);
895
896 return (register_size (gdbarch, regnum) == 8
897 && regnum % num_regs > 0 && regnum % num_regs < 32
898 && TYPE_LENGTH (type) < 8);
899 }
900
901 static int
902 mips_convert_register_p (struct gdbarch *gdbarch,
903 int regnum, struct type *type)
904 {
905 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
906 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
907 }
908
909 static int
910 mips_register_to_value (struct frame_info *frame, int regnum,
911 struct type *type, gdb_byte *to,
912 int *optimizedp, int *unavailablep)
913 {
914 struct gdbarch *gdbarch = get_frame_arch (frame);
915
916 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
917 {
918 get_frame_register (frame, regnum + 0, to + 4);
919 get_frame_register (frame, regnum + 1, to + 0);
920
921 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
922 optimizedp, unavailablep))
923 return 0;
924
925 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
926 optimizedp, unavailablep))
927 return 0;
928 *optimizedp = *unavailablep = 0;
929 return 1;
930 }
931 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
932 {
933 int len = TYPE_LENGTH (type);
934 CORE_ADDR offset;
935
936 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
937 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
938 optimizedp, unavailablep))
939 return 0;
940
941 *optimizedp = *unavailablep = 0;
942 return 1;
943 }
944 else
945 {
946 internal_error (__FILE__, __LINE__,
947 _("mips_register_to_value: unrecognized case"));
948 }
949 }
950
951 static void
952 mips_value_to_register (struct frame_info *frame, int regnum,
953 struct type *type, const gdb_byte *from)
954 {
955 struct gdbarch *gdbarch = get_frame_arch (frame);
956
957 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
958 {
959 put_frame_register (frame, regnum + 0, from + 4);
960 put_frame_register (frame, regnum + 1, from + 0);
961 }
962 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
963 {
964 gdb_byte fill[8];
965 int len = TYPE_LENGTH (type);
966
967 /* Sign extend values, irrespective of type, that are stored to
968 a 64-bit general purpose register. (32-bit unsigned values
969 are stored as signed quantities within a 64-bit register.
970 When performing an operation, in compiled code, that combines
971 a 32-bit unsigned value with a signed 64-bit value, a type
972 conversion is first performed that zeroes out the high 32 bits.) */
973 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
974 {
975 if (from[0] & 0x80)
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
977 else
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
979 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
980 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
981 }
982 else
983 {
984 if (from[len-1] & 0x80)
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
986 else
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
988 put_frame_register_bytes (frame, regnum, 0, len, from);
989 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
990 }
991 }
992 else
993 {
994 internal_error (__FILE__, __LINE__,
995 _("mips_value_to_register: unrecognized case"));
996 }
997 }
998
999 /* Return the GDB type object for the "standard" data type of data in
1000 register REG. */
1001
1002 static struct type *
1003 mips_register_type (struct gdbarch *gdbarch, int regnum)
1004 {
1005 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1006 if (mips_float_register_p (gdbarch, regnum))
1007 {
1008 /* The floating-point registers raw, or cooked, always match
1009 mips_isa_regsize(), and also map 1:1, byte for byte. */
1010 if (mips_isa_regsize (gdbarch) == 4)
1011 return builtin_type (gdbarch)->builtin_float;
1012 else
1013 return builtin_type (gdbarch)->builtin_double;
1014 }
1015 else if (regnum < gdbarch_num_regs (gdbarch))
1016 {
1017 /* The raw or ISA registers. These are all sized according to
1018 the ISA regsize. */
1019 if (mips_isa_regsize (gdbarch) == 4)
1020 return builtin_type (gdbarch)->builtin_int32;
1021 else
1022 return builtin_type (gdbarch)->builtin_int64;
1023 }
1024 else
1025 {
1026 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1027
1028 /* The cooked or ABI registers. These are sized according to
1029 the ABI (with a few complications). */
1030 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1031 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1032 return builtin_type (gdbarch)->builtin_int32;
1033 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1034 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1035 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1036 /* The pseudo/cooked view of the embedded registers is always
1037 32-bit. The raw view is handled below. */
1038 return builtin_type (gdbarch)->builtin_int32;
1039 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1040 /* The target, while possibly using a 64-bit register buffer,
1041 is only transfering 32-bits of each integer register.
1042 Reflect this in the cooked/pseudo (ABI) register value. */
1043 return builtin_type (gdbarch)->builtin_int32;
1044 else if (mips_abi_regsize (gdbarch) == 4)
1045 /* The ABI is restricted to 32-bit registers (the ISA could be
1046 32- or 64-bit). */
1047 return builtin_type (gdbarch)->builtin_int32;
1048 else
1049 /* 64-bit ABI. */
1050 return builtin_type (gdbarch)->builtin_int64;
1051 }
1052 }
1053
1054 /* Return the GDB type for the pseudo register REGNUM, which is the
1055 ABI-level view. This function is only called if there is a target
1056 description which includes registers, so we know precisely the
1057 types of hardware registers. */
1058
1059 static struct type *
1060 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1061 {
1062 const int num_regs = gdbarch_num_regs (gdbarch);
1063 int rawnum = regnum % num_regs;
1064 struct type *rawtype;
1065
1066 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1067
1068 /* Absent registers are still absent. */
1069 rawtype = gdbarch_register_type (gdbarch, rawnum);
1070 if (TYPE_LENGTH (rawtype) == 0)
1071 return rawtype;
1072
1073 /* Present the floating point registers however the hardware did;
1074 do not try to convert between FPU layouts. */
1075 if (mips_float_register_p (gdbarch, rawnum))
1076 return rawtype;
1077
1078 /* Floating-point control registers are always 32-bit even though for
1079 backwards compatibility reasons 64-bit targets will transfer them
1080 as 64-bit quantities even if using XML descriptions. */
1081 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1082 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1083 return builtin_type (gdbarch)->builtin_int32;
1084
1085 /* Use pointer types for registers if we can. For n32 we can not,
1086 since we do not have a 64-bit pointer type. */
1087 if (mips_abi_regsize (gdbarch)
1088 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1089 {
1090 if (rawnum == MIPS_SP_REGNUM
1091 || rawnum == mips_regnum (gdbarch)->badvaddr)
1092 return builtin_type (gdbarch)->builtin_data_ptr;
1093 else if (rawnum == mips_regnum (gdbarch)->pc)
1094 return builtin_type (gdbarch)->builtin_func_ptr;
1095 }
1096
1097 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1098 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1099 || rawnum == mips_regnum (gdbarch)->lo
1100 || rawnum == mips_regnum (gdbarch)->hi
1101 || rawnum == mips_regnum (gdbarch)->badvaddr
1102 || rawnum == mips_regnum (gdbarch)->cause
1103 || rawnum == mips_regnum (gdbarch)->pc
1104 || (mips_regnum (gdbarch)->dspacc != -1
1105 && rawnum >= mips_regnum (gdbarch)->dspacc
1106 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1107 return builtin_type (gdbarch)->builtin_int32;
1108
1109 /* The pseudo/cooked view of embedded registers is always
1110 32-bit, even if the target transfers 64-bit values for them.
1111 New targets relying on XML descriptions should only transfer
1112 the necessary 32 bits, but older versions of GDB expected 64,
1113 so allow the target to provide 64 bits without interfering
1114 with the displayed type. */
1115 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1116 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1117 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1118 return builtin_type (gdbarch)->builtin_int32;
1119
1120 /* For all other registers, pass through the hardware type. */
1121 return rawtype;
1122 }
1123
1124 /* Should the upper word of 64-bit addresses be zeroed? */
1125 static enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1126
1127 static int
1128 mips_mask_address_p (struct gdbarch_tdep *tdep)
1129 {
1130 switch (mask_address_var)
1131 {
1132 case AUTO_BOOLEAN_TRUE:
1133 return 1;
1134 case AUTO_BOOLEAN_FALSE:
1135 return 0;
1136 break;
1137 case AUTO_BOOLEAN_AUTO:
1138 return tdep->default_mask_address_p;
1139 default:
1140 internal_error (__FILE__, __LINE__,
1141 _("mips_mask_address_p: bad switch"));
1142 return -1;
1143 }
1144 }
1145
1146 static void
1147 show_mask_address (struct ui_file *file, int from_tty,
1148 struct cmd_list_element *c, const char *value)
1149 {
1150 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1151
1152 deprecated_show_value_hack (file, from_tty, c, value);
1153 switch (mask_address_var)
1154 {
1155 case AUTO_BOOLEAN_TRUE:
1156 printf_filtered ("The 32 bit mips address mask is enabled\n");
1157 break;
1158 case AUTO_BOOLEAN_FALSE:
1159 printf_filtered ("The 32 bit mips address mask is disabled\n");
1160 break;
1161 case AUTO_BOOLEAN_AUTO:
1162 printf_filtered
1163 ("The 32 bit address mask is set automatically. Currently %s\n",
1164 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1165 break;
1166 default:
1167 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1168 break;
1169 }
1170 }
1171
1172 /* Tell if the program counter value in MEMADDR is in a standard ISA
1173 function. */
1174
1175 int
1176 mips_pc_is_mips (CORE_ADDR memaddr)
1177 {
1178 struct bound_minimal_symbol sym;
1179
1180 /* Flags indicating that this is a MIPS16 or microMIPS function is
1181 stored by elfread.c in the high bit of the info field. Use this
1182 to decide if the function is standard MIPS. Otherwise if bit 0
1183 of the address is clear, then this is a standard MIPS function. */
1184 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1185 if (sym.minsym)
1186 return msymbol_is_mips (sym.minsym);
1187 else
1188 return is_mips_addr (memaddr);
1189 }
1190
1191 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1192
1193 int
1194 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1195 {
1196 struct bound_minimal_symbol sym;
1197
1198 /* A flag indicating that this is a MIPS16 function is stored by
1199 elfread.c in the high bit of the info field. Use this to decide
1200 if the function is MIPS16. Otherwise if bit 0 of the address is
1201 set, then ELF file flags will tell if this is a MIPS16 function. */
1202 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1203 if (sym.minsym)
1204 return msymbol_is_mips16 (sym.minsym);
1205 else
1206 return is_mips16_addr (gdbarch, memaddr);
1207 }
1208
1209 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1210
1211 int
1212 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1213 {
1214 struct bound_minimal_symbol sym;
1215
1216 /* A flag indicating that this is a microMIPS function is stored by
1217 elfread.c in the high bit of the info field. Use this to decide
1218 if the function is microMIPS. Otherwise if bit 0 of the address
1219 is set, then ELF file flags will tell if this is a microMIPS
1220 function. */
1221 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1222 if (sym.minsym)
1223 return msymbol_is_micromips (sym.minsym);
1224 else
1225 return is_micromips_addr (gdbarch, memaddr);
1226 }
1227
1228 /* Tell the ISA type of the function the program counter value in MEMADDR
1229 is in. */
1230
1231 static enum mips_isa
1232 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1233 {
1234 struct bound_minimal_symbol sym;
1235
1236 /* A flag indicating that this is a MIPS16 or a microMIPS function
1237 is stored by elfread.c in the high bit of the info field. Use
1238 this to decide if the function is MIPS16 or microMIPS or normal
1239 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1240 flags will tell if this is a MIPS16 or a microMIPS function. */
1241 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1242 if (sym.minsym)
1243 {
1244 if (msymbol_is_micromips (sym.minsym))
1245 return ISA_MICROMIPS;
1246 else if (msymbol_is_mips16 (sym.minsym))
1247 return ISA_MIPS16;
1248 else
1249 return ISA_MIPS;
1250 }
1251 else
1252 {
1253 if (is_mips_addr (memaddr))
1254 return ISA_MIPS;
1255 else if (is_micromips_addr (gdbarch, memaddr))
1256 return ISA_MICROMIPS;
1257 else
1258 return ISA_MIPS16;
1259 }
1260 }
1261
1262 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1263 The need for comes from the ISA bit having been cleared, making
1264 addresses in FDE, range records, etc. referring to compressed code
1265 different to those in line information, the symbol table and finally
1266 the PC register. That in turn confuses many operations. */
1267
1268 static CORE_ADDR
1269 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1270 {
1271 pc = unmake_compact_addr (pc);
1272 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1273 }
1274
1275 /* Recalculate the line record requested so that the resulting PC has
1276 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1277 this adjustment comes from some records associated with compressed
1278 code having the ISA bit cleared, most notably at function prologue
1279 ends. The ISA bit is in this context retrieved from the minimal
1280 symbol covering the address requested, which in turn has been
1281 constructed from the binary's symbol table rather than DWARF-2
1282 information. The correct setting of the ISA bit is required for
1283 breakpoint addresses to correctly match against the stop PC.
1284
1285 As line entries can specify relative address adjustments we need to
1286 keep track of the absolute value of the last line address recorded
1287 in line information, so that we can calculate the actual address to
1288 apply the ISA bit adjustment to. We use PC for this tracking and
1289 keep the original address there.
1290
1291 As such relative address adjustments can be odd within compressed
1292 code we need to keep track of the last line address with the ISA
1293 bit adjustment applied too, as the original address may or may not
1294 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1295 the adjusted address there.
1296
1297 For relative address adjustments we then use these variables to
1298 calculate the address intended by line information, which will be
1299 PC-relative, and return an updated adjustment carrying ISA bit
1300 information, which will be ADJ_PC-relative. For absolute address
1301 adjustments we just return the same address that we store in ADJ_PC
1302 too.
1303
1304 As the first line entry can be relative to an implied address value
1305 of 0 we need to have the initial address set up that we store in PC
1306 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1307 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1308
1309 static CORE_ADDR
1310 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1311 {
1312 static CORE_ADDR adj_pc;
1313 static CORE_ADDR pc;
1314 CORE_ADDR isa_pc;
1315
1316 pc = rel ? pc + addr : addr;
1317 isa_pc = mips_adjust_dwarf2_addr (pc);
1318 addr = rel ? isa_pc - adj_pc : isa_pc;
1319 adj_pc = isa_pc;
1320 return addr;
1321 }
1322
1323 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1324
1325 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1326 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1327 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1328 static const char mips_str_call_stub[] = "__call_stub_";
1329 static const char mips_str_fn_stub[] = "__fn_stub_";
1330
1331 /* This is used as a PIC thunk prefix. */
1332
1333 static const char mips_str_pic[] = ".pic.";
1334
1335 /* Return non-zero if the PC is inside a call thunk (aka stub or
1336 trampoline) that should be treated as a temporary frame. */
1337
1338 static int
1339 mips_in_frame_stub (CORE_ADDR pc)
1340 {
1341 CORE_ADDR start_addr;
1342 const char *name;
1343
1344 /* Find the starting address of the function containing the PC. */
1345 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1346 return 0;
1347
1348 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1349 if (startswith (name, mips_str_mips16_call_stub))
1350 return 1;
1351 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1352 if (startswith (name, mips_str_call_stub))
1353 return 1;
1354 /* If the PC is in __fn_stub_*, this is a call stub. */
1355 if (startswith (name, mips_str_fn_stub))
1356 return 1;
1357
1358 return 0; /* Not a stub. */
1359 }
1360
1361 /* MIPS believes that the PC has a sign extended value. Perhaps the
1362 all registers should be sign extended for simplicity? */
1363
1364 static CORE_ADDR
1365 mips_read_pc (readable_regcache *regcache)
1366 {
1367 int regnum = gdbarch_pc_regnum (regcache->arch ());
1368 LONGEST pc;
1369
1370 regcache->cooked_read (regnum, &pc);
1371 return pc;
1372 }
1373
1374 static CORE_ADDR
1375 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1376 {
1377 CORE_ADDR pc;
1378
1379 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1380 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1381 intermediate frames. In this case we can get the caller's address
1382 from $ra, or if $ra contains an address within a thunk as well, then
1383 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1384 and thus the caller's address is in $s2. */
1385 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1386 {
1387 pc = frame_unwind_register_signed
1388 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1389 if (mips_in_frame_stub (pc))
1390 pc = frame_unwind_register_signed
1391 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1392 }
1393 return pc;
1394 }
1395
1396 static CORE_ADDR
1397 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1398 {
1399 return frame_unwind_register_signed
1400 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1401 }
1402
1403 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1404 dummy frame. The frame ID's base needs to match the TOS value
1405 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1406 breakpoint. */
1407
1408 static struct frame_id
1409 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1410 {
1411 return frame_id_build
1412 (get_frame_register_signed (this_frame,
1413 gdbarch_num_regs (gdbarch)
1414 + MIPS_SP_REGNUM),
1415 get_frame_pc (this_frame));
1416 }
1417
1418 /* Implement the "write_pc" gdbarch method. */
1419
1420 void
1421 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1422 {
1423 int regnum = gdbarch_pc_regnum (regcache->arch ());
1424
1425 regcache_cooked_write_unsigned (regcache, regnum, pc);
1426 }
1427
1428 /* Fetch and return instruction from the specified location. Handle
1429 MIPS16/microMIPS as appropriate. */
1430
1431 static ULONGEST
1432 mips_fetch_instruction (struct gdbarch *gdbarch,
1433 enum mips_isa isa, CORE_ADDR addr, int *errp)
1434 {
1435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1436 gdb_byte buf[MIPS_INSN32_SIZE];
1437 int instlen;
1438 int err;
1439
1440 switch (isa)
1441 {
1442 case ISA_MICROMIPS:
1443 case ISA_MIPS16:
1444 instlen = MIPS_INSN16_SIZE;
1445 addr = unmake_compact_addr (addr);
1446 break;
1447 case ISA_MIPS:
1448 instlen = MIPS_INSN32_SIZE;
1449 break;
1450 default:
1451 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1452 break;
1453 }
1454 err = target_read_memory (addr, buf, instlen);
1455 if (errp != NULL)
1456 *errp = err;
1457 if (err != 0)
1458 {
1459 if (errp == NULL)
1460 memory_error (TARGET_XFER_E_IO, addr);
1461 return 0;
1462 }
1463 return extract_unsigned_integer (buf, instlen, byte_order);
1464 }
1465
1466 /* These are the fields of 32 bit mips instructions. */
1467 #define mips32_op(x) (x >> 26)
1468 #define itype_op(x) (x >> 26)
1469 #define itype_rs(x) ((x >> 21) & 0x1f)
1470 #define itype_rt(x) ((x >> 16) & 0x1f)
1471 #define itype_immediate(x) (x & 0xffff)
1472
1473 #define jtype_op(x) (x >> 26)
1474 #define jtype_target(x) (x & 0x03ffffff)
1475
1476 #define rtype_op(x) (x >> 26)
1477 #define rtype_rs(x) ((x >> 21) & 0x1f)
1478 #define rtype_rt(x) ((x >> 16) & 0x1f)
1479 #define rtype_rd(x) ((x >> 11) & 0x1f)
1480 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1481 #define rtype_funct(x) (x & 0x3f)
1482
1483 /* MicroMIPS instruction fields. */
1484 #define micromips_op(x) ((x) >> 10)
1485
1486 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1487 bit and the size respectively of the field extracted. */
1488 #define b0s4_imm(x) ((x) & 0xf)
1489 #define b0s5_imm(x) ((x) & 0x1f)
1490 #define b0s5_reg(x) ((x) & 0x1f)
1491 #define b0s7_imm(x) ((x) & 0x7f)
1492 #define b0s10_imm(x) ((x) & 0x3ff)
1493 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1494 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1495 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1496 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1497 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1498 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1499 #define b6s4_op(x) (((x) >> 6) & 0xf)
1500 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1501
1502 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1503 respectively of the field extracted. */
1504 #define b0s6_op(x) ((x) & 0x3f)
1505 #define b0s11_op(x) ((x) & 0x7ff)
1506 #define b0s12_imm(x) ((x) & 0xfff)
1507 #define b0s16_imm(x) ((x) & 0xffff)
1508 #define b0s26_imm(x) ((x) & 0x3ffffff)
1509 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1510 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1511 #define b12s4_op(x) (((x) >> 12) & 0xf)
1512
1513 /* Return the size in bytes of the instruction INSN encoded in the ISA
1514 instruction set. */
1515
1516 static int
1517 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1518 {
1519 switch (isa)
1520 {
1521 case ISA_MICROMIPS:
1522 if ((micromips_op (insn) & 0x4) == 0x4
1523 || (micromips_op (insn) & 0x7) == 0x0)
1524 return 2 * MIPS_INSN16_SIZE;
1525 else
1526 return MIPS_INSN16_SIZE;
1527 case ISA_MIPS16:
1528 if ((insn & 0xf800) == 0xf000)
1529 return 2 * MIPS_INSN16_SIZE;
1530 else
1531 return MIPS_INSN16_SIZE;
1532 case ISA_MIPS:
1533 return MIPS_INSN32_SIZE;
1534 }
1535 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1536 }
1537
1538 static LONGEST
1539 mips32_relative_offset (ULONGEST inst)
1540 {
1541 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1542 }
1543
1544 /* Determine the address of the next instruction executed after the INST
1545 floating condition branch instruction at PC. COUNT specifies the
1546 number of the floating condition bits tested by the branch. */
1547
1548 static CORE_ADDR
1549 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1550 ULONGEST inst, CORE_ADDR pc, int count)
1551 {
1552 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1553 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1554 int tf = itype_rt (inst) & 1;
1555 int mask = (1 << count) - 1;
1556 ULONGEST fcs;
1557 int cond;
1558
1559 if (fcsr == -1)
1560 /* No way to handle; it'll most likely trap anyway. */
1561 return pc;
1562
1563 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1564 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1565
1566 if (((cond >> cnum) & mask) != mask * !tf)
1567 pc += mips32_relative_offset (inst);
1568 else
1569 pc += 4;
1570
1571 return pc;
1572 }
1573
1574 /* Return nonzero if the gdbarch is an Octeon series. */
1575
1576 static int
1577 is_octeon (struct gdbarch *gdbarch)
1578 {
1579 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1580
1581 return (info->mach == bfd_mach_mips_octeon
1582 || info->mach == bfd_mach_mips_octeonp
1583 || info->mach == bfd_mach_mips_octeon2);
1584 }
1585
1586 /* Return true if the OP represents the Octeon's BBIT instruction. */
1587
1588 static int
1589 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1590 {
1591 if (!is_octeon (gdbarch))
1592 return 0;
1593 /* BBIT0 is encoded as LWC2: 110 010. */
1594 /* BBIT032 is encoded as LDC2: 110 110. */
1595 /* BBIT1 is encoded as SWC2: 111 010. */
1596 /* BBIT132 is encoded as SDC2: 111 110. */
1597 if (op == 50 || op == 54 || op == 58 || op == 62)
1598 return 1;
1599 return 0;
1600 }
1601
1602
1603 /* Determine where to set a single step breakpoint while considering
1604 branch prediction. */
1605
1606 static CORE_ADDR
1607 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1608 {
1609 struct gdbarch *gdbarch = regcache->arch ();
1610 unsigned long inst;
1611 int op;
1612 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1613 op = itype_op (inst);
1614 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1615 instruction. */
1616 {
1617 if (op >> 2 == 5)
1618 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1619 {
1620 switch (op & 0x03)
1621 {
1622 case 0: /* BEQL */
1623 goto equal_branch;
1624 case 1: /* BNEL */
1625 goto neq_branch;
1626 case 2: /* BLEZL */
1627 goto less_branch;
1628 case 3: /* BGTZL */
1629 goto greater_branch;
1630 default:
1631 pc += 4;
1632 }
1633 }
1634 else if (op == 17 && itype_rs (inst) == 8)
1635 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1636 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1637 else if (op == 17 && itype_rs (inst) == 9
1638 && (itype_rt (inst) & 2) == 0)
1639 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1640 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1641 else if (op == 17 && itype_rs (inst) == 10
1642 && (itype_rt (inst) & 2) == 0)
1643 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1644 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1645 else if (op == 29)
1646 /* JALX: 011101 */
1647 /* The new PC will be alternate mode. */
1648 {
1649 unsigned long reg;
1650
1651 reg = jtype_target (inst) << 2;
1652 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1653 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1654 }
1655 else if (is_octeon_bbit_op (op, gdbarch))
1656 {
1657 int bit, branch_if;
1658
1659 branch_if = op == 58 || op == 62;
1660 bit = itype_rt (inst);
1661
1662 /* Take into account the *32 instructions. */
1663 if (op == 54 || op == 62)
1664 bit += 32;
1665
1666 if (((regcache_raw_get_signed (regcache,
1667 itype_rs (inst)) >> bit) & 1)
1668 == branch_if)
1669 pc += mips32_relative_offset (inst) + 4;
1670 else
1671 pc += 8; /* After the delay slot. */
1672 }
1673
1674 else
1675 pc += 4; /* Not a branch, next instruction is easy. */
1676 }
1677 else
1678 { /* This gets way messy. */
1679
1680 /* Further subdivide into SPECIAL, REGIMM and other. */
1681 switch (op & 0x07) /* Extract bits 28,27,26. */
1682 {
1683 case 0: /* SPECIAL */
1684 op = rtype_funct (inst);
1685 switch (op)
1686 {
1687 case 8: /* JR */
1688 case 9: /* JALR */
1689 /* Set PC to that address. */
1690 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1691 break;
1692 case 12: /* SYSCALL */
1693 {
1694 struct gdbarch_tdep *tdep;
1695
1696 tdep = gdbarch_tdep (gdbarch);
1697 if (tdep->syscall_next_pc != NULL)
1698 pc = tdep->syscall_next_pc (get_current_frame ());
1699 else
1700 pc += 4;
1701 }
1702 break;
1703 default:
1704 pc += 4;
1705 }
1706
1707 break; /* end SPECIAL */
1708 case 1: /* REGIMM */
1709 {
1710 op = itype_rt (inst); /* branch condition */
1711 switch (op)
1712 {
1713 case 0: /* BLTZ */
1714 case 2: /* BLTZL */
1715 case 16: /* BLTZAL */
1716 case 18: /* BLTZALL */
1717 less_branch:
1718 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1719 pc += mips32_relative_offset (inst) + 4;
1720 else
1721 pc += 8; /* after the delay slot */
1722 break;
1723 case 1: /* BGEZ */
1724 case 3: /* BGEZL */
1725 case 17: /* BGEZAL */
1726 case 19: /* BGEZALL */
1727 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1728 pc += mips32_relative_offset (inst) + 4;
1729 else
1730 pc += 8; /* after the delay slot */
1731 break;
1732 case 0x1c: /* BPOSGE32 */
1733 case 0x1e: /* BPOSGE64 */
1734 pc += 4;
1735 if (itype_rs (inst) == 0)
1736 {
1737 unsigned int pos = (op & 2) ? 64 : 32;
1738 int dspctl = mips_regnum (gdbarch)->dspctl;
1739
1740 if (dspctl == -1)
1741 /* No way to handle; it'll most likely trap anyway. */
1742 break;
1743
1744 if ((regcache_raw_get_unsigned (regcache,
1745 dspctl) & 0x7f) >= pos)
1746 pc += mips32_relative_offset (inst);
1747 else
1748 pc += 4;
1749 }
1750 break;
1751 /* All of the other instructions in the REGIMM category */
1752 default:
1753 pc += 4;
1754 }
1755 }
1756 break; /* end REGIMM */
1757 case 2: /* J */
1758 case 3: /* JAL */
1759 {
1760 unsigned long reg;
1761 reg = jtype_target (inst) << 2;
1762 /* Upper four bits get never changed... */
1763 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1764 }
1765 break;
1766 case 4: /* BEQ, BEQL */
1767 equal_branch:
1768 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1769 regcache_raw_get_signed (regcache, itype_rt (inst)))
1770 pc += mips32_relative_offset (inst) + 4;
1771 else
1772 pc += 8;
1773 break;
1774 case 5: /* BNE, BNEL */
1775 neq_branch:
1776 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1777 regcache_raw_get_signed (regcache, itype_rt (inst)))
1778 pc += mips32_relative_offset (inst) + 4;
1779 else
1780 pc += 8;
1781 break;
1782 case 6: /* BLEZ, BLEZL */
1783 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1784 pc += mips32_relative_offset (inst) + 4;
1785 else
1786 pc += 8;
1787 break;
1788 case 7:
1789 default:
1790 greater_branch: /* BGTZ, BGTZL */
1791 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1792 pc += mips32_relative_offset (inst) + 4;
1793 else
1794 pc += 8;
1795 break;
1796 } /* switch */
1797 } /* else */
1798 return pc;
1799 } /* mips32_next_pc */
1800
1801 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1802 INSN. */
1803
1804 static LONGEST
1805 micromips_relative_offset7 (ULONGEST insn)
1806 {
1807 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1808 }
1809
1810 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1811 INSN. */
1812
1813 static LONGEST
1814 micromips_relative_offset10 (ULONGEST insn)
1815 {
1816 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1817 }
1818
1819 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1820 INSN. */
1821
1822 static LONGEST
1823 micromips_relative_offset16 (ULONGEST insn)
1824 {
1825 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1826 }
1827
1828 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1829
1830 static int
1831 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1832 {
1833 ULONGEST insn;
1834
1835 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1836 return mips_insn_size (ISA_MICROMIPS, insn);
1837 }
1838
1839 /* Calculate the address of the next microMIPS instruction to execute
1840 after the INSN coprocessor 1 conditional branch instruction at the
1841 address PC. COUNT denotes the number of coprocessor condition bits
1842 examined by the branch. */
1843
1844 static CORE_ADDR
1845 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1846 ULONGEST insn, CORE_ADDR pc, int count)
1847 {
1848 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1849 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1850 int tf = b5s5_op (insn >> 16) & 1;
1851 int mask = (1 << count) - 1;
1852 ULONGEST fcs;
1853 int cond;
1854
1855 if (fcsr == -1)
1856 /* No way to handle; it'll most likely trap anyway. */
1857 return pc;
1858
1859 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1860 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1861
1862 if (((cond >> cnum) & mask) != mask * !tf)
1863 pc += micromips_relative_offset16 (insn);
1864 else
1865 pc += micromips_pc_insn_size (gdbarch, pc);
1866
1867 return pc;
1868 }
1869
1870 /* Calculate the address of the next microMIPS instruction to execute
1871 after the instruction at the address PC. */
1872
1873 static CORE_ADDR
1874 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1875 {
1876 struct gdbarch *gdbarch = regcache->arch ();
1877 ULONGEST insn;
1878
1879 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1880 pc += MIPS_INSN16_SIZE;
1881 switch (mips_insn_size (ISA_MICROMIPS, insn))
1882 {
1883 /* 32-bit instructions. */
1884 case 2 * MIPS_INSN16_SIZE:
1885 insn <<= 16;
1886 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1887 pc += MIPS_INSN16_SIZE;
1888 switch (micromips_op (insn >> 16))
1889 {
1890 case 0x00: /* POOL32A: bits 000000 */
1891 if (b0s6_op (insn) == 0x3c
1892 /* POOL32Axf: bits 000000 ... 111100 */
1893 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1894 /* JALR, JALR.HB: 000000 000x111100 111100 */
1895 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1896 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
1897 break;
1898
1899 case 0x10: /* POOL32I: bits 010000 */
1900 switch (b5s5_op (insn >> 16))
1901 {
1902 case 0x00: /* BLTZ: bits 010000 00000 */
1903 case 0x01: /* BLTZAL: bits 010000 00001 */
1904 case 0x11: /* BLTZALS: bits 010000 10001 */
1905 if (regcache_raw_get_signed (regcache,
1906 b0s5_reg (insn >> 16)) < 0)
1907 pc += micromips_relative_offset16 (insn);
1908 else
1909 pc += micromips_pc_insn_size (gdbarch, pc);
1910 break;
1911
1912 case 0x02: /* BGEZ: bits 010000 00010 */
1913 case 0x03: /* BGEZAL: bits 010000 00011 */
1914 case 0x13: /* BGEZALS: bits 010000 10011 */
1915 if (regcache_raw_get_signed (regcache,
1916 b0s5_reg (insn >> 16)) >= 0)
1917 pc += micromips_relative_offset16 (insn);
1918 else
1919 pc += micromips_pc_insn_size (gdbarch, pc);
1920 break;
1921
1922 case 0x04: /* BLEZ: bits 010000 00100 */
1923 if (regcache_raw_get_signed (regcache,
1924 b0s5_reg (insn >> 16)) <= 0)
1925 pc += micromips_relative_offset16 (insn);
1926 else
1927 pc += micromips_pc_insn_size (gdbarch, pc);
1928 break;
1929
1930 case 0x05: /* BNEZC: bits 010000 00101 */
1931 if (regcache_raw_get_signed (regcache,
1932 b0s5_reg (insn >> 16)) != 0)
1933 pc += micromips_relative_offset16 (insn);
1934 break;
1935
1936 case 0x06: /* BGTZ: bits 010000 00110 */
1937 if (regcache_raw_get_signed (regcache,
1938 b0s5_reg (insn >> 16)) > 0)
1939 pc += micromips_relative_offset16 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 break;
1943
1944 case 0x07: /* BEQZC: bits 010000 00111 */
1945 if (regcache_raw_get_signed (regcache,
1946 b0s5_reg (insn >> 16)) == 0)
1947 pc += micromips_relative_offset16 (insn);
1948 break;
1949
1950 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1951 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1952 if (((insn >> 16) & 0x3) == 0x0)
1953 /* BC2F, BC2T: don't know how to handle these. */
1954 break;
1955 break;
1956
1957 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1958 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1959 {
1960 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1961 int dspctl = mips_regnum (gdbarch)->dspctl;
1962
1963 if (dspctl == -1)
1964 /* No way to handle; it'll most likely trap anyway. */
1965 break;
1966
1967 if ((regcache_raw_get_unsigned (regcache,
1968 dspctl) & 0x7f) >= pos)
1969 pc += micromips_relative_offset16 (insn);
1970 else
1971 pc += micromips_pc_insn_size (gdbarch, pc);
1972 }
1973 break;
1974
1975 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1976 /* BC1ANY2F: bits 010000 11100 xxx01 */
1977 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1978 /* BC1ANY2T: bits 010000 11101 xxx01 */
1979 if (((insn >> 16) & 0x2) == 0x0)
1980 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
1981 ((insn >> 16) & 0x1) + 1);
1982 break;
1983
1984 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1985 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1986 if (((insn >> 16) & 0x3) == 0x1)
1987 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
1988 break;
1989 }
1990 break;
1991
1992 case 0x1d: /* JALS: bits 011101 */
1993 case 0x35: /* J: bits 110101 */
1994 case 0x3d: /* JAL: bits 111101 */
1995 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1996 break;
1997
1998 case 0x25: /* BEQ: bits 100101 */
1999 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2000 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2001 pc += micromips_relative_offset16 (insn);
2002 else
2003 pc += micromips_pc_insn_size (gdbarch, pc);
2004 break;
2005
2006 case 0x2d: /* BNE: bits 101101 */
2007 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2008 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2009 pc += micromips_relative_offset16 (insn);
2010 else
2011 pc += micromips_pc_insn_size (gdbarch, pc);
2012 break;
2013
2014 case 0x3c: /* JALX: bits 111100 */
2015 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2016 break;
2017 }
2018 break;
2019
2020 /* 16-bit instructions. */
2021 case MIPS_INSN16_SIZE:
2022 switch (micromips_op (insn))
2023 {
2024 case 0x11: /* POOL16C: bits 010001 */
2025 if ((b5s5_op (insn) & 0x1c) == 0xc)
2026 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2027 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2028 else if (b5s5_op (insn) == 0x18)
2029 /* JRADDIUSP: bits 010001 11000 */
2030 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2031 break;
2032
2033 case 0x23: /* BEQZ16: bits 100011 */
2034 {
2035 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2036
2037 if (regcache_raw_get_signed (regcache, rs) == 0)
2038 pc += micromips_relative_offset7 (insn);
2039 else
2040 pc += micromips_pc_insn_size (gdbarch, pc);
2041 }
2042 break;
2043
2044 case 0x2b: /* BNEZ16: bits 101011 */
2045 {
2046 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2047
2048 if (regcache_raw_get_signed (regcache, rs) != 0)
2049 pc += micromips_relative_offset7 (insn);
2050 else
2051 pc += micromips_pc_insn_size (gdbarch, pc);
2052 }
2053 break;
2054
2055 case 0x33: /* B16: bits 110011 */
2056 pc += micromips_relative_offset10 (insn);
2057 break;
2058 }
2059 break;
2060 }
2061
2062 return pc;
2063 }
2064
2065 /* Decoding the next place to set a breakpoint is irregular for the
2066 mips 16 variant, but fortunately, there fewer instructions. We have
2067 to cope ith extensions for 16 bit instructions and a pair of actual
2068 32 bit instructions. We dont want to set a single step instruction
2069 on the extend instruction either. */
2070
2071 /* Lots of mips16 instruction formats */
2072 /* Predicting jumps requires itype,ritype,i8type
2073 and their extensions extItype,extritype,extI8type. */
2074 enum mips16_inst_fmts
2075 {
2076 itype, /* 0 immediate 5,10 */
2077 ritype, /* 1 5,3,8 */
2078 rrtype, /* 2 5,3,3,5 */
2079 rritype, /* 3 5,3,3,5 */
2080 rrrtype, /* 4 5,3,3,3,2 */
2081 rriatype, /* 5 5,3,3,1,4 */
2082 shifttype, /* 6 5,3,3,3,2 */
2083 i8type, /* 7 5,3,8 */
2084 i8movtype, /* 8 5,3,3,5 */
2085 i8mov32rtype, /* 9 5,3,5,3 */
2086 i64type, /* 10 5,3,8 */
2087 ri64type, /* 11 5,3,3,5 */
2088 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2089 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2090 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2091 extRRItype, /* 15 5,5,5,5,3,3,5 */
2092 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2093 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2094 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2095 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2096 extRi64type, /* 20 5,6,5,5,3,3,5 */
2097 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2098 };
2099 /* I am heaping all the fields of the formats into one structure and
2100 then, only the fields which are involved in instruction extension. */
2101 struct upk_mips16
2102 {
2103 CORE_ADDR offset;
2104 unsigned int regx; /* Function in i8 type. */
2105 unsigned int regy;
2106 };
2107
2108
2109 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2110 for the bits which make up the immediate extension. */
2111
2112 static CORE_ADDR
2113 extended_offset (unsigned int extension)
2114 {
2115 CORE_ADDR value;
2116
2117 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2118 value = value << 6;
2119 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2120 value = value << 5;
2121 value |= extension & 0x1f; /* Extract 4:0. */
2122
2123 return value;
2124 }
2125
2126 /* Only call this function if you know that this is an extendable
2127 instruction. It won't malfunction, but why make excess remote memory
2128 references? If the immediate operands get sign extended or something,
2129 do it after the extension is performed. */
2130 /* FIXME: Every one of these cases needs to worry about sign extension
2131 when the offset is to be used in relative addressing. */
2132
2133 static unsigned int
2134 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2135 {
2136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2137 gdb_byte buf[8];
2138
2139 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2140 target_read_memory (pc, buf, 2);
2141 return extract_unsigned_integer (buf, 2, byte_order);
2142 }
2143
2144 static void
2145 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2146 unsigned int extension,
2147 unsigned int inst,
2148 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2149 {
2150 CORE_ADDR offset;
2151 int regx;
2152 int regy;
2153 switch (insn_format)
2154 {
2155 case itype:
2156 {
2157 CORE_ADDR value;
2158 if (extension)
2159 {
2160 value = extended_offset ((extension << 16) | inst);
2161 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2162 }
2163 else
2164 {
2165 value = inst & 0x7ff;
2166 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2167 }
2168 offset = value;
2169 regx = -1;
2170 regy = -1;
2171 }
2172 break;
2173 case ritype:
2174 case i8type:
2175 { /* A register identifier and an offset. */
2176 /* Most of the fields are the same as I type but the
2177 immediate value is of a different length. */
2178 CORE_ADDR value;
2179 if (extension)
2180 {
2181 value = extended_offset ((extension << 16) | inst);
2182 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2183 }
2184 else
2185 {
2186 value = inst & 0xff; /* 8 bits */
2187 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2188 }
2189 offset = value;
2190 regx = (inst >> 8) & 0x07; /* i8 funct */
2191 regy = -1;
2192 break;
2193 }
2194 case jalxtype:
2195 {
2196 unsigned long value;
2197 unsigned int nexthalf;
2198 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2199 value = value << 16;
2200 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2201 /* Low bit still set. */
2202 value |= nexthalf;
2203 offset = value;
2204 regx = -1;
2205 regy = -1;
2206 break;
2207 }
2208 default:
2209 internal_error (__FILE__, __LINE__, _("bad switch"));
2210 }
2211 upk->offset = offset;
2212 upk->regx = regx;
2213 upk->regy = regy;
2214 }
2215
2216
2217 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2218 and having a signed 16-bit OFFSET. */
2219
2220 static CORE_ADDR
2221 add_offset_16 (CORE_ADDR pc, int offset)
2222 {
2223 return pc + (offset << 1) + 2;
2224 }
2225
2226 static CORE_ADDR
2227 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2228 unsigned int extension, unsigned int insn)
2229 {
2230 struct gdbarch *gdbarch = regcache->arch ();
2231 int op = (insn >> 11);
2232 switch (op)
2233 {
2234 case 2: /* Branch */
2235 {
2236 struct upk_mips16 upk;
2237 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2238 pc = add_offset_16 (pc, upk.offset);
2239 break;
2240 }
2241 case 3: /* JAL , JALX - Watch out, these are 32 bit
2242 instructions. */
2243 {
2244 struct upk_mips16 upk;
2245 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2246 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2247 if ((insn >> 10) & 0x01) /* Exchange mode */
2248 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2249 else
2250 pc |= 0x01;
2251 break;
2252 }
2253 case 4: /* beqz */
2254 {
2255 struct upk_mips16 upk;
2256 int reg;
2257 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2258 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2259 if (reg == 0)
2260 pc = add_offset_16 (pc, upk.offset);
2261 else
2262 pc += 2;
2263 break;
2264 }
2265 case 5: /* bnez */
2266 {
2267 struct upk_mips16 upk;
2268 int reg;
2269 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2270 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2271 if (reg != 0)
2272 pc = add_offset_16 (pc, upk.offset);
2273 else
2274 pc += 2;
2275 break;
2276 }
2277 case 12: /* I8 Formats btez btnez */
2278 {
2279 struct upk_mips16 upk;
2280 int reg;
2281 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2282 /* upk.regx contains the opcode */
2283 /* Test register is 24 */
2284 reg = regcache_raw_get_signed (regcache, 24);
2285 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2286 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2287 pc = add_offset_16 (pc, upk.offset);
2288 else
2289 pc += 2;
2290 break;
2291 }
2292 case 29: /* RR Formats JR, JALR, JALR-RA */
2293 {
2294 struct upk_mips16 upk;
2295 /* upk.fmt = rrtype; */
2296 op = insn & 0x1f;
2297 if (op == 0)
2298 {
2299 int reg;
2300 upk.regx = (insn >> 8) & 0x07;
2301 upk.regy = (insn >> 5) & 0x07;
2302 if ((upk.regy & 1) == 0)
2303 reg = mips_reg3_to_reg[upk.regx];
2304 else
2305 reg = 31; /* Function return instruction. */
2306 pc = regcache_raw_get_signed (regcache, reg);
2307 }
2308 else
2309 pc += 2;
2310 break;
2311 }
2312 case 30:
2313 /* This is an instruction extension. Fetch the real instruction
2314 (which follows the extension) and decode things based on
2315 that. */
2316 {
2317 pc += 2;
2318 pc = extended_mips16_next_pc (regcache, pc, insn,
2319 fetch_mips_16 (gdbarch, pc));
2320 break;
2321 }
2322 default:
2323 {
2324 pc += 2;
2325 break;
2326 }
2327 }
2328 return pc;
2329 }
2330
2331 static CORE_ADDR
2332 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2333 {
2334 struct gdbarch *gdbarch = regcache->arch ();
2335 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2336 return extended_mips16_next_pc (regcache, pc, 0, insn);
2337 }
2338
2339 /* The mips_next_pc function supports single_step when the remote
2340 target monitor or stub is not developed enough to do a single_step.
2341 It works by decoding the current instruction and predicting where a
2342 branch will go. This isn't hard because all the data is available.
2343 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2344 static CORE_ADDR
2345 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2346 {
2347 struct gdbarch *gdbarch = regcache->arch ();
2348
2349 if (mips_pc_is_mips16 (gdbarch, pc))
2350 return mips16_next_pc (regcache, pc);
2351 else if (mips_pc_is_micromips (gdbarch, pc))
2352 return micromips_next_pc (regcache, pc);
2353 else
2354 return mips32_next_pc (regcache, pc);
2355 }
2356
2357 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2358 or jump. */
2359
2360 static int
2361 mips16_instruction_is_compact_branch (unsigned short insn)
2362 {
2363 switch (insn & 0xf800)
2364 {
2365 case 0xe800:
2366 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2367 case 0x6000:
2368 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2369 case 0x2800: /* BNEZ */
2370 case 0x2000: /* BEQZ */
2371 case 0x1000: /* B */
2372 return 1;
2373 default:
2374 return 0;
2375 }
2376 }
2377
2378 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2379 or jump. */
2380
2381 static int
2382 micromips_instruction_is_compact_branch (unsigned short insn)
2383 {
2384 switch (micromips_op (insn))
2385 {
2386 case 0x11: /* POOL16C: bits 010001 */
2387 return (b5s5_op (insn) == 0x18
2388 /* JRADDIUSP: bits 010001 11000 */
2389 || b5s5_op (insn) == 0xd);
2390 /* JRC: bits 010011 01101 */
2391 case 0x10: /* POOL32I: bits 010000 */
2392 return (b5s5_op (insn) & 0x1d) == 0x5;
2393 /* BEQZC/BNEZC: bits 010000 001x1 */
2394 default:
2395 return 0;
2396 }
2397 }
2398
2399 struct mips_frame_cache
2400 {
2401 CORE_ADDR base;
2402 struct trad_frame_saved_reg *saved_regs;
2403 };
2404
2405 /* Set a register's saved stack address in temp_saved_regs. If an
2406 address has already been set for this register, do nothing; this
2407 way we will only recognize the first save of a given register in a
2408 function prologue.
2409
2410 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2411 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2412 Strictly speaking, only the second range is used as it is only second
2413 range (the ABI instead of ISA registers) that comes into play when finding
2414 saved registers in a frame. */
2415
2416 static void
2417 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2418 int regnum, CORE_ADDR offset)
2419 {
2420 if (this_cache != NULL
2421 && this_cache->saved_regs[regnum].addr == -1)
2422 {
2423 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
2425 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2426 = offset;
2427 }
2428 }
2429
2430
2431 /* Fetch the immediate value from a MIPS16 instruction.
2432 If the previous instruction was an EXTEND, use it to extend
2433 the upper bits of the immediate value. This is a helper function
2434 for mips16_scan_prologue. */
2435
2436 static int
2437 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2438 unsigned short inst, /* current instruction */
2439 int nbits, /* number of bits in imm field */
2440 int scale, /* scale factor to be applied to imm */
2441 int is_signed) /* is the imm field signed? */
2442 {
2443 int offset;
2444
2445 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2446 {
2447 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2448 if (offset & 0x8000) /* check for negative extend */
2449 offset = 0 - (0x10000 - (offset & 0xffff));
2450 return offset | (inst & 0x1f);
2451 }
2452 else
2453 {
2454 int max_imm = 1 << nbits;
2455 int mask = max_imm - 1;
2456 int sign_bit = max_imm >> 1;
2457
2458 offset = inst & mask;
2459 if (is_signed && (offset & sign_bit))
2460 offset = 0 - (max_imm - offset);
2461 return offset * scale;
2462 }
2463 }
2464
2465
2466 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2467 the associated FRAME_CACHE if not null.
2468 Return the address of the first instruction past the prologue. */
2469
2470 static CORE_ADDR
2471 mips16_scan_prologue (struct gdbarch *gdbarch,
2472 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2473 struct frame_info *this_frame,
2474 struct mips_frame_cache *this_cache)
2475 {
2476 int prev_non_prologue_insn = 0;
2477 int this_non_prologue_insn;
2478 int non_prologue_insns = 0;
2479 CORE_ADDR prev_pc;
2480 CORE_ADDR cur_pc;
2481 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2482 CORE_ADDR sp;
2483 long frame_offset = 0; /* Size of stack frame. */
2484 long frame_adjust = 0; /* Offset of FP from SP. */
2485 int frame_reg = MIPS_SP_REGNUM;
2486 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2487 unsigned inst = 0; /* current instruction */
2488 unsigned entry_inst = 0; /* the entry instruction */
2489 unsigned save_inst = 0; /* the save instruction */
2490 int prev_delay_slot = 0;
2491 int in_delay_slot;
2492 int reg, offset;
2493
2494 int extend_bytes = 0;
2495 int prev_extend_bytes = 0;
2496 CORE_ADDR end_prologue_addr;
2497
2498 /* Can be called when there's no process, and hence when there's no
2499 THIS_FRAME. */
2500 if (this_frame != NULL)
2501 sp = get_frame_register_signed (this_frame,
2502 gdbarch_num_regs (gdbarch)
2503 + MIPS_SP_REGNUM);
2504 else
2505 sp = 0;
2506
2507 if (limit_pc > start_pc + 200)
2508 limit_pc = start_pc + 200;
2509 prev_pc = start_pc;
2510
2511 /* Permit at most one non-prologue non-control-transfer instruction
2512 in the middle which may have been reordered by the compiler for
2513 optimisation. */
2514 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2515 {
2516 this_non_prologue_insn = 0;
2517 in_delay_slot = 0;
2518
2519 /* Save the previous instruction. If it's an EXTEND, we'll extract
2520 the immediate offset extension from it in mips16_get_imm. */
2521 prev_inst = inst;
2522
2523 /* Fetch and decode the instruction. */
2524 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2525 cur_pc, NULL);
2526
2527 /* Normally we ignore extend instructions. However, if it is
2528 not followed by a valid prologue instruction, then this
2529 instruction is not part of the prologue either. We must
2530 remember in this case to adjust the end_prologue_addr back
2531 over the extend. */
2532 if ((inst & 0xf800) == 0xf000) /* extend */
2533 {
2534 extend_bytes = MIPS_INSN16_SIZE;
2535 continue;
2536 }
2537
2538 prev_extend_bytes = extend_bytes;
2539 extend_bytes = 0;
2540
2541 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2542 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2543 {
2544 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2545 if (offset < 0) /* Negative stack adjustment? */
2546 frame_offset -= offset;
2547 else
2548 /* Exit loop if a positive stack adjustment is found, which
2549 usually means that the stack cleanup code in the function
2550 epilogue is reached. */
2551 break;
2552 }
2553 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2554 {
2555 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2556 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2557 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2558 }
2559 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2560 {
2561 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2562 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2563 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2564 }
2565 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2566 {
2567 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2568 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2569 }
2570 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2573 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2574 }
2575 else if (inst == 0x673d) /* move $s1, $sp */
2576 {
2577 frame_addr = sp;
2578 frame_reg = 17;
2579 }
2580 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2581 {
2582 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2583 frame_addr = sp + offset;
2584 frame_reg = 17;
2585 frame_adjust = offset;
2586 }
2587 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2591 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2592 }
2593 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2596 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2597 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2598 }
2599 else if ((inst & 0xf81f) == 0xe809
2600 && (inst & 0x700) != 0x700) /* entry */
2601 entry_inst = inst; /* Save for later processing. */
2602 else if ((inst & 0xff80) == 0x6480) /* save */
2603 {
2604 save_inst = inst; /* Save for later processing. */
2605 if (prev_extend_bytes) /* extend */
2606 save_inst |= prev_inst << 16;
2607 }
2608 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2609 {
2610 /* This instruction is part of the prologue, but we don't
2611 need to do anything special to handle it. */
2612 }
2613 else if (mips16_instruction_has_delay_slot (inst, 0))
2614 /* JAL/JALR/JALX/JR */
2615 {
2616 /* The instruction in the delay slot can be a part
2617 of the prologue, so move forward once more. */
2618 in_delay_slot = 1;
2619 if (mips16_instruction_has_delay_slot (inst, 1))
2620 /* JAL/JALX */
2621 {
2622 prev_extend_bytes = MIPS_INSN16_SIZE;
2623 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2624 }
2625 }
2626 else
2627 {
2628 this_non_prologue_insn = 1;
2629 }
2630
2631 non_prologue_insns += this_non_prologue_insn;
2632
2633 /* A jump or branch, or enough non-prologue insns seen? If so,
2634 then we must have reached the end of the prologue by now. */
2635 if (prev_delay_slot || non_prologue_insns > 1
2636 || mips16_instruction_is_compact_branch (inst))
2637 break;
2638
2639 prev_non_prologue_insn = this_non_prologue_insn;
2640 prev_delay_slot = in_delay_slot;
2641 prev_pc = cur_pc - prev_extend_bytes;
2642 }
2643
2644 /* The entry instruction is typically the first instruction in a function,
2645 and it stores registers at offsets relative to the value of the old SP
2646 (before the prologue). But the value of the sp parameter to this
2647 function is the new SP (after the prologue has been executed). So we
2648 can't calculate those offsets until we've seen the entire prologue,
2649 and can calculate what the old SP must have been. */
2650 if (entry_inst != 0)
2651 {
2652 int areg_count = (entry_inst >> 8) & 7;
2653 int sreg_count = (entry_inst >> 6) & 3;
2654
2655 /* The entry instruction always subtracts 32 from the SP. */
2656 frame_offset += 32;
2657
2658 /* Now we can calculate what the SP must have been at the
2659 start of the function prologue. */
2660 sp += frame_offset;
2661
2662 /* Check if a0-a3 were saved in the caller's argument save area. */
2663 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2664 {
2665 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2666 offset += mips_abi_regsize (gdbarch);
2667 }
2668
2669 /* Check if the ra register was pushed on the stack. */
2670 offset = -4;
2671 if (entry_inst & 0x20)
2672 {
2673 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2674 offset -= mips_abi_regsize (gdbarch);
2675 }
2676
2677 /* Check if the s0 and s1 registers were pushed on the stack. */
2678 for (reg = 16; reg < sreg_count + 16; reg++)
2679 {
2680 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2681 offset -= mips_abi_regsize (gdbarch);
2682 }
2683 }
2684
2685 /* The SAVE instruction is similar to ENTRY, except that defined by the
2686 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2687 size of the frame is specified as an immediate field of instruction
2688 and an extended variation exists which lets additional registers and
2689 frame space to be specified. The instruction always treats registers
2690 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2691 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2692 {
2693 static int args_table[16] = {
2694 0, 0, 0, 0, 1, 1, 1, 1,
2695 2, 2, 2, 0, 3, 3, 4, -1,
2696 };
2697 static int astatic_table[16] = {
2698 0, 1, 2, 3, 0, 1, 2, 3,
2699 0, 1, 2, 4, 0, 1, 0, -1,
2700 };
2701 int aregs = (save_inst >> 16) & 0xf;
2702 int xsregs = (save_inst >> 24) & 0x7;
2703 int args = args_table[aregs];
2704 int astatic = astatic_table[aregs];
2705 long frame_size;
2706
2707 if (args < 0)
2708 {
2709 warning (_("Invalid number of argument registers encoded in SAVE."));
2710 args = 0;
2711 }
2712 if (astatic < 0)
2713 {
2714 warning (_("Invalid number of static registers encoded in SAVE."));
2715 astatic = 0;
2716 }
2717
2718 /* For standard SAVE the frame size of 0 means 128. */
2719 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2720 if (frame_size == 0 && (save_inst >> 16) == 0)
2721 frame_size = 16;
2722 frame_size *= 8;
2723 frame_offset += frame_size;
2724
2725 /* Now we can calculate what the SP must have been at the
2726 start of the function prologue. */
2727 sp += frame_offset;
2728
2729 /* Check if A0-A3 were saved in the caller's argument save area. */
2730 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2731 {
2732 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2733 offset += mips_abi_regsize (gdbarch);
2734 }
2735
2736 offset = -4;
2737
2738 /* Check if the RA register was pushed on the stack. */
2739 if (save_inst & 0x40)
2740 {
2741 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2742 offset -= mips_abi_regsize (gdbarch);
2743 }
2744
2745 /* Check if the S8 register was pushed on the stack. */
2746 if (xsregs > 6)
2747 {
2748 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2749 offset -= mips_abi_regsize (gdbarch);
2750 xsregs--;
2751 }
2752 /* Check if S2-S7 were pushed on the stack. */
2753 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2754 {
2755 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2756 offset -= mips_abi_regsize (gdbarch);
2757 }
2758
2759 /* Check if the S1 register was pushed on the stack. */
2760 if (save_inst & 0x10)
2761 {
2762 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2763 offset -= mips_abi_regsize (gdbarch);
2764 }
2765 /* Check if the S0 register was pushed on the stack. */
2766 if (save_inst & 0x20)
2767 {
2768 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2769 offset -= mips_abi_regsize (gdbarch);
2770 }
2771
2772 /* Check if A0-A3 were pushed on the stack. */
2773 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2774 {
2775 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2776 offset -= mips_abi_regsize (gdbarch);
2777 }
2778 }
2779
2780 if (this_cache != NULL)
2781 {
2782 this_cache->base =
2783 (get_frame_register_signed (this_frame,
2784 gdbarch_num_regs (gdbarch) + frame_reg)
2785 + frame_offset - frame_adjust);
2786 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2787 be able to get rid of the assignment below, evetually. But it's
2788 still needed for now. */
2789 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2790 + mips_regnum (gdbarch)->pc]
2791 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2792 }
2793
2794 /* Set end_prologue_addr to the address of the instruction immediately
2795 after the last one we scanned. Unless the last one looked like a
2796 non-prologue instruction (and we looked ahead), in which case use
2797 its address instead. */
2798 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2799 ? prev_pc : cur_pc - prev_extend_bytes);
2800
2801 return end_prologue_addr;
2802 }
2803
2804 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2805 Procedures that use the 32-bit instruction set are handled by the
2806 mips_insn32 unwinder. */
2807
2808 static struct mips_frame_cache *
2809 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2810 {
2811 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2812 struct mips_frame_cache *cache;
2813
2814 if ((*this_cache) != NULL)
2815 return (struct mips_frame_cache *) (*this_cache);
2816 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2817 (*this_cache) = cache;
2818 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2819
2820 /* Analyze the function prologue. */
2821 {
2822 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2823 CORE_ADDR start_addr;
2824
2825 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2826 if (start_addr == 0)
2827 start_addr = heuristic_proc_start (gdbarch, pc);
2828 /* We can't analyze the prologue if we couldn't find the begining
2829 of the function. */
2830 if (start_addr == 0)
2831 return cache;
2832
2833 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2834 (struct mips_frame_cache *) *this_cache);
2835 }
2836
2837 /* gdbarch_sp_regnum contains the value and not the address. */
2838 trad_frame_set_value (cache->saved_regs,
2839 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2840 cache->base);
2841
2842 return (struct mips_frame_cache *) (*this_cache);
2843 }
2844
2845 static void
2846 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2847 struct frame_id *this_id)
2848 {
2849 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2850 this_cache);
2851 /* This marks the outermost frame. */
2852 if (info->base == 0)
2853 return;
2854 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2855 }
2856
2857 static struct value *
2858 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2859 void **this_cache, int regnum)
2860 {
2861 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2862 this_cache);
2863 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2864 }
2865
2866 static int
2867 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2868 struct frame_info *this_frame, void **this_cache)
2869 {
2870 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2871 CORE_ADDR pc = get_frame_pc (this_frame);
2872 if (mips_pc_is_mips16 (gdbarch, pc))
2873 return 1;
2874 return 0;
2875 }
2876
2877 static const struct frame_unwind mips_insn16_frame_unwind =
2878 {
2879 NORMAL_FRAME,
2880 default_frame_unwind_stop_reason,
2881 mips_insn16_frame_this_id,
2882 mips_insn16_frame_prev_register,
2883 NULL,
2884 mips_insn16_frame_sniffer
2885 };
2886
2887 static CORE_ADDR
2888 mips_insn16_frame_base_address (struct frame_info *this_frame,
2889 void **this_cache)
2890 {
2891 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2892 this_cache);
2893 return info->base;
2894 }
2895
2896 static const struct frame_base mips_insn16_frame_base =
2897 {
2898 &mips_insn16_frame_unwind,
2899 mips_insn16_frame_base_address,
2900 mips_insn16_frame_base_address,
2901 mips_insn16_frame_base_address
2902 };
2903
2904 static const struct frame_base *
2905 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2906 {
2907 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2908 CORE_ADDR pc = get_frame_pc (this_frame);
2909 if (mips_pc_is_mips16 (gdbarch, pc))
2910 return &mips_insn16_frame_base;
2911 else
2912 return NULL;
2913 }
2914
2915 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2916 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2917 interpreted directly, and then multiplied by 4. */
2918
2919 static int
2920 micromips_decode_imm9 (int imm)
2921 {
2922 imm = (imm ^ 0x100) - 0x100;
2923 if (imm > -3 && imm < 2)
2924 imm ^= 0x100;
2925 return imm << 2;
2926 }
2927
2928 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2929 the address of the first instruction past the prologue. */
2930
2931 static CORE_ADDR
2932 micromips_scan_prologue (struct gdbarch *gdbarch,
2933 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2934 struct frame_info *this_frame,
2935 struct mips_frame_cache *this_cache)
2936 {
2937 CORE_ADDR end_prologue_addr;
2938 int prev_non_prologue_insn = 0;
2939 int frame_reg = MIPS_SP_REGNUM;
2940 int this_non_prologue_insn;
2941 int non_prologue_insns = 0;
2942 long frame_offset = 0; /* Size of stack frame. */
2943 long frame_adjust = 0; /* Offset of FP from SP. */
2944 int prev_delay_slot = 0;
2945 int in_delay_slot;
2946 CORE_ADDR prev_pc;
2947 CORE_ADDR cur_pc;
2948 ULONGEST insn; /* current instruction */
2949 CORE_ADDR sp;
2950 long offset;
2951 long sp_adj;
2952 long v1_off = 0; /* The assumption is LUI will replace it. */
2953 int reglist;
2954 int breg;
2955 int dreg;
2956 int sreg;
2957 int treg;
2958 int loc;
2959 int op;
2960 int s;
2961 int i;
2962
2963 /* Can be called when there's no process, and hence when there's no
2964 THIS_FRAME. */
2965 if (this_frame != NULL)
2966 sp = get_frame_register_signed (this_frame,
2967 gdbarch_num_regs (gdbarch)
2968 + MIPS_SP_REGNUM);
2969 else
2970 sp = 0;
2971
2972 if (limit_pc > start_pc + 200)
2973 limit_pc = start_pc + 200;
2974 prev_pc = start_pc;
2975
2976 /* Permit at most one non-prologue non-control-transfer instruction
2977 in the middle which may have been reordered by the compiler for
2978 optimisation. */
2979 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2980 {
2981 this_non_prologue_insn = 0;
2982 in_delay_slot = 0;
2983 sp_adj = 0;
2984 loc = 0;
2985 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2986 loc += MIPS_INSN16_SIZE;
2987 switch (mips_insn_size (ISA_MICROMIPS, insn))
2988 {
2989 /* 32-bit instructions. */
2990 case 2 * MIPS_INSN16_SIZE:
2991 insn <<= 16;
2992 insn |= mips_fetch_instruction (gdbarch,
2993 ISA_MICROMIPS, cur_pc + loc, NULL);
2994 loc += MIPS_INSN16_SIZE;
2995 switch (micromips_op (insn >> 16))
2996 {
2997 /* Record $sp/$fp adjustment. */
2998 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2999 case 0x0: /* POOL32A: bits 000000 */
3000 case 0x16: /* POOL32S: bits 010110 */
3001 op = b0s11_op (insn);
3002 sreg = b0s5_reg (insn >> 16);
3003 treg = b5s5_reg (insn >> 16);
3004 dreg = b11s5_reg (insn);
3005 if (op == 0x1d0
3006 /* SUBU: bits 000000 00111010000 */
3007 /* DSUBU: bits 010110 00111010000 */
3008 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3009 && treg == 3)
3010 /* (D)SUBU $sp, $v1 */
3011 sp_adj = v1_off;
3012 else if (op != 0x150
3013 /* ADDU: bits 000000 00101010000 */
3014 /* DADDU: bits 010110 00101010000 */
3015 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3016 this_non_prologue_insn = 1;
3017 break;
3018
3019 case 0x8: /* POOL32B: bits 001000 */
3020 op = b12s4_op (insn);
3021 breg = b0s5_reg (insn >> 16);
3022 reglist = sreg = b5s5_reg (insn >> 16);
3023 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3024 if ((op == 0x9 || op == 0xc)
3025 /* SWP: bits 001000 1001 */
3026 /* SDP: bits 001000 1100 */
3027 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3028 /* S[DW]P reg,offset($sp) */
3029 {
3030 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg, sp + offset);
3033 set_reg_offset (gdbarch, this_cache,
3034 sreg + 1, sp + offset + s);
3035 }
3036 else if ((op == 0xd || op == 0xf)
3037 /* SWM: bits 001000 1101 */
3038 /* SDM: bits 001000 1111 */
3039 && breg == MIPS_SP_REGNUM
3040 /* SWM reglist,offset($sp) */
3041 && ((reglist >= 1 && reglist <= 9)
3042 || (reglist >= 16 && reglist <= 25)))
3043 {
3044 int sreglist = std::min(reglist & 0xf, 8);
3045
3046 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3047 for (i = 0; i < sreglist; i++)
3048 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3049 if ((reglist & 0xf) > 8)
3050 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3051 if ((reglist & 0x10) == 0x10)
3052 set_reg_offset (gdbarch, this_cache,
3053 MIPS_RA_REGNUM, sp + s * i++);
3054 }
3055 else
3056 this_non_prologue_insn = 1;
3057 break;
3058
3059 /* Record $sp/$fp adjustment. */
3060 /* Discard (D)ADDIU $gp used for PIC code. */
3061 case 0xc: /* ADDIU: bits 001100 */
3062 case 0x17: /* DADDIU: bits 010111 */
3063 sreg = b0s5_reg (insn >> 16);
3064 dreg = b5s5_reg (insn >> 16);
3065 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3066 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3067 /* (D)ADDIU $sp, imm */
3068 sp_adj = offset;
3069 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3070 /* (D)ADDIU $fp, $sp, imm */
3071 {
3072 frame_adjust = offset;
3073 frame_reg = 30;
3074 }
3075 else if (sreg != 28 || dreg != 28)
3076 /* (D)ADDIU $gp, imm */
3077 this_non_prologue_insn = 1;
3078 break;
3079
3080 /* LUI $v1 is used for larger $sp adjustments. */
3081 /* Discard LUI $gp used for PIC code. */
3082 case 0x10: /* POOL32I: bits 010000 */
3083 if (b5s5_op (insn >> 16) == 0xd
3084 /* LUI: bits 010000 001101 */
3085 && b0s5_reg (insn >> 16) == 3)
3086 /* LUI $v1, imm */
3087 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3088 else if (b5s5_op (insn >> 16) != 0xd
3089 /* LUI: bits 010000 001101 */
3090 || b0s5_reg (insn >> 16) != 28)
3091 /* LUI $gp, imm */
3092 this_non_prologue_insn = 1;
3093 break;
3094
3095 /* ORI $v1 is used for larger $sp adjustments. */
3096 case 0x14: /* ORI: bits 010100 */
3097 sreg = b0s5_reg (insn >> 16);
3098 dreg = b5s5_reg (insn >> 16);
3099 if (sreg == 3 && dreg == 3)
3100 /* ORI $v1, imm */
3101 v1_off |= b0s16_imm (insn);
3102 else
3103 this_non_prologue_insn = 1;
3104 break;
3105
3106 case 0x26: /* SWC1: bits 100110 */
3107 case 0x2e: /* SDC1: bits 101110 */
3108 breg = b0s5_reg (insn >> 16);
3109 if (breg != MIPS_SP_REGNUM)
3110 /* S[DW]C1 reg,offset($sp) */
3111 this_non_prologue_insn = 1;
3112 break;
3113
3114 case 0x36: /* SD: bits 110110 */
3115 case 0x3e: /* SW: bits 111110 */
3116 breg = b0s5_reg (insn >> 16);
3117 sreg = b5s5_reg (insn >> 16);
3118 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3119 if (breg == MIPS_SP_REGNUM)
3120 /* S[DW] reg,offset($sp) */
3121 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3122 else
3123 this_non_prologue_insn = 1;
3124 break;
3125
3126 default:
3127 /* The instruction in the delay slot can be a part
3128 of the prologue, so move forward once more. */
3129 if (micromips_instruction_has_delay_slot (insn, 0))
3130 in_delay_slot = 1;
3131 else
3132 this_non_prologue_insn = 1;
3133 break;
3134 }
3135 insn >>= 16;
3136 break;
3137
3138 /* 16-bit instructions. */
3139 case MIPS_INSN16_SIZE:
3140 switch (micromips_op (insn))
3141 {
3142 case 0x3: /* MOVE: bits 000011 */
3143 sreg = b0s5_reg (insn);
3144 dreg = b5s5_reg (insn);
3145 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3146 /* MOVE $fp, $sp */
3147 frame_reg = 30;
3148 else if ((sreg & 0x1c) != 0x4)
3149 /* MOVE reg, $a0-$a3 */
3150 this_non_prologue_insn = 1;
3151 break;
3152
3153 case 0x11: /* POOL16C: bits 010001 */
3154 if (b6s4_op (insn) == 0x5)
3155 /* SWM: bits 010001 0101 */
3156 {
3157 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3158 reglist = b4s2_regl (insn);
3159 for (i = 0; i <= reglist; i++)
3160 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3161 set_reg_offset (gdbarch, this_cache,
3162 MIPS_RA_REGNUM, sp + 4 * i++);
3163 }
3164 else
3165 this_non_prologue_insn = 1;
3166 break;
3167
3168 case 0x13: /* POOL16D: bits 010011 */
3169 if ((insn & 0x1) == 0x1)
3170 /* ADDIUSP: bits 010011 1 */
3171 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3172 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3173 /* ADDIUS5: bits 010011 0 */
3174 /* ADDIUS5 $sp, imm */
3175 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3176 else
3177 this_non_prologue_insn = 1;
3178 break;
3179
3180 case 0x32: /* SWSP: bits 110010 */
3181 offset = b0s5_imm (insn) << 2;
3182 sreg = b5s5_reg (insn);
3183 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3184 break;
3185
3186 default:
3187 /* The instruction in the delay slot can be a part
3188 of the prologue, so move forward once more. */
3189 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3190 in_delay_slot = 1;
3191 else
3192 this_non_prologue_insn = 1;
3193 break;
3194 }
3195 break;
3196 }
3197 if (sp_adj < 0)
3198 frame_offset -= sp_adj;
3199
3200 non_prologue_insns += this_non_prologue_insn;
3201
3202 /* A jump or branch, enough non-prologue insns seen or positive
3203 stack adjustment? If so, then we must have reached the end
3204 of the prologue by now. */
3205 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3206 || micromips_instruction_is_compact_branch (insn))
3207 break;
3208
3209 prev_non_prologue_insn = this_non_prologue_insn;
3210 prev_delay_slot = in_delay_slot;
3211 prev_pc = cur_pc;
3212 }
3213
3214 if (this_cache != NULL)
3215 {
3216 this_cache->base =
3217 (get_frame_register_signed (this_frame,
3218 gdbarch_num_regs (gdbarch) + frame_reg)
3219 + frame_offset - frame_adjust);
3220 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3221 be able to get rid of the assignment below, evetually. But it's
3222 still needed for now. */
3223 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3224 + mips_regnum (gdbarch)->pc]
3225 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3226 }
3227
3228 /* Set end_prologue_addr to the address of the instruction immediately
3229 after the last one we scanned. Unless the last one looked like a
3230 non-prologue instruction (and we looked ahead), in which case use
3231 its address instead. */
3232 end_prologue_addr
3233 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3234
3235 return end_prologue_addr;
3236 }
3237
3238 /* Heuristic unwinder for procedures using microMIPS instructions.
3239 Procedures that use the 32-bit instruction set are handled by the
3240 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3241
3242 static struct mips_frame_cache *
3243 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3244 {
3245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3246 struct mips_frame_cache *cache;
3247
3248 if ((*this_cache) != NULL)
3249 return (struct mips_frame_cache *) (*this_cache);
3250
3251 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3252 (*this_cache) = cache;
3253 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3254
3255 /* Analyze the function prologue. */
3256 {
3257 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3258 CORE_ADDR start_addr;
3259
3260 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3261 if (start_addr == 0)
3262 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3263 /* We can't analyze the prologue if we couldn't find the begining
3264 of the function. */
3265 if (start_addr == 0)
3266 return cache;
3267
3268 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3269 (struct mips_frame_cache *) *this_cache);
3270 }
3271
3272 /* gdbarch_sp_regnum contains the value and not the address. */
3273 trad_frame_set_value (cache->saved_regs,
3274 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3275 cache->base);
3276
3277 return (struct mips_frame_cache *) (*this_cache);
3278 }
3279
3280 static void
3281 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3282 struct frame_id *this_id)
3283 {
3284 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3285 this_cache);
3286 /* This marks the outermost frame. */
3287 if (info->base == 0)
3288 return;
3289 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3290 }
3291
3292 static struct value *
3293 mips_micro_frame_prev_register (struct frame_info *this_frame,
3294 void **this_cache, int regnum)
3295 {
3296 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3297 this_cache);
3298 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3299 }
3300
3301 static int
3302 mips_micro_frame_sniffer (const struct frame_unwind *self,
3303 struct frame_info *this_frame, void **this_cache)
3304 {
3305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3306 CORE_ADDR pc = get_frame_pc (this_frame);
3307
3308 if (mips_pc_is_micromips (gdbarch, pc))
3309 return 1;
3310 return 0;
3311 }
3312
3313 static const struct frame_unwind mips_micro_frame_unwind =
3314 {
3315 NORMAL_FRAME,
3316 default_frame_unwind_stop_reason,
3317 mips_micro_frame_this_id,
3318 mips_micro_frame_prev_register,
3319 NULL,
3320 mips_micro_frame_sniffer
3321 };
3322
3323 static CORE_ADDR
3324 mips_micro_frame_base_address (struct frame_info *this_frame,
3325 void **this_cache)
3326 {
3327 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3328 this_cache);
3329 return info->base;
3330 }
3331
3332 static const struct frame_base mips_micro_frame_base =
3333 {
3334 &mips_micro_frame_unwind,
3335 mips_micro_frame_base_address,
3336 mips_micro_frame_base_address,
3337 mips_micro_frame_base_address
3338 };
3339
3340 static const struct frame_base *
3341 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3342 {
3343 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3344 CORE_ADDR pc = get_frame_pc (this_frame);
3345
3346 if (mips_pc_is_micromips (gdbarch, pc))
3347 return &mips_micro_frame_base;
3348 else
3349 return NULL;
3350 }
3351
3352 /* Mark all the registers as unset in the saved_regs array
3353 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3354
3355 static void
3356 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3357 {
3358 if (this_cache == NULL || this_cache->saved_regs == NULL)
3359 return;
3360
3361 {
3362 const int num_regs = gdbarch_num_regs (gdbarch);
3363 int i;
3364
3365 for (i = 0; i < num_regs; i++)
3366 {
3367 this_cache->saved_regs[i].addr = -1;
3368 }
3369 }
3370 }
3371
3372 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3373 the associated FRAME_CACHE if not null.
3374 Return the address of the first instruction past the prologue. */
3375
3376 static CORE_ADDR
3377 mips32_scan_prologue (struct gdbarch *gdbarch,
3378 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3379 struct frame_info *this_frame,
3380 struct mips_frame_cache *this_cache)
3381 {
3382 int prev_non_prologue_insn;
3383 int this_non_prologue_insn;
3384 int non_prologue_insns;
3385 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3386 frame-pointer. */
3387 int prev_delay_slot;
3388 CORE_ADDR prev_pc;
3389 CORE_ADDR cur_pc;
3390 CORE_ADDR sp;
3391 long frame_offset;
3392 int frame_reg = MIPS_SP_REGNUM;
3393
3394 CORE_ADDR end_prologue_addr;
3395 int seen_sp_adjust = 0;
3396 int load_immediate_bytes = 0;
3397 int in_delay_slot;
3398 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3399
3400 /* Can be called when there's no process, and hence when there's no
3401 THIS_FRAME. */
3402 if (this_frame != NULL)
3403 sp = get_frame_register_signed (this_frame,
3404 gdbarch_num_regs (gdbarch)
3405 + MIPS_SP_REGNUM);
3406 else
3407 sp = 0;
3408
3409 if (limit_pc > start_pc + 200)
3410 limit_pc = start_pc + 200;
3411
3412 restart:
3413 prev_non_prologue_insn = 0;
3414 non_prologue_insns = 0;
3415 prev_delay_slot = 0;
3416 prev_pc = start_pc;
3417
3418 /* Permit at most one non-prologue non-control-transfer instruction
3419 in the middle which may have been reordered by the compiler for
3420 optimisation. */
3421 frame_offset = 0;
3422 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3423 {
3424 unsigned long inst, high_word;
3425 long offset;
3426 int reg;
3427
3428 this_non_prologue_insn = 0;
3429 in_delay_slot = 0;
3430
3431 /* Fetch the instruction. */
3432 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3433 cur_pc, NULL);
3434
3435 /* Save some code by pre-extracting some useful fields. */
3436 high_word = (inst >> 16) & 0xffff;
3437 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3438 reg = high_word & 0x1f;
3439
3440 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3441 || high_word == 0x23bd /* addi $sp,$sp,-i */
3442 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3443 {
3444 if (offset < 0) /* Negative stack adjustment? */
3445 frame_offset -= offset;
3446 else
3447 /* Exit loop if a positive stack adjustment is found, which
3448 usually means that the stack cleanup code in the function
3449 epilogue is reached. */
3450 break;
3451 seen_sp_adjust = 1;
3452 }
3453 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3454 && !regsize_is_64_bits)
3455 {
3456 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3457 }
3458 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3459 && regsize_is_64_bits)
3460 {
3461 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3462 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3463 }
3464 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3465 {
3466 /* Old gcc frame, r30 is virtual frame pointer. */
3467 if (offset != frame_offset)
3468 frame_addr = sp + offset;
3469 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3470 {
3471 unsigned alloca_adjust;
3472
3473 frame_reg = 30;
3474 frame_addr = get_frame_register_signed
3475 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3476 frame_offset = 0;
3477
3478 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3479 if (alloca_adjust > 0)
3480 {
3481 /* FP > SP + frame_size. This may be because of
3482 an alloca or somethings similar. Fix sp to
3483 "pre-alloca" value, and try again. */
3484 sp += alloca_adjust;
3485 /* Need to reset the status of all registers. Otherwise,
3486 we will hit a guard that prevents the new address
3487 for each register to be recomputed during the second
3488 pass. */
3489 reset_saved_regs (gdbarch, this_cache);
3490 goto restart;
3491 }
3492 }
3493 }
3494 /* move $30,$sp. With different versions of gas this will be either
3495 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3496 Accept any one of these. */
3497 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3498 {
3499 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3500 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3501 {
3502 unsigned alloca_adjust;
3503
3504 frame_reg = 30;
3505 frame_addr = get_frame_register_signed
3506 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3507
3508 alloca_adjust = (unsigned) (frame_addr - sp);
3509 if (alloca_adjust > 0)
3510 {
3511 /* FP > SP + frame_size. This may be because of
3512 an alloca or somethings similar. Fix sp to
3513 "pre-alloca" value, and try again. */
3514 sp = frame_addr;
3515 /* Need to reset the status of all registers. Otherwise,
3516 we will hit a guard that prevents the new address
3517 for each register to be recomputed during the second
3518 pass. */
3519 reset_saved_regs (gdbarch, this_cache);
3520 goto restart;
3521 }
3522 }
3523 }
3524 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3525 && !regsize_is_64_bits)
3526 {
3527 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3528 }
3529 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3530 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3531 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3532 || high_word == 0x3c1c /* lui $gp,n */
3533 || high_word == 0x279c /* addiu $gp,$gp,n */
3534 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3535 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3536 )
3537 {
3538 /* These instructions are part of the prologue, but we don't
3539 need to do anything special to handle them. */
3540 }
3541 /* The instructions below load $at or $t0 with an immediate
3542 value in preparation for a stack adjustment via
3543 subu $sp,$sp,[$at,$t0]. These instructions could also
3544 initialize a local variable, so we accept them only before
3545 a stack adjustment instruction was seen. */
3546 else if (!seen_sp_adjust
3547 && !prev_delay_slot
3548 && (high_word == 0x3c01 /* lui $at,n */
3549 || high_word == 0x3c08 /* lui $t0,n */
3550 || high_word == 0x3421 /* ori $at,$at,n */
3551 || high_word == 0x3508 /* ori $t0,$t0,n */
3552 || high_word == 0x3401 /* ori $at,$zero,n */
3553 || high_word == 0x3408 /* ori $t0,$zero,n */
3554 ))
3555 {
3556 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3557 }
3558 /* Check for branches and jumps. The instruction in the delay
3559 slot can be a part of the prologue, so move forward once more. */
3560 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3561 {
3562 in_delay_slot = 1;
3563 }
3564 /* This instruction is not an instruction typically found
3565 in a prologue, so we must have reached the end of the
3566 prologue. */
3567 else
3568 {
3569 this_non_prologue_insn = 1;
3570 }
3571
3572 non_prologue_insns += this_non_prologue_insn;
3573
3574 /* A jump or branch, or enough non-prologue insns seen? If so,
3575 then we must have reached the end of the prologue by now. */
3576 if (prev_delay_slot || non_prologue_insns > 1)
3577 break;
3578
3579 prev_non_prologue_insn = this_non_prologue_insn;
3580 prev_delay_slot = in_delay_slot;
3581 prev_pc = cur_pc;
3582 }
3583
3584 if (this_cache != NULL)
3585 {
3586 this_cache->base =
3587 (get_frame_register_signed (this_frame,
3588 gdbarch_num_regs (gdbarch) + frame_reg)
3589 + frame_offset);
3590 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3591 this assignment below, eventually. But it's still needed
3592 for now. */
3593 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3594 + mips_regnum (gdbarch)->pc]
3595 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3596 + MIPS_RA_REGNUM];
3597 }
3598
3599 /* Set end_prologue_addr to the address of the instruction immediately
3600 after the last one we scanned. Unless the last one looked like a
3601 non-prologue instruction (and we looked ahead), in which case use
3602 its address instead. */
3603 end_prologue_addr
3604 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3605
3606 /* In a frameless function, we might have incorrectly
3607 skipped some load immediate instructions. Undo the skipping
3608 if the load immediate was not followed by a stack adjustment. */
3609 if (load_immediate_bytes && !seen_sp_adjust)
3610 end_prologue_addr -= load_immediate_bytes;
3611
3612 return end_prologue_addr;
3613 }
3614
3615 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3616 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3617 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3618 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3619
3620 static struct mips_frame_cache *
3621 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3622 {
3623 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3624 struct mips_frame_cache *cache;
3625
3626 if ((*this_cache) != NULL)
3627 return (struct mips_frame_cache *) (*this_cache);
3628
3629 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3630 (*this_cache) = cache;
3631 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3632
3633 /* Analyze the function prologue. */
3634 {
3635 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3636 CORE_ADDR start_addr;
3637
3638 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3639 if (start_addr == 0)
3640 start_addr = heuristic_proc_start (gdbarch, pc);
3641 /* We can't analyze the prologue if we couldn't find the begining
3642 of the function. */
3643 if (start_addr == 0)
3644 return cache;
3645
3646 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3647 (struct mips_frame_cache *) *this_cache);
3648 }
3649
3650 /* gdbarch_sp_regnum contains the value and not the address. */
3651 trad_frame_set_value (cache->saved_regs,
3652 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3653 cache->base);
3654
3655 return (struct mips_frame_cache *) (*this_cache);
3656 }
3657
3658 static void
3659 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3660 struct frame_id *this_id)
3661 {
3662 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3663 this_cache);
3664 /* This marks the outermost frame. */
3665 if (info->base == 0)
3666 return;
3667 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3668 }
3669
3670 static struct value *
3671 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3672 void **this_cache, int regnum)
3673 {
3674 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3675 this_cache);
3676 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3677 }
3678
3679 static int
3680 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3681 struct frame_info *this_frame, void **this_cache)
3682 {
3683 CORE_ADDR pc = get_frame_pc (this_frame);
3684 if (mips_pc_is_mips (pc))
3685 return 1;
3686 return 0;
3687 }
3688
3689 static const struct frame_unwind mips_insn32_frame_unwind =
3690 {
3691 NORMAL_FRAME,
3692 default_frame_unwind_stop_reason,
3693 mips_insn32_frame_this_id,
3694 mips_insn32_frame_prev_register,
3695 NULL,
3696 mips_insn32_frame_sniffer
3697 };
3698
3699 static CORE_ADDR
3700 mips_insn32_frame_base_address (struct frame_info *this_frame,
3701 void **this_cache)
3702 {
3703 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3704 this_cache);
3705 return info->base;
3706 }
3707
3708 static const struct frame_base mips_insn32_frame_base =
3709 {
3710 &mips_insn32_frame_unwind,
3711 mips_insn32_frame_base_address,
3712 mips_insn32_frame_base_address,
3713 mips_insn32_frame_base_address
3714 };
3715
3716 static const struct frame_base *
3717 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3718 {
3719 CORE_ADDR pc = get_frame_pc (this_frame);
3720 if (mips_pc_is_mips (pc))
3721 return &mips_insn32_frame_base;
3722 else
3723 return NULL;
3724 }
3725
3726 static struct trad_frame_cache *
3727 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3728 {
3729 CORE_ADDR pc;
3730 CORE_ADDR start_addr;
3731 CORE_ADDR stack_addr;
3732 struct trad_frame_cache *this_trad_cache;
3733 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3734 int num_regs = gdbarch_num_regs (gdbarch);
3735
3736 if ((*this_cache) != NULL)
3737 return (struct trad_frame_cache *) (*this_cache);
3738 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3739 (*this_cache) = this_trad_cache;
3740
3741 /* The return address is in the link register. */
3742 trad_frame_set_reg_realreg (this_trad_cache,
3743 gdbarch_pc_regnum (gdbarch),
3744 num_regs + MIPS_RA_REGNUM);
3745
3746 /* Frame ID, since it's a frameless / stackless function, no stack
3747 space is allocated and SP on entry is the current SP. */
3748 pc = get_frame_pc (this_frame);
3749 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3750 stack_addr = get_frame_register_signed (this_frame,
3751 num_regs + MIPS_SP_REGNUM);
3752 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3753
3754 /* Assume that the frame's base is the same as the
3755 stack-pointer. */
3756 trad_frame_set_this_base (this_trad_cache, stack_addr);
3757
3758 return this_trad_cache;
3759 }
3760
3761 static void
3762 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3763 struct frame_id *this_id)
3764 {
3765 struct trad_frame_cache *this_trad_cache
3766 = mips_stub_frame_cache (this_frame, this_cache);
3767 trad_frame_get_id (this_trad_cache, this_id);
3768 }
3769
3770 static struct value *
3771 mips_stub_frame_prev_register (struct frame_info *this_frame,
3772 void **this_cache, int regnum)
3773 {
3774 struct trad_frame_cache *this_trad_cache
3775 = mips_stub_frame_cache (this_frame, this_cache);
3776 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3777 }
3778
3779 static int
3780 mips_stub_frame_sniffer (const struct frame_unwind *self,
3781 struct frame_info *this_frame, void **this_cache)
3782 {
3783 gdb_byte dummy[4];
3784 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3785 struct bound_minimal_symbol msym;
3786
3787 /* Use the stub unwinder for unreadable code. */
3788 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3789 return 1;
3790
3791 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3792 return 1;
3793
3794 /* Calling a PIC function from a non-PIC function passes through a
3795 stub. The stub for foo is named ".pic.foo". */
3796 msym = lookup_minimal_symbol_by_pc (pc);
3797 if (msym.minsym != NULL
3798 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3799 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3800 return 1;
3801
3802 return 0;
3803 }
3804
3805 static const struct frame_unwind mips_stub_frame_unwind =
3806 {
3807 NORMAL_FRAME,
3808 default_frame_unwind_stop_reason,
3809 mips_stub_frame_this_id,
3810 mips_stub_frame_prev_register,
3811 NULL,
3812 mips_stub_frame_sniffer
3813 };
3814
3815 static CORE_ADDR
3816 mips_stub_frame_base_address (struct frame_info *this_frame,
3817 void **this_cache)
3818 {
3819 struct trad_frame_cache *this_trad_cache
3820 = mips_stub_frame_cache (this_frame, this_cache);
3821 return trad_frame_get_this_base (this_trad_cache);
3822 }
3823
3824 static const struct frame_base mips_stub_frame_base =
3825 {
3826 &mips_stub_frame_unwind,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address,
3829 mips_stub_frame_base_address
3830 };
3831
3832 static const struct frame_base *
3833 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3834 {
3835 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3836 return &mips_stub_frame_base;
3837 else
3838 return NULL;
3839 }
3840
3841 /* mips_addr_bits_remove - remove useless address bits */
3842
3843 static CORE_ADDR
3844 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3845 {
3846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3847
3848 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3849 /* This hack is a work-around for existing boards using PMON, the
3850 simulator, and any other 64-bit targets that doesn't have true
3851 64-bit addressing. On these targets, the upper 32 bits of
3852 addresses are ignored by the hardware. Thus, the PC or SP are
3853 likely to have been sign extended to all 1s by instruction
3854 sequences that load 32-bit addresses. For example, a typical
3855 piece of code that loads an address is this:
3856
3857 lui $r2, <upper 16 bits>
3858 ori $r2, <lower 16 bits>
3859
3860 But the lui sign-extends the value such that the upper 32 bits
3861 may be all 1s. The workaround is simply to mask off these
3862 bits. In the future, gcc may be changed to support true 64-bit
3863 addressing, and this masking will have to be disabled. */
3864 return addr &= 0xffffffffUL;
3865 else
3866 return addr;
3867 }
3868
3869
3870 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3871 instruction and ending with a SC/SCD instruction. If such a sequence
3872 is found, attempt to step through it. A breakpoint is placed at the end of
3873 the sequence. */
3874
3875 /* Instructions used during single-stepping of atomic sequences, standard
3876 ISA version. */
3877 #define LL_OPCODE 0x30
3878 #define LLD_OPCODE 0x34
3879 #define SC_OPCODE 0x38
3880 #define SCD_OPCODE 0x3c
3881
3882 static std::vector<CORE_ADDR>
3883 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3884 {
3885 CORE_ADDR breaks[2] = {-1, -1};
3886 CORE_ADDR loc = pc;
3887 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3888 ULONGEST insn;
3889 int insn_count;
3890 int index;
3891 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3892 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3893
3894 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3895 /* Assume all atomic sequences start with a ll/lld instruction. */
3896 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3897 return {};
3898
3899 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3900 instructions. */
3901 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3902 {
3903 int is_branch = 0;
3904 loc += MIPS_INSN32_SIZE;
3905 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3906
3907 /* Assume that there is at most one branch in the atomic
3908 sequence. If a branch is found, put a breakpoint in its
3909 destination address. */
3910 switch (itype_op (insn))
3911 {
3912 case 0: /* SPECIAL */
3913 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3914 return {}; /* fallback to the standard single-step code. */
3915 break;
3916 case 1: /* REGIMM */
3917 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3918 || ((itype_rt (insn) & 0x1e) == 0
3919 && itype_rs (insn) == 0)); /* BPOSGE* */
3920 break;
3921 case 2: /* J */
3922 case 3: /* JAL */
3923 return {}; /* fallback to the standard single-step code. */
3924 case 4: /* BEQ */
3925 case 5: /* BNE */
3926 case 6: /* BLEZ */
3927 case 7: /* BGTZ */
3928 case 20: /* BEQL */
3929 case 21: /* BNEL */
3930 case 22: /* BLEZL */
3931 case 23: /* BGTTL */
3932 is_branch = 1;
3933 break;
3934 case 17: /* COP1 */
3935 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3936 && (itype_rt (insn) & 0x2) == 0);
3937 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3938 break;
3939 /* Fall through. */
3940 case 18: /* COP2 */
3941 case 19: /* COP3 */
3942 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3943 break;
3944 }
3945 if (is_branch)
3946 {
3947 branch_bp = loc + mips32_relative_offset (insn) + 4;
3948 if (last_breakpoint >= 1)
3949 return {}; /* More than one branch found, fallback to the
3950 standard single-step code. */
3951 breaks[1] = branch_bp;
3952 last_breakpoint++;
3953 }
3954
3955 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3956 break;
3957 }
3958
3959 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3960 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3961 return {};
3962
3963 loc += MIPS_INSN32_SIZE;
3964
3965 /* Insert a breakpoint right after the end of the atomic sequence. */
3966 breaks[0] = loc;
3967
3968 /* Check for duplicated breakpoints. Check also for a breakpoint
3969 placed (branch instruction's destination) in the atomic sequence. */
3970 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3971 last_breakpoint = 0;
3972
3973 std::vector<CORE_ADDR> next_pcs;
3974
3975 /* Effectively inserts the breakpoints. */
3976 for (index = 0; index <= last_breakpoint; index++)
3977 next_pcs.push_back (breaks[index]);
3978
3979 return next_pcs;
3980 }
3981
3982 static std::vector<CORE_ADDR>
3983 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3984 CORE_ADDR pc)
3985 {
3986 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3987 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3988 CORE_ADDR breaks[2] = {-1, -1};
3989 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3990 destination. */
3991 CORE_ADDR loc = pc;
3992 int sc_found = 0;
3993 ULONGEST insn;
3994 int insn_count;
3995 int index;
3996
3997 /* Assume all atomic sequences start with a ll/lld instruction. */
3998 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3999 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4000 return {};
4001 loc += MIPS_INSN16_SIZE;
4002 insn <<= 16;
4003 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4004 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4005 return {};
4006 loc += MIPS_INSN16_SIZE;
4007
4008 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4009 that no atomic sequence is longer than "atomic_sequence_length"
4010 instructions. */
4011 for (insn_count = 0;
4012 !sc_found && insn_count < atomic_sequence_length;
4013 ++insn_count)
4014 {
4015 int is_branch = 0;
4016
4017 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4018 loc += MIPS_INSN16_SIZE;
4019
4020 /* Assume that there is at most one conditional branch in the
4021 atomic sequence. If a branch is found, put a breakpoint in
4022 its destination address. */
4023 switch (mips_insn_size (ISA_MICROMIPS, insn))
4024 {
4025 /* 32-bit instructions. */
4026 case 2 * MIPS_INSN16_SIZE:
4027 switch (micromips_op (insn))
4028 {
4029 case 0x10: /* POOL32I: bits 010000 */
4030 if ((b5s5_op (insn) & 0x18) != 0x0
4031 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4032 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4033 && (b5s5_op (insn) & 0x1d) != 0x11
4034 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4035 && ((b5s5_op (insn) & 0x1e) != 0x14
4036 || (insn & 0x3) != 0x0)
4037 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4038 && (b5s5_op (insn) & 0x1e) != 0x1a
4039 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4040 && ((b5s5_op (insn) & 0x1e) != 0x1c
4041 || (insn & 0x3) != 0x0)
4042 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4043 && ((b5s5_op (insn) & 0x1c) != 0x1c
4044 || (insn & 0x3) != 0x1))
4045 /* BC1ANY*: bits 010000 111xx xxx01 */
4046 break;
4047 /* Fall through. */
4048
4049 case 0x25: /* BEQ: bits 100101 */
4050 case 0x2d: /* BNE: bits 101101 */
4051 insn <<= 16;
4052 insn |= mips_fetch_instruction (gdbarch,
4053 ISA_MICROMIPS, loc, NULL);
4054 branch_bp = (loc + MIPS_INSN16_SIZE
4055 + micromips_relative_offset16 (insn));
4056 is_branch = 1;
4057 break;
4058
4059 case 0x00: /* POOL32A: bits 000000 */
4060 insn <<= 16;
4061 insn |= mips_fetch_instruction (gdbarch,
4062 ISA_MICROMIPS, loc, NULL);
4063 if (b0s6_op (insn) != 0x3c
4064 /* POOL32Axf: bits 000000 ... 111100 */
4065 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4066 /* JALR, JALR.HB: 000000 000x111100 111100 */
4067 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4068 break;
4069 /* Fall through. */
4070
4071 case 0x1d: /* JALS: bits 011101 */
4072 case 0x35: /* J: bits 110101 */
4073 case 0x3d: /* JAL: bits 111101 */
4074 case 0x3c: /* JALX: bits 111100 */
4075 return {}; /* Fall back to the standard single-step code. */
4076
4077 case 0x18: /* POOL32C: bits 011000 */
4078 if ((b12s4_op (insn) & 0xb) == 0xb)
4079 /* SC, SCD: bits 011000 1x11 */
4080 sc_found = 1;
4081 break;
4082 }
4083 loc += MIPS_INSN16_SIZE;
4084 break;
4085
4086 /* 16-bit instructions. */
4087 case MIPS_INSN16_SIZE:
4088 switch (micromips_op (insn))
4089 {
4090 case 0x23: /* BEQZ16: bits 100011 */
4091 case 0x2b: /* BNEZ16: bits 101011 */
4092 branch_bp = loc + micromips_relative_offset7 (insn);
4093 is_branch = 1;
4094 break;
4095
4096 case 0x11: /* POOL16C: bits 010001 */
4097 if ((b5s5_op (insn) & 0x1c) != 0xc
4098 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4099 && b5s5_op (insn) != 0x18)
4100 /* JRADDIUSP: bits 010001 11000 */
4101 break;
4102 return {}; /* Fall back to the standard single-step code. */
4103
4104 case 0x33: /* B16: bits 110011 */
4105 return {}; /* Fall back to the standard single-step code. */
4106 }
4107 break;
4108 }
4109 if (is_branch)
4110 {
4111 if (last_breakpoint >= 1)
4112 return {}; /* More than one branch found, fallback to the
4113 standard single-step code. */
4114 breaks[1] = branch_bp;
4115 last_breakpoint++;
4116 }
4117 }
4118 if (!sc_found)
4119 return {};
4120
4121 /* Insert a breakpoint right after the end of the atomic sequence. */
4122 breaks[0] = loc;
4123
4124 /* Check for duplicated breakpoints. Check also for a breakpoint
4125 placed (branch instruction's destination) in the atomic sequence */
4126 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4127 last_breakpoint = 0;
4128
4129 std::vector<CORE_ADDR> next_pcs;
4130
4131 /* Effectively inserts the breakpoints. */
4132 for (index = 0; index <= last_breakpoint; index++)
4133 next_pcs.push_back (breaks[index]);
4134
4135 return next_pcs;
4136 }
4137
4138 static std::vector<CORE_ADDR>
4139 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4140 {
4141 if (mips_pc_is_mips (pc))
4142 return mips_deal_with_atomic_sequence (gdbarch, pc);
4143 else if (mips_pc_is_micromips (gdbarch, pc))
4144 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4145 else
4146 return {};
4147 }
4148
4149 /* mips_software_single_step() is called just before we want to resume
4150 the inferior, if we want to single-step it but there is no hardware
4151 or kernel single-step support (MIPS on GNU/Linux for example). We find
4152 the target of the coming instruction and breakpoint it. */
4153
4154 std::vector<CORE_ADDR>
4155 mips_software_single_step (struct regcache *regcache)
4156 {
4157 struct gdbarch *gdbarch = regcache->arch ();
4158 CORE_ADDR pc, next_pc;
4159
4160 pc = regcache_read_pc (regcache);
4161 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4162
4163 if (!next_pcs.empty ())
4164 return next_pcs;
4165
4166 next_pc = mips_next_pc (regcache, pc);
4167
4168 return {next_pc};
4169 }
4170
4171 /* Test whether the PC points to the return instruction at the
4172 end of a function. */
4173
4174 static int
4175 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4176 {
4177 ULONGEST insn;
4178 ULONGEST hint;
4179
4180 /* This used to check for MIPS16, but this piece of code is never
4181 called for MIPS16 functions. And likewise microMIPS ones. */
4182 gdb_assert (mips_pc_is_mips (pc));
4183
4184 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4185 hint = 0x7c0;
4186 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4187 }
4188
4189
4190 /* This fencepost looks highly suspicious to me. Removing it also
4191 seems suspicious as it could affect remote debugging across serial
4192 lines. */
4193
4194 static CORE_ADDR
4195 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4196 {
4197 CORE_ADDR start_pc;
4198 CORE_ADDR fence;
4199 int instlen;
4200 int seen_adjsp = 0;
4201 struct inferior *inf;
4202
4203 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4204 start_pc = pc;
4205 fence = start_pc - heuristic_fence_post;
4206 if (start_pc == 0)
4207 return 0;
4208
4209 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4210 fence = VM_MIN_ADDRESS;
4211
4212 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4213
4214 inf = current_inferior ();
4215
4216 /* Search back for previous return. */
4217 for (start_pc -= instlen;; start_pc -= instlen)
4218 if (start_pc < fence)
4219 {
4220 /* It's not clear to me why we reach this point when
4221 stop_soon, but with this test, at least we
4222 don't print out warnings for every child forked (eg, on
4223 decstation). 22apr93 rich@cygnus.com. */
4224 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4225 {
4226 static int blurb_printed = 0;
4227
4228 warning (_("GDB can't find the start of the function at %s."),
4229 paddress (gdbarch, pc));
4230
4231 if (!blurb_printed)
4232 {
4233 /* This actually happens frequently in embedded
4234 development, when you first connect to a board
4235 and your stack pointer and pc are nowhere in
4236 particular. This message needs to give people
4237 in that situation enough information to
4238 determine that it's no big deal. */
4239 printf_filtered ("\n\
4240 GDB is unable to find the start of the function at %s\n\
4241 and thus can't determine the size of that function's stack frame.\n\
4242 This means that GDB may be unable to access that stack frame, or\n\
4243 the frames below it.\n\
4244 This problem is most likely caused by an invalid program counter or\n\
4245 stack pointer.\n\
4246 However, if you think GDB should simply search farther back\n\
4247 from %s for code which looks like the beginning of a\n\
4248 function, you can increase the range of the search using the `set\n\
4249 heuristic-fence-post' command.\n",
4250 paddress (gdbarch, pc), paddress (gdbarch, pc));
4251 blurb_printed = 1;
4252 }
4253 }
4254
4255 return 0;
4256 }
4257 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4258 {
4259 unsigned short inst;
4260
4261 /* On MIPS16, any one of the following is likely to be the
4262 start of a function:
4263 extend save
4264 save
4265 entry
4266 addiu sp,-n
4267 daddiu sp,-n
4268 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4269 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4270 if ((inst & 0xff80) == 0x6480) /* save */
4271 {
4272 if (start_pc - instlen >= fence)
4273 {
4274 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4275 start_pc - instlen, NULL);
4276 if ((inst & 0xf800) == 0xf000) /* extend */
4277 start_pc -= instlen;
4278 }
4279 break;
4280 }
4281 else if (((inst & 0xf81f) == 0xe809
4282 && (inst & 0x700) != 0x700) /* entry */
4283 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4284 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4285 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4286 break;
4287 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4288 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4289 seen_adjsp = 1;
4290 else
4291 seen_adjsp = 0;
4292 }
4293 else if (mips_pc_is_micromips (gdbarch, start_pc))
4294 {
4295 ULONGEST insn;
4296 int stop = 0;
4297 long offset;
4298 int dreg;
4299 int sreg;
4300
4301 /* On microMIPS, any one of the following is likely to be the
4302 start of a function:
4303 ADDIUSP -imm
4304 (D)ADDIU $sp, -imm
4305 LUI $gp, imm */
4306 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4307 switch (micromips_op (insn))
4308 {
4309 case 0xc: /* ADDIU: bits 001100 */
4310 case 0x17: /* DADDIU: bits 010111 */
4311 sreg = b0s5_reg (insn);
4312 dreg = b5s5_reg (insn);
4313 insn <<= 16;
4314 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4315 pc + MIPS_INSN16_SIZE, NULL);
4316 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4317 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4318 /* (D)ADDIU $sp, imm */
4319 && offset < 0)
4320 stop = 1;
4321 break;
4322
4323 case 0x10: /* POOL32I: bits 010000 */
4324 if (b5s5_op (insn) == 0xd
4325 /* LUI: bits 010000 001101 */
4326 && b0s5_reg (insn >> 16) == 28)
4327 /* LUI $gp, imm */
4328 stop = 1;
4329 break;
4330
4331 case 0x13: /* POOL16D: bits 010011 */
4332 if ((insn & 0x1) == 0x1)
4333 /* ADDIUSP: bits 010011 1 */
4334 {
4335 offset = micromips_decode_imm9 (b1s9_imm (insn));
4336 if (offset < 0)
4337 /* ADDIUSP -imm */
4338 stop = 1;
4339 }
4340 else
4341 /* ADDIUS5: bits 010011 0 */
4342 {
4343 dreg = b5s5_reg (insn);
4344 offset = (b1s4_imm (insn) ^ 8) - 8;
4345 if (dreg == MIPS_SP_REGNUM && offset < 0)
4346 /* ADDIUS5 $sp, -imm */
4347 stop = 1;
4348 }
4349 break;
4350 }
4351 if (stop)
4352 break;
4353 }
4354 else if (mips_about_to_return (gdbarch, start_pc))
4355 {
4356 /* Skip return and its delay slot. */
4357 start_pc += 2 * MIPS_INSN32_SIZE;
4358 break;
4359 }
4360
4361 return start_pc;
4362 }
4363
4364 struct mips_objfile_private
4365 {
4366 bfd_size_type size;
4367 char *contents;
4368 };
4369
4370 /* According to the current ABI, should the type be passed in a
4371 floating-point register (assuming that there is space)? When there
4372 is no FPU, FP are not even considered as possible candidates for
4373 FP registers and, consequently this returns false - forces FP
4374 arguments into integer registers. */
4375
4376 static int
4377 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4378 struct type *arg_type)
4379 {
4380 return ((typecode == TYPE_CODE_FLT
4381 || (MIPS_EABI (gdbarch)
4382 && (typecode == TYPE_CODE_STRUCT
4383 || typecode == TYPE_CODE_UNION)
4384 && TYPE_NFIELDS (arg_type) == 1
4385 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4386 == TYPE_CODE_FLT))
4387 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4388 }
4389
4390 /* On o32, argument passing in GPRs depends on the alignment of the type being
4391 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4392
4393 static int
4394 mips_type_needs_double_align (struct type *type)
4395 {
4396 enum type_code typecode = TYPE_CODE (type);
4397
4398 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4399 return 1;
4400 else if (typecode == TYPE_CODE_STRUCT)
4401 {
4402 if (TYPE_NFIELDS (type) < 1)
4403 return 0;
4404 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4405 }
4406 else if (typecode == TYPE_CODE_UNION)
4407 {
4408 int i, n;
4409
4410 n = TYPE_NFIELDS (type);
4411 for (i = 0; i < n; i++)
4412 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4413 return 1;
4414 return 0;
4415 }
4416 return 0;
4417 }
4418
4419 /* Adjust the address downward (direction of stack growth) so that it
4420 is correctly aligned for a new stack frame. */
4421 static CORE_ADDR
4422 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4423 {
4424 return align_down (addr, 16);
4425 }
4426
4427 /* Implement the "push_dummy_code" gdbarch method. */
4428
4429 static CORE_ADDR
4430 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4431 CORE_ADDR funaddr, struct value **args,
4432 int nargs, struct type *value_type,
4433 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4434 struct regcache *regcache)
4435 {
4436 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4437 CORE_ADDR nop_addr;
4438 CORE_ADDR bp_slot;
4439
4440 /* Reserve enough room on the stack for our breakpoint instruction. */
4441 bp_slot = sp - sizeof (nop_insn);
4442
4443 /* Return to microMIPS mode if calling microMIPS code to avoid
4444 triggering an address error exception on processors that only
4445 support microMIPS execution. */
4446 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4447 ? make_compact_addr (bp_slot) : bp_slot);
4448
4449 /* The breakpoint layer automatically adjusts the address of
4450 breakpoints inserted in a branch delay slot. With enough
4451 bad luck, the 4 bytes located just before our breakpoint
4452 instruction could look like a branch instruction, and thus
4453 trigger the adjustement, and break the function call entirely.
4454 So, we reserve those 4 bytes and write a nop instruction
4455 to prevent that from happening. */
4456 nop_addr = bp_slot - sizeof (nop_insn);
4457 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4458 sp = mips_frame_align (gdbarch, nop_addr);
4459
4460 /* Inferior resumes at the function entry point. */
4461 *real_pc = funaddr;
4462
4463 return sp;
4464 }
4465
4466 static CORE_ADDR
4467 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4468 struct regcache *regcache, CORE_ADDR bp_addr,
4469 int nargs, struct value **args, CORE_ADDR sp,
4470 int struct_return, CORE_ADDR struct_addr)
4471 {
4472 int argreg;
4473 int float_argreg;
4474 int argnum;
4475 int len = 0;
4476 int stack_offset = 0;
4477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4478 CORE_ADDR func_addr = find_function_addr (function, NULL);
4479 int abi_regsize = mips_abi_regsize (gdbarch);
4480
4481 /* For shared libraries, "t9" needs to point at the function
4482 address. */
4483 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4484
4485 /* Set the return address register to point to the entry point of
4486 the program, where a breakpoint lies in wait. */
4487 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4488
4489 /* First ensure that the stack and structure return address (if any)
4490 are properly aligned. The stack has to be at least 64-bit
4491 aligned even on 32-bit machines, because doubles must be 64-bit
4492 aligned. For n32 and n64, stack frames need to be 128-bit
4493 aligned, so we round to this widest known alignment. */
4494
4495 sp = align_down (sp, 16);
4496 struct_addr = align_down (struct_addr, 16);
4497
4498 /* Now make space on the stack for the args. We allocate more
4499 than necessary for EABI, because the first few arguments are
4500 passed in registers, but that's OK. */
4501 for (argnum = 0; argnum < nargs; argnum++)
4502 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4503 sp -= align_up (len, 16);
4504
4505 if (mips_debug)
4506 fprintf_unfiltered (gdb_stdlog,
4507 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4508 paddress (gdbarch, sp), (long) align_up (len, 16));
4509
4510 /* Initialize the integer and float register pointers. */
4511 argreg = MIPS_A0_REGNUM;
4512 float_argreg = mips_fpa0_regnum (gdbarch);
4513
4514 /* The struct_return pointer occupies the first parameter-passing reg. */
4515 if (struct_return)
4516 {
4517 if (mips_debug)
4518 fprintf_unfiltered (gdb_stdlog,
4519 "mips_eabi_push_dummy_call: "
4520 "struct_return reg=%d %s\n",
4521 argreg, paddress (gdbarch, struct_addr));
4522 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4523 }
4524
4525 /* Now load as many as possible of the first arguments into
4526 registers, and push the rest onto the stack. Loop thru args
4527 from first to last. */
4528 for (argnum = 0; argnum < nargs; argnum++)
4529 {
4530 const gdb_byte *val;
4531 /* This holds the address of structures that are passed by
4532 reference. */
4533 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4534 struct value *arg = args[argnum];
4535 struct type *arg_type = check_typedef (value_type (arg));
4536 int len = TYPE_LENGTH (arg_type);
4537 enum type_code typecode = TYPE_CODE (arg_type);
4538
4539 if (mips_debug)
4540 fprintf_unfiltered (gdb_stdlog,
4541 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4542 argnum + 1, len, (int) typecode);
4543
4544 /* The EABI passes structures that do not fit in a register by
4545 reference. */
4546 if (len > abi_regsize
4547 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4548 {
4549 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4550 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4551 value_address (arg));
4552 typecode = TYPE_CODE_PTR;
4553 len = abi_regsize;
4554 val = ref_valbuf;
4555 if (mips_debug)
4556 fprintf_unfiltered (gdb_stdlog, " push");
4557 }
4558 else
4559 val = value_contents (arg);
4560
4561 /* 32-bit ABIs always start floating point arguments in an
4562 even-numbered floating point register. Round the FP register
4563 up before the check to see if there are any FP registers
4564 left. Non MIPS_EABI targets also pass the FP in the integer
4565 registers so also round up normal registers. */
4566 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4567 {
4568 if ((float_argreg & 1))
4569 float_argreg++;
4570 }
4571
4572 /* Floating point arguments passed in registers have to be
4573 treated specially. On 32-bit architectures, doubles
4574 are passed in register pairs; the even register gets
4575 the low word, and the odd register gets the high word.
4576 On non-EABI processors, the first two floating point arguments are
4577 also copied to general registers, because MIPS16 functions
4578 don't use float registers for arguments. This duplication of
4579 arguments in general registers can't hurt non-MIPS16 functions
4580 because those registers are normally skipped. */
4581 /* MIPS_EABI squeezes a struct that contains a single floating
4582 point value into an FP register instead of pushing it onto the
4583 stack. */
4584 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4585 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4586 {
4587 /* EABI32 will pass doubles in consecutive registers, even on
4588 64-bit cores. At one time, we used to check the size of
4589 `float_argreg' to determine whether or not to pass doubles
4590 in consecutive registers, but this is not sufficient for
4591 making the ABI determination. */
4592 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4593 {
4594 int low_offset = gdbarch_byte_order (gdbarch)
4595 == BFD_ENDIAN_BIG ? 4 : 0;
4596 long regval;
4597
4598 /* Write the low word of the double to the even register(s). */
4599 regval = extract_signed_integer (val + low_offset,
4600 4, byte_order);
4601 if (mips_debug)
4602 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4603 float_argreg, phex (regval, 4));
4604 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4605
4606 /* Write the high word of the double to the odd register(s). */
4607 regval = extract_signed_integer (val + 4 - low_offset,
4608 4, byte_order);
4609 if (mips_debug)
4610 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4611 float_argreg, phex (regval, 4));
4612 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4613 }
4614 else
4615 {
4616 /* This is a floating point value that fits entirely
4617 in a single register. */
4618 /* On 32 bit ABI's the float_argreg is further adjusted
4619 above to ensure that it is even register aligned. */
4620 LONGEST regval = extract_signed_integer (val, len, byte_order);
4621 if (mips_debug)
4622 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4623 float_argreg, phex (regval, len));
4624 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4625 }
4626 }
4627 else
4628 {
4629 /* Copy the argument to general registers or the stack in
4630 register-sized pieces. Large arguments are split between
4631 registers and stack. */
4632 /* Note: structs whose size is not a multiple of abi_regsize
4633 are treated specially: Irix cc passes
4634 them in registers where gcc sometimes puts them on the
4635 stack. For maximum compatibility, we will put them in
4636 both places. */
4637 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4638
4639 /* Note: Floating-point values that didn't fit into an FP
4640 register are only written to memory. */
4641 while (len > 0)
4642 {
4643 /* Remember if the argument was written to the stack. */
4644 int stack_used_p = 0;
4645 int partial_len = (len < abi_regsize ? len : abi_regsize);
4646
4647 if (mips_debug)
4648 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4649 partial_len);
4650
4651 /* Write this portion of the argument to the stack. */
4652 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4653 || odd_sized_struct
4654 || fp_register_arg_p (gdbarch, typecode, arg_type))
4655 {
4656 /* Should shorter than int integer values be
4657 promoted to int before being stored? */
4658 int longword_offset = 0;
4659 CORE_ADDR addr;
4660 stack_used_p = 1;
4661 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4662 {
4663 if (abi_regsize == 8
4664 && (typecode == TYPE_CODE_INT
4665 || typecode == TYPE_CODE_PTR
4666 || typecode == TYPE_CODE_FLT) && len <= 4)
4667 longword_offset = abi_regsize - len;
4668 else if ((typecode == TYPE_CODE_STRUCT
4669 || typecode == TYPE_CODE_UNION)
4670 && TYPE_LENGTH (arg_type) < abi_regsize)
4671 longword_offset = abi_regsize - len;
4672 }
4673
4674 if (mips_debug)
4675 {
4676 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4677 paddress (gdbarch, stack_offset));
4678 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4679 paddress (gdbarch, longword_offset));
4680 }
4681
4682 addr = sp + stack_offset + longword_offset;
4683
4684 if (mips_debug)
4685 {
4686 int i;
4687 fprintf_unfiltered (gdb_stdlog, " @%s ",
4688 paddress (gdbarch, addr));
4689 for (i = 0; i < partial_len; i++)
4690 {
4691 fprintf_unfiltered (gdb_stdlog, "%02x",
4692 val[i] & 0xff);
4693 }
4694 }
4695 write_memory (addr, val, partial_len);
4696 }
4697
4698 /* Note!!! This is NOT an else clause. Odd sized
4699 structs may go thru BOTH paths. Floating point
4700 arguments will not. */
4701 /* Write this portion of the argument to a general
4702 purpose register. */
4703 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4704 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4705 {
4706 LONGEST regval =
4707 extract_signed_integer (val, partial_len, byte_order);
4708
4709 if (mips_debug)
4710 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4711 argreg,
4712 phex (regval, abi_regsize));
4713 regcache_cooked_write_signed (regcache, argreg, regval);
4714 argreg++;
4715 }
4716
4717 len -= partial_len;
4718 val += partial_len;
4719
4720 /* Compute the offset into the stack at which we will
4721 copy the next parameter.
4722
4723 In the new EABI (and the NABI32), the stack_offset
4724 only needs to be adjusted when it has been used. */
4725
4726 if (stack_used_p)
4727 stack_offset += align_up (partial_len, abi_regsize);
4728 }
4729 }
4730 if (mips_debug)
4731 fprintf_unfiltered (gdb_stdlog, "\n");
4732 }
4733
4734 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4735
4736 /* Return adjusted stack pointer. */
4737 return sp;
4738 }
4739
4740 /* Determine the return value convention being used. */
4741
4742 static enum return_value_convention
4743 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4744 struct type *type, struct regcache *regcache,
4745 gdb_byte *readbuf, const gdb_byte *writebuf)
4746 {
4747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4748 int fp_return_type = 0;
4749 int offset, regnum, xfer;
4750
4751 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4752 return RETURN_VALUE_STRUCT_CONVENTION;
4753
4754 /* Floating point type? */
4755 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4756 {
4757 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4758 fp_return_type = 1;
4759 /* Structs with a single field of float type
4760 are returned in a floating point register. */
4761 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4762 || TYPE_CODE (type) == TYPE_CODE_UNION)
4763 && TYPE_NFIELDS (type) == 1)
4764 {
4765 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4766
4767 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4768 fp_return_type = 1;
4769 }
4770 }
4771
4772 if (fp_return_type)
4773 {
4774 /* A floating-point value belongs in the least significant part
4775 of FP0/FP1. */
4776 if (mips_debug)
4777 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4778 regnum = mips_regnum (gdbarch)->fp0;
4779 }
4780 else
4781 {
4782 /* An integer value goes in V0/V1. */
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4785 regnum = MIPS_V0_REGNUM;
4786 }
4787 for (offset = 0;
4788 offset < TYPE_LENGTH (type);
4789 offset += mips_abi_regsize (gdbarch), regnum++)
4790 {
4791 xfer = mips_abi_regsize (gdbarch);
4792 if (offset + xfer > TYPE_LENGTH (type))
4793 xfer = TYPE_LENGTH (type) - offset;
4794 mips_xfer_register (gdbarch, regcache,
4795 gdbarch_num_regs (gdbarch) + regnum, xfer,
4796 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4797 offset);
4798 }
4799
4800 return RETURN_VALUE_REGISTER_CONVENTION;
4801 }
4802
4803
4804 /* N32/N64 ABI stuff. */
4805
4806 /* Search for a naturally aligned double at OFFSET inside a struct
4807 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4808 registers. */
4809
4810 static int
4811 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4812 int offset)
4813 {
4814 int i;
4815
4816 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4817 return 0;
4818
4819 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4820 return 0;
4821
4822 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4823 return 0;
4824
4825 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4826 {
4827 int pos;
4828 struct type *field_type;
4829
4830 /* We're only looking at normal fields. */
4831 if (field_is_static (&TYPE_FIELD (arg_type, i))
4832 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4833 continue;
4834
4835 /* If we have gone past the offset, there is no double to pass. */
4836 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4837 if (pos > offset)
4838 return 0;
4839
4840 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4841
4842 /* If this field is entirely before the requested offset, go
4843 on to the next one. */
4844 if (pos + TYPE_LENGTH (field_type) <= offset)
4845 continue;
4846
4847 /* If this is our special aligned double, we can stop. */
4848 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4849 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4850 return 1;
4851
4852 /* This field starts at or before the requested offset, and
4853 overlaps it. If it is a structure, recurse inwards. */
4854 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4855 }
4856
4857 return 0;
4858 }
4859
4860 static CORE_ADDR
4861 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4862 struct regcache *regcache, CORE_ADDR bp_addr,
4863 int nargs, struct value **args, CORE_ADDR sp,
4864 int struct_return, CORE_ADDR struct_addr)
4865 {
4866 int argreg;
4867 int float_argreg;
4868 int argnum;
4869 int len = 0;
4870 int stack_offset = 0;
4871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4872 CORE_ADDR func_addr = find_function_addr (function, NULL);
4873
4874 /* For shared libraries, "t9" needs to point at the function
4875 address. */
4876 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4877
4878 /* Set the return address register to point to the entry point of
4879 the program, where a breakpoint lies in wait. */
4880 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4881
4882 /* First ensure that the stack and structure return address (if any)
4883 are properly aligned. The stack has to be at least 64-bit
4884 aligned even on 32-bit machines, because doubles must be 64-bit
4885 aligned. For n32 and n64, stack frames need to be 128-bit
4886 aligned, so we round to this widest known alignment. */
4887
4888 sp = align_down (sp, 16);
4889 struct_addr = align_down (struct_addr, 16);
4890
4891 /* Now make space on the stack for the args. */
4892 for (argnum = 0; argnum < nargs; argnum++)
4893 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4894 sp -= align_up (len, 16);
4895
4896 if (mips_debug)
4897 fprintf_unfiltered (gdb_stdlog,
4898 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4899 paddress (gdbarch, sp), (long) align_up (len, 16));
4900
4901 /* Initialize the integer and float register pointers. */
4902 argreg = MIPS_A0_REGNUM;
4903 float_argreg = mips_fpa0_regnum (gdbarch);
4904
4905 /* The struct_return pointer occupies the first parameter-passing reg. */
4906 if (struct_return)
4907 {
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stdlog,
4910 "mips_n32n64_push_dummy_call: "
4911 "struct_return reg=%d %s\n",
4912 argreg, paddress (gdbarch, struct_addr));
4913 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4914 }
4915
4916 /* Now load as many as possible of the first arguments into
4917 registers, and push the rest onto the stack. Loop thru args
4918 from first to last. */
4919 for (argnum = 0; argnum < nargs; argnum++)
4920 {
4921 const gdb_byte *val;
4922 struct value *arg = args[argnum];
4923 struct type *arg_type = check_typedef (value_type (arg));
4924 int len = TYPE_LENGTH (arg_type);
4925 enum type_code typecode = TYPE_CODE (arg_type);
4926
4927 if (mips_debug)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4930 argnum + 1, len, (int) typecode);
4931
4932 val = value_contents (arg);
4933
4934 /* A 128-bit long double value requires an even-odd pair of
4935 floating-point registers. */
4936 if (len == 16
4937 && fp_register_arg_p (gdbarch, typecode, arg_type)
4938 && (float_argreg & 1))
4939 {
4940 float_argreg++;
4941 argreg++;
4942 }
4943
4944 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4945 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4946 {
4947 /* This is a floating point value that fits entirely
4948 in a single register or a pair of registers. */
4949 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4950 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4951 if (mips_debug)
4952 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4953 float_argreg, phex (regval, reglen));
4954 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4955
4956 if (mips_debug)
4957 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4958 argreg, phex (regval, reglen));
4959 regcache_cooked_write_unsigned (regcache, argreg, regval);
4960 float_argreg++;
4961 argreg++;
4962 if (len == 16)
4963 {
4964 regval = extract_unsigned_integer (val + reglen,
4965 reglen, byte_order);
4966 if (mips_debug)
4967 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4968 float_argreg, phex (regval, reglen));
4969 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4970
4971 if (mips_debug)
4972 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4973 argreg, phex (regval, reglen));
4974 regcache_cooked_write_unsigned (regcache, argreg, regval);
4975 float_argreg++;
4976 argreg++;
4977 }
4978 }
4979 else
4980 {
4981 /* Copy the argument to general registers or the stack in
4982 register-sized pieces. Large arguments are split between
4983 registers and stack. */
4984 /* For N32/N64, structs, unions, or other composite types are
4985 treated as a sequence of doublewords, and are passed in integer
4986 or floating point registers as though they were simple scalar
4987 parameters to the extent that they fit, with any excess on the
4988 stack packed according to the normal memory layout of the
4989 object.
4990 The caller does not reserve space for the register arguments;
4991 the callee is responsible for reserving it if required. */
4992 /* Note: Floating-point values that didn't fit into an FP
4993 register are only written to memory. */
4994 while (len > 0)
4995 {
4996 /* Remember if the argument was written to the stack. */
4997 int stack_used_p = 0;
4998 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4999
5000 if (mips_debug)
5001 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5002 partial_len);
5003
5004 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5005 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5006
5007 /* Write this portion of the argument to the stack. */
5008 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5009 {
5010 /* Should shorter than int integer values be
5011 promoted to int before being stored? */
5012 int longword_offset = 0;
5013 CORE_ADDR addr;
5014 stack_used_p = 1;
5015 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5016 {
5017 if ((typecode == TYPE_CODE_INT
5018 || typecode == TYPE_CODE_PTR)
5019 && len <= 4)
5020 longword_offset = MIPS64_REGSIZE - len;
5021 }
5022
5023 if (mips_debug)
5024 {
5025 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5026 paddress (gdbarch, stack_offset));
5027 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5028 paddress (gdbarch, longword_offset));
5029 }
5030
5031 addr = sp + stack_offset + longword_offset;
5032
5033 if (mips_debug)
5034 {
5035 int i;
5036 fprintf_unfiltered (gdb_stdlog, " @%s ",
5037 paddress (gdbarch, addr));
5038 for (i = 0; i < partial_len; i++)
5039 {
5040 fprintf_unfiltered (gdb_stdlog, "%02x",
5041 val[i] & 0xff);
5042 }
5043 }
5044 write_memory (addr, val, partial_len);
5045 }
5046
5047 /* Note!!! This is NOT an else clause. Odd sized
5048 structs may go thru BOTH paths. */
5049 /* Write this portion of the argument to a general
5050 purpose register. */
5051 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5052 {
5053 LONGEST regval;
5054
5055 /* Sign extend pointers, 32-bit integers and signed
5056 16-bit and 8-bit integers; everything else is taken
5057 as is. */
5058
5059 if ((partial_len == 4
5060 && (typecode == TYPE_CODE_PTR
5061 || typecode == TYPE_CODE_INT))
5062 || (partial_len < 4
5063 && typecode == TYPE_CODE_INT
5064 && !TYPE_UNSIGNED (arg_type)))
5065 regval = extract_signed_integer (val, partial_len,
5066 byte_order);
5067 else
5068 regval = extract_unsigned_integer (val, partial_len,
5069 byte_order);
5070
5071 /* A non-floating-point argument being passed in a
5072 general register. If a struct or union, and if
5073 the remaining length is smaller than the register
5074 size, we have to adjust the register value on
5075 big endian targets.
5076
5077 It does not seem to be necessary to do the
5078 same for integral types. */
5079
5080 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5081 && partial_len < MIPS64_REGSIZE
5082 && (typecode == TYPE_CODE_STRUCT
5083 || typecode == TYPE_CODE_UNION))
5084 regval <<= ((MIPS64_REGSIZE - partial_len)
5085 * TARGET_CHAR_BIT);
5086
5087 if (mips_debug)
5088 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5089 argreg,
5090 phex (regval, MIPS64_REGSIZE));
5091 regcache_cooked_write_unsigned (regcache, argreg, regval);
5092
5093 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5094 TYPE_LENGTH (arg_type) - len))
5095 {
5096 if (mips_debug)
5097 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5098 float_argreg,
5099 phex (regval, MIPS64_REGSIZE));
5100 regcache_cooked_write_unsigned (regcache, float_argreg,
5101 regval);
5102 }
5103
5104 float_argreg++;
5105 argreg++;
5106 }
5107
5108 len -= partial_len;
5109 val += partial_len;
5110
5111 /* Compute the offset into the stack at which we will
5112 copy the next parameter.
5113
5114 In N32 (N64?), the stack_offset only needs to be
5115 adjusted when it has been used. */
5116
5117 if (stack_used_p)
5118 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5119 }
5120 }
5121 if (mips_debug)
5122 fprintf_unfiltered (gdb_stdlog, "\n");
5123 }
5124
5125 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5126
5127 /* Return adjusted stack pointer. */
5128 return sp;
5129 }
5130
5131 static enum return_value_convention
5132 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5133 struct type *type, struct regcache *regcache,
5134 gdb_byte *readbuf, const gdb_byte *writebuf)
5135 {
5136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5137
5138 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5139
5140 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5141 if needed), as appropriate for the type. Composite results (struct,
5142 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5143 following rules:
5144
5145 * A struct with only one or two floating point fields is returned in $f0
5146 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5147 case.
5148
5149 * Any other composite results of at most 128 bits are returned in
5150 $2 (first 64 bits) and $3 (remainder, if necessary).
5151
5152 * Larger composite results are handled by converting the function to a
5153 procedure with an implicit first parameter, which is a pointer to an area
5154 reserved by the caller to receive the result. [The o32-bit ABI requires
5155 that all composite results be handled by conversion to implicit first
5156 parameters. The MIPS/SGI Fortran implementation has always made a
5157 specific exception to return COMPLEX results in the floating point
5158 registers.] */
5159
5160 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5161 return RETURN_VALUE_STRUCT_CONVENTION;
5162 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5163 && TYPE_LENGTH (type) == 16
5164 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5165 {
5166 /* A 128-bit floating-point value fills both $f0 and $f2. The
5167 two registers are used in the same as memory order, so the
5168 eight bytes with the lower memory address are in $f0. */
5169 if (mips_debug)
5170 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5171 mips_xfer_register (gdbarch, regcache,
5172 (gdbarch_num_regs (gdbarch)
5173 + mips_regnum (gdbarch)->fp0),
5174 8, gdbarch_byte_order (gdbarch),
5175 readbuf, writebuf, 0);
5176 mips_xfer_register (gdbarch, regcache,
5177 (gdbarch_num_regs (gdbarch)
5178 + mips_regnum (gdbarch)->fp0 + 2),
5179 8, gdbarch_byte_order (gdbarch),
5180 readbuf ? readbuf + 8 : readbuf,
5181 writebuf ? writebuf + 8 : writebuf, 0);
5182 return RETURN_VALUE_REGISTER_CONVENTION;
5183 }
5184 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5185 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5186 {
5187 /* A single or double floating-point value that fits in FP0. */
5188 if (mips_debug)
5189 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5190 mips_xfer_register (gdbarch, regcache,
5191 (gdbarch_num_regs (gdbarch)
5192 + mips_regnum (gdbarch)->fp0),
5193 TYPE_LENGTH (type),
5194 gdbarch_byte_order (gdbarch),
5195 readbuf, writebuf, 0);
5196 return RETURN_VALUE_REGISTER_CONVENTION;
5197 }
5198 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5199 && TYPE_NFIELDS (type) <= 2
5200 && TYPE_NFIELDS (type) >= 1
5201 && ((TYPE_NFIELDS (type) == 1
5202 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5203 == TYPE_CODE_FLT))
5204 || (TYPE_NFIELDS (type) == 2
5205 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5206 == TYPE_CODE_FLT)
5207 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5208 == TYPE_CODE_FLT))))
5209 {
5210 /* A struct that contains one or two floats. Each value is part
5211 in the least significant part of their floating point
5212 register (or GPR, for soft float). */
5213 int regnum;
5214 int field;
5215 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5216 ? mips_regnum (gdbarch)->fp0
5217 : MIPS_V0_REGNUM);
5218 field < TYPE_NFIELDS (type); field++, regnum += 2)
5219 {
5220 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5221 / TARGET_CHAR_BIT);
5222 if (mips_debug)
5223 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5224 offset);
5225 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5226 {
5227 /* A 16-byte long double field goes in two consecutive
5228 registers. */
5229 mips_xfer_register (gdbarch, regcache,
5230 gdbarch_num_regs (gdbarch) + regnum,
5231 8,
5232 gdbarch_byte_order (gdbarch),
5233 readbuf, writebuf, offset);
5234 mips_xfer_register (gdbarch, regcache,
5235 gdbarch_num_regs (gdbarch) + regnum + 1,
5236 8,
5237 gdbarch_byte_order (gdbarch),
5238 readbuf, writebuf, offset + 8);
5239 }
5240 else
5241 mips_xfer_register (gdbarch, regcache,
5242 gdbarch_num_regs (gdbarch) + regnum,
5243 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5244 gdbarch_byte_order (gdbarch),
5245 readbuf, writebuf, offset);
5246 }
5247 return RETURN_VALUE_REGISTER_CONVENTION;
5248 }
5249 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5250 || TYPE_CODE (type) == TYPE_CODE_UNION
5251 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5252 {
5253 /* A composite type. Extract the left justified value,
5254 regardless of the byte order. I.e. DO NOT USE
5255 mips_xfer_lower. */
5256 int offset;
5257 int regnum;
5258 for (offset = 0, regnum = MIPS_V0_REGNUM;
5259 offset < TYPE_LENGTH (type);
5260 offset += register_size (gdbarch, regnum), regnum++)
5261 {
5262 int xfer = register_size (gdbarch, regnum);
5263 if (offset + xfer > TYPE_LENGTH (type))
5264 xfer = TYPE_LENGTH (type) - offset;
5265 if (mips_debug)
5266 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5267 offset, xfer, regnum);
5268 mips_xfer_register (gdbarch, regcache,
5269 gdbarch_num_regs (gdbarch) + regnum,
5270 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5271 offset);
5272 }
5273 return RETURN_VALUE_REGISTER_CONVENTION;
5274 }
5275 else
5276 {
5277 /* A scalar extract each part but least-significant-byte
5278 justified. */
5279 int offset;
5280 int regnum;
5281 for (offset = 0, regnum = MIPS_V0_REGNUM;
5282 offset < TYPE_LENGTH (type);
5283 offset += register_size (gdbarch, regnum), regnum++)
5284 {
5285 int xfer = register_size (gdbarch, regnum);
5286 if (offset + xfer > TYPE_LENGTH (type))
5287 xfer = TYPE_LENGTH (type) - offset;
5288 if (mips_debug)
5289 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5290 offset, xfer, regnum);
5291 mips_xfer_register (gdbarch, regcache,
5292 gdbarch_num_regs (gdbarch) + regnum,
5293 xfer, gdbarch_byte_order (gdbarch),
5294 readbuf, writebuf, offset);
5295 }
5296 return RETURN_VALUE_REGISTER_CONVENTION;
5297 }
5298 }
5299
5300 /* Which registers to use for passing floating-point values between
5301 function calls, one of floating-point, general and both kinds of
5302 registers. O32 and O64 use different register kinds for standard
5303 MIPS and MIPS16 code; to make the handling of cases where we may
5304 not know what kind of code is being used (e.g. no debug information)
5305 easier we sometimes use both kinds. */
5306
5307 enum mips_fval_reg
5308 {
5309 mips_fval_fpr,
5310 mips_fval_gpr,
5311 mips_fval_both
5312 };
5313
5314 /* O32 ABI stuff. */
5315
5316 static CORE_ADDR
5317 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5318 struct regcache *regcache, CORE_ADDR bp_addr,
5319 int nargs, struct value **args, CORE_ADDR sp,
5320 int struct_return, CORE_ADDR struct_addr)
5321 {
5322 int argreg;
5323 int float_argreg;
5324 int argnum;
5325 int len = 0;
5326 int stack_offset = 0;
5327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5328 CORE_ADDR func_addr = find_function_addr (function, NULL);
5329
5330 /* For shared libraries, "t9" needs to point at the function
5331 address. */
5332 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5333
5334 /* Set the return address register to point to the entry point of
5335 the program, where a breakpoint lies in wait. */
5336 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5337
5338 /* First ensure that the stack and structure return address (if any)
5339 are properly aligned. The stack has to be at least 64-bit
5340 aligned even on 32-bit machines, because doubles must be 64-bit
5341 aligned. For n32 and n64, stack frames need to be 128-bit
5342 aligned, so we round to this widest known alignment. */
5343
5344 sp = align_down (sp, 16);
5345 struct_addr = align_down (struct_addr, 16);
5346
5347 /* Now make space on the stack for the args. */
5348 for (argnum = 0; argnum < nargs; argnum++)
5349 {
5350 struct type *arg_type = check_typedef (value_type (args[argnum]));
5351
5352 /* Align to double-word if necessary. */
5353 if (mips_type_needs_double_align (arg_type))
5354 len = align_up (len, MIPS32_REGSIZE * 2);
5355 /* Allocate space on the stack. */
5356 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5357 }
5358 sp -= align_up (len, 16);
5359
5360 if (mips_debug)
5361 fprintf_unfiltered (gdb_stdlog,
5362 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5363 paddress (gdbarch, sp), (long) align_up (len, 16));
5364
5365 /* Initialize the integer and float register pointers. */
5366 argreg = MIPS_A0_REGNUM;
5367 float_argreg = mips_fpa0_regnum (gdbarch);
5368
5369 /* The struct_return pointer occupies the first parameter-passing reg. */
5370 if (struct_return)
5371 {
5372 if (mips_debug)
5373 fprintf_unfiltered (gdb_stdlog,
5374 "mips_o32_push_dummy_call: "
5375 "struct_return reg=%d %s\n",
5376 argreg, paddress (gdbarch, struct_addr));
5377 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5378 stack_offset += MIPS32_REGSIZE;
5379 }
5380
5381 /* Now load as many as possible of the first arguments into
5382 registers, and push the rest onto the stack. Loop thru args
5383 from first to last. */
5384 for (argnum = 0; argnum < nargs; argnum++)
5385 {
5386 const gdb_byte *val;
5387 struct value *arg = args[argnum];
5388 struct type *arg_type = check_typedef (value_type (arg));
5389 int len = TYPE_LENGTH (arg_type);
5390 enum type_code typecode = TYPE_CODE (arg_type);
5391
5392 if (mips_debug)
5393 fprintf_unfiltered (gdb_stdlog,
5394 "mips_o32_push_dummy_call: %d len=%d type=%d",
5395 argnum + 1, len, (int) typecode);
5396
5397 val = value_contents (arg);
5398
5399 /* 32-bit ABIs always start floating point arguments in an
5400 even-numbered floating point register. Round the FP register
5401 up before the check to see if there are any FP registers
5402 left. O32 targets also pass the FP in the integer registers
5403 so also round up normal registers. */
5404 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5405 {
5406 if ((float_argreg & 1))
5407 float_argreg++;
5408 }
5409
5410 /* Floating point arguments passed in registers have to be
5411 treated specially. On 32-bit architectures, doubles are
5412 passed in register pairs; the even FP register gets the
5413 low word, and the odd FP register gets the high word.
5414 On O32, the first two floating point arguments are also
5415 copied to general registers, following their memory order,
5416 because MIPS16 functions don't use float registers for
5417 arguments. This duplication of arguments in general
5418 registers can't hurt non-MIPS16 functions, because those
5419 registers are normally skipped. */
5420
5421 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5422 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5423 {
5424 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5425 {
5426 int freg_offset = gdbarch_byte_order (gdbarch)
5427 == BFD_ENDIAN_BIG ? 1 : 0;
5428 unsigned long regval;
5429
5430 /* First word. */
5431 regval = extract_unsigned_integer (val, 4, byte_order);
5432 if (mips_debug)
5433 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5434 float_argreg + freg_offset,
5435 phex (regval, 4));
5436 regcache_cooked_write_unsigned (regcache,
5437 float_argreg++ + freg_offset,
5438 regval);
5439 if (mips_debug)
5440 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5441 argreg, phex (regval, 4));
5442 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5443
5444 /* Second word. */
5445 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5446 if (mips_debug)
5447 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5448 float_argreg - freg_offset,
5449 phex (regval, 4));
5450 regcache_cooked_write_unsigned (regcache,
5451 float_argreg++ - freg_offset,
5452 regval);
5453 if (mips_debug)
5454 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5455 argreg, phex (regval, 4));
5456 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5457 }
5458 else
5459 {
5460 /* This is a floating point value that fits entirely
5461 in a single register. */
5462 /* On 32 bit ABI's the float_argreg is further adjusted
5463 above to ensure that it is even register aligned. */
5464 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5465 if (mips_debug)
5466 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5467 float_argreg, phex (regval, len));
5468 regcache_cooked_write_unsigned (regcache,
5469 float_argreg++, regval);
5470 /* Although two FP registers are reserved for each
5471 argument, only one corresponding integer register is
5472 reserved. */
5473 if (mips_debug)
5474 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5475 argreg, phex (regval, len));
5476 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5477 }
5478 /* Reserve space for the FP register. */
5479 stack_offset += align_up (len, MIPS32_REGSIZE);
5480 }
5481 else
5482 {
5483 /* Copy the argument to general registers or the stack in
5484 register-sized pieces. Large arguments are split between
5485 registers and stack. */
5486 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5487 are treated specially: Irix cc passes
5488 them in registers where gcc sometimes puts them on the
5489 stack. For maximum compatibility, we will put them in
5490 both places. */
5491 int odd_sized_struct = (len > MIPS32_REGSIZE
5492 && len % MIPS32_REGSIZE != 0);
5493 /* Structures should be aligned to eight bytes (even arg registers)
5494 on MIPS_ABI_O32, if their first member has double precision. */
5495 if (mips_type_needs_double_align (arg_type))
5496 {
5497 if ((argreg & 1))
5498 {
5499 argreg++;
5500 stack_offset += MIPS32_REGSIZE;
5501 }
5502 }
5503 while (len > 0)
5504 {
5505 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5506
5507 if (mips_debug)
5508 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5509 partial_len);
5510
5511 /* Write this portion of the argument to the stack. */
5512 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5513 || odd_sized_struct)
5514 {
5515 /* Should shorter than int integer values be
5516 promoted to int before being stored? */
5517 int longword_offset = 0;
5518 CORE_ADDR addr;
5519
5520 if (mips_debug)
5521 {
5522 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5523 paddress (gdbarch, stack_offset));
5524 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5525 paddress (gdbarch, longword_offset));
5526 }
5527
5528 addr = sp + stack_offset + longword_offset;
5529
5530 if (mips_debug)
5531 {
5532 int i;
5533 fprintf_unfiltered (gdb_stdlog, " @%s ",
5534 paddress (gdbarch, addr));
5535 for (i = 0; i < partial_len; i++)
5536 {
5537 fprintf_unfiltered (gdb_stdlog, "%02x",
5538 val[i] & 0xff);
5539 }
5540 }
5541 write_memory (addr, val, partial_len);
5542 }
5543
5544 /* Note!!! This is NOT an else clause. Odd sized
5545 structs may go thru BOTH paths. */
5546 /* Write this portion of the argument to a general
5547 purpose register. */
5548 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5549 {
5550 LONGEST regval = extract_signed_integer (val, partial_len,
5551 byte_order);
5552 /* Value may need to be sign extended, because
5553 mips_isa_regsize() != mips_abi_regsize(). */
5554
5555 /* A non-floating-point argument being passed in a
5556 general register. If a struct or union, and if
5557 the remaining length is smaller than the register
5558 size, we have to adjust the register value on
5559 big endian targets.
5560
5561 It does not seem to be necessary to do the
5562 same for integral types.
5563
5564 Also don't do this adjustment on O64 binaries.
5565
5566 cagney/2001-07-23: gdb/179: Also, GCC, when
5567 outputting LE O32 with sizeof (struct) <
5568 mips_abi_regsize(), generates a left shift
5569 as part of storing the argument in a register
5570 (the left shift isn't generated when
5571 sizeof (struct) >= mips_abi_regsize()). Since
5572 it is quite possible that this is GCC
5573 contradicting the LE/O32 ABI, GDB has not been
5574 adjusted to accommodate this. Either someone
5575 needs to demonstrate that the LE/O32 ABI
5576 specifies such a left shift OR this new ABI gets
5577 identified as such and GDB gets tweaked
5578 accordingly. */
5579
5580 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5581 && partial_len < MIPS32_REGSIZE
5582 && (typecode == TYPE_CODE_STRUCT
5583 || typecode == TYPE_CODE_UNION))
5584 regval <<= ((MIPS32_REGSIZE - partial_len)
5585 * TARGET_CHAR_BIT);
5586
5587 if (mips_debug)
5588 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5589 argreg,
5590 phex (regval, MIPS32_REGSIZE));
5591 regcache_cooked_write_unsigned (regcache, argreg, regval);
5592 argreg++;
5593
5594 /* Prevent subsequent floating point arguments from
5595 being passed in floating point registers. */
5596 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5597 }
5598
5599 len -= partial_len;
5600 val += partial_len;
5601
5602 /* Compute the offset into the stack at which we will
5603 copy the next parameter.
5604
5605 In older ABIs, the caller reserved space for
5606 registers that contained arguments. This was loosely
5607 refered to as their "home". Consequently, space is
5608 always allocated. */
5609
5610 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5611 }
5612 }
5613 if (mips_debug)
5614 fprintf_unfiltered (gdb_stdlog, "\n");
5615 }
5616
5617 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5618
5619 /* Return adjusted stack pointer. */
5620 return sp;
5621 }
5622
5623 static enum return_value_convention
5624 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5625 struct type *type, struct regcache *regcache,
5626 gdb_byte *readbuf, const gdb_byte *writebuf)
5627 {
5628 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5629 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5630 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5631 enum mips_fval_reg fval_reg;
5632
5633 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5634 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5635 || TYPE_CODE (type) == TYPE_CODE_UNION
5636 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5637 return RETURN_VALUE_STRUCT_CONVENTION;
5638 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5639 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5640 {
5641 /* A single-precision floating-point value. If reading in or copying,
5642 then we get it from/put it to FP0 for standard MIPS code or GPR2
5643 for MIPS16 code. If writing out only, then we put it to both FP0
5644 and GPR2. We do not support reading in with no function known, if
5645 this safety check ever triggers, then we'll have to try harder. */
5646 gdb_assert (function || !readbuf);
5647 if (mips_debug)
5648 switch (fval_reg)
5649 {
5650 case mips_fval_fpr:
5651 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5652 break;
5653 case mips_fval_gpr:
5654 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5655 break;
5656 case mips_fval_both:
5657 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5658 break;
5659 }
5660 if (fval_reg != mips_fval_gpr)
5661 mips_xfer_register (gdbarch, regcache,
5662 (gdbarch_num_regs (gdbarch)
5663 + mips_regnum (gdbarch)->fp0),
5664 TYPE_LENGTH (type),
5665 gdbarch_byte_order (gdbarch),
5666 readbuf, writebuf, 0);
5667 if (fval_reg != mips_fval_fpr)
5668 mips_xfer_register (gdbarch, regcache,
5669 gdbarch_num_regs (gdbarch) + 2,
5670 TYPE_LENGTH (type),
5671 gdbarch_byte_order (gdbarch),
5672 readbuf, writebuf, 0);
5673 return RETURN_VALUE_REGISTER_CONVENTION;
5674 }
5675 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5676 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5677 {
5678 /* A double-precision floating-point value. If reading in or copying,
5679 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5680 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5681 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5682 no function known, if this safety check ever triggers, then we'll
5683 have to try harder. */
5684 gdb_assert (function || !readbuf);
5685 if (mips_debug)
5686 switch (fval_reg)
5687 {
5688 case mips_fval_fpr:
5689 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5690 break;
5691 case mips_fval_gpr:
5692 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5693 break;
5694 case mips_fval_both:
5695 fprintf_unfiltered (gdb_stderr,
5696 "Return float in $fp1/$fp0 and $2/$3\n");
5697 break;
5698 }
5699 if (fval_reg != mips_fval_gpr)
5700 {
5701 /* The most significant part goes in FP1, and the least significant
5702 in FP0. */
5703 switch (gdbarch_byte_order (gdbarch))
5704 {
5705 case BFD_ENDIAN_LITTLE:
5706 mips_xfer_register (gdbarch, regcache,
5707 (gdbarch_num_regs (gdbarch)
5708 + mips_regnum (gdbarch)->fp0 + 0),
5709 4, gdbarch_byte_order (gdbarch),
5710 readbuf, writebuf, 0);
5711 mips_xfer_register (gdbarch, regcache,
5712 (gdbarch_num_regs (gdbarch)
5713 + mips_regnum (gdbarch)->fp0 + 1),
5714 4, gdbarch_byte_order (gdbarch),
5715 readbuf, writebuf, 4);
5716 break;
5717 case BFD_ENDIAN_BIG:
5718 mips_xfer_register (gdbarch, regcache,
5719 (gdbarch_num_regs (gdbarch)
5720 + mips_regnum (gdbarch)->fp0 + 1),
5721 4, gdbarch_byte_order (gdbarch),
5722 readbuf, writebuf, 0);
5723 mips_xfer_register (gdbarch, regcache,
5724 (gdbarch_num_regs (gdbarch)
5725 + mips_regnum (gdbarch)->fp0 + 0),
5726 4, gdbarch_byte_order (gdbarch),
5727 readbuf, writebuf, 4);
5728 break;
5729 default:
5730 internal_error (__FILE__, __LINE__, _("bad switch"));
5731 }
5732 }
5733 if (fval_reg != mips_fval_fpr)
5734 {
5735 /* The two 32-bit parts are always placed in GPR2 and GPR3
5736 following these registers' memory order. */
5737 mips_xfer_register (gdbarch, regcache,
5738 gdbarch_num_regs (gdbarch) + 2,
5739 4, gdbarch_byte_order (gdbarch),
5740 readbuf, writebuf, 0);
5741 mips_xfer_register (gdbarch, regcache,
5742 gdbarch_num_regs (gdbarch) + 3,
5743 4, gdbarch_byte_order (gdbarch),
5744 readbuf, writebuf, 4);
5745 }
5746 return RETURN_VALUE_REGISTER_CONVENTION;
5747 }
5748 #if 0
5749 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5750 && TYPE_NFIELDS (type) <= 2
5751 && TYPE_NFIELDS (type) >= 1
5752 && ((TYPE_NFIELDS (type) == 1
5753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5754 == TYPE_CODE_FLT))
5755 || (TYPE_NFIELDS (type) == 2
5756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5757 == TYPE_CODE_FLT)
5758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5759 == TYPE_CODE_FLT)))
5760 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5761 {
5762 /* A struct that contains one or two floats. Each value is part
5763 in the least significant part of their floating point
5764 register.. */
5765 int regnum;
5766 int field;
5767 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5768 field < TYPE_NFIELDS (type); field++, regnum += 2)
5769 {
5770 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5771 / TARGET_CHAR_BIT);
5772 if (mips_debug)
5773 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5774 offset);
5775 mips_xfer_register (gdbarch, regcache,
5776 gdbarch_num_regs (gdbarch) + regnum,
5777 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5778 gdbarch_byte_order (gdbarch),
5779 readbuf, writebuf, offset);
5780 }
5781 return RETURN_VALUE_REGISTER_CONVENTION;
5782 }
5783 #endif
5784 #if 0
5785 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5786 || TYPE_CODE (type) == TYPE_CODE_UNION)
5787 {
5788 /* A structure or union. Extract the left justified value,
5789 regardless of the byte order. I.e. DO NOT USE
5790 mips_xfer_lower. */
5791 int offset;
5792 int regnum;
5793 for (offset = 0, regnum = MIPS_V0_REGNUM;
5794 offset < TYPE_LENGTH (type);
5795 offset += register_size (gdbarch, regnum), regnum++)
5796 {
5797 int xfer = register_size (gdbarch, regnum);
5798 if (offset + xfer > TYPE_LENGTH (type))
5799 xfer = TYPE_LENGTH (type) - offset;
5800 if (mips_debug)
5801 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5802 offset, xfer, regnum);
5803 mips_xfer_register (gdbarch, regcache,
5804 gdbarch_num_regs (gdbarch) + regnum, xfer,
5805 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5806 }
5807 return RETURN_VALUE_REGISTER_CONVENTION;
5808 }
5809 #endif
5810 else
5811 {
5812 /* A scalar extract each part but least-significant-byte
5813 justified. o32 thinks registers are 4 byte, regardless of
5814 the ISA. */
5815 int offset;
5816 int regnum;
5817 for (offset = 0, regnum = MIPS_V0_REGNUM;
5818 offset < TYPE_LENGTH (type);
5819 offset += MIPS32_REGSIZE, regnum++)
5820 {
5821 int xfer = MIPS32_REGSIZE;
5822 if (offset + xfer > TYPE_LENGTH (type))
5823 xfer = TYPE_LENGTH (type) - offset;
5824 if (mips_debug)
5825 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5826 offset, xfer, regnum);
5827 mips_xfer_register (gdbarch, regcache,
5828 gdbarch_num_regs (gdbarch) + regnum, xfer,
5829 gdbarch_byte_order (gdbarch),
5830 readbuf, writebuf, offset);
5831 }
5832 return RETURN_VALUE_REGISTER_CONVENTION;
5833 }
5834 }
5835
5836 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5837 ABI. */
5838
5839 static CORE_ADDR
5840 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5841 struct regcache *regcache, CORE_ADDR bp_addr,
5842 int nargs,
5843 struct value **args, CORE_ADDR sp,
5844 int struct_return, CORE_ADDR struct_addr)
5845 {
5846 int argreg;
5847 int float_argreg;
5848 int argnum;
5849 int len = 0;
5850 int stack_offset = 0;
5851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5852 CORE_ADDR func_addr = find_function_addr (function, NULL);
5853
5854 /* For shared libraries, "t9" needs to point at the function
5855 address. */
5856 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5857
5858 /* Set the return address register to point to the entry point of
5859 the program, where a breakpoint lies in wait. */
5860 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5861
5862 /* First ensure that the stack and structure return address (if any)
5863 are properly aligned. The stack has to be at least 64-bit
5864 aligned even on 32-bit machines, because doubles must be 64-bit
5865 aligned. For n32 and n64, stack frames need to be 128-bit
5866 aligned, so we round to this widest known alignment. */
5867
5868 sp = align_down (sp, 16);
5869 struct_addr = align_down (struct_addr, 16);
5870
5871 /* Now make space on the stack for the args. */
5872 for (argnum = 0; argnum < nargs; argnum++)
5873 {
5874 struct type *arg_type = check_typedef (value_type (args[argnum]));
5875
5876 /* Allocate space on the stack. */
5877 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5878 }
5879 sp -= align_up (len, 16);
5880
5881 if (mips_debug)
5882 fprintf_unfiltered (gdb_stdlog,
5883 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5884 paddress (gdbarch, sp), (long) align_up (len, 16));
5885
5886 /* Initialize the integer and float register pointers. */
5887 argreg = MIPS_A0_REGNUM;
5888 float_argreg = mips_fpa0_regnum (gdbarch);
5889
5890 /* The struct_return pointer occupies the first parameter-passing reg. */
5891 if (struct_return)
5892 {
5893 if (mips_debug)
5894 fprintf_unfiltered (gdb_stdlog,
5895 "mips_o64_push_dummy_call: "
5896 "struct_return reg=%d %s\n",
5897 argreg, paddress (gdbarch, struct_addr));
5898 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5899 stack_offset += MIPS64_REGSIZE;
5900 }
5901
5902 /* Now load as many as possible of the first arguments into
5903 registers, and push the rest onto the stack. Loop thru args
5904 from first to last. */
5905 for (argnum = 0; argnum < nargs; argnum++)
5906 {
5907 const gdb_byte *val;
5908 struct value *arg = args[argnum];
5909 struct type *arg_type = check_typedef (value_type (arg));
5910 int len = TYPE_LENGTH (arg_type);
5911 enum type_code typecode = TYPE_CODE (arg_type);
5912
5913 if (mips_debug)
5914 fprintf_unfiltered (gdb_stdlog,
5915 "mips_o64_push_dummy_call: %d len=%d type=%d",
5916 argnum + 1, len, (int) typecode);
5917
5918 val = value_contents (arg);
5919
5920 /* Floating point arguments passed in registers have to be
5921 treated specially. On 32-bit architectures, doubles are
5922 passed in register pairs; the even FP register gets the
5923 low word, and the odd FP register gets the high word.
5924 On O64, the first two floating point arguments are also
5925 copied to general registers, because MIPS16 functions
5926 don't use float registers for arguments. This duplication
5927 of arguments in general registers can't hurt non-MIPS16
5928 functions because those registers are normally skipped. */
5929
5930 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5931 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5932 {
5933 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5934 if (mips_debug)
5935 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5936 float_argreg, phex (regval, len));
5937 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5938 if (mips_debug)
5939 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5940 argreg, phex (regval, len));
5941 regcache_cooked_write_unsigned (regcache, argreg, regval);
5942 argreg++;
5943 /* Reserve space for the FP register. */
5944 stack_offset += align_up (len, MIPS64_REGSIZE);
5945 }
5946 else
5947 {
5948 /* Copy the argument to general registers or the stack in
5949 register-sized pieces. Large arguments are split between
5950 registers and stack. */
5951 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5952 are treated specially: Irix cc passes them in registers
5953 where gcc sometimes puts them on the stack. For maximum
5954 compatibility, we will put them in both places. */
5955 int odd_sized_struct = (len > MIPS64_REGSIZE
5956 && len % MIPS64_REGSIZE != 0);
5957 while (len > 0)
5958 {
5959 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5960
5961 if (mips_debug)
5962 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5963 partial_len);
5964
5965 /* Write this portion of the argument to the stack. */
5966 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5967 || odd_sized_struct)
5968 {
5969 /* Should shorter than int integer values be
5970 promoted to int before being stored? */
5971 int longword_offset = 0;
5972 CORE_ADDR addr;
5973 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5974 {
5975 if ((typecode == TYPE_CODE_INT
5976 || typecode == TYPE_CODE_PTR
5977 || typecode == TYPE_CODE_FLT)
5978 && len <= 4)
5979 longword_offset = MIPS64_REGSIZE - len;
5980 }
5981
5982 if (mips_debug)
5983 {
5984 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5985 paddress (gdbarch, stack_offset));
5986 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5987 paddress (gdbarch, longword_offset));
5988 }
5989
5990 addr = sp + stack_offset + longword_offset;
5991
5992 if (mips_debug)
5993 {
5994 int i;
5995 fprintf_unfiltered (gdb_stdlog, " @%s ",
5996 paddress (gdbarch, addr));
5997 for (i = 0; i < partial_len; i++)
5998 {
5999 fprintf_unfiltered (gdb_stdlog, "%02x",
6000 val[i] & 0xff);
6001 }
6002 }
6003 write_memory (addr, val, partial_len);
6004 }
6005
6006 /* Note!!! This is NOT an else clause. Odd sized
6007 structs may go thru BOTH paths. */
6008 /* Write this portion of the argument to a general
6009 purpose register. */
6010 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6011 {
6012 LONGEST regval = extract_signed_integer (val, partial_len,
6013 byte_order);
6014 /* Value may need to be sign extended, because
6015 mips_isa_regsize() != mips_abi_regsize(). */
6016
6017 /* A non-floating-point argument being passed in a
6018 general register. If a struct or union, and if
6019 the remaining length is smaller than the register
6020 size, we have to adjust the register value on
6021 big endian targets.
6022
6023 It does not seem to be necessary to do the
6024 same for integral types. */
6025
6026 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6027 && partial_len < MIPS64_REGSIZE
6028 && (typecode == TYPE_CODE_STRUCT
6029 || typecode == TYPE_CODE_UNION))
6030 regval <<= ((MIPS64_REGSIZE - partial_len)
6031 * TARGET_CHAR_BIT);
6032
6033 if (mips_debug)
6034 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6035 argreg,
6036 phex (regval, MIPS64_REGSIZE));
6037 regcache_cooked_write_unsigned (regcache, argreg, regval);
6038 argreg++;
6039
6040 /* Prevent subsequent floating point arguments from
6041 being passed in floating point registers. */
6042 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6043 }
6044
6045 len -= partial_len;
6046 val += partial_len;
6047
6048 /* Compute the offset into the stack at which we will
6049 copy the next parameter.
6050
6051 In older ABIs, the caller reserved space for
6052 registers that contained arguments. This was loosely
6053 refered to as their "home". Consequently, space is
6054 always allocated. */
6055
6056 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6057 }
6058 }
6059 if (mips_debug)
6060 fprintf_unfiltered (gdb_stdlog, "\n");
6061 }
6062
6063 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6064
6065 /* Return adjusted stack pointer. */
6066 return sp;
6067 }
6068
6069 static enum return_value_convention
6070 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6071 struct type *type, struct regcache *regcache,
6072 gdb_byte *readbuf, const gdb_byte *writebuf)
6073 {
6074 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6075 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6076 enum mips_fval_reg fval_reg;
6077
6078 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6079 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6080 || TYPE_CODE (type) == TYPE_CODE_UNION
6081 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6082 return RETURN_VALUE_STRUCT_CONVENTION;
6083 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6084 {
6085 /* A floating-point value. If reading in or copying, then we get it
6086 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6087 If writing out only, then we put it to both FP0 and GPR2. We do
6088 not support reading in with no function known, if this safety
6089 check ever triggers, then we'll have to try harder. */
6090 gdb_assert (function || !readbuf);
6091 if (mips_debug)
6092 switch (fval_reg)
6093 {
6094 case mips_fval_fpr:
6095 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6096 break;
6097 case mips_fval_gpr:
6098 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6099 break;
6100 case mips_fval_both:
6101 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6102 break;
6103 }
6104 if (fval_reg != mips_fval_gpr)
6105 mips_xfer_register (gdbarch, regcache,
6106 (gdbarch_num_regs (gdbarch)
6107 + mips_regnum (gdbarch)->fp0),
6108 TYPE_LENGTH (type),
6109 gdbarch_byte_order (gdbarch),
6110 readbuf, writebuf, 0);
6111 if (fval_reg != mips_fval_fpr)
6112 mips_xfer_register (gdbarch, regcache,
6113 gdbarch_num_regs (gdbarch) + 2,
6114 TYPE_LENGTH (type),
6115 gdbarch_byte_order (gdbarch),
6116 readbuf, writebuf, 0);
6117 return RETURN_VALUE_REGISTER_CONVENTION;
6118 }
6119 else
6120 {
6121 /* A scalar extract each part but least-significant-byte
6122 justified. */
6123 int offset;
6124 int regnum;
6125 for (offset = 0, regnum = MIPS_V0_REGNUM;
6126 offset < TYPE_LENGTH (type);
6127 offset += MIPS64_REGSIZE, regnum++)
6128 {
6129 int xfer = MIPS64_REGSIZE;
6130 if (offset + xfer > TYPE_LENGTH (type))
6131 xfer = TYPE_LENGTH (type) - offset;
6132 if (mips_debug)
6133 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6134 offset, xfer, regnum);
6135 mips_xfer_register (gdbarch, regcache,
6136 gdbarch_num_regs (gdbarch) + regnum,
6137 xfer, gdbarch_byte_order (gdbarch),
6138 readbuf, writebuf, offset);
6139 }
6140 return RETURN_VALUE_REGISTER_CONVENTION;
6141 }
6142 }
6143
6144 /* Floating point register management.
6145
6146 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6147 64bit operations, these early MIPS cpus treat fp register pairs
6148 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6149 registers and offer a compatibility mode that emulates the MIPS2 fp
6150 model. When operating in MIPS2 fp compat mode, later cpu's split
6151 double precision floats into two 32-bit chunks and store them in
6152 consecutive fp regs. To display 64-bit floats stored in this
6153 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6154 Throw in user-configurable endianness and you have a real mess.
6155
6156 The way this works is:
6157 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6158 double-precision value will be split across two logical registers.
6159 The lower-numbered logical register will hold the low-order bits,
6160 regardless of the processor's endianness.
6161 - If we are on a 64-bit processor, and we are looking for a
6162 single-precision value, it will be in the low ordered bits
6163 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6164 save slot in memory.
6165 - If we are in 64-bit mode, everything is straightforward.
6166
6167 Note that this code only deals with "live" registers at the top of the
6168 stack. We will attempt to deal with saved registers later, when
6169 the raw/cooked register interface is in place. (We need a general
6170 interface that can deal with dynamic saved register sizes -- fp
6171 regs could be 32 bits wide in one frame and 64 on the frame above
6172 and below). */
6173
6174 /* Copy a 32-bit single-precision value from the current frame
6175 into rare_buffer. */
6176
6177 static void
6178 mips_read_fp_register_single (struct frame_info *frame, int regno,
6179 gdb_byte *rare_buffer)
6180 {
6181 struct gdbarch *gdbarch = get_frame_arch (frame);
6182 int raw_size = register_size (gdbarch, regno);
6183 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6184
6185 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6186 error (_("can't read register %d (%s)"),
6187 regno, gdbarch_register_name (gdbarch, regno));
6188 if (raw_size == 8)
6189 {
6190 /* We have a 64-bit value for this register. Find the low-order
6191 32 bits. */
6192 int offset;
6193
6194 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6195 offset = 4;
6196 else
6197 offset = 0;
6198
6199 memcpy (rare_buffer, raw_buffer + offset, 4);
6200 }
6201 else
6202 {
6203 memcpy (rare_buffer, raw_buffer, 4);
6204 }
6205 }
6206
6207 /* Copy a 64-bit double-precision value from the current frame into
6208 rare_buffer. This may include getting half of it from the next
6209 register. */
6210
6211 static void
6212 mips_read_fp_register_double (struct frame_info *frame, int regno,
6213 gdb_byte *rare_buffer)
6214 {
6215 struct gdbarch *gdbarch = get_frame_arch (frame);
6216 int raw_size = register_size (gdbarch, regno);
6217
6218 if (raw_size == 8 && !mips2_fp_compat (frame))
6219 {
6220 /* We have a 64-bit value for this register, and we should use
6221 all 64 bits. */
6222 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6223 error (_("can't read register %d (%s)"),
6224 regno, gdbarch_register_name (gdbarch, regno));
6225 }
6226 else
6227 {
6228 int rawnum = regno % gdbarch_num_regs (gdbarch);
6229
6230 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6231 internal_error (__FILE__, __LINE__,
6232 _("mips_read_fp_register_double: bad access to "
6233 "odd-numbered FP register"));
6234
6235 /* mips_read_fp_register_single will find the correct 32 bits from
6236 each register. */
6237 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6238 {
6239 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6240 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6241 }
6242 else
6243 {
6244 mips_read_fp_register_single (frame, regno, rare_buffer);
6245 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6246 }
6247 }
6248 }
6249
6250 static void
6251 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6252 int regnum)
6253 { /* Do values for FP (float) regs. */
6254 struct gdbarch *gdbarch = get_frame_arch (frame);
6255 gdb_byte *raw_buffer;
6256 std::string flt_str, dbl_str;
6257
6258 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6259 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
6260
6261 raw_buffer
6262 = ((gdb_byte *)
6263 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6264
6265 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6266 fprintf_filtered (file, "%*s",
6267 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6268 "");
6269
6270 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6271 {
6272 struct value_print_options opts;
6273
6274 /* 4-byte registers: Print hex and floating. Also print even
6275 numbered registers as doubles. */
6276 mips_read_fp_register_single (frame, regnum, raw_buffer);
6277 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6278
6279 get_formatted_print_options (&opts, 'x');
6280 print_scalar_formatted (raw_buffer,
6281 builtin_type (gdbarch)->builtin_uint32,
6282 &opts, 'w', file);
6283
6284 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6285
6286 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6287 {
6288 mips_read_fp_register_double (frame, regnum, raw_buffer);
6289 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6290
6291 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6292 }
6293 }
6294 else
6295 {
6296 struct value_print_options opts;
6297
6298 /* Eight byte registers: print each one as hex, float and double. */
6299 mips_read_fp_register_single (frame, regnum, raw_buffer);
6300 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6301
6302 mips_read_fp_register_double (frame, regnum, raw_buffer);
6303 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6304
6305 get_formatted_print_options (&opts, 'x');
6306 print_scalar_formatted (raw_buffer,
6307 builtin_type (gdbarch)->builtin_uint64,
6308 &opts, 'g', file);
6309
6310 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6311 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6312 }
6313 }
6314
6315 static void
6316 mips_print_register (struct ui_file *file, struct frame_info *frame,
6317 int regnum)
6318 {
6319 struct gdbarch *gdbarch = get_frame_arch (frame);
6320 struct value_print_options opts;
6321 struct value *val;
6322
6323 if (mips_float_register_p (gdbarch, regnum))
6324 {
6325 mips_print_fp_register (file, frame, regnum);
6326 return;
6327 }
6328
6329 val = get_frame_register_value (frame, regnum);
6330
6331 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6332
6333 /* The problem with printing numeric register names (r26, etc.) is that
6334 the user can't use them on input. Probably the best solution is to
6335 fix it so that either the numeric or the funky (a2, etc.) names
6336 are accepted on input. */
6337 if (regnum < MIPS_NUMREGS)
6338 fprintf_filtered (file, "(r%d): ", regnum);
6339 else
6340 fprintf_filtered (file, ": ");
6341
6342 get_formatted_print_options (&opts, 'x');
6343 val_print_scalar_formatted (value_type (val),
6344 value_embedded_offset (val),
6345 val,
6346 &opts, 0, file);
6347 }
6348
6349 /* Print IEEE exception condition bits in FLAGS. */
6350
6351 static void
6352 print_fpu_flags (struct ui_file *file, int flags)
6353 {
6354 if (flags & (1 << 0))
6355 fputs_filtered (" inexact", file);
6356 if (flags & (1 << 1))
6357 fputs_filtered (" uflow", file);
6358 if (flags & (1 << 2))
6359 fputs_filtered (" oflow", file);
6360 if (flags & (1 << 3))
6361 fputs_filtered (" div0", file);
6362 if (flags & (1 << 4))
6363 fputs_filtered (" inval", file);
6364 if (flags & (1 << 5))
6365 fputs_filtered (" unimp", file);
6366 fputc_filtered ('\n', file);
6367 }
6368
6369 /* Print interesting information about the floating point processor
6370 (if present) or emulator. */
6371
6372 static void
6373 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6374 struct frame_info *frame, const char *args)
6375 {
6376 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6377 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6378 ULONGEST fcs = 0;
6379 int i;
6380
6381 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6382 type = MIPS_FPU_NONE;
6383
6384 fprintf_filtered (file, "fpu type: %s\n",
6385 type == MIPS_FPU_DOUBLE ? "double-precision"
6386 : type == MIPS_FPU_SINGLE ? "single-precision"
6387 : "none / unused");
6388
6389 if (type == MIPS_FPU_NONE)
6390 return;
6391
6392 fprintf_filtered (file, "reg size: %d bits\n",
6393 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6394
6395 fputs_filtered ("cond :", file);
6396 if (fcs & (1 << 23))
6397 fputs_filtered (" 0", file);
6398 for (i = 1; i <= 7; i++)
6399 if (fcs & (1 << (24 + i)))
6400 fprintf_filtered (file, " %d", i);
6401 fputc_filtered ('\n', file);
6402
6403 fputs_filtered ("cause :", file);
6404 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6405 fputs ("mask :", stdout);
6406 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6407 fputs ("flags :", stdout);
6408 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6409
6410 fputs_filtered ("rounding: ", file);
6411 switch (fcs & 3)
6412 {
6413 case 0: fputs_filtered ("nearest\n", file); break;
6414 case 1: fputs_filtered ("zero\n", file); break;
6415 case 2: fputs_filtered ("+inf\n", file); break;
6416 case 3: fputs_filtered ("-inf\n", file); break;
6417 }
6418
6419 fputs_filtered ("flush :", file);
6420 if (fcs & (1 << 21))
6421 fputs_filtered (" nearest", file);
6422 if (fcs & (1 << 22))
6423 fputs_filtered (" override", file);
6424 if (fcs & (1 << 24))
6425 fputs_filtered (" zero", file);
6426 if ((fcs & (0xb << 21)) == 0)
6427 fputs_filtered (" no", file);
6428 fputc_filtered ('\n', file);
6429
6430 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6431 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6432 fputc_filtered ('\n', file);
6433
6434 default_print_float_info (gdbarch, file, frame, args);
6435 }
6436
6437 /* Replacement for generic do_registers_info.
6438 Print regs in pretty columns. */
6439
6440 static int
6441 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6442 int regnum)
6443 {
6444 fprintf_filtered (file, " ");
6445 mips_print_fp_register (file, frame, regnum);
6446 fprintf_filtered (file, "\n");
6447 return regnum + 1;
6448 }
6449
6450
6451 /* Print a row's worth of GP (int) registers, with name labels above. */
6452
6453 static int
6454 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6455 int start_regnum)
6456 {
6457 struct gdbarch *gdbarch = get_frame_arch (frame);
6458 /* Do values for GP (int) regs. */
6459 const gdb_byte *raw_buffer;
6460 struct value *value;
6461 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6462 per row. */
6463 int col, byte;
6464 int regnum;
6465
6466 /* For GP registers, we print a separate row of names above the vals. */
6467 for (col = 0, regnum = start_regnum;
6468 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6469 + gdbarch_num_pseudo_regs (gdbarch);
6470 regnum++)
6471 {
6472 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6473 continue; /* unused register */
6474 if (mips_float_register_p (gdbarch, regnum))
6475 break; /* End the row: reached FP register. */
6476 /* Large registers are handled separately. */
6477 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6478 {
6479 if (col > 0)
6480 break; /* End the row before this register. */
6481
6482 /* Print this register on a row by itself. */
6483 mips_print_register (file, frame, regnum);
6484 fprintf_filtered (file, "\n");
6485 return regnum + 1;
6486 }
6487 if (col == 0)
6488 fprintf_filtered (file, " ");
6489 fprintf_filtered (file,
6490 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6491 gdbarch_register_name (gdbarch, regnum));
6492 col++;
6493 }
6494
6495 if (col == 0)
6496 return regnum;
6497
6498 /* Print the R0 to R31 names. */
6499 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6500 fprintf_filtered (file, "\n R%-4d",
6501 start_regnum % gdbarch_num_regs (gdbarch));
6502 else
6503 fprintf_filtered (file, "\n ");
6504
6505 /* Now print the values in hex, 4 or 8 to the row. */
6506 for (col = 0, regnum = start_regnum;
6507 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6508 + gdbarch_num_pseudo_regs (gdbarch);
6509 regnum++)
6510 {
6511 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6512 continue; /* unused register */
6513 if (mips_float_register_p (gdbarch, regnum))
6514 break; /* End row: reached FP register. */
6515 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6516 break; /* End row: large register. */
6517
6518 /* OK: get the data in raw format. */
6519 value = get_frame_register_value (frame, regnum);
6520 if (value_optimized_out (value)
6521 || !value_entirely_available (value))
6522 {
6523 fprintf_filtered (file, "%*s ",
6524 (int) mips_abi_regsize (gdbarch) * 2,
6525 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6526 : "<unavailable>"));
6527 col++;
6528 continue;
6529 }
6530 raw_buffer = value_contents_all (value);
6531 /* pad small registers */
6532 for (byte = 0;
6533 byte < (mips_abi_regsize (gdbarch)
6534 - register_size (gdbarch, regnum)); byte++)
6535 fprintf_filtered (file, " ");
6536 /* Now print the register value in hex, endian order. */
6537 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6538 for (byte =
6539 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6540 byte < register_size (gdbarch, regnum); byte++)
6541 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6542 else
6543 for (byte = register_size (gdbarch, regnum) - 1;
6544 byte >= 0; byte--)
6545 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6546 fprintf_filtered (file, " ");
6547 col++;
6548 }
6549 if (col > 0) /* ie. if we actually printed anything... */
6550 fprintf_filtered (file, "\n");
6551
6552 return regnum;
6553 }
6554
6555 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6556
6557 static void
6558 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6559 struct frame_info *frame, int regnum, int all)
6560 {
6561 if (regnum != -1) /* Do one specified register. */
6562 {
6563 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6564 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6565 error (_("Not a valid register for the current processor type"));
6566
6567 mips_print_register (file, frame, regnum);
6568 fprintf_filtered (file, "\n");
6569 }
6570 else
6571 /* Do all (or most) registers. */
6572 {
6573 regnum = gdbarch_num_regs (gdbarch);
6574 while (regnum < gdbarch_num_regs (gdbarch)
6575 + gdbarch_num_pseudo_regs (gdbarch))
6576 {
6577 if (mips_float_register_p (gdbarch, regnum))
6578 {
6579 if (all) /* True for "INFO ALL-REGISTERS" command. */
6580 regnum = print_fp_register_row (file, frame, regnum);
6581 else
6582 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6583 }
6584 else
6585 regnum = print_gp_register_row (file, frame, regnum);
6586 }
6587 }
6588 }
6589
6590 static int
6591 mips_single_step_through_delay (struct gdbarch *gdbarch,
6592 struct frame_info *frame)
6593 {
6594 CORE_ADDR pc = get_frame_pc (frame);
6595 enum mips_isa isa;
6596 ULONGEST insn;
6597 int size;
6598
6599 if ((mips_pc_is_mips (pc)
6600 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6601 || (mips_pc_is_micromips (gdbarch, pc)
6602 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6603 || (mips_pc_is_mips16 (gdbarch, pc)
6604 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6605 return 0;
6606
6607 isa = mips_pc_isa (gdbarch, pc);
6608 /* _has_delay_slot above will have validated the read. */
6609 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6610 size = mips_insn_size (isa, insn);
6611
6612 const address_space *aspace = get_frame_address_space (frame);
6613
6614 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6615 }
6616
6617 /* To skip prologues, I use this predicate. Returns either PC itself
6618 if the code at PC does not look like a function prologue; otherwise
6619 returns an address that (if we're lucky) follows the prologue. If
6620 LENIENT, then we must skip everything which is involved in setting
6621 up the frame (it's OK to skip more, just so long as we don't skip
6622 anything which might clobber the registers which are being saved.
6623 We must skip more in the case where part of the prologue is in the
6624 delay slot of a non-prologue instruction). */
6625
6626 static CORE_ADDR
6627 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6628 {
6629 CORE_ADDR limit_pc;
6630 CORE_ADDR func_addr;
6631
6632 /* See if we can determine the end of the prologue via the symbol table.
6633 If so, then return either PC, or the PC after the prologue, whichever
6634 is greater. */
6635 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6636 {
6637 CORE_ADDR post_prologue_pc
6638 = skip_prologue_using_sal (gdbarch, func_addr);
6639 if (post_prologue_pc != 0)
6640 return std::max (pc, post_prologue_pc);
6641 }
6642
6643 /* Can't determine prologue from the symbol table, need to examine
6644 instructions. */
6645
6646 /* Find an upper limit on the function prologue using the debug
6647 information. If the debug information could not be used to provide
6648 that bound, then use an arbitrary large number as the upper bound. */
6649 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6650 if (limit_pc == 0)
6651 limit_pc = pc + 100; /* Magic. */
6652
6653 if (mips_pc_is_mips16 (gdbarch, pc))
6654 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6655 else if (mips_pc_is_micromips (gdbarch, pc))
6656 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6657 else
6658 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6659 }
6660
6661 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6662 This is a helper function for mips_stack_frame_destroyed_p. */
6663
6664 static int
6665 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6666 {
6667 CORE_ADDR func_addr = 0, func_end = 0;
6668
6669 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6670 {
6671 /* The MIPS epilogue is max. 12 bytes long. */
6672 CORE_ADDR addr = func_end - 12;
6673
6674 if (addr < func_addr + 4)
6675 addr = func_addr + 4;
6676 if (pc < addr)
6677 return 0;
6678
6679 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6680 {
6681 unsigned long high_word;
6682 unsigned long inst;
6683
6684 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6685 high_word = (inst >> 16) & 0xffff;
6686
6687 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6688 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6689 && inst != 0x03e00008 /* jr $ra */
6690 && inst != 0x00000000) /* nop */
6691 return 0;
6692 }
6693
6694 return 1;
6695 }
6696
6697 return 0;
6698 }
6699
6700 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6701 This is a helper function for mips_stack_frame_destroyed_p. */
6702
6703 static int
6704 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6705 {
6706 CORE_ADDR func_addr = 0;
6707 CORE_ADDR func_end = 0;
6708 CORE_ADDR addr;
6709 ULONGEST insn;
6710 long offset;
6711 int dreg;
6712 int sreg;
6713 int loc;
6714
6715 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6716 return 0;
6717
6718 /* The microMIPS epilogue is max. 12 bytes long. */
6719 addr = func_end - 12;
6720
6721 if (addr < func_addr + 2)
6722 addr = func_addr + 2;
6723 if (pc < addr)
6724 return 0;
6725
6726 for (; pc < func_end; pc += loc)
6727 {
6728 loc = 0;
6729 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6730 loc += MIPS_INSN16_SIZE;
6731 switch (mips_insn_size (ISA_MICROMIPS, insn))
6732 {
6733 /* 32-bit instructions. */
6734 case 2 * MIPS_INSN16_SIZE:
6735 insn <<= 16;
6736 insn |= mips_fetch_instruction (gdbarch,
6737 ISA_MICROMIPS, pc + loc, NULL);
6738 loc += MIPS_INSN16_SIZE;
6739 switch (micromips_op (insn >> 16))
6740 {
6741 case 0xc: /* ADDIU: bits 001100 */
6742 case 0x17: /* DADDIU: bits 010111 */
6743 sreg = b0s5_reg (insn >> 16);
6744 dreg = b5s5_reg (insn >> 16);
6745 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6746 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6747 /* (D)ADDIU $sp, imm */
6748 && offset >= 0)
6749 break;
6750 return 0;
6751
6752 default:
6753 return 0;
6754 }
6755 break;
6756
6757 /* 16-bit instructions. */
6758 case MIPS_INSN16_SIZE:
6759 switch (micromips_op (insn))
6760 {
6761 case 0x3: /* MOVE: bits 000011 */
6762 sreg = b0s5_reg (insn);
6763 dreg = b5s5_reg (insn);
6764 if (sreg == 0 && dreg == 0)
6765 /* MOVE $zero, $zero aka NOP */
6766 break;
6767 return 0;
6768
6769 case 0x11: /* POOL16C: bits 010001 */
6770 if (b5s5_op (insn) == 0x18
6771 /* JRADDIUSP: bits 010011 11000 */
6772 || (b5s5_op (insn) == 0xd
6773 /* JRC: bits 010011 01101 */
6774 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6775 /* JRC $ra */
6776 break;
6777 return 0;
6778
6779 case 0x13: /* POOL16D: bits 010011 */
6780 offset = micromips_decode_imm9 (b1s9_imm (insn));
6781 if ((insn & 0x1) == 0x1
6782 /* ADDIUSP: bits 010011 1 */
6783 && offset > 0)
6784 break;
6785 return 0;
6786
6787 default:
6788 return 0;
6789 }
6790 }
6791 }
6792
6793 return 1;
6794 }
6795
6796 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6797 This is a helper function for mips_stack_frame_destroyed_p. */
6798
6799 static int
6800 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6801 {
6802 CORE_ADDR func_addr = 0, func_end = 0;
6803
6804 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6805 {
6806 /* The MIPS epilogue is max. 12 bytes long. */
6807 CORE_ADDR addr = func_end - 12;
6808
6809 if (addr < func_addr + 4)
6810 addr = func_addr + 4;
6811 if (pc < addr)
6812 return 0;
6813
6814 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6815 {
6816 unsigned short inst;
6817
6818 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6819
6820 if ((inst & 0xf800) == 0xf000) /* extend */
6821 continue;
6822
6823 if (inst != 0x6300 /* addiu $sp,offset */
6824 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6825 && inst != 0xe820 /* jr $ra */
6826 && inst != 0xe8a0 /* jrc $ra */
6827 && inst != 0x6500) /* nop */
6828 return 0;
6829 }
6830
6831 return 1;
6832 }
6833
6834 return 0;
6835 }
6836
6837 /* Implement the stack_frame_destroyed_p gdbarch method.
6838
6839 The epilogue is defined here as the area at the end of a function,
6840 after an instruction which destroys the function's stack frame. */
6841
6842 static int
6843 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6844 {
6845 if (mips_pc_is_mips16 (gdbarch, pc))
6846 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6847 else if (mips_pc_is_micromips (gdbarch, pc))
6848 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6849 else
6850 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6851 }
6852
6853 /* Root of all "set mips "/"show mips " commands. This will eventually be
6854 used for all MIPS-specific commands. */
6855
6856 static void
6857 show_mips_command (const char *args, int from_tty)
6858 {
6859 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6860 }
6861
6862 static void
6863 set_mips_command (const char *args, int from_tty)
6864 {
6865 printf_unfiltered
6866 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6867 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6868 }
6869
6870 /* Commands to show/set the MIPS FPU type. */
6871
6872 static void
6873 show_mipsfpu_command (const char *args, int from_tty)
6874 {
6875 const char *fpu;
6876
6877 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6878 {
6879 printf_unfiltered
6880 ("The MIPS floating-point coprocessor is unknown "
6881 "because the current architecture is not MIPS.\n");
6882 return;
6883 }
6884
6885 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6886 {
6887 case MIPS_FPU_SINGLE:
6888 fpu = "single-precision";
6889 break;
6890 case MIPS_FPU_DOUBLE:
6891 fpu = "double-precision";
6892 break;
6893 case MIPS_FPU_NONE:
6894 fpu = "absent (none)";
6895 break;
6896 default:
6897 internal_error (__FILE__, __LINE__, _("bad switch"));
6898 }
6899 if (mips_fpu_type_auto)
6900 printf_unfiltered ("The MIPS floating-point coprocessor "
6901 "is set automatically (currently %s)\n",
6902 fpu);
6903 else
6904 printf_unfiltered
6905 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6906 }
6907
6908
6909 static void
6910 set_mipsfpu_command (const char *args, int from_tty)
6911 {
6912 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6913 "\"single\",\"none\" or \"auto\".\n");
6914 show_mipsfpu_command (args, from_tty);
6915 }
6916
6917 static void
6918 set_mipsfpu_single_command (const char *args, int from_tty)
6919 {
6920 struct gdbarch_info info;
6921 gdbarch_info_init (&info);
6922 mips_fpu_type = MIPS_FPU_SINGLE;
6923 mips_fpu_type_auto = 0;
6924 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6925 instead of relying on globals. Doing that would let generic code
6926 handle the search for this specific architecture. */
6927 if (!gdbarch_update_p (info))
6928 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6929 }
6930
6931 static void
6932 set_mipsfpu_double_command (const char *args, int from_tty)
6933 {
6934 struct gdbarch_info info;
6935 gdbarch_info_init (&info);
6936 mips_fpu_type = MIPS_FPU_DOUBLE;
6937 mips_fpu_type_auto = 0;
6938 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6939 instead of relying on globals. Doing that would let generic code
6940 handle the search for this specific architecture. */
6941 if (!gdbarch_update_p (info))
6942 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6943 }
6944
6945 static void
6946 set_mipsfpu_none_command (const char *args, int from_tty)
6947 {
6948 struct gdbarch_info info;
6949 gdbarch_info_init (&info);
6950 mips_fpu_type = MIPS_FPU_NONE;
6951 mips_fpu_type_auto = 0;
6952 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6953 instead of relying on globals. Doing that would let generic code
6954 handle the search for this specific architecture. */
6955 if (!gdbarch_update_p (info))
6956 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6957 }
6958
6959 static void
6960 set_mipsfpu_auto_command (const char *args, int from_tty)
6961 {
6962 mips_fpu_type_auto = 1;
6963 }
6964
6965 /* Just like reinit_frame_cache, but with the right arguments to be
6966 callable as an sfunc. */
6967
6968 static void
6969 reinit_frame_cache_sfunc (const char *args, int from_tty,
6970 struct cmd_list_element *c)
6971 {
6972 reinit_frame_cache ();
6973 }
6974
6975 static int
6976 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6977 {
6978 gdb_disassembler *di
6979 = static_cast<gdb_disassembler *>(info->application_data);
6980 struct gdbarch *gdbarch = di->arch ();
6981
6982 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6983 disassembler needs to be able to locally determine the ISA, and
6984 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6985 work. */
6986 if (mips_pc_is_mips16 (gdbarch, memaddr))
6987 info->mach = bfd_mach_mips16;
6988 else if (mips_pc_is_micromips (gdbarch, memaddr))
6989 info->mach = bfd_mach_mips_micromips;
6990
6991 /* Round down the instruction address to the appropriate boundary. */
6992 memaddr &= (info->mach == bfd_mach_mips16
6993 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6994
6995 /* Set the disassembler options. */
6996 if (!info->disassembler_options)
6997 /* This string is not recognized explicitly by the disassembler,
6998 but it tells the disassembler to not try to guess the ABI from
6999 the bfd elf headers, such that, if the user overrides the ABI
7000 of a program linked as NewABI, the disassembly will follow the
7001 register naming conventions specified by the user. */
7002 info->disassembler_options = "gpr-names=32";
7003
7004 return default_print_insn (memaddr, info);
7005 }
7006
7007 static int
7008 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7009 {
7010 /* Set up the disassembler info, so that we get the right
7011 register names from libopcodes. */
7012 info->disassembler_options = "gpr-names=n32";
7013 info->flavour = bfd_target_elf_flavour;
7014
7015 return gdb_print_insn_mips (memaddr, info);
7016 }
7017
7018 static int
7019 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7020 {
7021 /* Set up the disassembler info, so that we get the right
7022 register names from libopcodes. */
7023 info->disassembler_options = "gpr-names=64";
7024 info->flavour = bfd_target_elf_flavour;
7025
7026 return gdb_print_insn_mips (memaddr, info);
7027 }
7028
7029 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7030
7031 static int
7032 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7033 {
7034 CORE_ADDR pc = *pcptr;
7035
7036 if (mips_pc_is_mips16 (gdbarch, pc))
7037 {
7038 *pcptr = unmake_compact_addr (pc);
7039 return MIPS_BP_KIND_MIPS16;
7040 }
7041 else if (mips_pc_is_micromips (gdbarch, pc))
7042 {
7043 ULONGEST insn;
7044 int status;
7045
7046 *pcptr = unmake_compact_addr (pc);
7047 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7048 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7049 return MIPS_BP_KIND_MICROMIPS16;
7050 else
7051 return MIPS_BP_KIND_MICROMIPS32;
7052 }
7053 else
7054 return MIPS_BP_KIND_MIPS32;
7055 }
7056
7057 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7058
7059 static const gdb_byte *
7060 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7061 {
7062 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7063
7064 switch (kind)
7065 {
7066 case MIPS_BP_KIND_MIPS16:
7067 {
7068 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7069 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7070
7071 *size = 2;
7072 if (byte_order_for_code == BFD_ENDIAN_BIG)
7073 return mips16_big_breakpoint;
7074 else
7075 return mips16_little_breakpoint;
7076 }
7077 case MIPS_BP_KIND_MICROMIPS16:
7078 {
7079 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7080 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7081
7082 *size = 2;
7083
7084 if (byte_order_for_code == BFD_ENDIAN_BIG)
7085 return micromips16_big_breakpoint;
7086 else
7087 return micromips16_little_breakpoint;
7088 }
7089 case MIPS_BP_KIND_MICROMIPS32:
7090 {
7091 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7092 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7093
7094 *size = 4;
7095 if (byte_order_for_code == BFD_ENDIAN_BIG)
7096 return micromips32_big_breakpoint;
7097 else
7098 return micromips32_little_breakpoint;
7099 }
7100 case MIPS_BP_KIND_MIPS32:
7101 {
7102 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7103 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7104
7105 *size = 4;
7106 if (byte_order_for_code == BFD_ENDIAN_BIG)
7107 return big_breakpoint;
7108 else
7109 return little_breakpoint;
7110 }
7111 default:
7112 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7113 };
7114 }
7115
7116 /* Return non-zero if the standard MIPS instruction INST has a branch
7117 delay slot (i.e. it is a jump or branch instruction). This function
7118 is based on mips32_next_pc. */
7119
7120 static int
7121 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7122 {
7123 int op;
7124 int rs;
7125 int rt;
7126
7127 op = itype_op (inst);
7128 if ((inst & 0xe0000000) != 0)
7129 {
7130 rs = itype_rs (inst);
7131 rt = itype_rt (inst);
7132 return (is_octeon_bbit_op (op, gdbarch)
7133 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7134 || op == 29 /* JALX: bits 011101 */
7135 || (op == 17
7136 && (rs == 8
7137 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7138 || (rs == 9 && (rt & 0x2) == 0)
7139 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7140 || (rs == 10 && (rt & 0x2) == 0))));
7141 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7142 }
7143 else
7144 switch (op & 0x07) /* extract bits 28,27,26 */
7145 {
7146 case 0: /* SPECIAL */
7147 op = rtype_funct (inst);
7148 return (op == 8 /* JR */
7149 || op == 9); /* JALR */
7150 break; /* end SPECIAL */
7151 case 1: /* REGIMM */
7152 rs = itype_rs (inst);
7153 rt = itype_rt (inst); /* branch condition */
7154 return ((rt & 0xc) == 0
7155 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7156 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7157 || ((rt & 0x1e) == 0x1c && rs == 0));
7158 /* BPOSGE32, BPOSGE64: bits 1110x */
7159 break; /* end REGIMM */
7160 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7161 return 1;
7162 break;
7163 }
7164 }
7165
7166 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7167 delay slot (i.e. it is a jump or branch instruction). */
7168
7169 static int
7170 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7171 {
7172 ULONGEST insn;
7173 int status;
7174
7175 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7176 if (status)
7177 return 0;
7178
7179 return mips32_instruction_has_delay_slot (gdbarch, insn);
7180 }
7181
7182 /* Return non-zero if the microMIPS instruction INSN, comprising the
7183 16-bit major opcode word in the high 16 bits and any second word
7184 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7185 jump or branch instruction). The instruction must be 32-bit if
7186 MUSTBE32 is set or can be any instruction otherwise. */
7187
7188 static int
7189 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7190 {
7191 ULONGEST major = insn >> 16;
7192
7193 switch (micromips_op (major))
7194 {
7195 /* 16-bit instructions. */
7196 case 0x33: /* B16: bits 110011 */
7197 case 0x2b: /* BNEZ16: bits 101011 */
7198 case 0x23: /* BEQZ16: bits 100011 */
7199 return !mustbe32;
7200 case 0x11: /* POOL16C: bits 010001 */
7201 return (!mustbe32
7202 && ((b5s5_op (major) == 0xc
7203 /* JR16: bits 010001 01100 */
7204 || (b5s5_op (major) & 0x1e) == 0xe)));
7205 /* JALR16, JALRS16: bits 010001 0111x */
7206 /* 32-bit instructions. */
7207 case 0x3d: /* JAL: bits 111101 */
7208 case 0x3c: /* JALX: bits 111100 */
7209 case 0x35: /* J: bits 110101 */
7210 case 0x2d: /* BNE: bits 101101 */
7211 case 0x25: /* BEQ: bits 100101 */
7212 case 0x1d: /* JALS: bits 011101 */
7213 return 1;
7214 case 0x10: /* POOL32I: bits 010000 */
7215 return ((b5s5_op (major) & 0x1c) == 0x0
7216 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7217 || (b5s5_op (major) & 0x1d) == 0x4
7218 /* BLEZ, BGTZ: bits 010000 001x0 */
7219 || (b5s5_op (major) & 0x1d) == 0x11
7220 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7221 || ((b5s5_op (major) & 0x1e) == 0x14
7222 && (major & 0x3) == 0x0)
7223 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7224 || (b5s5_op (major) & 0x1e) == 0x1a
7225 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7226 || ((b5s5_op (major) & 0x1e) == 0x1c
7227 && (major & 0x3) == 0x0)
7228 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7229 || ((b5s5_op (major) & 0x1c) == 0x1c
7230 && (major & 0x3) == 0x1));
7231 /* BC1ANY*: bits 010000 111xx xxx01 */
7232 case 0x0: /* POOL32A: bits 000000 */
7233 return (b0s6_op (insn) == 0x3c
7234 /* POOL32Axf: bits 000000 ... 111100 */
7235 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7236 /* JALR, JALR.HB: 000000 000x111100 111100 */
7237 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7238 default:
7239 return 0;
7240 }
7241 }
7242
7243 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7244 slot (i.e. it is a non-compact jump instruction). The instruction
7245 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7246
7247 static int
7248 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7249 CORE_ADDR addr, int mustbe32)
7250 {
7251 ULONGEST insn;
7252 int status;
7253 int size;
7254
7255 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7256 if (status)
7257 return 0;
7258 size = mips_insn_size (ISA_MICROMIPS, insn);
7259 insn <<= 16;
7260 if (size == 2 * MIPS_INSN16_SIZE)
7261 {
7262 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7263 if (status)
7264 return 0;
7265 }
7266
7267 return micromips_instruction_has_delay_slot (insn, mustbe32);
7268 }
7269
7270 /* Return non-zero if the MIPS16 instruction INST, which must be
7271 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7272 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7273 instruction). This function is based on mips16_next_pc. */
7274
7275 static int
7276 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7277 {
7278 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7279 return !mustbe32;
7280 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7281 }
7282
7283 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7284 slot (i.e. it is a non-compact jump instruction). The instruction
7285 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7286
7287 static int
7288 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7289 CORE_ADDR addr, int mustbe32)
7290 {
7291 unsigned short insn;
7292 int status;
7293
7294 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7295 if (status)
7296 return 0;
7297
7298 return mips16_instruction_has_delay_slot (insn, mustbe32);
7299 }
7300
7301 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7302 This assumes KSSEG exists. */
7303
7304 static CORE_ADDR
7305 mips_segment_boundary (CORE_ADDR bpaddr)
7306 {
7307 CORE_ADDR mask = CORE_ADDR_MAX;
7308 int segsize;
7309
7310 if (sizeof (CORE_ADDR) == 8)
7311 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7312 a compiler warning produced where CORE_ADDR is a 32-bit type even
7313 though in that case this is dead code). */
7314 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7315 {
7316 case 3:
7317 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7318 segsize = 29; /* 32-bit compatibility segment */
7319 else
7320 segsize = 62; /* xkseg */
7321 break;
7322 case 2: /* xkphys */
7323 segsize = 59;
7324 break;
7325 default: /* xksseg (1), xkuseg/kuseg (0) */
7326 segsize = 62;
7327 break;
7328 }
7329 else if (bpaddr & 0x80000000) /* kernel segment */
7330 segsize = 29;
7331 else
7332 segsize = 31; /* user segment */
7333 mask <<= segsize;
7334 return bpaddr & mask;
7335 }
7336
7337 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7338 it backwards if necessary. Return the address of the new location. */
7339
7340 static CORE_ADDR
7341 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7342 {
7343 CORE_ADDR prev_addr;
7344 CORE_ADDR boundary;
7345 CORE_ADDR func_addr;
7346
7347 /* If a breakpoint is set on the instruction in a branch delay slot,
7348 GDB gets confused. When the breakpoint is hit, the PC isn't on
7349 the instruction in the branch delay slot, the PC will point to
7350 the branch instruction. Since the PC doesn't match any known
7351 breakpoints, GDB reports a trap exception.
7352
7353 There are two possible fixes for this problem.
7354
7355 1) When the breakpoint gets hit, see if the BD bit is set in the
7356 Cause register (which indicates the last exception occurred in a
7357 branch delay slot). If the BD bit is set, fix the PC to point to
7358 the instruction in the branch delay slot.
7359
7360 2) When the user sets the breakpoint, don't allow him to set the
7361 breakpoint on the instruction in the branch delay slot. Instead
7362 move the breakpoint to the branch instruction (which will have
7363 the same result).
7364
7365 The problem with the first solution is that if the user then
7366 single-steps the processor, the branch instruction will get
7367 skipped (since GDB thinks the PC is on the instruction in the
7368 branch delay slot).
7369
7370 So, we'll use the second solution. To do this we need to know if
7371 the instruction we're trying to set the breakpoint on is in the
7372 branch delay slot. */
7373
7374 boundary = mips_segment_boundary (bpaddr);
7375
7376 /* Make sure we don't scan back before the beginning of the current
7377 function, since we may fetch constant data or insns that look like
7378 a jump. Of course we might do that anyway if the compiler has
7379 moved constants inline. :-( */
7380 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7381 && func_addr > boundary && func_addr <= bpaddr)
7382 boundary = func_addr;
7383
7384 if (mips_pc_is_mips (bpaddr))
7385 {
7386 if (bpaddr == boundary)
7387 return bpaddr;
7388
7389 /* If the previous instruction has a branch delay slot, we have
7390 to move the breakpoint to the branch instruction. */
7391 prev_addr = bpaddr - 4;
7392 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7393 bpaddr = prev_addr;
7394 }
7395 else
7396 {
7397 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7398 CORE_ADDR addr, jmpaddr;
7399 int i;
7400
7401 boundary = unmake_compact_addr (boundary);
7402
7403 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7404 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7405 so try for that first, then try the 2 byte JALR/JR.
7406 The microMIPS ASE has a whole range of jumps and branches
7407 with delay slots, some of which take 4 bytes and some take
7408 2 bytes, so the idea is the same.
7409 FIXME: We have to assume that bpaddr is not the second half
7410 of an extended instruction. */
7411 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7412 ? micromips_insn_at_pc_has_delay_slot
7413 : mips16_insn_at_pc_has_delay_slot);
7414
7415 jmpaddr = 0;
7416 addr = bpaddr;
7417 for (i = 1; i < 4; i++)
7418 {
7419 if (unmake_compact_addr (addr) == boundary)
7420 break;
7421 addr -= MIPS_INSN16_SIZE;
7422 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7423 /* Looks like a JR/JALR at [target-1], but it could be
7424 the second word of a previous JAL/JALX, so record it
7425 and check back one more. */
7426 jmpaddr = addr;
7427 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7428 {
7429 if (i == 2)
7430 /* Looks like a JAL/JALX at [target-2], but it could also
7431 be the second word of a previous JAL/JALX, record it,
7432 and check back one more. */
7433 jmpaddr = addr;
7434 else
7435 /* Looks like a JAL/JALX at [target-3], so any previously
7436 recorded JAL/JALX or JR/JALR must be wrong, because:
7437
7438 >-3: JAL
7439 -2: JAL-ext (can't be JAL/JALX)
7440 -1: bdslot (can't be JR/JALR)
7441 0: target insn
7442
7443 Of course it could be another JAL-ext which looks
7444 like a JAL, but in that case we'd have broken out
7445 of this loop at [target-2]:
7446
7447 -4: JAL
7448 >-3: JAL-ext
7449 -2: bdslot (can't be jmp)
7450 -1: JR/JALR
7451 0: target insn */
7452 jmpaddr = 0;
7453 }
7454 else
7455 {
7456 /* Not a jump instruction: if we're at [target-1] this
7457 could be the second word of a JAL/JALX, so continue;
7458 otherwise we're done. */
7459 if (i > 1)
7460 break;
7461 }
7462 }
7463
7464 if (jmpaddr)
7465 bpaddr = jmpaddr;
7466 }
7467
7468 return bpaddr;
7469 }
7470
7471 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7472 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7473
7474 static int
7475 mips_is_stub_suffix (const char *suffix, int zero)
7476 {
7477 switch (suffix[0])
7478 {
7479 case '0':
7480 return zero && suffix[1] == '\0';
7481 case '1':
7482 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7483 case '2':
7484 case '5':
7485 case '6':
7486 case '9':
7487 return suffix[1] == '\0';
7488 default:
7489 return 0;
7490 }
7491 }
7492
7493 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7494 call stubs, one of sf, df, sc, or dc. */
7495
7496 static int
7497 mips_is_stub_mode (const char *mode)
7498 {
7499 return ((mode[0] == 's' || mode[0] == 'd')
7500 && (mode[1] == 'f' || mode[1] == 'c'));
7501 }
7502
7503 /* Code at PC is a compiler-generated stub. Such a stub for a function
7504 bar might have a name like __fn_stub_bar, and might look like this:
7505
7506 mfc1 $4, $f13
7507 mfc1 $5, $f12
7508 mfc1 $6, $f15
7509 mfc1 $7, $f14
7510
7511 followed by (or interspersed with):
7512
7513 j bar
7514
7515 or:
7516
7517 lui $25, %hi(bar)
7518 addiu $25, $25, %lo(bar)
7519 jr $25
7520
7521 ($1 may be used in old code; for robustness we accept any register)
7522 or, in PIC code:
7523
7524 lui $28, %hi(_gp_disp)
7525 addiu $28, $28, %lo(_gp_disp)
7526 addu $28, $28, $25
7527 lw $25, %got(bar)
7528 addiu $25, $25, %lo(bar)
7529 jr $25
7530
7531 In the case of a __call_stub_bar stub, the sequence to set up
7532 arguments might look like this:
7533
7534 mtc1 $4, $f13
7535 mtc1 $5, $f12
7536 mtc1 $6, $f15
7537 mtc1 $7, $f14
7538
7539 followed by (or interspersed with) one of the jump sequences above.
7540
7541 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7542 of J or JR, respectively, followed by:
7543
7544 mfc1 $2, $f0
7545 mfc1 $3, $f1
7546 jr $18
7547
7548 We are at the beginning of the stub here, and scan down and extract
7549 the target address from the jump immediate instruction or, if a jump
7550 register instruction is used, from the register referred. Return
7551 the value of PC calculated or 0 if inconclusive.
7552
7553 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7554
7555 static CORE_ADDR
7556 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7557 {
7558 struct gdbarch *gdbarch = get_frame_arch (frame);
7559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7560 int addrreg = MIPS_ZERO_REGNUM;
7561 CORE_ADDR start_pc = pc;
7562 CORE_ADDR target_pc = 0;
7563 CORE_ADDR addr = 0;
7564 CORE_ADDR gp = 0;
7565 int status = 0;
7566 int i;
7567
7568 for (i = 0;
7569 status == 0 && target_pc == 0 && i < 20;
7570 i++, pc += MIPS_INSN32_SIZE)
7571 {
7572 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7573 CORE_ADDR imm;
7574 int rt;
7575 int rs;
7576 int rd;
7577
7578 switch (itype_op (inst))
7579 {
7580 case 0: /* SPECIAL */
7581 switch (rtype_funct (inst))
7582 {
7583 case 8: /* JR */
7584 case 9: /* JALR */
7585 rs = rtype_rs (inst);
7586 if (rs == MIPS_GP_REGNUM)
7587 target_pc = gp; /* Hmm... */
7588 else if (rs == addrreg)
7589 target_pc = addr;
7590 break;
7591
7592 case 0x21: /* ADDU */
7593 rt = rtype_rt (inst);
7594 rs = rtype_rs (inst);
7595 rd = rtype_rd (inst);
7596 if (rd == MIPS_GP_REGNUM
7597 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7598 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7599 gp += start_pc;
7600 break;
7601 }
7602 break;
7603
7604 case 2: /* J */
7605 case 3: /* JAL */
7606 target_pc = jtype_target (inst) << 2;
7607 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7608 break;
7609
7610 case 9: /* ADDIU */
7611 rt = itype_rt (inst);
7612 rs = itype_rs (inst);
7613 if (rt == rs)
7614 {
7615 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7616 if (rt == MIPS_GP_REGNUM)
7617 gp += imm;
7618 else if (rt == addrreg)
7619 addr += imm;
7620 }
7621 break;
7622
7623 case 0xf: /* LUI */
7624 rt = itype_rt (inst);
7625 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7626 if (rt == MIPS_GP_REGNUM)
7627 gp = imm;
7628 else if (rt != MIPS_ZERO_REGNUM)
7629 {
7630 addrreg = rt;
7631 addr = imm;
7632 }
7633 break;
7634
7635 case 0x23: /* LW */
7636 rt = itype_rt (inst);
7637 rs = itype_rs (inst);
7638 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7639 if (gp != 0 && rs == MIPS_GP_REGNUM)
7640 {
7641 gdb_byte buf[4];
7642
7643 memset (buf, 0, sizeof (buf));
7644 status = target_read_memory (gp + imm, buf, sizeof (buf));
7645 addrreg = rt;
7646 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7647 }
7648 break;
7649 }
7650 }
7651
7652 return target_pc;
7653 }
7654
7655 /* If PC is in a MIPS16 call or return stub, return the address of the
7656 target PC, which is either the callee or the caller. There are several
7657 cases which must be handled:
7658
7659 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7660 and the target PC is in $31 ($ra).
7661 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7662 and the target PC is in $2.
7663 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7664 i.e. before the JALR instruction, this is effectively a call stub
7665 and the target PC is in $2. Otherwise this is effectively
7666 a return stub and the target PC is in $18.
7667 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7668 JAL or JALR instruction, this is effectively a call stub and the
7669 target PC is buried in the instruction stream. Otherwise this
7670 is effectively a return stub and the target PC is in $18.
7671 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7672 stub and the target PC is buried in the instruction stream.
7673
7674 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7675 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7676 gory details. */
7677
7678 static CORE_ADDR
7679 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7680 {
7681 struct gdbarch *gdbarch = get_frame_arch (frame);
7682 CORE_ADDR start_addr;
7683 const char *name;
7684 size_t prefixlen;
7685
7686 /* Find the starting address and name of the function containing the PC. */
7687 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7688 return 0;
7689
7690 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7691 and the target PC is in $31 ($ra). */
7692 prefixlen = strlen (mips_str_mips16_ret_stub);
7693 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7694 && mips_is_stub_mode (name + prefixlen)
7695 && name[prefixlen + 2] == '\0')
7696 return get_frame_register_signed
7697 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7698
7699 /* If the PC is in __mips16_call_stub_*, this is one of the call
7700 call/return stubs. */
7701 prefixlen = strlen (mips_str_mips16_call_stub);
7702 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7703 {
7704 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7705 and the target PC is in $2. */
7706 if (mips_is_stub_suffix (name + prefixlen, 0))
7707 return get_frame_register_signed
7708 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7709
7710 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7711 i.e. before the JALR instruction, this is effectively a call stub
7712 and the target PC is in $2. Otherwise this is effectively
7713 a return stub and the target PC is in $18. */
7714 else if (mips_is_stub_mode (name + prefixlen)
7715 && name[prefixlen + 2] == '_'
7716 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7717 {
7718 if (pc == start_addr)
7719 /* This is the 'call' part of a call stub. The return
7720 address is in $2. */
7721 return get_frame_register_signed
7722 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7723 else
7724 /* This is the 'return' part of a call stub. The return
7725 address is in $18. */
7726 return get_frame_register_signed
7727 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7728 }
7729 else
7730 return 0; /* Not a stub. */
7731 }
7732
7733 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7734 compiler-generated call or call/return stubs. */
7735 if (startswith (name, mips_str_fn_stub)
7736 || startswith (name, mips_str_call_stub))
7737 {
7738 if (pc == start_addr)
7739 /* This is the 'call' part of a call stub. Call this helper
7740 to scan through this code for interesting instructions
7741 and determine the final PC. */
7742 return mips_get_mips16_fn_stub_pc (frame, pc);
7743 else
7744 /* This is the 'return' part of a call stub. The return address
7745 is in $18. */
7746 return get_frame_register_signed
7747 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7748 }
7749
7750 return 0; /* Not a stub. */
7751 }
7752
7753 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7754 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7755
7756 static int
7757 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7758 {
7759 CORE_ADDR start_addr;
7760 size_t prefixlen;
7761
7762 /* Find the starting address of the function containing the PC. */
7763 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7764 return 0;
7765
7766 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7767 the start, i.e. after the JALR instruction, this is effectively
7768 a return stub. */
7769 prefixlen = strlen (mips_str_mips16_call_stub);
7770 if (pc != start_addr
7771 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7772 && mips_is_stub_mode (name + prefixlen)
7773 && name[prefixlen + 2] == '_'
7774 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7775 return 1;
7776
7777 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7778 the JAL or JALR instruction, this is effectively a return stub. */
7779 prefixlen = strlen (mips_str_call_fp_stub);
7780 if (pc != start_addr
7781 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7782 return 1;
7783
7784 /* Consume the .pic. prefix of any PIC stub, this function must return
7785 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7786 or the call stub path will trigger in handle_inferior_event causing
7787 it to go astray. */
7788 prefixlen = strlen (mips_str_pic);
7789 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7790 name += prefixlen;
7791
7792 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7793 prefixlen = strlen (mips_str_mips16_ret_stub);
7794 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7795 && mips_is_stub_mode (name + prefixlen)
7796 && name[prefixlen + 2] == '\0')
7797 return 1;
7798
7799 return 0; /* Not a stub. */
7800 }
7801
7802 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7803 PC of the stub target. The stub just loads $t9 and jumps to it,
7804 so that $t9 has the correct value at function entry. */
7805
7806 static CORE_ADDR
7807 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7808 {
7809 struct gdbarch *gdbarch = get_frame_arch (frame);
7810 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7811 struct bound_minimal_symbol msym;
7812 int i;
7813 gdb_byte stub_code[16];
7814 int32_t stub_words[4];
7815
7816 /* The stub for foo is named ".pic.foo", and is either two
7817 instructions inserted before foo or a three instruction sequence
7818 which jumps to foo. */
7819 msym = lookup_minimal_symbol_by_pc (pc);
7820 if (msym.minsym == NULL
7821 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7822 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7823 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7824 return 0;
7825
7826 /* A two-instruction header. */
7827 if (MSYMBOL_SIZE (msym.minsym) == 8)
7828 return pc + 8;
7829
7830 /* A three-instruction (plus delay slot) trampoline. */
7831 if (MSYMBOL_SIZE (msym.minsym) == 16)
7832 {
7833 if (target_read_memory (pc, stub_code, 16) != 0)
7834 return 0;
7835 for (i = 0; i < 4; i++)
7836 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7837 4, byte_order);
7838
7839 /* A stub contains these instructions:
7840 lui t9, %hi(target)
7841 j target
7842 addiu t9, t9, %lo(target)
7843 nop
7844
7845 This works even for N64, since stubs are only generated with
7846 -msym32. */
7847 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7848 && (stub_words[1] & 0xfc000000U) == 0x08000000
7849 && (stub_words[2] & 0xffff0000U) == 0x27390000
7850 && stub_words[3] == 0x00000000)
7851 return ((((stub_words[0] & 0x0000ffff) << 16)
7852 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7853 }
7854
7855 /* Not a recognized stub. */
7856 return 0;
7857 }
7858
7859 static CORE_ADDR
7860 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7861 {
7862 CORE_ADDR requested_pc = pc;
7863 CORE_ADDR target_pc;
7864 CORE_ADDR new_pc;
7865
7866 do
7867 {
7868 target_pc = pc;
7869
7870 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7871 if (new_pc)
7872 pc = new_pc;
7873
7874 new_pc = find_solib_trampoline_target (frame, pc);
7875 if (new_pc)
7876 pc = new_pc;
7877
7878 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7879 if (new_pc)
7880 pc = new_pc;
7881 }
7882 while (pc != target_pc);
7883
7884 return pc != requested_pc ? pc : 0;
7885 }
7886
7887 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7888 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7889
7890 static int
7891 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7892 {
7893 int regnum;
7894 if (num >= 0 && num < 32)
7895 regnum = num;
7896 else if (num >= 38 && num < 70)
7897 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7898 else if (num == 70)
7899 regnum = mips_regnum (gdbarch)->hi;
7900 else if (num == 71)
7901 regnum = mips_regnum (gdbarch)->lo;
7902 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7903 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7904 else
7905 return -1;
7906 return gdbarch_num_regs (gdbarch) + regnum;
7907 }
7908
7909
7910 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7911 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7912
7913 static int
7914 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7915 {
7916 int regnum;
7917 if (num >= 0 && num < 32)
7918 regnum = num;
7919 else if (num >= 32 && num < 64)
7920 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7921 else if (num == 64)
7922 regnum = mips_regnum (gdbarch)->hi;
7923 else if (num == 65)
7924 regnum = mips_regnum (gdbarch)->lo;
7925 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7926 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7927 else
7928 return -1;
7929 return gdbarch_num_regs (gdbarch) + regnum;
7930 }
7931
7932 static int
7933 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7934 {
7935 /* Only makes sense to supply raw registers. */
7936 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7937 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7938 decide if it is valid. Should instead define a standard sim/gdb
7939 register numbering scheme. */
7940 if (gdbarch_register_name (gdbarch,
7941 gdbarch_num_regs (gdbarch) + regnum) != NULL
7942 && gdbarch_register_name (gdbarch,
7943 gdbarch_num_regs (gdbarch)
7944 + regnum)[0] != '\0')
7945 return regnum;
7946 else
7947 return LEGACY_SIM_REGNO_IGNORE;
7948 }
7949
7950
7951 /* Convert an integer into an address. Extracting the value signed
7952 guarantees a correctly sign extended address. */
7953
7954 static CORE_ADDR
7955 mips_integer_to_address (struct gdbarch *gdbarch,
7956 struct type *type, const gdb_byte *buf)
7957 {
7958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7959 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7960 }
7961
7962 /* Dummy virtual frame pointer method. This is no more or less accurate
7963 than most other architectures; we just need to be explicit about it,
7964 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7965 an assertion failure. */
7966
7967 static void
7968 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7969 CORE_ADDR pc, int *reg, LONGEST *offset)
7970 {
7971 *reg = MIPS_SP_REGNUM;
7972 *offset = 0;
7973 }
7974
7975 static void
7976 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7977 {
7978 enum mips_abi *abip = (enum mips_abi *) obj;
7979 const char *name = bfd_get_section_name (abfd, sect);
7980
7981 if (*abip != MIPS_ABI_UNKNOWN)
7982 return;
7983
7984 if (!startswith (name, ".mdebug."))
7985 return;
7986
7987 if (strcmp (name, ".mdebug.abi32") == 0)
7988 *abip = MIPS_ABI_O32;
7989 else if (strcmp (name, ".mdebug.abiN32") == 0)
7990 *abip = MIPS_ABI_N32;
7991 else if (strcmp (name, ".mdebug.abi64") == 0)
7992 *abip = MIPS_ABI_N64;
7993 else if (strcmp (name, ".mdebug.abiO64") == 0)
7994 *abip = MIPS_ABI_O64;
7995 else if (strcmp (name, ".mdebug.eabi32") == 0)
7996 *abip = MIPS_ABI_EABI32;
7997 else if (strcmp (name, ".mdebug.eabi64") == 0)
7998 *abip = MIPS_ABI_EABI64;
7999 else
8000 warning (_("unsupported ABI %s."), name + 8);
8001 }
8002
8003 static void
8004 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8005 {
8006 int *lbp = (int *) obj;
8007 const char *name = bfd_get_section_name (abfd, sect);
8008
8009 if (startswith (name, ".gcc_compiled_long32"))
8010 *lbp = 32;
8011 else if (startswith (name, ".gcc_compiled_long64"))
8012 *lbp = 64;
8013 else if (startswith (name, ".gcc_compiled_long"))
8014 warning (_("unrecognized .gcc_compiled_longXX"));
8015 }
8016
8017 static enum mips_abi
8018 global_mips_abi (void)
8019 {
8020 int i;
8021
8022 for (i = 0; mips_abi_strings[i] != NULL; i++)
8023 if (mips_abi_strings[i] == mips_abi_string)
8024 return (enum mips_abi) i;
8025
8026 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8027 }
8028
8029 /* Return the default compressed instruction set, either of MIPS16
8030 or microMIPS, selected when none could have been determined from
8031 the ELF header of the binary being executed (or no binary has been
8032 selected. */
8033
8034 static enum mips_isa
8035 global_mips_compression (void)
8036 {
8037 int i;
8038
8039 for (i = 0; mips_compression_strings[i] != NULL; i++)
8040 if (mips_compression_strings[i] == mips_compression_string)
8041 return (enum mips_isa) i;
8042
8043 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8044 }
8045
8046 static void
8047 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8048 {
8049 /* If the size matches the set of 32-bit or 64-bit integer registers,
8050 assume that's what we've got. */
8051 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8052 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8053
8054 /* If the size matches the full set of registers GDB traditionally
8055 knows about, including floating point, for either 32-bit or
8056 64-bit, assume that's what we've got. */
8057 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8058 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8059
8060 /* Otherwise we don't have a useful guess. */
8061 }
8062
8063 static struct value *
8064 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8065 {
8066 const int *reg_p = (const int *) baton;
8067 return value_of_register (*reg_p, frame);
8068 }
8069
8070 static struct gdbarch *
8071 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8072 {
8073 struct gdbarch *gdbarch;
8074 struct gdbarch_tdep *tdep;
8075 int elf_flags;
8076 enum mips_abi mips_abi, found_abi, wanted_abi;
8077 int i, num_regs;
8078 enum mips_fpu_type fpu_type;
8079 struct tdesc_arch_data *tdesc_data = NULL;
8080 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8081 const char **reg_names;
8082 struct mips_regnum mips_regnum, *regnum;
8083 enum mips_isa mips_isa;
8084 int dspacc;
8085 int dspctl;
8086
8087 /* First of all, extract the elf_flags, if available. */
8088 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8089 elf_flags = elf_elfheader (info.abfd)->e_flags;
8090 else if (arches != NULL)
8091 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8092 else
8093 elf_flags = 0;
8094 if (gdbarch_debug)
8095 fprintf_unfiltered (gdb_stdlog,
8096 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8097
8098 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8099 switch ((elf_flags & EF_MIPS_ABI))
8100 {
8101 case E_MIPS_ABI_O32:
8102 found_abi = MIPS_ABI_O32;
8103 break;
8104 case E_MIPS_ABI_O64:
8105 found_abi = MIPS_ABI_O64;
8106 break;
8107 case E_MIPS_ABI_EABI32:
8108 found_abi = MIPS_ABI_EABI32;
8109 break;
8110 case E_MIPS_ABI_EABI64:
8111 found_abi = MIPS_ABI_EABI64;
8112 break;
8113 default:
8114 if ((elf_flags & EF_MIPS_ABI2))
8115 found_abi = MIPS_ABI_N32;
8116 else
8117 found_abi = MIPS_ABI_UNKNOWN;
8118 break;
8119 }
8120
8121 /* GCC creates a pseudo-section whose name describes the ABI. */
8122 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8123 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8124
8125 /* If we have no useful BFD information, use the ABI from the last
8126 MIPS architecture (if there is one). */
8127 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8128 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8129
8130 /* Try the architecture for any hint of the correct ABI. */
8131 if (found_abi == MIPS_ABI_UNKNOWN
8132 && info.bfd_arch_info != NULL
8133 && info.bfd_arch_info->arch == bfd_arch_mips)
8134 {
8135 switch (info.bfd_arch_info->mach)
8136 {
8137 case bfd_mach_mips3900:
8138 found_abi = MIPS_ABI_EABI32;
8139 break;
8140 case bfd_mach_mips4100:
8141 case bfd_mach_mips5000:
8142 found_abi = MIPS_ABI_EABI64;
8143 break;
8144 case bfd_mach_mips8000:
8145 case bfd_mach_mips10000:
8146 /* On Irix, ELF64 executables use the N64 ABI. The
8147 pseudo-sections which describe the ABI aren't present
8148 on IRIX. (Even for executables created by gcc.) */
8149 if (info.abfd != NULL
8150 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8151 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8152 found_abi = MIPS_ABI_N64;
8153 else
8154 found_abi = MIPS_ABI_N32;
8155 break;
8156 }
8157 }
8158
8159 /* Default 64-bit objects to N64 instead of O32. */
8160 if (found_abi == MIPS_ABI_UNKNOWN
8161 && info.abfd != NULL
8162 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8163 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8164 found_abi = MIPS_ABI_N64;
8165
8166 if (gdbarch_debug)
8167 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8168 found_abi);
8169
8170 /* What has the user specified from the command line? */
8171 wanted_abi = global_mips_abi ();
8172 if (gdbarch_debug)
8173 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8174 wanted_abi);
8175
8176 /* Now that we have found what the ABI for this binary would be,
8177 check whether the user is overriding it. */
8178 if (wanted_abi != MIPS_ABI_UNKNOWN)
8179 mips_abi = wanted_abi;
8180 else if (found_abi != MIPS_ABI_UNKNOWN)
8181 mips_abi = found_abi;
8182 else
8183 mips_abi = MIPS_ABI_O32;
8184 if (gdbarch_debug)
8185 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8186 mips_abi);
8187
8188 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8189 if (mips_abi != MIPS_ABI_EABI32
8190 && mips_abi != MIPS_ABI_O32
8191 && info.bfd_arch_info != NULL
8192 && info.bfd_arch_info->arch == bfd_arch_mips
8193 && info.bfd_arch_info->bits_per_word < 64)
8194 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_mips, bfd_mach_mips4000);
8195
8196 /* Determine the default compressed ISA. */
8197 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8198 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8199 mips_isa = ISA_MICROMIPS;
8200 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8201 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8202 mips_isa = ISA_MIPS16;
8203 else
8204 mips_isa = global_mips_compression ();
8205 mips_compression_string = mips_compression_strings[mips_isa];
8206
8207 /* Also used when doing an architecture lookup. */
8208 if (gdbarch_debug)
8209 fprintf_unfiltered (gdb_stdlog,
8210 "mips_gdbarch_init: "
8211 "mips64_transfers_32bit_regs_p = %d\n",
8212 mips64_transfers_32bit_regs_p);
8213
8214 /* Determine the MIPS FPU type. */
8215 #ifdef HAVE_ELF
8216 if (info.abfd
8217 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8218 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8219 Tag_GNU_MIPS_ABI_FP);
8220 #endif /* HAVE_ELF */
8221
8222 if (!mips_fpu_type_auto)
8223 fpu_type = mips_fpu_type;
8224 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8225 {
8226 switch (elf_fpu_type)
8227 {
8228 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8229 fpu_type = MIPS_FPU_DOUBLE;
8230 break;
8231 case Val_GNU_MIPS_ABI_FP_SINGLE:
8232 fpu_type = MIPS_FPU_SINGLE;
8233 break;
8234 case Val_GNU_MIPS_ABI_FP_SOFT:
8235 default:
8236 /* Soft float or unknown. */
8237 fpu_type = MIPS_FPU_NONE;
8238 break;
8239 }
8240 }
8241 else if (info.bfd_arch_info != NULL
8242 && info.bfd_arch_info->arch == bfd_arch_mips)
8243 switch (info.bfd_arch_info->mach)
8244 {
8245 case bfd_mach_mips3900:
8246 case bfd_mach_mips4100:
8247 case bfd_mach_mips4111:
8248 case bfd_mach_mips4120:
8249 fpu_type = MIPS_FPU_NONE;
8250 break;
8251 case bfd_mach_mips4650:
8252 fpu_type = MIPS_FPU_SINGLE;
8253 break;
8254 default:
8255 fpu_type = MIPS_FPU_DOUBLE;
8256 break;
8257 }
8258 else if (arches != NULL)
8259 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8260 else
8261 fpu_type = MIPS_FPU_DOUBLE;
8262 if (gdbarch_debug)
8263 fprintf_unfiltered (gdb_stdlog,
8264 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8265
8266 /* Check for blatant incompatibilities. */
8267
8268 /* If we have only 32-bit registers, then we can't debug a 64-bit
8269 ABI. */
8270 if (info.target_desc
8271 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8272 && mips_abi != MIPS_ABI_EABI32
8273 && mips_abi != MIPS_ABI_O32)
8274 return NULL;
8275
8276 /* Fill in the OS dependent register numbers and names. */
8277 if (info.osabi == GDB_OSABI_LINUX)
8278 {
8279 mips_regnum.fp0 = 38;
8280 mips_regnum.pc = 37;
8281 mips_regnum.cause = 36;
8282 mips_regnum.badvaddr = 35;
8283 mips_regnum.hi = 34;
8284 mips_regnum.lo = 33;
8285 mips_regnum.fp_control_status = 70;
8286 mips_regnum.fp_implementation_revision = 71;
8287 mips_regnum.dspacc = -1;
8288 mips_regnum.dspctl = -1;
8289 dspacc = 72;
8290 dspctl = 78;
8291 num_regs = 90;
8292 reg_names = mips_linux_reg_names;
8293 }
8294 else
8295 {
8296 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8297 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8298 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8299 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8300 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8301 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8302 mips_regnum.fp_control_status = 70;
8303 mips_regnum.fp_implementation_revision = 71;
8304 mips_regnum.dspacc = dspacc = -1;
8305 mips_regnum.dspctl = dspctl = -1;
8306 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8307 if (info.bfd_arch_info != NULL
8308 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8309 reg_names = mips_tx39_reg_names;
8310 else
8311 reg_names = mips_generic_reg_names;
8312 }
8313
8314 /* Check any target description for validity. */
8315 if (tdesc_has_registers (info.target_desc))
8316 {
8317 static const char *const mips_gprs[] = {
8318 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8319 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8320 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8321 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8322 };
8323 static const char *const mips_fprs[] = {
8324 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8325 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8326 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8327 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8328 };
8329
8330 const struct tdesc_feature *feature;
8331 int valid_p;
8332
8333 feature = tdesc_find_feature (info.target_desc,
8334 "org.gnu.gdb.mips.cpu");
8335 if (feature == NULL)
8336 return NULL;
8337
8338 tdesc_data = tdesc_data_alloc ();
8339
8340 valid_p = 1;
8341 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8342 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8343 mips_gprs[i]);
8344
8345
8346 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8347 mips_regnum.lo, "lo");
8348 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8349 mips_regnum.hi, "hi");
8350 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8351 mips_regnum.pc, "pc");
8352
8353 if (!valid_p)
8354 {
8355 tdesc_data_cleanup (tdesc_data);
8356 return NULL;
8357 }
8358
8359 feature = tdesc_find_feature (info.target_desc,
8360 "org.gnu.gdb.mips.cp0");
8361 if (feature == NULL)
8362 {
8363 tdesc_data_cleanup (tdesc_data);
8364 return NULL;
8365 }
8366
8367 valid_p = 1;
8368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8369 mips_regnum.badvaddr, "badvaddr");
8370 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8371 MIPS_PS_REGNUM, "status");
8372 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8373 mips_regnum.cause, "cause");
8374
8375 if (!valid_p)
8376 {
8377 tdesc_data_cleanup (tdesc_data);
8378 return NULL;
8379 }
8380
8381 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8382 backend is not prepared for that, though. */
8383 feature = tdesc_find_feature (info.target_desc,
8384 "org.gnu.gdb.mips.fpu");
8385 if (feature == NULL)
8386 {
8387 tdesc_data_cleanup (tdesc_data);
8388 return NULL;
8389 }
8390
8391 valid_p = 1;
8392 for (i = 0; i < 32; i++)
8393 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8394 i + mips_regnum.fp0, mips_fprs[i]);
8395
8396 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8397 mips_regnum.fp_control_status,
8398 "fcsr");
8399 valid_p
8400 &= tdesc_numbered_register (feature, tdesc_data,
8401 mips_regnum.fp_implementation_revision,
8402 "fir");
8403
8404 if (!valid_p)
8405 {
8406 tdesc_data_cleanup (tdesc_data);
8407 return NULL;
8408 }
8409
8410 num_regs = mips_regnum.fp_implementation_revision + 1;
8411
8412 if (dspacc >= 0)
8413 {
8414 feature = tdesc_find_feature (info.target_desc,
8415 "org.gnu.gdb.mips.dsp");
8416 /* The DSP registers are optional; it's OK if they are absent. */
8417 if (feature != NULL)
8418 {
8419 i = 0;
8420 valid_p = 1;
8421 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8422 dspacc + i++, "hi1");
8423 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8424 dspacc + i++, "lo1");
8425 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8426 dspacc + i++, "hi2");
8427 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8428 dspacc + i++, "lo2");
8429 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8430 dspacc + i++, "hi3");
8431 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8432 dspacc + i++, "lo3");
8433
8434 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8435 dspctl, "dspctl");
8436
8437 if (!valid_p)
8438 {
8439 tdesc_data_cleanup (tdesc_data);
8440 return NULL;
8441 }
8442
8443 mips_regnum.dspacc = dspacc;
8444 mips_regnum.dspctl = dspctl;
8445
8446 num_regs = mips_regnum.dspctl + 1;
8447 }
8448 }
8449
8450 /* It would be nice to detect an attempt to use a 64-bit ABI
8451 when only 32-bit registers are provided. */
8452 reg_names = NULL;
8453 }
8454
8455 /* Try to find a pre-existing architecture. */
8456 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8457 arches != NULL;
8458 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8459 {
8460 /* MIPS needs to be pedantic about which ABI and the compressed
8461 ISA variation the object is using. */
8462 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8463 continue;
8464 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8465 continue;
8466 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8467 continue;
8468 /* Need to be pedantic about which register virtual size is
8469 used. */
8470 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8471 != mips64_transfers_32bit_regs_p)
8472 continue;
8473 /* Be pedantic about which FPU is selected. */
8474 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8475 continue;
8476
8477 if (tdesc_data != NULL)
8478 tdesc_data_cleanup (tdesc_data);
8479 return arches->gdbarch;
8480 }
8481
8482 /* Need a new architecture. Fill in a target specific vector. */
8483 tdep = XCNEW (struct gdbarch_tdep);
8484 gdbarch = gdbarch_alloc (&info, tdep);
8485 tdep->elf_flags = elf_flags;
8486 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8487 tdep->found_abi = found_abi;
8488 tdep->mips_abi = mips_abi;
8489 tdep->mips_isa = mips_isa;
8490 tdep->mips_fpu_type = fpu_type;
8491 tdep->register_size_valid_p = 0;
8492 tdep->register_size = 0;
8493
8494 if (info.target_desc)
8495 {
8496 /* Some useful properties can be inferred from the target. */
8497 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8498 {
8499 tdep->register_size_valid_p = 1;
8500 tdep->register_size = 4;
8501 }
8502 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8503 {
8504 tdep->register_size_valid_p = 1;
8505 tdep->register_size = 8;
8506 }
8507 }
8508
8509 /* Initially set everything according to the default ABI/ISA. */
8510 set_gdbarch_short_bit (gdbarch, 16);
8511 set_gdbarch_int_bit (gdbarch, 32);
8512 set_gdbarch_float_bit (gdbarch, 32);
8513 set_gdbarch_double_bit (gdbarch, 64);
8514 set_gdbarch_long_double_bit (gdbarch, 64);
8515 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8516 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8517 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8518
8519 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8520 mips_ax_pseudo_register_collect);
8521 set_gdbarch_ax_pseudo_register_push_stack
8522 (gdbarch, mips_ax_pseudo_register_push_stack);
8523
8524 set_gdbarch_elf_make_msymbol_special (gdbarch,
8525 mips_elf_make_msymbol_special);
8526 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8527 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8528 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8529
8530 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8531 *regnum = mips_regnum;
8532 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8533 set_gdbarch_num_regs (gdbarch, num_regs);
8534 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8535 set_gdbarch_register_name (gdbarch, mips_register_name);
8536 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8537 tdep->mips_processor_reg_names = reg_names;
8538 tdep->regnum = regnum;
8539
8540 switch (mips_abi)
8541 {
8542 case MIPS_ABI_O32:
8543 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8544 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8545 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8546 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8547 tdep->default_mask_address_p = 0;
8548 set_gdbarch_long_bit (gdbarch, 32);
8549 set_gdbarch_ptr_bit (gdbarch, 32);
8550 set_gdbarch_long_long_bit (gdbarch, 64);
8551 break;
8552 case MIPS_ABI_O64:
8553 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8554 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8555 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8556 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8557 tdep->default_mask_address_p = 0;
8558 set_gdbarch_long_bit (gdbarch, 32);
8559 set_gdbarch_ptr_bit (gdbarch, 32);
8560 set_gdbarch_long_long_bit (gdbarch, 64);
8561 break;
8562 case MIPS_ABI_EABI32:
8563 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8564 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8565 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8566 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8567 tdep->default_mask_address_p = 0;
8568 set_gdbarch_long_bit (gdbarch, 32);
8569 set_gdbarch_ptr_bit (gdbarch, 32);
8570 set_gdbarch_long_long_bit (gdbarch, 64);
8571 break;
8572 case MIPS_ABI_EABI64:
8573 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8574 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8575 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8576 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8577 tdep->default_mask_address_p = 0;
8578 set_gdbarch_long_bit (gdbarch, 64);
8579 set_gdbarch_ptr_bit (gdbarch, 64);
8580 set_gdbarch_long_long_bit (gdbarch, 64);
8581 break;
8582 case MIPS_ABI_N32:
8583 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8584 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8585 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8586 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8587 tdep->default_mask_address_p = 0;
8588 set_gdbarch_long_bit (gdbarch, 32);
8589 set_gdbarch_ptr_bit (gdbarch, 32);
8590 set_gdbarch_long_long_bit (gdbarch, 64);
8591 set_gdbarch_long_double_bit (gdbarch, 128);
8592 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8593 break;
8594 case MIPS_ABI_N64:
8595 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8596 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8597 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8598 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8599 tdep->default_mask_address_p = 0;
8600 set_gdbarch_long_bit (gdbarch, 64);
8601 set_gdbarch_ptr_bit (gdbarch, 64);
8602 set_gdbarch_long_long_bit (gdbarch, 64);
8603 set_gdbarch_long_double_bit (gdbarch, 128);
8604 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8605 break;
8606 default:
8607 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8608 }
8609
8610 /* GCC creates a pseudo-section whose name specifies the size of
8611 longs, since -mlong32 or -mlong64 may be used independent of
8612 other options. How those options affect pointer sizes is ABI and
8613 architecture dependent, so use them to override the default sizes
8614 set by the ABI. This table shows the relationship between ABI,
8615 -mlongXX, and size of pointers:
8616
8617 ABI -mlongXX ptr bits
8618 --- -------- --------
8619 o32 32 32
8620 o32 64 32
8621 n32 32 32
8622 n32 64 64
8623 o64 32 32
8624 o64 64 64
8625 n64 32 32
8626 n64 64 64
8627 eabi32 32 32
8628 eabi32 64 32
8629 eabi64 32 32
8630 eabi64 64 64
8631
8632 Note that for o32 and eabi32, pointers are always 32 bits
8633 regardless of any -mlongXX option. For all others, pointers and
8634 longs are the same, as set by -mlongXX or set by defaults. */
8635
8636 if (info.abfd != NULL)
8637 {
8638 int long_bit = 0;
8639
8640 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8641 if (long_bit)
8642 {
8643 set_gdbarch_long_bit (gdbarch, long_bit);
8644 switch (mips_abi)
8645 {
8646 case MIPS_ABI_O32:
8647 case MIPS_ABI_EABI32:
8648 break;
8649 case MIPS_ABI_N32:
8650 case MIPS_ABI_O64:
8651 case MIPS_ABI_N64:
8652 case MIPS_ABI_EABI64:
8653 set_gdbarch_ptr_bit (gdbarch, long_bit);
8654 break;
8655 default:
8656 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8657 }
8658 }
8659 }
8660
8661 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8662 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8663 comment:
8664
8665 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8666 flag in object files because to do so would make it impossible to
8667 link with libraries compiled without "-gp32". This is
8668 unnecessarily restrictive.
8669
8670 We could solve this problem by adding "-gp32" multilibs to gcc,
8671 but to set this flag before gcc is built with such multilibs will
8672 break too many systems.''
8673
8674 But even more unhelpfully, the default linker output target for
8675 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8676 for 64-bit programs - you need to change the ABI to change this,
8677 and not all gcc targets support that currently. Therefore using
8678 this flag to detect 32-bit mode would do the wrong thing given
8679 the current gcc - it would make GDB treat these 64-bit programs
8680 as 32-bit programs by default. */
8681
8682 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8683 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8684
8685 /* Add/remove bits from an address. The MIPS needs be careful to
8686 ensure that all 32 bit addresses are sign extended to 64 bits. */
8687 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8688
8689 /* Unwind the frame. */
8690 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8691 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8692 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8693
8694 /* Map debug register numbers onto internal register numbers. */
8695 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8696 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8697 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8698 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8699 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8700 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8701
8702 /* MIPS version of CALL_DUMMY. */
8703
8704 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8705 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8706 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8707
8708 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8709
8710 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8711 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8712 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8713
8714 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8715 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8716 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8717 set_gdbarch_adjust_breakpoint_address (gdbarch,
8718 mips_adjust_breakpoint_address);
8719
8720 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8721
8722 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8723
8724 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8725 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8726 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8727
8728 set_gdbarch_register_type (gdbarch, mips_register_type);
8729
8730 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8731
8732 if (mips_abi == MIPS_ABI_N32)
8733 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8734 else if (mips_abi == MIPS_ABI_N64)
8735 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8736 else
8737 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8738
8739 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8740 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8741 need to all be folded into the target vector. Since they are
8742 being used as guards for target_stopped_by_watchpoint, why not have
8743 target_stopped_by_watchpoint return the type of watchpoint that the code
8744 is sitting on? */
8745 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8746
8747 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8748
8749 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8750 to support MIPS16. This is a bad thing. Make sure not to do it
8751 if we have an OS ABI that actually supports shared libraries, since
8752 shared library support is more important. If we have an OS someday
8753 that supports both shared libraries and MIPS16, we'll have to find
8754 a better place for these.
8755 macro/2012-04-25: But that applies to return trampolines only and
8756 currently no MIPS OS ABI uses shared libraries that have them. */
8757 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8758
8759 set_gdbarch_single_step_through_delay (gdbarch,
8760 mips_single_step_through_delay);
8761
8762 /* Virtual tables. */
8763 set_gdbarch_vbit_in_delta (gdbarch, 1);
8764
8765 mips_register_g_packet_guesses (gdbarch);
8766
8767 /* Hook in OS ABI-specific overrides, if they have been registered. */
8768 info.tdesc_data = tdesc_data;
8769 gdbarch_init_osabi (info, gdbarch);
8770
8771 /* The hook may have adjusted num_regs, fetch the final value and
8772 set pc_regnum and sp_regnum now that it has been fixed. */
8773 num_regs = gdbarch_num_regs (gdbarch);
8774 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8775 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8776
8777 /* Unwind the frame. */
8778 dwarf2_append_unwinders (gdbarch);
8779 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8780 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8781 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8782 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8783 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8784 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8785 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8786 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8787 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8788
8789 if (tdesc_data)
8790 {
8791 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8792 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8793
8794 /* Override the normal target description methods to handle our
8795 dual real and pseudo registers. */
8796 set_gdbarch_register_name (gdbarch, mips_register_name);
8797 set_gdbarch_register_reggroup_p (gdbarch,
8798 mips_tdesc_register_reggroup_p);
8799
8800 num_regs = gdbarch_num_regs (gdbarch);
8801 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8802 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8803 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8804 }
8805
8806 /* Add ABI-specific aliases for the registers. */
8807 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8808 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8809 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8810 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8811 else
8812 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8813 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8814 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8815
8816 /* Add some other standard aliases. */
8817 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8818 user_reg_add (gdbarch, mips_register_aliases[i].name,
8819 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8820
8821 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8822 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8823 value_of_mips_user_reg,
8824 &mips_numeric_register_aliases[i].regnum);
8825
8826 return gdbarch;
8827 }
8828
8829 static void
8830 mips_abi_update (const char *ignore_args,
8831 int from_tty, struct cmd_list_element *c)
8832 {
8833 struct gdbarch_info info;
8834
8835 /* Force the architecture to update, and (if it's a MIPS architecture)
8836 mips_gdbarch_init will take care of the rest. */
8837 gdbarch_info_init (&info);
8838 gdbarch_update_p (info);
8839 }
8840
8841 /* Print out which MIPS ABI is in use. */
8842
8843 static void
8844 show_mips_abi (struct ui_file *file,
8845 int from_tty,
8846 struct cmd_list_element *ignored_cmd,
8847 const char *ignored_value)
8848 {
8849 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8850 fprintf_filtered
8851 (file,
8852 "The MIPS ABI is unknown because the current architecture "
8853 "is not MIPS.\n");
8854 else
8855 {
8856 enum mips_abi global_abi = global_mips_abi ();
8857 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8858 const char *actual_abi_str = mips_abi_strings[actual_abi];
8859
8860 if (global_abi == MIPS_ABI_UNKNOWN)
8861 fprintf_filtered
8862 (file,
8863 "The MIPS ABI is set automatically (currently \"%s\").\n",
8864 actual_abi_str);
8865 else if (global_abi == actual_abi)
8866 fprintf_filtered
8867 (file,
8868 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8869 actual_abi_str);
8870 else
8871 {
8872 /* Probably shouldn't happen... */
8873 fprintf_filtered (file,
8874 "The (auto detected) MIPS ABI \"%s\" is in use "
8875 "even though the user setting was \"%s\".\n",
8876 actual_abi_str, mips_abi_strings[global_abi]);
8877 }
8878 }
8879 }
8880
8881 /* Print out which MIPS compressed ISA encoding is used. */
8882
8883 static void
8884 show_mips_compression (struct ui_file *file, int from_tty,
8885 struct cmd_list_element *c, const char *value)
8886 {
8887 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8888 value);
8889 }
8890
8891 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8892
8893 static const char *
8894 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8895 {
8896 switch (fpu_type)
8897 {
8898 case MIPS_FPU_NONE:
8899 return "none";
8900 case MIPS_FPU_SINGLE:
8901 return "single";
8902 case MIPS_FPU_DOUBLE:
8903 return "double";
8904 default:
8905 return "???";
8906 }
8907 }
8908
8909 static void
8910 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8911 {
8912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8913 if (tdep != NULL)
8914 {
8915 int ef_mips_arch;
8916 int ef_mips_32bitmode;
8917 /* Determine the ISA. */
8918 switch (tdep->elf_flags & EF_MIPS_ARCH)
8919 {
8920 case E_MIPS_ARCH_1:
8921 ef_mips_arch = 1;
8922 break;
8923 case E_MIPS_ARCH_2:
8924 ef_mips_arch = 2;
8925 break;
8926 case E_MIPS_ARCH_3:
8927 ef_mips_arch = 3;
8928 break;
8929 case E_MIPS_ARCH_4:
8930 ef_mips_arch = 4;
8931 break;
8932 default:
8933 ef_mips_arch = 0;
8934 break;
8935 }
8936 /* Determine the size of a pointer. */
8937 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8938 fprintf_unfiltered (file,
8939 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8940 tdep->elf_flags);
8941 fprintf_unfiltered (file,
8942 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8943 ef_mips_32bitmode);
8944 fprintf_unfiltered (file,
8945 "mips_dump_tdep: ef_mips_arch = %d\n",
8946 ef_mips_arch);
8947 fprintf_unfiltered (file,
8948 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8949 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8950 fprintf_unfiltered (file,
8951 "mips_dump_tdep: "
8952 "mips_mask_address_p() %d (default %d)\n",
8953 mips_mask_address_p (tdep),
8954 tdep->default_mask_address_p);
8955 }
8956 fprintf_unfiltered (file,
8957 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8958 MIPS_DEFAULT_FPU_TYPE,
8959 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8960 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8961 MIPS_EABI (gdbarch));
8962 fprintf_unfiltered (file,
8963 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8964 MIPS_FPU_TYPE (gdbarch),
8965 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8966 }
8967
8968 void
8969 _initialize_mips_tdep (void)
8970 {
8971 static struct cmd_list_element *mipsfpulist = NULL;
8972
8973 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8974 if (MIPS_ABI_LAST + 1
8975 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8976 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8977
8978 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8979
8980 mips_pdr_data = register_objfile_data ();
8981
8982 /* Create feature sets with the appropriate properties. The values
8983 are not important. */
8984 mips_tdesc_gp32 = allocate_target_description ();
8985 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8986
8987 mips_tdesc_gp64 = allocate_target_description ();
8988 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8989
8990 /* Add root prefix command for all "set mips"/"show mips" commands. */
8991 add_prefix_cmd ("mips", no_class, set_mips_command,
8992 _("Various MIPS specific commands."),
8993 &setmipscmdlist, "set mips ", 0, &setlist);
8994
8995 add_prefix_cmd ("mips", no_class, show_mips_command,
8996 _("Various MIPS specific commands."),
8997 &showmipscmdlist, "show mips ", 0, &showlist);
8998
8999 /* Allow the user to override the ABI. */
9000 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9001 &mips_abi_string, _("\
9002 Set the MIPS ABI used by this program."), _("\
9003 Show the MIPS ABI used by this program."), _("\
9004 This option can be set to one of:\n\
9005 auto - the default ABI associated with the current binary\n\
9006 o32\n\
9007 o64\n\
9008 n32\n\
9009 n64\n\
9010 eabi32\n\
9011 eabi64"),
9012 mips_abi_update,
9013 show_mips_abi,
9014 &setmipscmdlist, &showmipscmdlist);
9015
9016 /* Allow the user to set the ISA to assume for compressed code if ELF
9017 file flags don't tell or there is no program file selected. This
9018 setting is updated whenever unambiguous ELF file flags are interpreted,
9019 and carried over to subsequent sessions. */
9020 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9021 &mips_compression_string, _("\
9022 Set the compressed ISA encoding used by MIPS code."), _("\
9023 Show the compressed ISA encoding used by MIPS code."), _("\
9024 Select the compressed ISA encoding used in functions that have no symbol\n\
9025 information available. The encoding can be set to either of:\n\
9026 mips16\n\
9027 micromips\n\
9028 and is updated automatically from ELF file flags if available."),
9029 mips_abi_update,
9030 show_mips_compression,
9031 &setmipscmdlist, &showmipscmdlist);
9032
9033 /* Let the user turn off floating point and set the fence post for
9034 heuristic_proc_start. */
9035
9036 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9037 _("Set use of MIPS floating-point coprocessor."),
9038 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9039 add_cmd ("single", class_support, set_mipsfpu_single_command,
9040 _("Select single-precision MIPS floating-point coprocessor."),
9041 &mipsfpulist);
9042 add_cmd ("double", class_support, set_mipsfpu_double_command,
9043 _("Select double-precision MIPS floating-point coprocessor."),
9044 &mipsfpulist);
9045 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9046 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9047 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9048 add_cmd ("none", class_support, set_mipsfpu_none_command,
9049 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9050 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9051 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9052 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9053 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9054 _("Select MIPS floating-point coprocessor automatically."),
9055 &mipsfpulist);
9056 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9057 _("Show current use of MIPS floating-point coprocessor target."),
9058 &showlist);
9059
9060 /* We really would like to have both "0" and "unlimited" work, but
9061 command.c doesn't deal with that. So make it a var_zinteger
9062 because the user can always use "999999" or some such for unlimited. */
9063 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9064 &heuristic_fence_post, _("\
9065 Set the distance searched for the start of a function."), _("\
9066 Show the distance searched for the start of a function."), _("\
9067 If you are debugging a stripped executable, GDB needs to search through the\n\
9068 program for the start of a function. This command sets the distance of the\n\
9069 search. The only need to set it is when debugging a stripped executable."),
9070 reinit_frame_cache_sfunc,
9071 NULL, /* FIXME: i18n: The distance searched for
9072 the start of a function is %s. */
9073 &setlist, &showlist);
9074
9075 /* Allow the user to control whether the upper bits of 64-bit
9076 addresses should be zeroed. */
9077 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9078 &mask_address_var, _("\
9079 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9080 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9081 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9082 allow GDB to determine the correct value."),
9083 NULL, show_mask_address,
9084 &setmipscmdlist, &showmipscmdlist);
9085
9086 /* Allow the user to control the size of 32 bit registers within the
9087 raw remote packet. */
9088 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9089 &mips64_transfers_32bit_regs_p, _("\
9090 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9091 _("\
9092 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9093 _("\
9094 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9095 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9096 64 bits for others. Use \"off\" to disable compatibility mode"),
9097 set_mips64_transfers_32bit_regs,
9098 NULL, /* FIXME: i18n: Compatibility with 64-bit
9099 MIPS target that transfers 32-bit
9100 quantities is %s. */
9101 &setlist, &showlist);
9102
9103 /* Debug this files internals. */
9104 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9105 &mips_debug, _("\
9106 Set mips debugging."), _("\
9107 Show mips debugging."), _("\
9108 When non-zero, mips specific debugging is enabled."),
9109 NULL,
9110 NULL, /* FIXME: i18n: Mips debugging is
9111 currently %s. */
9112 &setdebuglist, &showdebuglist);
9113 }
This page took 0.405373 seconds and 5 git commands to generate.