* mips-tdep.c (mips_next_pc): Fix a typo.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "language.h"
32 #include "gdbcore.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdbtypes.h"
36 #include "target.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "mips-tdep.h"
41 #include "block.h"
42 #include "reggroups.h"
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47 #include "sim-regno.h"
48 #include "dis-asm.h"
49 #include "frame-unwind.h"
50 #include "frame-base.h"
51 #include "trad-frame.h"
52 #include "infcall.h"
53 #include "floatformat.h"
54 #include "remote.h"
55 #include "target-descriptions.h"
56 #include "dwarf2-frame.h"
57 #include "user-regs.h"
58 #include "valprint.h"
59 #include "ax.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR);
66 static int micromips_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
67 int);
68 static int mips16_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
69 int);
70
71 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
72 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
73 #define ST0_FR (1 << 26)
74
75 /* The sizes of floating point registers. */
76
77 enum
78 {
79 MIPS_FPU_SINGLE_REGSIZE = 4,
80 MIPS_FPU_DOUBLE_REGSIZE = 8
81 };
82
83 enum
84 {
85 MIPS32_REGSIZE = 4,
86 MIPS64_REGSIZE = 8
87 };
88
89 static const char *mips_abi_string;
90
91 static const char *const mips_abi_strings[] = {
92 "auto",
93 "n32",
94 "o32",
95 "n64",
96 "o64",
97 "eabi32",
98 "eabi64",
99 NULL
100 };
101
102 /* For backwards compatibility we default to MIPS16. This flag is
103 overridden as soon as unambiguous ELF file flags tell us the
104 compressed ISA encoding used. */
105 static const char mips_compression_mips16[] = "mips16";
106 static const char mips_compression_micromips[] = "micromips";
107 static const char *const mips_compression_strings[] =
108 {
109 mips_compression_mips16,
110 mips_compression_micromips,
111 NULL
112 };
113
114 static const char *mips_compression_string = mips_compression_mips16;
115
116 /* The standard register names, and all the valid aliases for them. */
117 struct register_alias
118 {
119 const char *name;
120 int regnum;
121 };
122
123 /* Aliases for o32 and most other ABIs. */
124 const struct register_alias mips_o32_aliases[] = {
125 { "ta0", 12 },
126 { "ta1", 13 },
127 { "ta2", 14 },
128 { "ta3", 15 }
129 };
130
131 /* Aliases for n32 and n64. */
132 const struct register_alias mips_n32_n64_aliases[] = {
133 { "ta0", 8 },
134 { "ta1", 9 },
135 { "ta2", 10 },
136 { "ta3", 11 }
137 };
138
139 /* Aliases for ABI-independent registers. */
140 const struct register_alias mips_register_aliases[] = {
141 /* The architecture manuals specify these ABI-independent names for
142 the GPRs. */
143 #define R(n) { "r" #n, n }
144 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
145 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
146 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
147 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
148 #undef R
149
150 /* k0 and k1 are sometimes called these instead (for "kernel
151 temp"). */
152 { "kt0", 26 },
153 { "kt1", 27 },
154
155 /* This is the traditional GDB name for the CP0 status register. */
156 { "sr", MIPS_PS_REGNUM },
157
158 /* This is the traditional GDB name for the CP0 BadVAddr register. */
159 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
160
161 /* This is the traditional GDB name for the FCSR. */
162 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
163 };
164
165 const struct register_alias mips_numeric_register_aliases[] = {
166 #define R(n) { #n, n }
167 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
168 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
169 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
170 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
171 #undef R
172 };
173
174 #ifndef MIPS_DEFAULT_FPU_TYPE
175 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
176 #endif
177 static int mips_fpu_type_auto = 1;
178 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
179
180 static unsigned int mips_debug = 0;
181
182 /* Properties (for struct target_desc) describing the g/G packet
183 layout. */
184 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
185 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
186
187 struct target_desc *mips_tdesc_gp32;
188 struct target_desc *mips_tdesc_gp64;
189
190 const struct mips_regnum *
191 mips_regnum (struct gdbarch *gdbarch)
192 {
193 return gdbarch_tdep (gdbarch)->regnum;
194 }
195
196 static int
197 mips_fpa0_regnum (struct gdbarch *gdbarch)
198 {
199 return mips_regnum (gdbarch)->fp0 + 12;
200 }
201
202 /* Return 1 if REGNUM refers to a floating-point general register, raw
203 or cooked. Otherwise return 0. */
204
205 static int
206 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
207 {
208 int rawnum = regnum % gdbarch_num_regs (gdbarch);
209
210 return (rawnum >= mips_regnum (gdbarch)->fp0
211 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
212 }
213
214 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
215 == MIPS_ABI_EABI32 \
216 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
217
218 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
219 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
220
221 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
222 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
223
224 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
225
226 /* Return the MIPS ABI associated with GDBARCH. */
227 enum mips_abi
228 mips_abi (struct gdbarch *gdbarch)
229 {
230 return gdbarch_tdep (gdbarch)->mips_abi;
231 }
232
233 int
234 mips_isa_regsize (struct gdbarch *gdbarch)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* If we know how big the registers are, use that size. */
239 if (tdep->register_size_valid_p)
240 return tdep->register_size;
241
242 /* Fall back to the previous behavior. */
243 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
244 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
245 }
246
247 /* Return the currently configured (or set) saved register size. */
248
249 unsigned int
250 mips_abi_regsize (struct gdbarch *gdbarch)
251 {
252 switch (mips_abi (gdbarch))
253 {
254 case MIPS_ABI_EABI32:
255 case MIPS_ABI_O32:
256 return 4;
257 case MIPS_ABI_N32:
258 case MIPS_ABI_N64:
259 case MIPS_ABI_O64:
260 case MIPS_ABI_EABI64:
261 return 8;
262 case MIPS_ABI_UNKNOWN:
263 case MIPS_ABI_LAST:
264 default:
265 internal_error (__FILE__, __LINE__, _("bad switch"));
266 }
267 }
268
269 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
270 are some functions to handle addresses associated with compressed
271 code including but not limited to testing, setting, or clearing
272 bit 0 of such addresses. */
273
274 /* Return one iff compressed code is the MIPS16 instruction set. */
275
276 static int
277 is_mips16_isa (struct gdbarch *gdbarch)
278 {
279 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
280 }
281
282 /* Return one iff compressed code is the microMIPS instruction set. */
283
284 static int
285 is_micromips_isa (struct gdbarch *gdbarch)
286 {
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
288 }
289
290 /* Return one iff ADDR denotes compressed code. */
291
292 static int
293 is_compact_addr (CORE_ADDR addr)
294 {
295 return ((addr) & 1);
296 }
297
298 /* Return one iff ADDR denotes standard ISA code. */
299
300 static int
301 is_mips_addr (CORE_ADDR addr)
302 {
303 return !is_compact_addr (addr);
304 }
305
306 /* Return one iff ADDR denotes MIPS16 code. */
307
308 static int
309 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
310 {
311 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
312 }
313
314 /* Return one iff ADDR denotes microMIPS code. */
315
316 static int
317 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318 {
319 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
320 }
321
322 /* Strip the ISA (compression) bit off from ADDR. */
323
324 static CORE_ADDR
325 unmake_compact_addr (CORE_ADDR addr)
326 {
327 return ((addr) & ~(CORE_ADDR) 1);
328 }
329
330 /* Add the ISA (compression) bit to ADDR. */
331
332 static CORE_ADDR
333 make_compact_addr (CORE_ADDR addr)
334 {
335 return ((addr) | (CORE_ADDR) 1);
336 }
337
338 /* Functions for setting and testing a bit in a minimal symbol that
339 marks it as MIPS16 or microMIPS function. The MSB of the minimal
340 symbol's "info" field is used for this purpose.
341
342 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
343 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
344 one of the "special" bits in a minimal symbol to mark it accordingly.
345 The test checks an ELF-private flag that is valid for true function
346 symbols only; for synthetic symbols such as for PLT stubs that have
347 no ELF-private part at all the MIPS BFD backend arranges for this
348 information to be carried in the asymbol's udata field instead.
349
350 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
351 in a minimal symbol. */
352
353 static void
354 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
355 {
356 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
357 unsigned char st_other;
358
359 if ((sym->flags & BSF_SYNTHETIC) == 0)
360 st_other = elfsym->internal_elf_sym.st_other;
361 else if ((sym->flags & BSF_FUNCTION) != 0)
362 st_other = sym->udata.i;
363 else
364 return;
365
366 if (ELF_ST_IS_MICROMIPS (st_other))
367 MSYMBOL_TARGET_FLAG_2 (msym) = 1;
368 else if (ELF_ST_IS_MIPS16 (st_other))
369 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
370 }
371
372 /* Return one iff MSYM refers to standard ISA code. */
373
374 static int
375 msymbol_is_mips (struct minimal_symbol *msym)
376 {
377 return !(MSYMBOL_TARGET_FLAG_1 (msym) | MSYMBOL_TARGET_FLAG_2 (msym));
378 }
379
380 /* Return one iff MSYM refers to MIPS16 code. */
381
382 static int
383 msymbol_is_mips16 (struct minimal_symbol *msym)
384 {
385 return MSYMBOL_TARGET_FLAG_1 (msym);
386 }
387
388 /* Return one iff MSYM refers to microMIPS code. */
389
390 static int
391 msymbol_is_micromips (struct minimal_symbol *msym)
392 {
393 return MSYMBOL_TARGET_FLAG_2 (msym);
394 }
395
396 /* XFER a value from the big/little/left end of the register.
397 Depending on the size of the value it might occupy the entire
398 register or just part of it. Make an allowance for this, aligning
399 things accordingly. */
400
401 static void
402 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
403 int reg_num, int length,
404 enum bfd_endian endian, gdb_byte *in,
405 const gdb_byte *out, int buf_offset)
406 {
407 int reg_offset = 0;
408
409 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
410 /* Need to transfer the left or right part of the register, based on
411 the targets byte order. */
412 switch (endian)
413 {
414 case BFD_ENDIAN_BIG:
415 reg_offset = register_size (gdbarch, reg_num) - length;
416 break;
417 case BFD_ENDIAN_LITTLE:
418 reg_offset = 0;
419 break;
420 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
421 reg_offset = 0;
422 break;
423 default:
424 internal_error (__FILE__, __LINE__, _("bad switch"));
425 }
426 if (mips_debug)
427 fprintf_unfiltered (gdb_stderr,
428 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
429 reg_num, reg_offset, buf_offset, length);
430 if (mips_debug && out != NULL)
431 {
432 int i;
433 fprintf_unfiltered (gdb_stdlog, "out ");
434 for (i = 0; i < length; i++)
435 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
436 }
437 if (in != NULL)
438 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
439 in + buf_offset);
440 if (out != NULL)
441 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
442 out + buf_offset);
443 if (mips_debug && in != NULL)
444 {
445 int i;
446 fprintf_unfiltered (gdb_stdlog, "in ");
447 for (i = 0; i < length; i++)
448 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
449 }
450 if (mips_debug)
451 fprintf_unfiltered (gdb_stdlog, "\n");
452 }
453
454 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
455 compatiblity mode. A return value of 1 means that we have
456 physical 64-bit registers, but should treat them as 32-bit registers. */
457
458 static int
459 mips2_fp_compat (struct frame_info *frame)
460 {
461 struct gdbarch *gdbarch = get_frame_arch (frame);
462 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
463 meaningful. */
464 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
465 return 0;
466
467 #if 0
468 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
469 in all the places we deal with FP registers. PR gdb/413. */
470 /* Otherwise check the FR bit in the status register - it controls
471 the FP compatiblity mode. If it is clear we are in compatibility
472 mode. */
473 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
474 return 1;
475 #endif
476
477 return 0;
478 }
479
480 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
481
482 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
483
484 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
485
486 /* The list of available "set mips " and "show mips " commands. */
487
488 static struct cmd_list_element *setmipscmdlist = NULL;
489 static struct cmd_list_element *showmipscmdlist = NULL;
490
491 /* Integer registers 0 thru 31 are handled explicitly by
492 mips_register_name(). Processor specific registers 32 and above
493 are listed in the following tables. */
494
495 enum
496 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
497
498 /* Generic MIPS. */
499
500 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
501 "sr", "lo", "hi", "bad", "cause", "pc",
502 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
503 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
504 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
505 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
506 "fsr", "fir",
507 };
508
509 /* Names of IDT R3041 registers. */
510
511 static const char *mips_r3041_reg_names[] = {
512 "sr", "lo", "hi", "bad", "cause", "pc",
513 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
514 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
515 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
516 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
517 "fsr", "fir", "", /*"fp" */ "",
518 "", "", "bus", "ccfg", "", "", "", "",
519 "", "", "port", "cmp", "", "", "epc", "prid",
520 };
521
522 /* Names of tx39 registers. */
523
524 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
525 "sr", "lo", "hi", "bad", "cause", "pc",
526 "", "", "", "", "", "", "", "",
527 "", "", "", "", "", "", "", "",
528 "", "", "", "", "", "", "", "",
529 "", "", "", "", "", "", "", "",
530 "", "", "", "",
531 "", "", "", "", "", "", "", "",
532 "", "", "config", "cache", "debug", "depc", "epc",
533 };
534
535 /* Names of IRIX registers. */
536 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
537 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
538 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
539 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
540 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
541 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
542 };
543
544 /* Names of registers with Linux kernels. */
545 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
546 "sr", "lo", "hi", "bad", "cause", "pc",
547 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
548 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
549 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
550 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
551 "fsr", "fir"
552 };
553
554
555 /* Return the name of the register corresponding to REGNO. */
556 static const char *
557 mips_register_name (struct gdbarch *gdbarch, int regno)
558 {
559 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
560 /* GPR names for all ABIs other than n32/n64. */
561 static char *mips_gpr_names[] = {
562 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
563 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
564 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
565 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
566 };
567
568 /* GPR names for n32 and n64 ABIs. */
569 static char *mips_n32_n64_gpr_names[] = {
570 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
571 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
572 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
573 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
574 };
575
576 enum mips_abi abi = mips_abi (gdbarch);
577
578 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
579 but then don't make the raw register names visible. This (upper)
580 range of user visible register numbers are the pseudo-registers.
581
582 This approach was adopted accommodate the following scenario:
583 It is possible to debug a 64-bit device using a 32-bit
584 programming model. In such instances, the raw registers are
585 configured to be 64-bits wide, while the pseudo registers are
586 configured to be 32-bits wide. The registers that the user
587 sees - the pseudo registers - match the users expectations
588 given the programming model being used. */
589 int rawnum = regno % gdbarch_num_regs (gdbarch);
590 if (regno < gdbarch_num_regs (gdbarch))
591 return "";
592
593 /* The MIPS integer registers are always mapped from 0 to 31. The
594 names of the registers (which reflects the conventions regarding
595 register use) vary depending on the ABI. */
596 if (0 <= rawnum && rawnum < 32)
597 {
598 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
599 return mips_n32_n64_gpr_names[rawnum];
600 else
601 return mips_gpr_names[rawnum];
602 }
603 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
604 return tdesc_register_name (gdbarch, rawnum);
605 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
606 {
607 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
608 if (tdep->mips_processor_reg_names[rawnum - 32])
609 return tdep->mips_processor_reg_names[rawnum - 32];
610 return "";
611 }
612 else
613 internal_error (__FILE__, __LINE__,
614 _("mips_register_name: bad register number %d"), rawnum);
615 }
616
617 /* Return the groups that a MIPS register can be categorised into. */
618
619 static int
620 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
621 struct reggroup *reggroup)
622 {
623 int vector_p;
624 int float_p;
625 int raw_p;
626 int rawnum = regnum % gdbarch_num_regs (gdbarch);
627 int pseudo = regnum / gdbarch_num_regs (gdbarch);
628 if (reggroup == all_reggroup)
629 return pseudo;
630 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
631 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
632 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
633 (gdbarch), as not all architectures are multi-arch. */
634 raw_p = rawnum < gdbarch_num_regs (gdbarch);
635 if (gdbarch_register_name (gdbarch, regnum) == NULL
636 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
637 return 0;
638 if (reggroup == float_reggroup)
639 return float_p && pseudo;
640 if (reggroup == vector_reggroup)
641 return vector_p && pseudo;
642 if (reggroup == general_reggroup)
643 return (!vector_p && !float_p) && pseudo;
644 /* Save the pseudo registers. Need to make certain that any code
645 extracting register values from a saved register cache also uses
646 pseudo registers. */
647 if (reggroup == save_reggroup)
648 return raw_p && pseudo;
649 /* Restore the same pseudo register. */
650 if (reggroup == restore_reggroup)
651 return raw_p && pseudo;
652 return 0;
653 }
654
655 /* Return the groups that a MIPS register can be categorised into.
656 This version is only used if we have a target description which
657 describes real registers (and their groups). */
658
659 static int
660 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
661 struct reggroup *reggroup)
662 {
663 int rawnum = regnum % gdbarch_num_regs (gdbarch);
664 int pseudo = regnum / gdbarch_num_regs (gdbarch);
665 int ret;
666
667 /* Only save, restore, and display the pseudo registers. Need to
668 make certain that any code extracting register values from a
669 saved register cache also uses pseudo registers.
670
671 Note: saving and restoring the pseudo registers is slightly
672 strange; if we have 64 bits, we should save and restore all
673 64 bits. But this is hard and has little benefit. */
674 if (!pseudo)
675 return 0;
676
677 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
678 if (ret != -1)
679 return ret;
680
681 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
682 }
683
684 /* Map the symbol table registers which live in the range [1 *
685 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
686 registers. Take care of alignment and size problems. */
687
688 static enum register_status
689 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
690 int cookednum, gdb_byte *buf)
691 {
692 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
693 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
694 && cookednum < 2 * gdbarch_num_regs (gdbarch));
695 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
696 return regcache_raw_read (regcache, rawnum, buf);
697 else if (register_size (gdbarch, rawnum) >
698 register_size (gdbarch, cookednum))
699 {
700 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
701 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
702 else
703 {
704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
705 LONGEST regval;
706 enum register_status status;
707
708 status = regcache_raw_read_signed (regcache, rawnum, &regval);
709 if (status == REG_VALID)
710 store_signed_integer (buf, 4, byte_order, regval);
711 return status;
712 }
713 }
714 else
715 internal_error (__FILE__, __LINE__, _("bad register size"));
716 }
717
718 static void
719 mips_pseudo_register_write (struct gdbarch *gdbarch,
720 struct regcache *regcache, int cookednum,
721 const gdb_byte *buf)
722 {
723 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
724 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
725 && cookednum < 2 * gdbarch_num_regs (gdbarch));
726 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
727 regcache_raw_write (regcache, rawnum, buf);
728 else if (register_size (gdbarch, rawnum) >
729 register_size (gdbarch, cookednum))
730 {
731 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
732 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
733 else
734 {
735 /* Sign extend the shortened version of the register prior
736 to placing it in the raw register. This is required for
737 some mips64 parts in order to avoid unpredictable behavior. */
738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
739 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
740 regcache_raw_write_signed (regcache, rawnum, regval);
741 }
742 }
743 else
744 internal_error (__FILE__, __LINE__, _("bad register size"));
745 }
746
747 static int
748 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
749 struct agent_expr *ax, int reg)
750 {
751 int rawnum = reg % gdbarch_num_regs (gdbarch);
752 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
753 && reg < 2 * gdbarch_num_regs (gdbarch));
754
755 ax_reg_mask (ax, rawnum);
756
757 return 0;
758 }
759
760 static int
761 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
762 struct agent_expr *ax, int reg)
763 {
764 int rawnum = reg % gdbarch_num_regs (gdbarch);
765 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
766 && reg < 2 * gdbarch_num_regs (gdbarch));
767 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
768 {
769 ax_reg (ax, rawnum);
770
771 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
772 {
773 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
774 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
775 {
776 ax_const_l (ax, 32);
777 ax_simple (ax, aop_lsh);
778 }
779 ax_const_l (ax, 32);
780 ax_simple (ax, aop_rsh_signed);
781 }
782 }
783 else
784 internal_error (__FILE__, __LINE__, _("bad register size"));
785
786 return 0;
787 }
788
789 /* Table to translate 3-bit register field to actual register number. */
790 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
791
792 /* Heuristic_proc_start may hunt through the text section for a long
793 time across a 2400 baud serial line. Allows the user to limit this
794 search. */
795
796 static int heuristic_fence_post = 0;
797
798 /* Number of bytes of storage in the actual machine representation for
799 register N. NOTE: This defines the pseudo register type so need to
800 rebuild the architecture vector. */
801
802 static int mips64_transfers_32bit_regs_p = 0;
803
804 static void
805 set_mips64_transfers_32bit_regs (char *args, int from_tty,
806 struct cmd_list_element *c)
807 {
808 struct gdbarch_info info;
809 gdbarch_info_init (&info);
810 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
811 instead of relying on globals. Doing that would let generic code
812 handle the search for this specific architecture. */
813 if (!gdbarch_update_p (info))
814 {
815 mips64_transfers_32bit_regs_p = 0;
816 error (_("32-bit compatibility mode not supported"));
817 }
818 }
819
820 /* Convert to/from a register and the corresponding memory value. */
821
822 /* This predicate tests for the case of an 8 byte floating point
823 value that is being transferred to or from a pair of floating point
824 registers each of which are (or are considered to be) only 4 bytes
825 wide. */
826 static int
827 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
828 struct type *type)
829 {
830 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
831 && register_size (gdbarch, regnum) == 4
832 && mips_float_register_p (gdbarch, regnum)
833 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
834 }
835
836 /* This predicate tests for the case of a value of less than 8
837 bytes in width that is being transfered to or from an 8 byte
838 general purpose register. */
839 static int
840 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
841 struct type *type)
842 {
843 int num_regs = gdbarch_num_regs (gdbarch);
844
845 return (register_size (gdbarch, regnum) == 8
846 && regnum % num_regs > 0 && regnum % num_regs < 32
847 && TYPE_LENGTH (type) < 8);
848 }
849
850 static int
851 mips_convert_register_p (struct gdbarch *gdbarch,
852 int regnum, struct type *type)
853 {
854 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
855 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
856 }
857
858 static int
859 mips_register_to_value (struct frame_info *frame, int regnum,
860 struct type *type, gdb_byte *to,
861 int *optimizedp, int *unavailablep)
862 {
863 struct gdbarch *gdbarch = get_frame_arch (frame);
864
865 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
866 {
867 get_frame_register (frame, regnum + 0, to + 4);
868 get_frame_register (frame, regnum + 1, to + 0);
869
870 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
871 optimizedp, unavailablep))
872 return 0;
873
874 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
875 optimizedp, unavailablep))
876 return 0;
877 *optimizedp = *unavailablep = 0;
878 return 1;
879 }
880 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
881 {
882 int len = TYPE_LENGTH (type);
883 CORE_ADDR offset;
884
885 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
886 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
887 optimizedp, unavailablep))
888 return 0;
889
890 *optimizedp = *unavailablep = 0;
891 return 1;
892 }
893 else
894 {
895 internal_error (__FILE__, __LINE__,
896 _("mips_register_to_value: unrecognized case"));
897 }
898 }
899
900 static void
901 mips_value_to_register (struct frame_info *frame, int regnum,
902 struct type *type, const gdb_byte *from)
903 {
904 struct gdbarch *gdbarch = get_frame_arch (frame);
905
906 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
907 {
908 put_frame_register (frame, regnum + 0, from + 4);
909 put_frame_register (frame, regnum + 1, from + 0);
910 }
911 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
912 {
913 gdb_byte fill[8];
914 int len = TYPE_LENGTH (type);
915
916 /* Sign extend values, irrespective of type, that are stored to
917 a 64-bit general purpose register. (32-bit unsigned values
918 are stored as signed quantities within a 64-bit register.
919 When performing an operation, in compiled code, that combines
920 a 32-bit unsigned value with a signed 64-bit value, a type
921 conversion is first performed that zeroes out the high 32 bits.) */
922 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
923 {
924 if (from[0] & 0x80)
925 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
926 else
927 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
928 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
929 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
930 }
931 else
932 {
933 if (from[len-1] & 0x80)
934 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
935 else
936 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
937 put_frame_register_bytes (frame, regnum, 0, len, from);
938 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
939 }
940 }
941 else
942 {
943 internal_error (__FILE__, __LINE__,
944 _("mips_value_to_register: unrecognized case"));
945 }
946 }
947
948 /* Return the GDB type object for the "standard" data type of data in
949 register REG. */
950
951 static struct type *
952 mips_register_type (struct gdbarch *gdbarch, int regnum)
953 {
954 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
955 if (mips_float_register_p (gdbarch, regnum))
956 {
957 /* The floating-point registers raw, or cooked, always match
958 mips_isa_regsize(), and also map 1:1, byte for byte. */
959 if (mips_isa_regsize (gdbarch) == 4)
960 return builtin_type (gdbarch)->builtin_float;
961 else
962 return builtin_type (gdbarch)->builtin_double;
963 }
964 else if (regnum < gdbarch_num_regs (gdbarch))
965 {
966 /* The raw or ISA registers. These are all sized according to
967 the ISA regsize. */
968 if (mips_isa_regsize (gdbarch) == 4)
969 return builtin_type (gdbarch)->builtin_int32;
970 else
971 return builtin_type (gdbarch)->builtin_int64;
972 }
973 else
974 {
975 int rawnum = regnum - gdbarch_num_regs (gdbarch);
976
977 /* The cooked or ABI registers. These are sized according to
978 the ABI (with a few complications). */
979 if (rawnum == mips_regnum (gdbarch)->fp_control_status
980 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
981 return builtin_type (gdbarch)->builtin_int32;
982 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
983 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
984 && rawnum >= MIPS_FIRST_EMBED_REGNUM
985 && rawnum <= MIPS_LAST_EMBED_REGNUM)
986 /* The pseudo/cooked view of the embedded registers is always
987 32-bit. The raw view is handled below. */
988 return builtin_type (gdbarch)->builtin_int32;
989 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
990 /* The target, while possibly using a 64-bit register buffer,
991 is only transfering 32-bits of each integer register.
992 Reflect this in the cooked/pseudo (ABI) register value. */
993 return builtin_type (gdbarch)->builtin_int32;
994 else if (mips_abi_regsize (gdbarch) == 4)
995 /* The ABI is restricted to 32-bit registers (the ISA could be
996 32- or 64-bit). */
997 return builtin_type (gdbarch)->builtin_int32;
998 else
999 /* 64-bit ABI. */
1000 return builtin_type (gdbarch)->builtin_int64;
1001 }
1002 }
1003
1004 /* Return the GDB type for the pseudo register REGNUM, which is the
1005 ABI-level view. This function is only called if there is a target
1006 description which includes registers, so we know precisely the
1007 types of hardware registers. */
1008
1009 static struct type *
1010 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1011 {
1012 const int num_regs = gdbarch_num_regs (gdbarch);
1013 int rawnum = regnum % num_regs;
1014 struct type *rawtype;
1015
1016 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1017
1018 /* Absent registers are still absent. */
1019 rawtype = gdbarch_register_type (gdbarch, rawnum);
1020 if (TYPE_LENGTH (rawtype) == 0)
1021 return rawtype;
1022
1023 if (mips_float_register_p (gdbarch, rawnum))
1024 /* Present the floating point registers however the hardware did;
1025 do not try to convert between FPU layouts. */
1026 return rawtype;
1027
1028 /* Use pointer types for registers if we can. For n32 we can not,
1029 since we do not have a 64-bit pointer type. */
1030 if (mips_abi_regsize (gdbarch)
1031 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1032 {
1033 if (rawnum == MIPS_SP_REGNUM
1034 || rawnum == mips_regnum (gdbarch)->badvaddr)
1035 return builtin_type (gdbarch)->builtin_data_ptr;
1036 else if (rawnum == mips_regnum (gdbarch)->pc)
1037 return builtin_type (gdbarch)->builtin_func_ptr;
1038 }
1039
1040 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1041 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1042 || rawnum == mips_regnum (gdbarch)->lo
1043 || rawnum == mips_regnum (gdbarch)->hi
1044 || rawnum == mips_regnum (gdbarch)->badvaddr
1045 || rawnum == mips_regnum (gdbarch)->cause
1046 || rawnum == mips_regnum (gdbarch)->pc
1047 || (mips_regnum (gdbarch)->dspacc != -1
1048 && rawnum >= mips_regnum (gdbarch)->dspacc
1049 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1050 return builtin_type (gdbarch)->builtin_int32;
1051
1052 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1053 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1054 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1055 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1056 {
1057 /* The pseudo/cooked view of embedded registers is always
1058 32-bit, even if the target transfers 64-bit values for them.
1059 New targets relying on XML descriptions should only transfer
1060 the necessary 32 bits, but older versions of GDB expected 64,
1061 so allow the target to provide 64 bits without interfering
1062 with the displayed type. */
1063 return builtin_type (gdbarch)->builtin_int32;
1064 }
1065
1066 /* For all other registers, pass through the hardware type. */
1067 return rawtype;
1068 }
1069
1070 /* Should the upper word of 64-bit addresses be zeroed? */
1071 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1072
1073 static int
1074 mips_mask_address_p (struct gdbarch_tdep *tdep)
1075 {
1076 switch (mask_address_var)
1077 {
1078 case AUTO_BOOLEAN_TRUE:
1079 return 1;
1080 case AUTO_BOOLEAN_FALSE:
1081 return 0;
1082 break;
1083 case AUTO_BOOLEAN_AUTO:
1084 return tdep->default_mask_address_p;
1085 default:
1086 internal_error (__FILE__, __LINE__,
1087 _("mips_mask_address_p: bad switch"));
1088 return -1;
1089 }
1090 }
1091
1092 static void
1093 show_mask_address (struct ui_file *file, int from_tty,
1094 struct cmd_list_element *c, const char *value)
1095 {
1096 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1097
1098 deprecated_show_value_hack (file, from_tty, c, value);
1099 switch (mask_address_var)
1100 {
1101 case AUTO_BOOLEAN_TRUE:
1102 printf_filtered ("The 32 bit mips address mask is enabled\n");
1103 break;
1104 case AUTO_BOOLEAN_FALSE:
1105 printf_filtered ("The 32 bit mips address mask is disabled\n");
1106 break;
1107 case AUTO_BOOLEAN_AUTO:
1108 printf_filtered
1109 ("The 32 bit address mask is set automatically. Currently %s\n",
1110 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1111 break;
1112 default:
1113 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1114 break;
1115 }
1116 }
1117
1118 /* Tell if the program counter value in MEMADDR is in a standard ISA
1119 function. */
1120
1121 int
1122 mips_pc_is_mips (CORE_ADDR memaddr)
1123 {
1124 struct bound_minimal_symbol sym;
1125
1126 /* Flags indicating that this is a MIPS16 or microMIPS function is
1127 stored by elfread.c in the high bit of the info field. Use this
1128 to decide if the function is standard MIPS. Otherwise if bit 0
1129 of the address is clear, then this is a standard MIPS function. */
1130 sym = lookup_minimal_symbol_by_pc (memaddr);
1131 if (sym.minsym)
1132 return msymbol_is_mips (sym.minsym);
1133 else
1134 return is_mips_addr (memaddr);
1135 }
1136
1137 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1138
1139 int
1140 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1141 {
1142 struct bound_minimal_symbol sym;
1143
1144 /* A flag indicating that this is a MIPS16 function is stored by
1145 elfread.c in the high bit of the info field. Use this to decide
1146 if the function is MIPS16. Otherwise if bit 0 of the address is
1147 set, then ELF file flags will tell if this is a MIPS16 function. */
1148 sym = lookup_minimal_symbol_by_pc (memaddr);
1149 if (sym.minsym)
1150 return msymbol_is_mips16 (sym.minsym);
1151 else
1152 return is_mips16_addr (gdbarch, memaddr);
1153 }
1154
1155 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1156
1157 int
1158 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1159 {
1160 struct bound_minimal_symbol sym;
1161
1162 /* A flag indicating that this is a microMIPS function is stored by
1163 elfread.c in the high bit of the info field. Use this to decide
1164 if the function is microMIPS. Otherwise if bit 0 of the address
1165 is set, then ELF file flags will tell if this is a microMIPS
1166 function. */
1167 sym = lookup_minimal_symbol_by_pc (memaddr);
1168 if (sym.minsym)
1169 return msymbol_is_micromips (sym.minsym);
1170 else
1171 return is_micromips_addr (gdbarch, memaddr);
1172 }
1173
1174 /* Tell the ISA type of the function the program counter value in MEMADDR
1175 is in. */
1176
1177 static enum mips_isa
1178 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1179 {
1180 struct bound_minimal_symbol sym;
1181
1182 /* A flag indicating that this is a MIPS16 or a microMIPS function
1183 is stored by elfread.c in the high bit of the info field. Use
1184 this to decide if the function is MIPS16 or microMIPS or normal
1185 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1186 flags will tell if this is a MIPS16 or a microMIPS function. */
1187 sym = lookup_minimal_symbol_by_pc (memaddr);
1188 if (sym.minsym)
1189 {
1190 if (msymbol_is_micromips (sym.minsym))
1191 return ISA_MICROMIPS;
1192 else if (msymbol_is_mips16 (sym.minsym))
1193 return ISA_MIPS16;
1194 else
1195 return ISA_MIPS;
1196 }
1197 else
1198 {
1199 if (is_mips_addr (memaddr))
1200 return ISA_MIPS;
1201 else if (is_micromips_addr (gdbarch, memaddr))
1202 return ISA_MICROMIPS;
1203 else
1204 return ISA_MIPS16;
1205 }
1206 }
1207
1208 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1209
1210 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1211 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1212 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1213 static const char mips_str_call_stub[] = "__call_stub_";
1214 static const char mips_str_fn_stub[] = "__fn_stub_";
1215
1216 /* This is used as a PIC thunk prefix. */
1217
1218 static const char mips_str_pic[] = ".pic.";
1219
1220 /* Return non-zero if the PC is inside a call thunk (aka stub or
1221 trampoline) that should be treated as a temporary frame. */
1222
1223 static int
1224 mips_in_frame_stub (CORE_ADDR pc)
1225 {
1226 CORE_ADDR start_addr;
1227 const char *name;
1228
1229 /* Find the starting address of the function containing the PC. */
1230 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1231 return 0;
1232
1233 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1234 if (strncmp (name, mips_str_mips16_call_stub,
1235 strlen (mips_str_mips16_call_stub)) == 0)
1236 return 1;
1237 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1238 if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
1239 return 1;
1240 /* If the PC is in __fn_stub_*, this is a call stub. */
1241 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
1242 return 1;
1243
1244 return 0; /* Not a stub. */
1245 }
1246
1247 /* MIPS believes that the PC has a sign extended value. Perhaps the
1248 all registers should be sign extended for simplicity? */
1249
1250 static CORE_ADDR
1251 mips_read_pc (struct regcache *regcache)
1252 {
1253 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1254 LONGEST pc;
1255
1256 regcache_cooked_read_signed (regcache, regnum, &pc);
1257 if (is_compact_addr (pc))
1258 pc = unmake_compact_addr (pc);
1259 return pc;
1260 }
1261
1262 static CORE_ADDR
1263 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1264 {
1265 CORE_ADDR pc;
1266
1267 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1268 if (is_compact_addr (pc))
1269 pc = unmake_compact_addr (pc);
1270 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1271 intermediate frames. In this case we can get the caller's address
1272 from $ra, or if $ra contains an address within a thunk as well, then
1273 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1274 and thus the caller's address is in $s2. */
1275 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1276 {
1277 pc = frame_unwind_register_signed
1278 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1279 if (is_compact_addr (pc))
1280 pc = unmake_compact_addr (pc);
1281 if (mips_in_frame_stub (pc))
1282 {
1283 pc = frame_unwind_register_signed
1284 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1285 if (is_compact_addr (pc))
1286 pc = unmake_compact_addr (pc);
1287 }
1288 }
1289 return pc;
1290 }
1291
1292 static CORE_ADDR
1293 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1294 {
1295 return frame_unwind_register_signed
1296 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1297 }
1298
1299 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1300 dummy frame. The frame ID's base needs to match the TOS value
1301 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1302 breakpoint. */
1303
1304 static struct frame_id
1305 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1306 {
1307 return frame_id_build
1308 (get_frame_register_signed (this_frame,
1309 gdbarch_num_regs (gdbarch)
1310 + MIPS_SP_REGNUM),
1311 get_frame_pc (this_frame));
1312 }
1313
1314 /* Implement the "write_pc" gdbarch method. */
1315
1316 void
1317 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1318 {
1319 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1320
1321 if (mips_pc_is_mips (pc))
1322 regcache_cooked_write_unsigned (regcache, regnum, pc);
1323 else
1324 regcache_cooked_write_unsigned (regcache, regnum, make_compact_addr (pc));
1325 }
1326
1327 /* Fetch and return instruction from the specified location. Handle
1328 MIPS16/microMIPS as appropriate. */
1329
1330 static ULONGEST
1331 mips_fetch_instruction (struct gdbarch *gdbarch,
1332 enum mips_isa isa, CORE_ADDR addr, int *statusp)
1333 {
1334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1335 gdb_byte buf[MIPS_INSN32_SIZE];
1336 int instlen;
1337 int status;
1338
1339 switch (isa)
1340 {
1341 case ISA_MICROMIPS:
1342 case ISA_MIPS16:
1343 instlen = MIPS_INSN16_SIZE;
1344 addr = unmake_compact_addr (addr);
1345 break;
1346 case ISA_MIPS:
1347 instlen = MIPS_INSN32_SIZE;
1348 break;
1349 default:
1350 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1351 break;
1352 }
1353 status = target_read_memory (addr, buf, instlen);
1354 if (statusp != NULL)
1355 *statusp = status;
1356 if (status)
1357 {
1358 if (statusp == NULL)
1359 memory_error (status, addr);
1360 return 0;
1361 }
1362 return extract_unsigned_integer (buf, instlen, byte_order);
1363 }
1364
1365 /* These are the fields of 32 bit mips instructions. */
1366 #define mips32_op(x) (x >> 26)
1367 #define itype_op(x) (x >> 26)
1368 #define itype_rs(x) ((x >> 21) & 0x1f)
1369 #define itype_rt(x) ((x >> 16) & 0x1f)
1370 #define itype_immediate(x) (x & 0xffff)
1371
1372 #define jtype_op(x) (x >> 26)
1373 #define jtype_target(x) (x & 0x03ffffff)
1374
1375 #define rtype_op(x) (x >> 26)
1376 #define rtype_rs(x) ((x >> 21) & 0x1f)
1377 #define rtype_rt(x) ((x >> 16) & 0x1f)
1378 #define rtype_rd(x) ((x >> 11) & 0x1f)
1379 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1380 #define rtype_funct(x) (x & 0x3f)
1381
1382 /* MicroMIPS instruction fields. */
1383 #define micromips_op(x) ((x) >> 10)
1384
1385 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1386 bit and the size respectively of the field extracted. */
1387 #define b0s4_imm(x) ((x) & 0xf)
1388 #define b0s5_imm(x) ((x) & 0x1f)
1389 #define b0s5_reg(x) ((x) & 0x1f)
1390 #define b0s7_imm(x) ((x) & 0x7f)
1391 #define b0s10_imm(x) ((x) & 0x3ff)
1392 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1393 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1394 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1395 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1396 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1397 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1398 #define b6s4_op(x) (((x) >> 6) & 0xf)
1399 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1400
1401 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1402 respectively of the field extracted. */
1403 #define b0s6_op(x) ((x) & 0x3f)
1404 #define b0s11_op(x) ((x) & 0x7ff)
1405 #define b0s12_imm(x) ((x) & 0xfff)
1406 #define b0s16_imm(x) ((x) & 0xffff)
1407 #define b0s26_imm(x) ((x) & 0x3ffffff)
1408 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1409 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1410 #define b12s4_op(x) (((x) >> 12) & 0xf)
1411
1412 /* Return the size in bytes of the instruction INSN encoded in the ISA
1413 instruction set. */
1414
1415 static int
1416 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1417 {
1418 switch (isa)
1419 {
1420 case ISA_MICROMIPS:
1421 if (micromips_op (insn) == 0x1f)
1422 return 3 * MIPS_INSN16_SIZE;
1423 else if (((micromips_op (insn) & 0x4) == 0x4)
1424 || ((micromips_op (insn) & 0x7) == 0x0))
1425 return 2 * MIPS_INSN16_SIZE;
1426 else
1427 return MIPS_INSN16_SIZE;
1428 case ISA_MIPS16:
1429 if ((insn & 0xf800) == 0xf000)
1430 return 2 * MIPS_INSN16_SIZE;
1431 else
1432 return MIPS_INSN16_SIZE;
1433 case ISA_MIPS:
1434 return MIPS_INSN32_SIZE;
1435 }
1436 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1437 }
1438
1439 static LONGEST
1440 mips32_relative_offset (ULONGEST inst)
1441 {
1442 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1443 }
1444
1445 /* Determine the address of the next instruction executed after the INST
1446 floating condition branch instruction at PC. COUNT specifies the
1447 number of the floating condition bits tested by the branch. */
1448
1449 static CORE_ADDR
1450 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1451 ULONGEST inst, CORE_ADDR pc, int count)
1452 {
1453 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1454 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1455 int tf = itype_rt (inst) & 1;
1456 int mask = (1 << count) - 1;
1457 ULONGEST fcs;
1458 int cond;
1459
1460 if (fcsr == -1)
1461 /* No way to handle; it'll most likely trap anyway. */
1462 return pc;
1463
1464 fcs = get_frame_register_unsigned (frame, fcsr);
1465 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1466
1467 if (((cond >> cnum) & mask) != mask * !tf)
1468 pc += mips32_relative_offset (inst);
1469 else
1470 pc += 4;
1471
1472 return pc;
1473 }
1474
1475 /* Return nonzero if the gdbarch is an Octeon series. */
1476
1477 static int
1478 is_octeon (struct gdbarch *gdbarch)
1479 {
1480 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1481
1482 return (info->mach == bfd_mach_mips_octeon
1483 || info->mach == bfd_mach_mips_octeonp
1484 || info->mach == bfd_mach_mips_octeon2);
1485 }
1486
1487 /* Return true if the OP represents the Octeon's BBIT instruction. */
1488
1489 static int
1490 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1491 {
1492 if (!is_octeon (gdbarch))
1493 return 0;
1494 /* BBIT0 is encoded as LWC2: 110 010. */
1495 /* BBIT032 is encoded as LDC2: 110 110. */
1496 /* BBIT1 is encoded as SWC2: 111 010. */
1497 /* BBIT132 is encoded as SDC2: 111 110. */
1498 if (op == 50 || op == 54 || op == 58 || op == 62)
1499 return 1;
1500 return 0;
1501 }
1502
1503
1504 /* Determine where to set a single step breakpoint while considering
1505 branch prediction. */
1506
1507 static CORE_ADDR
1508 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1509 {
1510 struct gdbarch *gdbarch = get_frame_arch (frame);
1511 unsigned long inst;
1512 int op;
1513 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1514 op = itype_op (inst);
1515 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1516 instruction. */
1517 {
1518 if (op >> 2 == 5)
1519 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1520 {
1521 switch (op & 0x03)
1522 {
1523 case 0: /* BEQL */
1524 goto equal_branch;
1525 case 1: /* BNEL */
1526 goto neq_branch;
1527 case 2: /* BLEZL */
1528 goto less_branch;
1529 case 3: /* BGTZL */
1530 goto greater_branch;
1531 default:
1532 pc += 4;
1533 }
1534 }
1535 else if (op == 17 && itype_rs (inst) == 8)
1536 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1537 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1538 else if (op == 17 && itype_rs (inst) == 9
1539 && (itype_rt (inst) & 2) == 0)
1540 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1541 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1542 else if (op == 17 && itype_rs (inst) == 10
1543 && (itype_rt (inst) & 2) == 0)
1544 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1545 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1546 else if (op == 29)
1547 /* JALX: 011101 */
1548 /* The new PC will be alternate mode. */
1549 {
1550 unsigned long reg;
1551
1552 reg = jtype_target (inst) << 2;
1553 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1554 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1555 }
1556 else if (is_octeon_bbit_op (op, gdbarch))
1557 {
1558 int bit, branch_if;
1559
1560 branch_if = op == 58 || op == 62;
1561 bit = itype_rt (inst);
1562
1563 /* Take into account the *32 instructions. */
1564 if (op == 54 || op == 62)
1565 bit += 32;
1566
1567 if (((get_frame_register_signed (frame,
1568 itype_rs (inst)) >> bit) & 1)
1569 == branch_if)
1570 pc += mips32_relative_offset (inst) + 4;
1571 else
1572 pc += 8; /* After the delay slot. */
1573 }
1574
1575 else
1576 pc += 4; /* Not a branch, next instruction is easy. */
1577 }
1578 else
1579 { /* This gets way messy. */
1580
1581 /* Further subdivide into SPECIAL, REGIMM and other. */
1582 switch (op & 0x07) /* Extract bits 28,27,26. */
1583 {
1584 case 0: /* SPECIAL */
1585 op = rtype_funct (inst);
1586 switch (op)
1587 {
1588 case 8: /* JR */
1589 case 9: /* JALR */
1590 /* Set PC to that address. */
1591 pc = get_frame_register_signed (frame, rtype_rs (inst));
1592 break;
1593 case 12: /* SYSCALL */
1594 {
1595 struct gdbarch_tdep *tdep;
1596
1597 tdep = gdbarch_tdep (get_frame_arch (frame));
1598 if (tdep->syscall_next_pc != NULL)
1599 pc = tdep->syscall_next_pc (frame);
1600 else
1601 pc += 4;
1602 }
1603 break;
1604 default:
1605 pc += 4;
1606 }
1607
1608 break; /* end SPECIAL */
1609 case 1: /* REGIMM */
1610 {
1611 op = itype_rt (inst); /* branch condition */
1612 switch (op)
1613 {
1614 case 0: /* BLTZ */
1615 case 2: /* BLTZL */
1616 case 16: /* BLTZAL */
1617 case 18: /* BLTZALL */
1618 less_branch:
1619 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1620 pc += mips32_relative_offset (inst) + 4;
1621 else
1622 pc += 8; /* after the delay slot */
1623 break;
1624 case 1: /* BGEZ */
1625 case 3: /* BGEZL */
1626 case 17: /* BGEZAL */
1627 case 19: /* BGEZALL */
1628 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1629 pc += mips32_relative_offset (inst) + 4;
1630 else
1631 pc += 8; /* after the delay slot */
1632 break;
1633 case 0x1c: /* BPOSGE32 */
1634 case 0x1e: /* BPOSGE64 */
1635 pc += 4;
1636 if (itype_rs (inst) == 0)
1637 {
1638 unsigned int pos = (op & 2) ? 64 : 32;
1639 int dspctl = mips_regnum (gdbarch)->dspctl;
1640
1641 if (dspctl == -1)
1642 /* No way to handle; it'll most likely trap anyway. */
1643 break;
1644
1645 if ((get_frame_register_unsigned (frame,
1646 dspctl) & 0x7f) >= pos)
1647 pc += mips32_relative_offset (inst);
1648 else
1649 pc += 4;
1650 }
1651 break;
1652 /* All of the other instructions in the REGIMM category */
1653 default:
1654 pc += 4;
1655 }
1656 }
1657 break; /* end REGIMM */
1658 case 2: /* J */
1659 case 3: /* JAL */
1660 {
1661 unsigned long reg;
1662 reg = jtype_target (inst) << 2;
1663 /* Upper four bits get never changed... */
1664 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1665 }
1666 break;
1667 case 4: /* BEQ, BEQL */
1668 equal_branch:
1669 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1670 get_frame_register_signed (frame, itype_rt (inst)))
1671 pc += mips32_relative_offset (inst) + 4;
1672 else
1673 pc += 8;
1674 break;
1675 case 5: /* BNE, BNEL */
1676 neq_branch:
1677 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1678 get_frame_register_signed (frame, itype_rt (inst)))
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8;
1682 break;
1683 case 6: /* BLEZ, BLEZL */
1684 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1685 pc += mips32_relative_offset (inst) + 4;
1686 else
1687 pc += 8;
1688 break;
1689 case 7:
1690 default:
1691 greater_branch: /* BGTZ, BGTZL */
1692 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1693 pc += mips32_relative_offset (inst) + 4;
1694 else
1695 pc += 8;
1696 break;
1697 } /* switch */
1698 } /* else */
1699 return pc;
1700 } /* mips32_next_pc */
1701
1702 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1703 INSN. */
1704
1705 static LONGEST
1706 micromips_relative_offset7 (ULONGEST insn)
1707 {
1708 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1709 }
1710
1711 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1712 INSN. */
1713
1714 static LONGEST
1715 micromips_relative_offset10 (ULONGEST insn)
1716 {
1717 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1718 }
1719
1720 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1721 INSN. */
1722
1723 static LONGEST
1724 micromips_relative_offset16 (ULONGEST insn)
1725 {
1726 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1727 }
1728
1729 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1730
1731 static int
1732 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1733 {
1734 ULONGEST insn;
1735
1736 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1737 return mips_insn_size (ISA_MICROMIPS, insn);
1738 }
1739
1740 /* Calculate the address of the next microMIPS instruction to execute
1741 after the INSN coprocessor 1 conditional branch instruction at the
1742 address PC. COUNT denotes the number of coprocessor condition bits
1743 examined by the branch. */
1744
1745 static CORE_ADDR
1746 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1747 ULONGEST insn, CORE_ADDR pc, int count)
1748 {
1749 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1750 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1751 int tf = b5s5_op (insn >> 16) & 1;
1752 int mask = (1 << count) - 1;
1753 ULONGEST fcs;
1754 int cond;
1755
1756 if (fcsr == -1)
1757 /* No way to handle; it'll most likely trap anyway. */
1758 return pc;
1759
1760 fcs = get_frame_register_unsigned (frame, fcsr);
1761 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1762
1763 if (((cond >> cnum) & mask) != mask * !tf)
1764 pc += micromips_relative_offset16 (insn);
1765 else
1766 pc += micromips_pc_insn_size (gdbarch, pc);
1767
1768 return pc;
1769 }
1770
1771 /* Calculate the address of the next microMIPS instruction to execute
1772 after the instruction at the address PC. */
1773
1774 static CORE_ADDR
1775 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1776 {
1777 struct gdbarch *gdbarch = get_frame_arch (frame);
1778 ULONGEST insn;
1779
1780 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1781 pc += MIPS_INSN16_SIZE;
1782 switch (mips_insn_size (ISA_MICROMIPS, insn))
1783 {
1784 /* 48-bit instructions. */
1785 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1786 /* No branch or jump instructions in this category. */
1787 pc += 2 * MIPS_INSN16_SIZE;
1788 break;
1789
1790 /* 32-bit instructions. */
1791 case 2 * MIPS_INSN16_SIZE:
1792 insn <<= 16;
1793 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1794 pc += MIPS_INSN16_SIZE;
1795 switch (micromips_op (insn >> 16))
1796 {
1797 case 0x00: /* POOL32A: bits 000000 */
1798 if (b0s6_op (insn) == 0x3c
1799 /* POOL32Axf: bits 000000 ... 111100 */
1800 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1801 /* JALR, JALR.HB: 000000 000x111100 111100 */
1802 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1803 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1804 break;
1805
1806 case 0x10: /* POOL32I: bits 010000 */
1807 switch (b5s5_op (insn >> 16))
1808 {
1809 case 0x00: /* BLTZ: bits 010000 00000 */
1810 case 0x01: /* BLTZAL: bits 010000 00001 */
1811 case 0x11: /* BLTZALS: bits 010000 10001 */
1812 if (get_frame_register_signed (frame,
1813 b0s5_reg (insn >> 16)) < 0)
1814 pc += micromips_relative_offset16 (insn);
1815 else
1816 pc += micromips_pc_insn_size (gdbarch, pc);
1817 break;
1818
1819 case 0x02: /* BGEZ: bits 010000 00010 */
1820 case 0x03: /* BGEZAL: bits 010000 00011 */
1821 case 0x13: /* BGEZALS: bits 010000 10011 */
1822 if (get_frame_register_signed (frame,
1823 b0s5_reg (insn >> 16)) >= 0)
1824 pc += micromips_relative_offset16 (insn);
1825 else
1826 pc += micromips_pc_insn_size (gdbarch, pc);
1827 break;
1828
1829 case 0x04: /* BLEZ: bits 010000 00100 */
1830 if (get_frame_register_signed (frame,
1831 b0s5_reg (insn >> 16)) <= 0)
1832 pc += micromips_relative_offset16 (insn);
1833 else
1834 pc += micromips_pc_insn_size (gdbarch, pc);
1835 break;
1836
1837 case 0x05: /* BNEZC: bits 010000 00101 */
1838 if (get_frame_register_signed (frame,
1839 b0s5_reg (insn >> 16)) != 0)
1840 pc += micromips_relative_offset16 (insn);
1841 break;
1842
1843 case 0x06: /* BGTZ: bits 010000 00110 */
1844 if (get_frame_register_signed (frame,
1845 b0s5_reg (insn >> 16)) > 0)
1846 pc += micromips_relative_offset16 (insn);
1847 else
1848 pc += micromips_pc_insn_size (gdbarch, pc);
1849 break;
1850
1851 case 0x07: /* BEQZC: bits 010000 00111 */
1852 if (get_frame_register_signed (frame,
1853 b0s5_reg (insn >> 16)) == 0)
1854 pc += micromips_relative_offset16 (insn);
1855 break;
1856
1857 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1858 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1859 if (((insn >> 16) & 0x3) == 0x0)
1860 /* BC2F, BC2T: don't know how to handle these. */
1861 break;
1862 break;
1863
1864 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1865 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1866 {
1867 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1868 int dspctl = mips_regnum (gdbarch)->dspctl;
1869
1870 if (dspctl == -1)
1871 /* No way to handle; it'll most likely trap anyway. */
1872 break;
1873
1874 if ((get_frame_register_unsigned (frame,
1875 dspctl) & 0x7f) >= pos)
1876 pc += micromips_relative_offset16 (insn);
1877 else
1878 pc += micromips_pc_insn_size (gdbarch, pc);
1879 }
1880 break;
1881
1882 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1883 /* BC1ANY2F: bits 010000 11100 xxx01 */
1884 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1885 /* BC1ANY2T: bits 010000 11101 xxx01 */
1886 if (((insn >> 16) & 0x2) == 0x0)
1887 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1888 ((insn >> 16) & 0x1) + 1);
1889 break;
1890
1891 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1892 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1893 if (((insn >> 16) & 0x3) == 0x1)
1894 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1895 break;
1896 }
1897 break;
1898
1899 case 0x1d: /* JALS: bits 011101 */
1900 case 0x35: /* J: bits 110101 */
1901 case 0x3d: /* JAL: bits 111101 */
1902 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1903 break;
1904
1905 case 0x25: /* BEQ: bits 100101 */
1906 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1907 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1908 pc += micromips_relative_offset16 (insn);
1909 else
1910 pc += micromips_pc_insn_size (gdbarch, pc);
1911 break;
1912
1913 case 0x2d: /* BNE: bits 101101 */
1914 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1915 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1916 pc += micromips_relative_offset16 (insn);
1917 else
1918 pc += micromips_pc_insn_size (gdbarch, pc);
1919 break;
1920
1921 case 0x3c: /* JALX: bits 111100 */
1922 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
1923 break;
1924 }
1925 break;
1926
1927 /* 16-bit instructions. */
1928 case MIPS_INSN16_SIZE:
1929 switch (micromips_op (insn))
1930 {
1931 case 0x11: /* POOL16C: bits 010001 */
1932 if ((b5s5_op (insn) & 0x1c) == 0xc)
1933 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
1934 pc = get_frame_register_signed (frame, b0s5_reg (insn));
1935 else if (b5s5_op (insn) == 0x18)
1936 /* JRADDIUSP: bits 010001 11000 */
1937 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
1938 break;
1939
1940 case 0x23: /* BEQZ16: bits 100011 */
1941 {
1942 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1943
1944 if (get_frame_register_signed (frame, rs) == 0)
1945 pc += micromips_relative_offset7 (insn);
1946 else
1947 pc += micromips_pc_insn_size (gdbarch, pc);
1948 }
1949 break;
1950
1951 case 0x2b: /* BNEZ16: bits 101011 */
1952 {
1953 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1954
1955 if (get_frame_register_signed (frame, rs) != 0)
1956 pc += micromips_relative_offset7 (insn);
1957 else
1958 pc += micromips_pc_insn_size (gdbarch, pc);
1959 }
1960 break;
1961
1962 case 0x33: /* B16: bits 110011 */
1963 pc += micromips_relative_offset10 (insn);
1964 break;
1965 }
1966 break;
1967 }
1968
1969 return pc;
1970 }
1971
1972 /* Decoding the next place to set a breakpoint is irregular for the
1973 mips 16 variant, but fortunately, there fewer instructions. We have
1974 to cope ith extensions for 16 bit instructions and a pair of actual
1975 32 bit instructions. We dont want to set a single step instruction
1976 on the extend instruction either. */
1977
1978 /* Lots of mips16 instruction formats */
1979 /* Predicting jumps requires itype,ritype,i8type
1980 and their extensions extItype,extritype,extI8type. */
1981 enum mips16_inst_fmts
1982 {
1983 itype, /* 0 immediate 5,10 */
1984 ritype, /* 1 5,3,8 */
1985 rrtype, /* 2 5,3,3,5 */
1986 rritype, /* 3 5,3,3,5 */
1987 rrrtype, /* 4 5,3,3,3,2 */
1988 rriatype, /* 5 5,3,3,1,4 */
1989 shifttype, /* 6 5,3,3,3,2 */
1990 i8type, /* 7 5,3,8 */
1991 i8movtype, /* 8 5,3,3,5 */
1992 i8mov32rtype, /* 9 5,3,5,3 */
1993 i64type, /* 10 5,3,8 */
1994 ri64type, /* 11 5,3,3,5 */
1995 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1996 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1997 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1998 extRRItype, /* 15 5,5,5,5,3,3,5 */
1999 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2000 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2001 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2002 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2003 extRi64type, /* 20 5,6,5,5,3,3,5 */
2004 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2005 };
2006 /* I am heaping all the fields of the formats into one structure and
2007 then, only the fields which are involved in instruction extension. */
2008 struct upk_mips16
2009 {
2010 CORE_ADDR offset;
2011 unsigned int regx; /* Function in i8 type. */
2012 unsigned int regy;
2013 };
2014
2015
2016 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2017 for the bits which make up the immediate extension. */
2018
2019 static CORE_ADDR
2020 extended_offset (unsigned int extension)
2021 {
2022 CORE_ADDR value;
2023
2024 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2025 value = value << 6;
2026 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2027 value = value << 5;
2028 value |= extension & 0x1f; /* Extract 4:0. */
2029
2030 return value;
2031 }
2032
2033 /* Only call this function if you know that this is an extendable
2034 instruction. It won't malfunction, but why make excess remote memory
2035 references? If the immediate operands get sign extended or something,
2036 do it after the extension is performed. */
2037 /* FIXME: Every one of these cases needs to worry about sign extension
2038 when the offset is to be used in relative addressing. */
2039
2040 static unsigned int
2041 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2042 {
2043 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2044 gdb_byte buf[8];
2045 pc &= 0xfffffffe; /* Clear the low order bit. */
2046 target_read_memory (pc, buf, 2);
2047 return extract_unsigned_integer (buf, 2, byte_order);
2048 }
2049
2050 static void
2051 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2052 unsigned int extension,
2053 unsigned int inst,
2054 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2055 {
2056 CORE_ADDR offset;
2057 int regx;
2058 int regy;
2059 switch (insn_format)
2060 {
2061 case itype:
2062 {
2063 CORE_ADDR value;
2064 if (extension)
2065 {
2066 value = extended_offset ((extension << 16) | inst);
2067 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2068 }
2069 else
2070 {
2071 value = inst & 0x7ff;
2072 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2073 }
2074 offset = value;
2075 regx = -1;
2076 regy = -1;
2077 }
2078 break;
2079 case ritype:
2080 case i8type:
2081 { /* A register identifier and an offset. */
2082 /* Most of the fields are the same as I type but the
2083 immediate value is of a different length. */
2084 CORE_ADDR value;
2085 if (extension)
2086 {
2087 value = extended_offset ((extension << 16) | inst);
2088 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2089 }
2090 else
2091 {
2092 value = inst & 0xff; /* 8 bits */
2093 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2094 }
2095 offset = value;
2096 regx = (inst >> 8) & 0x07; /* i8 funct */
2097 regy = -1;
2098 break;
2099 }
2100 case jalxtype:
2101 {
2102 unsigned long value;
2103 unsigned int nexthalf;
2104 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2105 value = value << 16;
2106 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2107 /* Low bit still set. */
2108 value |= nexthalf;
2109 offset = value;
2110 regx = -1;
2111 regy = -1;
2112 break;
2113 }
2114 default:
2115 internal_error (__FILE__, __LINE__, _("bad switch"));
2116 }
2117 upk->offset = offset;
2118 upk->regx = regx;
2119 upk->regy = regy;
2120 }
2121
2122
2123 static CORE_ADDR
2124 add_offset_16 (CORE_ADDR pc, int offset)
2125 {
2126 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
2127 }
2128
2129 static CORE_ADDR
2130 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2131 unsigned int extension, unsigned int insn)
2132 {
2133 struct gdbarch *gdbarch = get_frame_arch (frame);
2134 int op = (insn >> 11);
2135 switch (op)
2136 {
2137 case 2: /* Branch */
2138 {
2139 struct upk_mips16 upk;
2140 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2141 pc += (upk.offset << 1) + 2;
2142 break;
2143 }
2144 case 3: /* JAL , JALX - Watch out, these are 32 bit
2145 instructions. */
2146 {
2147 struct upk_mips16 upk;
2148 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2149 pc = add_offset_16 (pc, upk.offset);
2150 if ((insn >> 10) & 0x01) /* Exchange mode */
2151 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2152 else
2153 pc |= 0x01;
2154 break;
2155 }
2156 case 4: /* beqz */
2157 {
2158 struct upk_mips16 upk;
2159 int reg;
2160 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2161 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2162 if (reg == 0)
2163 pc += (upk.offset << 1) + 2;
2164 else
2165 pc += 2;
2166 break;
2167 }
2168 case 5: /* bnez */
2169 {
2170 struct upk_mips16 upk;
2171 int reg;
2172 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2173 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2174 if (reg != 0)
2175 pc += (upk.offset << 1) + 2;
2176 else
2177 pc += 2;
2178 break;
2179 }
2180 case 12: /* I8 Formats btez btnez */
2181 {
2182 struct upk_mips16 upk;
2183 int reg;
2184 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2185 /* upk.regx contains the opcode */
2186 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2187 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2188 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2189 /* pc = add_offset_16(pc,upk.offset) ; */
2190 pc += (upk.offset << 1) + 2;
2191 else
2192 pc += 2;
2193 break;
2194 }
2195 case 29: /* RR Formats JR, JALR, JALR-RA */
2196 {
2197 struct upk_mips16 upk;
2198 /* upk.fmt = rrtype; */
2199 op = insn & 0x1f;
2200 if (op == 0)
2201 {
2202 int reg;
2203 upk.regx = (insn >> 8) & 0x07;
2204 upk.regy = (insn >> 5) & 0x07;
2205 if ((upk.regy & 1) == 0)
2206 reg = mips_reg3_to_reg[upk.regx];
2207 else
2208 reg = 31; /* Function return instruction. */
2209 pc = get_frame_register_signed (frame, reg);
2210 }
2211 else
2212 pc += 2;
2213 break;
2214 }
2215 case 30:
2216 /* This is an instruction extension. Fetch the real instruction
2217 (which follows the extension) and decode things based on
2218 that. */
2219 {
2220 pc += 2;
2221 pc = extended_mips16_next_pc (frame, pc, insn,
2222 fetch_mips_16 (gdbarch, pc));
2223 break;
2224 }
2225 default:
2226 {
2227 pc += 2;
2228 break;
2229 }
2230 }
2231 return pc;
2232 }
2233
2234 static CORE_ADDR
2235 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2236 {
2237 struct gdbarch *gdbarch = get_frame_arch (frame);
2238 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2239 return extended_mips16_next_pc (frame, pc, 0, insn);
2240 }
2241
2242 /* The mips_next_pc function supports single_step when the remote
2243 target monitor or stub is not developed enough to do a single_step.
2244 It works by decoding the current instruction and predicting where a
2245 branch will go. This isn't hard because all the data is available.
2246 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2247 static CORE_ADDR
2248 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2249 {
2250 struct gdbarch *gdbarch = get_frame_arch (frame);
2251
2252 if (mips_pc_is_mips16 (gdbarch, pc))
2253 return mips16_next_pc (frame, pc);
2254 else if (mips_pc_is_micromips (gdbarch, pc))
2255 return micromips_next_pc (frame, pc);
2256 else
2257 return mips32_next_pc (frame, pc);
2258 }
2259
2260 struct mips_frame_cache
2261 {
2262 CORE_ADDR base;
2263 struct trad_frame_saved_reg *saved_regs;
2264 };
2265
2266 /* Set a register's saved stack address in temp_saved_regs. If an
2267 address has already been set for this register, do nothing; this
2268 way we will only recognize the first save of a given register in a
2269 function prologue.
2270
2271 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2272 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2273 Strictly speaking, only the second range is used as it is only second
2274 range (the ABI instead of ISA registers) that comes into play when finding
2275 saved registers in a frame. */
2276
2277 static void
2278 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2279 int regnum, CORE_ADDR offset)
2280 {
2281 if (this_cache != NULL
2282 && this_cache->saved_regs[regnum].addr == -1)
2283 {
2284 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2285 = offset;
2286 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2287 = offset;
2288 }
2289 }
2290
2291
2292 /* Fetch the immediate value from a MIPS16 instruction.
2293 If the previous instruction was an EXTEND, use it to extend
2294 the upper bits of the immediate value. This is a helper function
2295 for mips16_scan_prologue. */
2296
2297 static int
2298 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2299 unsigned short inst, /* current instruction */
2300 int nbits, /* number of bits in imm field */
2301 int scale, /* scale factor to be applied to imm */
2302 int is_signed) /* is the imm field signed? */
2303 {
2304 int offset;
2305
2306 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2307 {
2308 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2309 if (offset & 0x8000) /* check for negative extend */
2310 offset = 0 - (0x10000 - (offset & 0xffff));
2311 return offset | (inst & 0x1f);
2312 }
2313 else
2314 {
2315 int max_imm = 1 << nbits;
2316 int mask = max_imm - 1;
2317 int sign_bit = max_imm >> 1;
2318
2319 offset = inst & mask;
2320 if (is_signed && (offset & sign_bit))
2321 offset = 0 - (max_imm - offset);
2322 return offset * scale;
2323 }
2324 }
2325
2326
2327 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2328 the associated FRAME_CACHE if not null.
2329 Return the address of the first instruction past the prologue. */
2330
2331 static CORE_ADDR
2332 mips16_scan_prologue (struct gdbarch *gdbarch,
2333 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2334 struct frame_info *this_frame,
2335 struct mips_frame_cache *this_cache)
2336 {
2337 CORE_ADDR cur_pc;
2338 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2339 CORE_ADDR sp;
2340 long frame_offset = 0; /* Size of stack frame. */
2341 long frame_adjust = 0; /* Offset of FP from SP. */
2342 int frame_reg = MIPS_SP_REGNUM;
2343 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2344 unsigned inst = 0; /* current instruction */
2345 unsigned entry_inst = 0; /* the entry instruction */
2346 unsigned save_inst = 0; /* the save instruction */
2347 int reg, offset;
2348
2349 int extend_bytes = 0;
2350 int prev_extend_bytes;
2351 CORE_ADDR end_prologue_addr = 0;
2352
2353 /* Can be called when there's no process, and hence when there's no
2354 THIS_FRAME. */
2355 if (this_frame != NULL)
2356 sp = get_frame_register_signed (this_frame,
2357 gdbarch_num_regs (gdbarch)
2358 + MIPS_SP_REGNUM);
2359 else
2360 sp = 0;
2361
2362 if (limit_pc > start_pc + 200)
2363 limit_pc = start_pc + 200;
2364
2365 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2366 {
2367 /* Save the previous instruction. If it's an EXTEND, we'll extract
2368 the immediate offset extension from it in mips16_get_imm. */
2369 prev_inst = inst;
2370
2371 /* Fetch and decode the instruction. */
2372 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2373 cur_pc, NULL);
2374
2375 /* Normally we ignore extend instructions. However, if it is
2376 not followed by a valid prologue instruction, then this
2377 instruction is not part of the prologue either. We must
2378 remember in this case to adjust the end_prologue_addr back
2379 over the extend. */
2380 if ((inst & 0xf800) == 0xf000) /* extend */
2381 {
2382 extend_bytes = MIPS_INSN16_SIZE;
2383 continue;
2384 }
2385
2386 prev_extend_bytes = extend_bytes;
2387 extend_bytes = 0;
2388
2389 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2390 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2391 {
2392 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2393 if (offset < 0) /* Negative stack adjustment? */
2394 frame_offset -= offset;
2395 else
2396 /* Exit loop if a positive stack adjustment is found, which
2397 usually means that the stack cleanup code in the function
2398 epilogue is reached. */
2399 break;
2400 }
2401 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2402 {
2403 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2404 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2405 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2406 }
2407 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2408 {
2409 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2410 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2411 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2412 }
2413 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2414 {
2415 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2416 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2417 }
2418 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2419 {
2420 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2421 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2422 }
2423 else if (inst == 0x673d) /* move $s1, $sp */
2424 {
2425 frame_addr = sp;
2426 frame_reg = 17;
2427 }
2428 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2429 {
2430 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2431 frame_addr = sp + offset;
2432 frame_reg = 17;
2433 frame_adjust = offset;
2434 }
2435 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2436 {
2437 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2438 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2439 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2440 }
2441 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2442 {
2443 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2444 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2445 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2446 }
2447 else if ((inst & 0xf81f) == 0xe809
2448 && (inst & 0x700) != 0x700) /* entry */
2449 entry_inst = inst; /* Save for later processing. */
2450 else if ((inst & 0xff80) == 0x6480) /* save */
2451 {
2452 save_inst = inst; /* Save for later processing. */
2453 if (prev_extend_bytes) /* extend */
2454 save_inst |= prev_inst << 16;
2455 }
2456 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2457 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2458 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2459 {
2460 /* This instruction is part of the prologue, but we don't
2461 need to do anything special to handle it. */
2462 }
2463 else
2464 {
2465 /* This instruction is not an instruction typically found
2466 in a prologue, so we must have reached the end of the
2467 prologue. */
2468 if (end_prologue_addr == 0)
2469 end_prologue_addr = cur_pc - prev_extend_bytes;
2470 }
2471 }
2472
2473 /* The entry instruction is typically the first instruction in a function,
2474 and it stores registers at offsets relative to the value of the old SP
2475 (before the prologue). But the value of the sp parameter to this
2476 function is the new SP (after the prologue has been executed). So we
2477 can't calculate those offsets until we've seen the entire prologue,
2478 and can calculate what the old SP must have been. */
2479 if (entry_inst != 0)
2480 {
2481 int areg_count = (entry_inst >> 8) & 7;
2482 int sreg_count = (entry_inst >> 6) & 3;
2483
2484 /* The entry instruction always subtracts 32 from the SP. */
2485 frame_offset += 32;
2486
2487 /* Now we can calculate what the SP must have been at the
2488 start of the function prologue. */
2489 sp += frame_offset;
2490
2491 /* Check if a0-a3 were saved in the caller's argument save area. */
2492 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2493 {
2494 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2495 offset += mips_abi_regsize (gdbarch);
2496 }
2497
2498 /* Check if the ra register was pushed on the stack. */
2499 offset = -4;
2500 if (entry_inst & 0x20)
2501 {
2502 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2503 offset -= mips_abi_regsize (gdbarch);
2504 }
2505
2506 /* Check if the s0 and s1 registers were pushed on the stack. */
2507 for (reg = 16; reg < sreg_count + 16; reg++)
2508 {
2509 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2510 offset -= mips_abi_regsize (gdbarch);
2511 }
2512 }
2513
2514 /* The SAVE instruction is similar to ENTRY, except that defined by the
2515 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2516 size of the frame is specified as an immediate field of instruction
2517 and an extended variation exists which lets additional registers and
2518 frame space to be specified. The instruction always treats registers
2519 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2520 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2521 {
2522 static int args_table[16] = {
2523 0, 0, 0, 0, 1, 1, 1, 1,
2524 2, 2, 2, 0, 3, 3, 4, -1,
2525 };
2526 static int astatic_table[16] = {
2527 0, 1, 2, 3, 0, 1, 2, 3,
2528 0, 1, 2, 4, 0, 1, 0, -1,
2529 };
2530 int aregs = (save_inst >> 16) & 0xf;
2531 int xsregs = (save_inst >> 24) & 0x7;
2532 int args = args_table[aregs];
2533 int astatic = astatic_table[aregs];
2534 long frame_size;
2535
2536 if (args < 0)
2537 {
2538 warning (_("Invalid number of argument registers encoded in SAVE."));
2539 args = 0;
2540 }
2541 if (astatic < 0)
2542 {
2543 warning (_("Invalid number of static registers encoded in SAVE."));
2544 astatic = 0;
2545 }
2546
2547 /* For standard SAVE the frame size of 0 means 128. */
2548 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2549 if (frame_size == 0 && (save_inst >> 16) == 0)
2550 frame_size = 16;
2551 frame_size *= 8;
2552 frame_offset += frame_size;
2553
2554 /* Now we can calculate what the SP must have been at the
2555 start of the function prologue. */
2556 sp += frame_offset;
2557
2558 /* Check if A0-A3 were saved in the caller's argument save area. */
2559 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2560 {
2561 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2562 offset += mips_abi_regsize (gdbarch);
2563 }
2564
2565 offset = -4;
2566
2567 /* Check if the RA register was pushed on the stack. */
2568 if (save_inst & 0x40)
2569 {
2570 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2571 offset -= mips_abi_regsize (gdbarch);
2572 }
2573
2574 /* Check if the S8 register was pushed on the stack. */
2575 if (xsregs > 6)
2576 {
2577 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2578 offset -= mips_abi_regsize (gdbarch);
2579 xsregs--;
2580 }
2581 /* Check if S2-S7 were pushed on the stack. */
2582 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2583 {
2584 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2585 offset -= mips_abi_regsize (gdbarch);
2586 }
2587
2588 /* Check if the S1 register was pushed on the stack. */
2589 if (save_inst & 0x10)
2590 {
2591 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2592 offset -= mips_abi_regsize (gdbarch);
2593 }
2594 /* Check if the S0 register was pushed on the stack. */
2595 if (save_inst & 0x20)
2596 {
2597 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2598 offset -= mips_abi_regsize (gdbarch);
2599 }
2600
2601 /* Check if A0-A3 were pushed on the stack. */
2602 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2603 {
2604 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2605 offset -= mips_abi_regsize (gdbarch);
2606 }
2607 }
2608
2609 if (this_cache != NULL)
2610 {
2611 this_cache->base =
2612 (get_frame_register_signed (this_frame,
2613 gdbarch_num_regs (gdbarch) + frame_reg)
2614 + frame_offset - frame_adjust);
2615 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2616 be able to get rid of the assignment below, evetually. But it's
2617 still needed for now. */
2618 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2619 + mips_regnum (gdbarch)->pc]
2620 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2621 }
2622
2623 /* If we didn't reach the end of the prologue when scanning the function
2624 instructions, then set end_prologue_addr to the address of the
2625 instruction immediately after the last one we scanned. */
2626 if (end_prologue_addr == 0)
2627 end_prologue_addr = cur_pc;
2628
2629 return end_prologue_addr;
2630 }
2631
2632 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2633 Procedures that use the 32-bit instruction set are handled by the
2634 mips_insn32 unwinder. */
2635
2636 static struct mips_frame_cache *
2637 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2638 {
2639 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2640 struct mips_frame_cache *cache;
2641
2642 if ((*this_cache) != NULL)
2643 return (*this_cache);
2644 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2645 (*this_cache) = cache;
2646 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2647
2648 /* Analyze the function prologue. */
2649 {
2650 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2651 CORE_ADDR start_addr;
2652
2653 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2654 if (start_addr == 0)
2655 start_addr = heuristic_proc_start (gdbarch, pc);
2656 /* We can't analyze the prologue if we couldn't find the begining
2657 of the function. */
2658 if (start_addr == 0)
2659 return cache;
2660
2661 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2662 }
2663
2664 /* gdbarch_sp_regnum contains the value and not the address. */
2665 trad_frame_set_value (cache->saved_regs,
2666 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2667 cache->base);
2668
2669 return (*this_cache);
2670 }
2671
2672 static void
2673 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2674 struct frame_id *this_id)
2675 {
2676 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2677 this_cache);
2678 /* This marks the outermost frame. */
2679 if (info->base == 0)
2680 return;
2681 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2682 }
2683
2684 static struct value *
2685 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2686 void **this_cache, int regnum)
2687 {
2688 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2689 this_cache);
2690 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2691 }
2692
2693 static int
2694 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2695 struct frame_info *this_frame, void **this_cache)
2696 {
2697 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2698 CORE_ADDR pc = get_frame_pc (this_frame);
2699 if (mips_pc_is_mips16 (gdbarch, pc))
2700 return 1;
2701 return 0;
2702 }
2703
2704 static const struct frame_unwind mips_insn16_frame_unwind =
2705 {
2706 NORMAL_FRAME,
2707 default_frame_unwind_stop_reason,
2708 mips_insn16_frame_this_id,
2709 mips_insn16_frame_prev_register,
2710 NULL,
2711 mips_insn16_frame_sniffer
2712 };
2713
2714 static CORE_ADDR
2715 mips_insn16_frame_base_address (struct frame_info *this_frame,
2716 void **this_cache)
2717 {
2718 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2719 this_cache);
2720 return info->base;
2721 }
2722
2723 static const struct frame_base mips_insn16_frame_base =
2724 {
2725 &mips_insn16_frame_unwind,
2726 mips_insn16_frame_base_address,
2727 mips_insn16_frame_base_address,
2728 mips_insn16_frame_base_address
2729 };
2730
2731 static const struct frame_base *
2732 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2733 {
2734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2735 CORE_ADDR pc = get_frame_pc (this_frame);
2736 if (mips_pc_is_mips16 (gdbarch, pc))
2737 return &mips_insn16_frame_base;
2738 else
2739 return NULL;
2740 }
2741
2742 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2743 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2744 interpreted directly, and then multiplied by 4. */
2745
2746 static int
2747 micromips_decode_imm9 (int imm)
2748 {
2749 imm = (imm ^ 0x100) - 0x100;
2750 if (imm > -3 && imm < 2)
2751 imm ^= 0x100;
2752 return imm << 2;
2753 }
2754
2755 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2756 the address of the first instruction past the prologue. */
2757
2758 static CORE_ADDR
2759 micromips_scan_prologue (struct gdbarch *gdbarch,
2760 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2761 struct frame_info *this_frame,
2762 struct mips_frame_cache *this_cache)
2763 {
2764 CORE_ADDR end_prologue_addr = 0;
2765 int prev_non_prologue_insn = 0;
2766 int frame_reg = MIPS_SP_REGNUM;
2767 int this_non_prologue_insn;
2768 int non_prologue_insns = 0;
2769 long frame_offset = 0; /* Size of stack frame. */
2770 long frame_adjust = 0; /* Offset of FP from SP. */
2771 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2772 CORE_ADDR prev_pc;
2773 CORE_ADDR cur_pc;
2774 ULONGEST insn; /* current instruction */
2775 CORE_ADDR sp;
2776 long offset;
2777 long sp_adj;
2778 long v1_off = 0; /* The assumption is LUI will replace it. */
2779 int reglist;
2780 int breg;
2781 int dreg;
2782 int sreg;
2783 int treg;
2784 int loc;
2785 int op;
2786 int s;
2787 int i;
2788
2789 /* Can be called when there's no process, and hence when there's no
2790 THIS_FRAME. */
2791 if (this_frame != NULL)
2792 sp = get_frame_register_signed (this_frame,
2793 gdbarch_num_regs (gdbarch)
2794 + MIPS_SP_REGNUM);
2795 else
2796 sp = 0;
2797
2798 if (limit_pc > start_pc + 200)
2799 limit_pc = start_pc + 200;
2800 prev_pc = start_pc;
2801
2802 /* Permit at most one non-prologue non-control-transfer instruction
2803 in the middle which may have been reordered by the compiler for
2804 optimisation. */
2805 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2806 {
2807 this_non_prologue_insn = 0;
2808 sp_adj = 0;
2809 loc = 0;
2810 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2811 loc += MIPS_INSN16_SIZE;
2812 switch (mips_insn_size (ISA_MICROMIPS, insn))
2813 {
2814 /* 48-bit instructions. */
2815 case 3 * MIPS_INSN16_SIZE:
2816 /* No prologue instructions in this category. */
2817 this_non_prologue_insn = 1;
2818 loc += 2 * MIPS_INSN16_SIZE;
2819 break;
2820
2821 /* 32-bit instructions. */
2822 case 2 * MIPS_INSN16_SIZE:
2823 insn <<= 16;
2824 insn |= mips_fetch_instruction (gdbarch,
2825 ISA_MICROMIPS, cur_pc + loc, NULL);
2826 loc += MIPS_INSN16_SIZE;
2827 switch (micromips_op (insn >> 16))
2828 {
2829 /* Record $sp/$fp adjustment. */
2830 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2831 case 0x0: /* POOL32A: bits 000000 */
2832 case 0x16: /* POOL32S: bits 010110 */
2833 op = b0s11_op (insn);
2834 sreg = b0s5_reg (insn >> 16);
2835 treg = b5s5_reg (insn >> 16);
2836 dreg = b11s5_reg (insn);
2837 if (op == 0x1d0
2838 /* SUBU: bits 000000 00111010000 */
2839 /* DSUBU: bits 010110 00111010000 */
2840 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
2841 && treg == 3)
2842 /* (D)SUBU $sp, $v1 */
2843 sp_adj = v1_off;
2844 else if (op != 0x150
2845 /* ADDU: bits 000000 00101010000 */
2846 /* DADDU: bits 010110 00101010000 */
2847 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
2848 this_non_prologue_insn = 1;
2849 break;
2850
2851 case 0x8: /* POOL32B: bits 001000 */
2852 op = b12s4_op (insn);
2853 breg = b0s5_reg (insn >> 16);
2854 reglist = sreg = b5s5_reg (insn >> 16);
2855 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
2856 if ((op == 0x9 || op == 0xc)
2857 /* SWP: bits 001000 1001 */
2858 /* SDP: bits 001000 1100 */
2859 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
2860 /* S[DW]P reg,offset($sp) */
2861 {
2862 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
2863 set_reg_offset (gdbarch, this_cache,
2864 sreg, sp + offset);
2865 set_reg_offset (gdbarch, this_cache,
2866 sreg + 1, sp + offset + s);
2867 }
2868 else if ((op == 0xd || op == 0xf)
2869 /* SWM: bits 001000 1101 */
2870 /* SDM: bits 001000 1111 */
2871 && breg == MIPS_SP_REGNUM
2872 /* SWM reglist,offset($sp) */
2873 && ((reglist >= 1 && reglist <= 9)
2874 || (reglist >= 16 && reglist <= 25)))
2875 {
2876 int sreglist = min(reglist & 0xf, 8);
2877
2878 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
2879 for (i = 0; i < sreglist; i++)
2880 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
2881 if ((reglist & 0xf) > 8)
2882 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
2883 if ((reglist & 0x10) == 0x10)
2884 set_reg_offset (gdbarch, this_cache,
2885 MIPS_RA_REGNUM, sp + s * i++);
2886 }
2887 else
2888 this_non_prologue_insn = 1;
2889 break;
2890
2891 /* Record $sp/$fp adjustment. */
2892 /* Discard (D)ADDIU $gp used for PIC code. */
2893 case 0xc: /* ADDIU: bits 001100 */
2894 case 0x17: /* DADDIU: bits 010111 */
2895 sreg = b0s5_reg (insn >> 16);
2896 dreg = b5s5_reg (insn >> 16);
2897 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2898 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
2899 /* (D)ADDIU $sp, imm */
2900 sp_adj = offset;
2901 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
2902 /* (D)ADDIU $fp, $sp, imm */
2903 {
2904 frame_addr = sp + offset;
2905 frame_adjust = offset;
2906 frame_reg = 30;
2907 }
2908 else if (sreg != 28 || dreg != 28)
2909 /* (D)ADDIU $gp, imm */
2910 this_non_prologue_insn = 1;
2911 break;
2912
2913 /* LUI $v1 is used for larger $sp adjustments. */
2914 /* Discard LUI $gp used for PIC code. */
2915 case 0x10: /* POOL32I: bits 010000 */
2916 if (b5s5_op (insn >> 16) == 0xd
2917 /* LUI: bits 010000 001101 */
2918 && b0s5_reg (insn >> 16) == 3)
2919 /* LUI $v1, imm */
2920 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
2921 else if (b5s5_op (insn >> 16) != 0xd
2922 /* LUI: bits 010000 001101 */
2923 || b0s5_reg (insn >> 16) != 28)
2924 /* LUI $gp, imm */
2925 this_non_prologue_insn = 1;
2926 break;
2927
2928 /* ORI $v1 is used for larger $sp adjustments. */
2929 case 0x14: /* ORI: bits 010100 */
2930 sreg = b0s5_reg (insn >> 16);
2931 dreg = b5s5_reg (insn >> 16);
2932 if (sreg == 3 && dreg == 3)
2933 /* ORI $v1, imm */
2934 v1_off |= b0s16_imm (insn);
2935 else
2936 this_non_prologue_insn = 1;
2937 break;
2938
2939 case 0x26: /* SWC1: bits 100110 */
2940 case 0x2e: /* SDC1: bits 101110 */
2941 breg = b0s5_reg (insn >> 16);
2942 if (breg != MIPS_SP_REGNUM)
2943 /* S[DW]C1 reg,offset($sp) */
2944 this_non_prologue_insn = 1;
2945 break;
2946
2947 case 0x36: /* SD: bits 110110 */
2948 case 0x3e: /* SW: bits 111110 */
2949 breg = b0s5_reg (insn >> 16);
2950 sreg = b5s5_reg (insn >> 16);
2951 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2952 if (breg == MIPS_SP_REGNUM)
2953 /* S[DW] reg,offset($sp) */
2954 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
2955 else
2956 this_non_prologue_insn = 1;
2957 break;
2958
2959 default:
2960 this_non_prologue_insn = 1;
2961 break;
2962 }
2963 break;
2964
2965 /* 16-bit instructions. */
2966 case MIPS_INSN16_SIZE:
2967 switch (micromips_op (insn))
2968 {
2969 case 0x3: /* MOVE: bits 000011 */
2970 sreg = b0s5_reg (insn);
2971 dreg = b5s5_reg (insn);
2972 if (sreg == MIPS_SP_REGNUM && dreg == 30)
2973 /* MOVE $fp, $sp */
2974 {
2975 frame_addr = sp;
2976 frame_reg = 30;
2977 }
2978 else if ((sreg & 0x1c) != 0x4)
2979 /* MOVE reg, $a0-$a3 */
2980 this_non_prologue_insn = 1;
2981 break;
2982
2983 case 0x11: /* POOL16C: bits 010001 */
2984 if (b6s4_op (insn) == 0x5)
2985 /* SWM: bits 010001 0101 */
2986 {
2987 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
2988 reglist = b4s2_regl (insn);
2989 for (i = 0; i <= reglist; i++)
2990 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
2991 set_reg_offset (gdbarch, this_cache,
2992 MIPS_RA_REGNUM, sp + 4 * i++);
2993 }
2994 else
2995 this_non_prologue_insn = 1;
2996 break;
2997
2998 case 0x13: /* POOL16D: bits 010011 */
2999 if ((insn & 0x1) == 0x1)
3000 /* ADDIUSP: bits 010011 1 */
3001 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3002 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3003 /* ADDIUS5: bits 010011 0 */
3004 /* ADDIUS5 $sp, imm */
3005 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3006 else
3007 this_non_prologue_insn = 1;
3008 break;
3009
3010 case 0x32: /* SWSP: bits 110010 */
3011 offset = b0s5_imm (insn) << 2;
3012 sreg = b5s5_reg (insn);
3013 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3014 break;
3015
3016 default:
3017 this_non_prologue_insn = 1;
3018 break;
3019 }
3020 break;
3021 }
3022 if (sp_adj < 0)
3023 frame_offset -= sp_adj;
3024
3025 non_prologue_insns += this_non_prologue_insn;
3026 /* Enough non-prologue insns seen or positive stack adjustment? */
3027 if (end_prologue_addr == 0 && (non_prologue_insns > 1 || sp_adj > 0))
3028 {
3029 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3030 break;
3031 }
3032 prev_non_prologue_insn = this_non_prologue_insn;
3033 prev_pc = cur_pc;
3034 }
3035
3036 if (this_cache != NULL)
3037 {
3038 this_cache->base =
3039 (get_frame_register_signed (this_frame,
3040 gdbarch_num_regs (gdbarch) + frame_reg)
3041 + frame_offset - frame_adjust);
3042 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3043 be able to get rid of the assignment below, evetually. But it's
3044 still needed for now. */
3045 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3046 + mips_regnum (gdbarch)->pc]
3047 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3048 }
3049
3050 /* If we didn't reach the end of the prologue when scanning the function
3051 instructions, then set end_prologue_addr to the address of the
3052 instruction immediately after the last one we scanned. Unless the
3053 last one looked like a non-prologue instruction (and we looked ahead),
3054 in which case use its address instead. */
3055 if (end_prologue_addr == 0)
3056 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3057
3058 return end_prologue_addr;
3059 }
3060
3061 /* Heuristic unwinder for procedures using microMIPS instructions.
3062 Procedures that use the 32-bit instruction set are handled by the
3063 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3064
3065 static struct mips_frame_cache *
3066 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3067 {
3068 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3069 struct mips_frame_cache *cache;
3070
3071 if ((*this_cache) != NULL)
3072 return (*this_cache);
3073
3074 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3075 (*this_cache) = cache;
3076 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3077
3078 /* Analyze the function prologue. */
3079 {
3080 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3081 CORE_ADDR start_addr;
3082
3083 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3084 if (start_addr == 0)
3085 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3086 /* We can't analyze the prologue if we couldn't find the begining
3087 of the function. */
3088 if (start_addr == 0)
3089 return cache;
3090
3091 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
3092 }
3093
3094 /* gdbarch_sp_regnum contains the value and not the address. */
3095 trad_frame_set_value (cache->saved_regs,
3096 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3097 cache->base);
3098
3099 return (*this_cache);
3100 }
3101
3102 static void
3103 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3104 struct frame_id *this_id)
3105 {
3106 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3107 this_cache);
3108 /* This marks the outermost frame. */
3109 if (info->base == 0)
3110 return;
3111 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3112 }
3113
3114 static struct value *
3115 mips_micro_frame_prev_register (struct frame_info *this_frame,
3116 void **this_cache, int regnum)
3117 {
3118 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3119 this_cache);
3120 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3121 }
3122
3123 static int
3124 mips_micro_frame_sniffer (const struct frame_unwind *self,
3125 struct frame_info *this_frame, void **this_cache)
3126 {
3127 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3128 CORE_ADDR pc = get_frame_pc (this_frame);
3129
3130 if (mips_pc_is_micromips (gdbarch, pc))
3131 return 1;
3132 return 0;
3133 }
3134
3135 static const struct frame_unwind mips_micro_frame_unwind =
3136 {
3137 NORMAL_FRAME,
3138 default_frame_unwind_stop_reason,
3139 mips_micro_frame_this_id,
3140 mips_micro_frame_prev_register,
3141 NULL,
3142 mips_micro_frame_sniffer
3143 };
3144
3145 static CORE_ADDR
3146 mips_micro_frame_base_address (struct frame_info *this_frame,
3147 void **this_cache)
3148 {
3149 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3150 this_cache);
3151 return info->base;
3152 }
3153
3154 static const struct frame_base mips_micro_frame_base =
3155 {
3156 &mips_micro_frame_unwind,
3157 mips_micro_frame_base_address,
3158 mips_micro_frame_base_address,
3159 mips_micro_frame_base_address
3160 };
3161
3162 static const struct frame_base *
3163 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3164 {
3165 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3166 CORE_ADDR pc = get_frame_pc (this_frame);
3167
3168 if (mips_pc_is_micromips (gdbarch, pc))
3169 return &mips_micro_frame_base;
3170 else
3171 return NULL;
3172 }
3173
3174 /* Mark all the registers as unset in the saved_regs array
3175 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3176
3177 static void
3178 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3179 {
3180 if (this_cache == NULL || this_cache->saved_regs == NULL)
3181 return;
3182
3183 {
3184 const int num_regs = gdbarch_num_regs (gdbarch);
3185 int i;
3186
3187 for (i = 0; i < num_regs; i++)
3188 {
3189 this_cache->saved_regs[i].addr = -1;
3190 }
3191 }
3192 }
3193
3194 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3195 the associated FRAME_CACHE if not null.
3196 Return the address of the first instruction past the prologue. */
3197
3198 static CORE_ADDR
3199 mips32_scan_prologue (struct gdbarch *gdbarch,
3200 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3201 struct frame_info *this_frame,
3202 struct mips_frame_cache *this_cache)
3203 {
3204 CORE_ADDR cur_pc;
3205 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3206 frame-pointer. */
3207 CORE_ADDR sp;
3208 long frame_offset;
3209 int frame_reg = MIPS_SP_REGNUM;
3210
3211 CORE_ADDR end_prologue_addr = 0;
3212 int seen_sp_adjust = 0;
3213 int load_immediate_bytes = 0;
3214 int in_delay_slot = 0;
3215 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3216
3217 /* Can be called when there's no process, and hence when there's no
3218 THIS_FRAME. */
3219 if (this_frame != NULL)
3220 sp = get_frame_register_signed (this_frame,
3221 gdbarch_num_regs (gdbarch)
3222 + MIPS_SP_REGNUM);
3223 else
3224 sp = 0;
3225
3226 if (limit_pc > start_pc + 200)
3227 limit_pc = start_pc + 200;
3228
3229 restart:
3230
3231 frame_offset = 0;
3232 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3233 {
3234 unsigned long inst, high_word, low_word;
3235 int reg;
3236
3237 /* Fetch the instruction. */
3238 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3239 cur_pc, NULL);
3240
3241 /* Save some code by pre-extracting some useful fields. */
3242 high_word = (inst >> 16) & 0xffff;
3243 low_word = inst & 0xffff;
3244 reg = high_word & 0x1f;
3245
3246 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3247 || high_word == 0x23bd /* addi $sp,$sp,-i */
3248 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3249 {
3250 if (low_word & 0x8000) /* Negative stack adjustment? */
3251 frame_offset += 0x10000 - low_word;
3252 else
3253 /* Exit loop if a positive stack adjustment is found, which
3254 usually means that the stack cleanup code in the function
3255 epilogue is reached. */
3256 break;
3257 seen_sp_adjust = 1;
3258 }
3259 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3260 && !regsize_is_64_bits)
3261 {
3262 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
3263 }
3264 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3265 && regsize_is_64_bits)
3266 {
3267 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3268 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
3269 }
3270 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3271 {
3272 /* Old gcc frame, r30 is virtual frame pointer. */
3273 if ((long) low_word != frame_offset)
3274 frame_addr = sp + low_word;
3275 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3276 {
3277 unsigned alloca_adjust;
3278
3279 frame_reg = 30;
3280 frame_addr = get_frame_register_signed
3281 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3282 frame_offset = 0;
3283
3284 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
3285 if (alloca_adjust > 0)
3286 {
3287 /* FP > SP + frame_size. This may be because of
3288 an alloca or somethings similar. Fix sp to
3289 "pre-alloca" value, and try again. */
3290 sp += alloca_adjust;
3291 /* Need to reset the status of all registers. Otherwise,
3292 we will hit a guard that prevents the new address
3293 for each register to be recomputed during the second
3294 pass. */
3295 reset_saved_regs (gdbarch, this_cache);
3296 goto restart;
3297 }
3298 }
3299 }
3300 /* move $30,$sp. With different versions of gas this will be either
3301 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3302 Accept any one of these. */
3303 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3304 {
3305 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3306 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3307 {
3308 unsigned alloca_adjust;
3309
3310 frame_reg = 30;
3311 frame_addr = get_frame_register_signed
3312 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3313
3314 alloca_adjust = (unsigned) (frame_addr - sp);
3315 if (alloca_adjust > 0)
3316 {
3317 /* FP > SP + frame_size. This may be because of
3318 an alloca or somethings similar. Fix sp to
3319 "pre-alloca" value, and try again. */
3320 sp = frame_addr;
3321 /* Need to reset the status of all registers. Otherwise,
3322 we will hit a guard that prevents the new address
3323 for each register to be recomputed during the second
3324 pass. */
3325 reset_saved_regs (gdbarch, this_cache);
3326 goto restart;
3327 }
3328 }
3329 }
3330 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3331 && !regsize_is_64_bits)
3332 {
3333 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
3334 }
3335 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3336 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3337 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3338 || high_word == 0x3c1c /* lui $gp,n */
3339 || high_word == 0x279c /* addiu $gp,$gp,n */
3340 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3341 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3342 )
3343 {
3344 /* These instructions are part of the prologue, but we don't
3345 need to do anything special to handle them. */
3346 }
3347 /* The instructions below load $at or $t0 with an immediate
3348 value in preparation for a stack adjustment via
3349 subu $sp,$sp,[$at,$t0]. These instructions could also
3350 initialize a local variable, so we accept them only before
3351 a stack adjustment instruction was seen. */
3352 else if (!seen_sp_adjust
3353 && (high_word == 0x3c01 /* lui $at,n */
3354 || high_word == 0x3c08 /* lui $t0,n */
3355 || high_word == 0x3421 /* ori $at,$at,n */
3356 || high_word == 0x3508 /* ori $t0,$t0,n */
3357 || high_word == 0x3401 /* ori $at,$zero,n */
3358 || high_word == 0x3408 /* ori $t0,$zero,n */
3359 ))
3360 {
3361 if (end_prologue_addr == 0)
3362 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3363 }
3364 else
3365 {
3366 /* This instruction is not an instruction typically found
3367 in a prologue, so we must have reached the end of the
3368 prologue. */
3369 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
3370 loop now? Why would we need to continue scanning the function
3371 instructions? */
3372 if (end_prologue_addr == 0)
3373 end_prologue_addr = cur_pc;
3374
3375 /* Check for branches and jumps. For now, only jump to
3376 register are caught (i.e. returns). */
3377 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
3378 in_delay_slot = 1;
3379 }
3380
3381 /* If the previous instruction was a jump, we must have reached
3382 the end of the prologue by now. Stop scanning so that we do
3383 not go past the function return. */
3384 if (in_delay_slot)
3385 break;
3386 }
3387
3388 if (this_cache != NULL)
3389 {
3390 this_cache->base =
3391 (get_frame_register_signed (this_frame,
3392 gdbarch_num_regs (gdbarch) + frame_reg)
3393 + frame_offset);
3394 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3395 this assignment below, eventually. But it's still needed
3396 for now. */
3397 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3398 + mips_regnum (gdbarch)->pc]
3399 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3400 + MIPS_RA_REGNUM];
3401 }
3402
3403 /* If we didn't reach the end of the prologue when scanning the function
3404 instructions, then set end_prologue_addr to the address of the
3405 instruction immediately after the last one we scanned. */
3406 /* brobecker/2004-10-10: I don't think this would ever happen, but
3407 we may as well be careful and do our best if we have a null
3408 end_prologue_addr. */
3409 if (end_prologue_addr == 0)
3410 end_prologue_addr = cur_pc;
3411
3412 /* In a frameless function, we might have incorrectly
3413 skipped some load immediate instructions. Undo the skipping
3414 if the load immediate was not followed by a stack adjustment. */
3415 if (load_immediate_bytes && !seen_sp_adjust)
3416 end_prologue_addr -= load_immediate_bytes;
3417
3418 return end_prologue_addr;
3419 }
3420
3421 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3422 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3423 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3424 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3425
3426 static struct mips_frame_cache *
3427 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3428 {
3429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3430 struct mips_frame_cache *cache;
3431
3432 if ((*this_cache) != NULL)
3433 return (*this_cache);
3434
3435 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3436 (*this_cache) = cache;
3437 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3438
3439 /* Analyze the function prologue. */
3440 {
3441 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3442 CORE_ADDR start_addr;
3443
3444 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3445 if (start_addr == 0)
3446 start_addr = heuristic_proc_start (gdbarch, pc);
3447 /* We can't analyze the prologue if we couldn't find the begining
3448 of the function. */
3449 if (start_addr == 0)
3450 return cache;
3451
3452 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
3453 }
3454
3455 /* gdbarch_sp_regnum contains the value and not the address. */
3456 trad_frame_set_value (cache->saved_regs,
3457 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3458 cache->base);
3459
3460 return (*this_cache);
3461 }
3462
3463 static void
3464 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3465 struct frame_id *this_id)
3466 {
3467 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3468 this_cache);
3469 /* This marks the outermost frame. */
3470 if (info->base == 0)
3471 return;
3472 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3473 }
3474
3475 static struct value *
3476 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3477 void **this_cache, int regnum)
3478 {
3479 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3480 this_cache);
3481 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3482 }
3483
3484 static int
3485 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3486 struct frame_info *this_frame, void **this_cache)
3487 {
3488 CORE_ADDR pc = get_frame_pc (this_frame);
3489 if (mips_pc_is_mips (pc))
3490 return 1;
3491 return 0;
3492 }
3493
3494 static const struct frame_unwind mips_insn32_frame_unwind =
3495 {
3496 NORMAL_FRAME,
3497 default_frame_unwind_stop_reason,
3498 mips_insn32_frame_this_id,
3499 mips_insn32_frame_prev_register,
3500 NULL,
3501 mips_insn32_frame_sniffer
3502 };
3503
3504 static CORE_ADDR
3505 mips_insn32_frame_base_address (struct frame_info *this_frame,
3506 void **this_cache)
3507 {
3508 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3509 this_cache);
3510 return info->base;
3511 }
3512
3513 static const struct frame_base mips_insn32_frame_base =
3514 {
3515 &mips_insn32_frame_unwind,
3516 mips_insn32_frame_base_address,
3517 mips_insn32_frame_base_address,
3518 mips_insn32_frame_base_address
3519 };
3520
3521 static const struct frame_base *
3522 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3523 {
3524 CORE_ADDR pc = get_frame_pc (this_frame);
3525 if (mips_pc_is_mips (pc))
3526 return &mips_insn32_frame_base;
3527 else
3528 return NULL;
3529 }
3530
3531 static struct trad_frame_cache *
3532 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3533 {
3534 CORE_ADDR pc;
3535 CORE_ADDR start_addr;
3536 CORE_ADDR stack_addr;
3537 struct trad_frame_cache *this_trad_cache;
3538 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3539 int num_regs = gdbarch_num_regs (gdbarch);
3540
3541 if ((*this_cache) != NULL)
3542 return (*this_cache);
3543 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3544 (*this_cache) = this_trad_cache;
3545
3546 /* The return address is in the link register. */
3547 trad_frame_set_reg_realreg (this_trad_cache,
3548 gdbarch_pc_regnum (gdbarch),
3549 num_regs + MIPS_RA_REGNUM);
3550
3551 /* Frame ID, since it's a frameless / stackless function, no stack
3552 space is allocated and SP on entry is the current SP. */
3553 pc = get_frame_pc (this_frame);
3554 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3555 stack_addr = get_frame_register_signed (this_frame,
3556 num_regs + MIPS_SP_REGNUM);
3557 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3558
3559 /* Assume that the frame's base is the same as the
3560 stack-pointer. */
3561 trad_frame_set_this_base (this_trad_cache, stack_addr);
3562
3563 return this_trad_cache;
3564 }
3565
3566 static void
3567 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3568 struct frame_id *this_id)
3569 {
3570 struct trad_frame_cache *this_trad_cache
3571 = mips_stub_frame_cache (this_frame, this_cache);
3572 trad_frame_get_id (this_trad_cache, this_id);
3573 }
3574
3575 static struct value *
3576 mips_stub_frame_prev_register (struct frame_info *this_frame,
3577 void **this_cache, int regnum)
3578 {
3579 struct trad_frame_cache *this_trad_cache
3580 = mips_stub_frame_cache (this_frame, this_cache);
3581 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3582 }
3583
3584 static int
3585 mips_stub_frame_sniffer (const struct frame_unwind *self,
3586 struct frame_info *this_frame, void **this_cache)
3587 {
3588 gdb_byte dummy[4];
3589 struct obj_section *s;
3590 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3591 struct bound_minimal_symbol msym;
3592
3593 /* Use the stub unwinder for unreadable code. */
3594 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3595 return 1;
3596
3597 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3598 return 1;
3599
3600 /* Calling a PIC function from a non-PIC function passes through a
3601 stub. The stub for foo is named ".pic.foo". */
3602 msym = lookup_minimal_symbol_by_pc (pc);
3603 if (msym.minsym != NULL
3604 && SYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3605 && strncmp (SYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) == 0)
3606 return 1;
3607
3608 return 0;
3609 }
3610
3611 static const struct frame_unwind mips_stub_frame_unwind =
3612 {
3613 NORMAL_FRAME,
3614 default_frame_unwind_stop_reason,
3615 mips_stub_frame_this_id,
3616 mips_stub_frame_prev_register,
3617 NULL,
3618 mips_stub_frame_sniffer
3619 };
3620
3621 static CORE_ADDR
3622 mips_stub_frame_base_address (struct frame_info *this_frame,
3623 void **this_cache)
3624 {
3625 struct trad_frame_cache *this_trad_cache
3626 = mips_stub_frame_cache (this_frame, this_cache);
3627 return trad_frame_get_this_base (this_trad_cache);
3628 }
3629
3630 static const struct frame_base mips_stub_frame_base =
3631 {
3632 &mips_stub_frame_unwind,
3633 mips_stub_frame_base_address,
3634 mips_stub_frame_base_address,
3635 mips_stub_frame_base_address
3636 };
3637
3638 static const struct frame_base *
3639 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3640 {
3641 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3642 return &mips_stub_frame_base;
3643 else
3644 return NULL;
3645 }
3646
3647 /* mips_addr_bits_remove - remove useless address bits */
3648
3649 static CORE_ADDR
3650 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3651 {
3652 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3653
3654 if (is_compact_addr (addr))
3655 addr = unmake_compact_addr (addr);
3656
3657 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3658 /* This hack is a work-around for existing boards using PMON, the
3659 simulator, and any other 64-bit targets that doesn't have true
3660 64-bit addressing. On these targets, the upper 32 bits of
3661 addresses are ignored by the hardware. Thus, the PC or SP are
3662 likely to have been sign extended to all 1s by instruction
3663 sequences that load 32-bit addresses. For example, a typical
3664 piece of code that loads an address is this:
3665
3666 lui $r2, <upper 16 bits>
3667 ori $r2, <lower 16 bits>
3668
3669 But the lui sign-extends the value such that the upper 32 bits
3670 may be all 1s. The workaround is simply to mask off these
3671 bits. In the future, gcc may be changed to support true 64-bit
3672 addressing, and this masking will have to be disabled. */
3673 return addr &= 0xffffffffUL;
3674 else
3675 return addr;
3676 }
3677
3678
3679 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3680 instruction and ending with a SC/SCD instruction. If such a sequence
3681 is found, attempt to step through it. A breakpoint is placed at the end of
3682 the sequence. */
3683
3684 /* Instructions used during single-stepping of atomic sequences, standard
3685 ISA version. */
3686 #define LL_OPCODE 0x30
3687 #define LLD_OPCODE 0x34
3688 #define SC_OPCODE 0x38
3689 #define SCD_OPCODE 0x3c
3690
3691 static int
3692 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3693 struct address_space *aspace, CORE_ADDR pc)
3694 {
3695 CORE_ADDR breaks[2] = {-1, -1};
3696 CORE_ADDR loc = pc;
3697 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3698 ULONGEST insn;
3699 int insn_count;
3700 int index;
3701 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3702 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3703
3704 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3705 /* Assume all atomic sequences start with a ll/lld instruction. */
3706 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3707 return 0;
3708
3709 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3710 instructions. */
3711 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3712 {
3713 int is_branch = 0;
3714 loc += MIPS_INSN32_SIZE;
3715 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3716
3717 /* Assume that there is at most one branch in the atomic
3718 sequence. If a branch is found, put a breakpoint in its
3719 destination address. */
3720 switch (itype_op (insn))
3721 {
3722 case 0: /* SPECIAL */
3723 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3724 return 0; /* fallback to the standard single-step code. */
3725 break;
3726 case 1: /* REGIMM */
3727 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3728 || ((itype_rt (insn) & 0x1e) == 0
3729 && itype_rs (insn) == 0)); /* BPOSGE* */
3730 break;
3731 case 2: /* J */
3732 case 3: /* JAL */
3733 return 0; /* fallback to the standard single-step code. */
3734 case 4: /* BEQ */
3735 case 5: /* BNE */
3736 case 6: /* BLEZ */
3737 case 7: /* BGTZ */
3738 case 20: /* BEQL */
3739 case 21: /* BNEL */
3740 case 22: /* BLEZL */
3741 case 23: /* BGTTL */
3742 is_branch = 1;
3743 break;
3744 case 17: /* COP1 */
3745 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3746 && (itype_rt (insn) & 0x2) == 0);
3747 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3748 break;
3749 /* Fall through. */
3750 case 18: /* COP2 */
3751 case 19: /* COP3 */
3752 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3753 break;
3754 }
3755 if (is_branch)
3756 {
3757 branch_bp = loc + mips32_relative_offset (insn) + 4;
3758 if (last_breakpoint >= 1)
3759 return 0; /* More than one branch found, fallback to the
3760 standard single-step code. */
3761 breaks[1] = branch_bp;
3762 last_breakpoint++;
3763 }
3764
3765 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3766 break;
3767 }
3768
3769 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3770 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3771 return 0;
3772
3773 loc += MIPS_INSN32_SIZE;
3774
3775 /* Insert a breakpoint right after the end of the atomic sequence. */
3776 breaks[0] = loc;
3777
3778 /* Check for duplicated breakpoints. Check also for a breakpoint
3779 placed (branch instruction's destination) in the atomic sequence. */
3780 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3781 last_breakpoint = 0;
3782
3783 /* Effectively inserts the breakpoints. */
3784 for (index = 0; index <= last_breakpoint; index++)
3785 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3786
3787 return 1;
3788 }
3789
3790 static int
3791 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3792 struct address_space *aspace,
3793 CORE_ADDR pc)
3794 {
3795 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3796 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3797 CORE_ADDR breaks[2] = {-1, -1};
3798 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3799 destination. */
3800 CORE_ADDR loc = pc;
3801 int sc_found = 0;
3802 ULONGEST insn;
3803 int insn_count;
3804 int index;
3805
3806 /* Assume all atomic sequences start with a ll/lld instruction. */
3807 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3808 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3809 return 0;
3810 loc += MIPS_INSN16_SIZE;
3811 insn <<= 16;
3812 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3813 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
3814 return 0;
3815 loc += MIPS_INSN16_SIZE;
3816
3817 /* Assume all atomic sequences end with an sc/scd instruction. Assume
3818 that no atomic sequence is longer than "atomic_sequence_length"
3819 instructions. */
3820 for (insn_count = 0;
3821 !sc_found && insn_count < atomic_sequence_length;
3822 ++insn_count)
3823 {
3824 int is_branch = 0;
3825
3826 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3827 loc += MIPS_INSN16_SIZE;
3828
3829 /* Assume that there is at most one conditional branch in the
3830 atomic sequence. If a branch is found, put a breakpoint in
3831 its destination address. */
3832 switch (mips_insn_size (ISA_MICROMIPS, insn))
3833 {
3834 /* 48-bit instructions. */
3835 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
3836 loc += 2 * MIPS_INSN16_SIZE;
3837 break;
3838
3839 /* 32-bit instructions. */
3840 case 2 * MIPS_INSN16_SIZE:
3841 switch (micromips_op (insn))
3842 {
3843 case 0x10: /* POOL32I: bits 010000 */
3844 if ((b5s5_op (insn) & 0x18) != 0x0
3845 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
3846 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
3847 && (b5s5_op (insn) & 0x1d) != 0x11
3848 /* BLTZALS, BGEZALS: bits 010000 100x1 */
3849 && ((b5s5_op (insn) & 0x1e) != 0x14
3850 || (insn & 0x3) != 0x0)
3851 /* BC2F, BC2T: bits 010000 1010x xxx00 */
3852 && (b5s5_op (insn) & 0x1e) != 0x1a
3853 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
3854 && ((b5s5_op (insn) & 0x1e) != 0x1c
3855 || (insn & 0x3) != 0x0)
3856 /* BC1F, BC1T: bits 010000 1110x xxx00 */
3857 && ((b5s5_op (insn) & 0x1c) != 0x1c
3858 || (insn & 0x3) != 0x1))
3859 /* BC1ANY*: bits 010000 111xx xxx01 */
3860 break;
3861 /* Fall through. */
3862
3863 case 0x25: /* BEQ: bits 100101 */
3864 case 0x2d: /* BNE: bits 101101 */
3865 insn <<= 16;
3866 insn |= mips_fetch_instruction (gdbarch,
3867 ISA_MICROMIPS, loc, NULL);
3868 branch_bp = (loc + MIPS_INSN16_SIZE
3869 + micromips_relative_offset16 (insn));
3870 is_branch = 1;
3871 break;
3872
3873 case 0x00: /* POOL32A: bits 000000 */
3874 insn <<= 16;
3875 insn |= mips_fetch_instruction (gdbarch,
3876 ISA_MICROMIPS, loc, NULL);
3877 if (b0s6_op (insn) != 0x3c
3878 /* POOL32Axf: bits 000000 ... 111100 */
3879 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
3880 /* JALR, JALR.HB: 000000 000x111100 111100 */
3881 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
3882 break;
3883 /* Fall through. */
3884
3885 case 0x1d: /* JALS: bits 011101 */
3886 case 0x35: /* J: bits 110101 */
3887 case 0x3d: /* JAL: bits 111101 */
3888 case 0x3c: /* JALX: bits 111100 */
3889 return 0; /* Fall back to the standard single-step code. */
3890
3891 case 0x18: /* POOL32C: bits 011000 */
3892 if ((b12s4_op (insn) & 0xb) == 0xb)
3893 /* SC, SCD: bits 011000 1x11 */
3894 sc_found = 1;
3895 break;
3896 }
3897 loc += MIPS_INSN16_SIZE;
3898 break;
3899
3900 /* 16-bit instructions. */
3901 case MIPS_INSN16_SIZE:
3902 switch (micromips_op (insn))
3903 {
3904 case 0x23: /* BEQZ16: bits 100011 */
3905 case 0x2b: /* BNEZ16: bits 101011 */
3906 branch_bp = loc + micromips_relative_offset7 (insn);
3907 is_branch = 1;
3908 break;
3909
3910 case 0x11: /* POOL16C: bits 010001 */
3911 if ((b5s5_op (insn) & 0x1c) != 0xc
3912 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
3913 && b5s5_op (insn) != 0x18)
3914 /* JRADDIUSP: bits 010001 11000 */
3915 break;
3916 return 0; /* Fall back to the standard single-step code. */
3917
3918 case 0x33: /* B16: bits 110011 */
3919 return 0; /* Fall back to the standard single-step code. */
3920 }
3921 break;
3922 }
3923 if (is_branch)
3924 {
3925 if (last_breakpoint >= 1)
3926 return 0; /* More than one branch found, fallback to the
3927 standard single-step code. */
3928 breaks[1] = branch_bp;
3929 last_breakpoint++;
3930 }
3931 }
3932 if (!sc_found)
3933 return 0;
3934
3935 /* Insert a breakpoint right after the end of the atomic sequence. */
3936 breaks[0] = loc;
3937
3938 /* Check for duplicated breakpoints. Check also for a breakpoint
3939 placed (branch instruction's destination) in the atomic sequence */
3940 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3941 last_breakpoint = 0;
3942
3943 /* Effectively inserts the breakpoints. */
3944 for (index = 0; index <= last_breakpoint; index++)
3945 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3946
3947 return 1;
3948 }
3949
3950 static int
3951 deal_with_atomic_sequence (struct gdbarch *gdbarch,
3952 struct address_space *aspace, CORE_ADDR pc)
3953 {
3954 if (mips_pc_is_mips (pc))
3955 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3956 else if (mips_pc_is_micromips (gdbarch, pc))
3957 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3958 else
3959 return 0;
3960 }
3961
3962 /* mips_software_single_step() is called just before we want to resume
3963 the inferior, if we want to single-step it but there is no hardware
3964 or kernel single-step support (MIPS on GNU/Linux for example). We find
3965 the target of the coming instruction and breakpoint it. */
3966
3967 int
3968 mips_software_single_step (struct frame_info *frame)
3969 {
3970 struct gdbarch *gdbarch = get_frame_arch (frame);
3971 struct address_space *aspace = get_frame_address_space (frame);
3972 CORE_ADDR pc, next_pc;
3973
3974 pc = get_frame_pc (frame);
3975 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3976 return 1;
3977
3978 next_pc = mips_next_pc (frame, pc);
3979
3980 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
3981 return 1;
3982 }
3983
3984 /* Test whether the PC points to the return instruction at the
3985 end of a function. */
3986
3987 static int
3988 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
3989 {
3990 ULONGEST insn;
3991 ULONGEST hint;
3992
3993 /* This used to check for MIPS16, but this piece of code is never
3994 called for MIPS16 functions. And likewise microMIPS ones. */
3995 gdb_assert (mips_pc_is_mips (pc));
3996
3997 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
3998 hint = 0x7c0;
3999 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4000 }
4001
4002
4003 /* This fencepost looks highly suspicious to me. Removing it also
4004 seems suspicious as it could affect remote debugging across serial
4005 lines. */
4006
4007 static CORE_ADDR
4008 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4009 {
4010 CORE_ADDR start_pc;
4011 CORE_ADDR fence;
4012 int instlen;
4013 int seen_adjsp = 0;
4014 struct inferior *inf;
4015
4016 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4017 start_pc = pc;
4018 fence = start_pc - heuristic_fence_post;
4019 if (start_pc == 0)
4020 return 0;
4021
4022 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4023 fence = VM_MIN_ADDRESS;
4024
4025 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4026
4027 inf = current_inferior ();
4028
4029 /* Search back for previous return. */
4030 for (start_pc -= instlen;; start_pc -= instlen)
4031 if (start_pc < fence)
4032 {
4033 /* It's not clear to me why we reach this point when
4034 stop_soon, but with this test, at least we
4035 don't print out warnings for every child forked (eg, on
4036 decstation). 22apr93 rich@cygnus.com. */
4037 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4038 {
4039 static int blurb_printed = 0;
4040
4041 warning (_("GDB can't find the start of the function at %s."),
4042 paddress (gdbarch, pc));
4043
4044 if (!blurb_printed)
4045 {
4046 /* This actually happens frequently in embedded
4047 development, when you first connect to a board
4048 and your stack pointer and pc are nowhere in
4049 particular. This message needs to give people
4050 in that situation enough information to
4051 determine that it's no big deal. */
4052 printf_filtered ("\n\
4053 GDB is unable to find the start of the function at %s\n\
4054 and thus can't determine the size of that function's stack frame.\n\
4055 This means that GDB may be unable to access that stack frame, or\n\
4056 the frames below it.\n\
4057 This problem is most likely caused by an invalid program counter or\n\
4058 stack pointer.\n\
4059 However, if you think GDB should simply search farther back\n\
4060 from %s for code which looks like the beginning of a\n\
4061 function, you can increase the range of the search using the `set\n\
4062 heuristic-fence-post' command.\n",
4063 paddress (gdbarch, pc), paddress (gdbarch, pc));
4064 blurb_printed = 1;
4065 }
4066 }
4067
4068 return 0;
4069 }
4070 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4071 {
4072 unsigned short inst;
4073
4074 /* On MIPS16, any one of the following is likely to be the
4075 start of a function:
4076 extend save
4077 save
4078 entry
4079 addiu sp,-n
4080 daddiu sp,-n
4081 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4082 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4083 if ((inst & 0xff80) == 0x6480) /* save */
4084 {
4085 if (start_pc - instlen >= fence)
4086 {
4087 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4088 start_pc - instlen, NULL);
4089 if ((inst & 0xf800) == 0xf000) /* extend */
4090 start_pc -= instlen;
4091 }
4092 break;
4093 }
4094 else if (((inst & 0xf81f) == 0xe809
4095 && (inst & 0x700) != 0x700) /* entry */
4096 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4097 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4098 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4099 break;
4100 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4101 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4102 seen_adjsp = 1;
4103 else
4104 seen_adjsp = 0;
4105 }
4106 else if (mips_pc_is_micromips (gdbarch, start_pc))
4107 {
4108 ULONGEST insn;
4109 int stop = 0;
4110 long offset;
4111 int dreg;
4112 int sreg;
4113
4114 /* On microMIPS, any one of the following is likely to be the
4115 start of a function:
4116 ADDIUSP -imm
4117 (D)ADDIU $sp, -imm
4118 LUI $gp, imm */
4119 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4120 switch (micromips_op (insn))
4121 {
4122 case 0xc: /* ADDIU: bits 001100 */
4123 case 0x17: /* DADDIU: bits 010111 */
4124 sreg = b0s5_reg (insn);
4125 dreg = b5s5_reg (insn);
4126 insn <<= 16;
4127 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4128 pc + MIPS_INSN16_SIZE, NULL);
4129 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4130 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4131 /* (D)ADDIU $sp, imm */
4132 && offset < 0)
4133 stop = 1;
4134 break;
4135
4136 case 0x10: /* POOL32I: bits 010000 */
4137 if (b5s5_op (insn) == 0xd
4138 /* LUI: bits 010000 001101 */
4139 && b0s5_reg (insn >> 16) == 28)
4140 /* LUI $gp, imm */
4141 stop = 1;
4142 break;
4143
4144 case 0x13: /* POOL16D: bits 010011 */
4145 if ((insn & 0x1) == 0x1)
4146 /* ADDIUSP: bits 010011 1 */
4147 {
4148 offset = micromips_decode_imm9 (b1s9_imm (insn));
4149 if (offset < 0)
4150 /* ADDIUSP -imm */
4151 stop = 1;
4152 }
4153 else
4154 /* ADDIUS5: bits 010011 0 */
4155 {
4156 dreg = b5s5_reg (insn);
4157 offset = (b1s4_imm (insn) ^ 8) - 8;
4158 if (dreg == MIPS_SP_REGNUM && offset < 0)
4159 /* ADDIUS5 $sp, -imm */
4160 stop = 1;
4161 }
4162 break;
4163 }
4164 if (stop)
4165 break;
4166 }
4167 else if (mips_about_to_return (gdbarch, start_pc))
4168 {
4169 /* Skip return and its delay slot. */
4170 start_pc += 2 * MIPS_INSN32_SIZE;
4171 break;
4172 }
4173
4174 return start_pc;
4175 }
4176
4177 struct mips_objfile_private
4178 {
4179 bfd_size_type size;
4180 char *contents;
4181 };
4182
4183 /* According to the current ABI, should the type be passed in a
4184 floating-point register (assuming that there is space)? When there
4185 is no FPU, FP are not even considered as possible candidates for
4186 FP registers and, consequently this returns false - forces FP
4187 arguments into integer registers. */
4188
4189 static int
4190 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4191 struct type *arg_type)
4192 {
4193 return ((typecode == TYPE_CODE_FLT
4194 || (MIPS_EABI (gdbarch)
4195 && (typecode == TYPE_CODE_STRUCT
4196 || typecode == TYPE_CODE_UNION)
4197 && TYPE_NFIELDS (arg_type) == 1
4198 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4199 == TYPE_CODE_FLT))
4200 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4201 }
4202
4203 /* On o32, argument passing in GPRs depends on the alignment of the type being
4204 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4205
4206 static int
4207 mips_type_needs_double_align (struct type *type)
4208 {
4209 enum type_code typecode = TYPE_CODE (type);
4210
4211 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4212 return 1;
4213 else if (typecode == TYPE_CODE_STRUCT)
4214 {
4215 if (TYPE_NFIELDS (type) < 1)
4216 return 0;
4217 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4218 }
4219 else if (typecode == TYPE_CODE_UNION)
4220 {
4221 int i, n;
4222
4223 n = TYPE_NFIELDS (type);
4224 for (i = 0; i < n; i++)
4225 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4226 return 1;
4227 return 0;
4228 }
4229 return 0;
4230 }
4231
4232 /* Adjust the address downward (direction of stack growth) so that it
4233 is correctly aligned for a new stack frame. */
4234 static CORE_ADDR
4235 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4236 {
4237 return align_down (addr, 16);
4238 }
4239
4240 /* Implement the "push_dummy_code" gdbarch method. */
4241
4242 static CORE_ADDR
4243 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4244 CORE_ADDR funaddr, struct value **args,
4245 int nargs, struct type *value_type,
4246 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4247 struct regcache *regcache)
4248 {
4249 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4250 CORE_ADDR nop_addr;
4251 CORE_ADDR bp_slot;
4252
4253 /* Reserve enough room on the stack for our breakpoint instruction. */
4254 bp_slot = sp - sizeof (nop_insn);
4255
4256 /* Return to microMIPS mode if calling microMIPS code to avoid
4257 triggering an address error exception on processors that only
4258 support microMIPS execution. */
4259 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4260 ? make_compact_addr (bp_slot) : bp_slot);
4261
4262 /* The breakpoint layer automatically adjusts the address of
4263 breakpoints inserted in a branch delay slot. With enough
4264 bad luck, the 4 bytes located just before our breakpoint
4265 instruction could look like a branch instruction, and thus
4266 trigger the adjustement, and break the function call entirely.
4267 So, we reserve those 4 bytes and write a nop instruction
4268 to prevent that from happening. */
4269 nop_addr = bp_slot - sizeof (nop_insn);
4270 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4271 sp = mips_frame_align (gdbarch, nop_addr);
4272
4273 /* Inferior resumes at the function entry point. */
4274 *real_pc = funaddr;
4275
4276 return sp;
4277 }
4278
4279 static CORE_ADDR
4280 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4281 struct regcache *regcache, CORE_ADDR bp_addr,
4282 int nargs, struct value **args, CORE_ADDR sp,
4283 int struct_return, CORE_ADDR struct_addr)
4284 {
4285 int argreg;
4286 int float_argreg;
4287 int argnum;
4288 int len = 0;
4289 int stack_offset = 0;
4290 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4291 CORE_ADDR func_addr = find_function_addr (function, NULL);
4292 int regsize = mips_abi_regsize (gdbarch);
4293
4294 /* For shared libraries, "t9" needs to point at the function
4295 address. */
4296 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4297
4298 /* Set the return address register to point to the entry point of
4299 the program, where a breakpoint lies in wait. */
4300 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4301
4302 /* First ensure that the stack and structure return address (if any)
4303 are properly aligned. The stack has to be at least 64-bit
4304 aligned even on 32-bit machines, because doubles must be 64-bit
4305 aligned. For n32 and n64, stack frames need to be 128-bit
4306 aligned, so we round to this widest known alignment. */
4307
4308 sp = align_down (sp, 16);
4309 struct_addr = align_down (struct_addr, 16);
4310
4311 /* Now make space on the stack for the args. We allocate more
4312 than necessary for EABI, because the first few arguments are
4313 passed in registers, but that's OK. */
4314 for (argnum = 0; argnum < nargs; argnum++)
4315 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4316 sp -= align_up (len, 16);
4317
4318 if (mips_debug)
4319 fprintf_unfiltered (gdb_stdlog,
4320 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4321 paddress (gdbarch, sp), (long) align_up (len, 16));
4322
4323 /* Initialize the integer and float register pointers. */
4324 argreg = MIPS_A0_REGNUM;
4325 float_argreg = mips_fpa0_regnum (gdbarch);
4326
4327 /* The struct_return pointer occupies the first parameter-passing reg. */
4328 if (struct_return)
4329 {
4330 if (mips_debug)
4331 fprintf_unfiltered (gdb_stdlog,
4332 "mips_eabi_push_dummy_call: "
4333 "struct_return reg=%d %s\n",
4334 argreg, paddress (gdbarch, struct_addr));
4335 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4336 }
4337
4338 /* Now load as many as possible of the first arguments into
4339 registers, and push the rest onto the stack. Loop thru args
4340 from first to last. */
4341 for (argnum = 0; argnum < nargs; argnum++)
4342 {
4343 const gdb_byte *val;
4344 gdb_byte valbuf[MAX_REGISTER_SIZE];
4345 struct value *arg = args[argnum];
4346 struct type *arg_type = check_typedef (value_type (arg));
4347 int len = TYPE_LENGTH (arg_type);
4348 enum type_code typecode = TYPE_CODE (arg_type);
4349
4350 if (mips_debug)
4351 fprintf_unfiltered (gdb_stdlog,
4352 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4353 argnum + 1, len, (int) typecode);
4354
4355 /* Function pointer arguments to mips16 code need to be made into
4356 mips16 pointers. */
4357 if (typecode == TYPE_CODE_PTR
4358 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4359 {
4360 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4361 len, byte_order);
4362 if (mips_pc_is_mips (addr))
4363 val = value_contents (arg);
4364 else
4365 {
4366 store_signed_integer (valbuf, len, byte_order,
4367 make_compact_addr (addr));
4368 val = valbuf;
4369 }
4370 }
4371 /* The EABI passes structures that do not fit in a register by
4372 reference. */
4373 else if (len > regsize
4374 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4375 {
4376 store_unsigned_integer (valbuf, regsize, byte_order,
4377 value_address (arg));
4378 typecode = TYPE_CODE_PTR;
4379 len = regsize;
4380 val = valbuf;
4381 if (mips_debug)
4382 fprintf_unfiltered (gdb_stdlog, " push");
4383 }
4384 else
4385 val = value_contents (arg);
4386
4387 /* 32-bit ABIs always start floating point arguments in an
4388 even-numbered floating point register. Round the FP register
4389 up before the check to see if there are any FP registers
4390 left. Non MIPS_EABI targets also pass the FP in the integer
4391 registers so also round up normal registers. */
4392 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4393 {
4394 if ((float_argreg & 1))
4395 float_argreg++;
4396 }
4397
4398 /* Floating point arguments passed in registers have to be
4399 treated specially. On 32-bit architectures, doubles
4400 are passed in register pairs; the even register gets
4401 the low word, and the odd register gets the high word.
4402 On non-EABI processors, the first two floating point arguments are
4403 also copied to general registers, because MIPS16 functions
4404 don't use float registers for arguments. This duplication of
4405 arguments in general registers can't hurt non-MIPS16 functions
4406 because those registers are normally skipped. */
4407 /* MIPS_EABI squeezes a struct that contains a single floating
4408 point value into an FP register instead of pushing it onto the
4409 stack. */
4410 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4411 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4412 {
4413 /* EABI32 will pass doubles in consecutive registers, even on
4414 64-bit cores. At one time, we used to check the size of
4415 `float_argreg' to determine whether or not to pass doubles
4416 in consecutive registers, but this is not sufficient for
4417 making the ABI determination. */
4418 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4419 {
4420 int low_offset = gdbarch_byte_order (gdbarch)
4421 == BFD_ENDIAN_BIG ? 4 : 0;
4422 long regval;
4423
4424 /* Write the low word of the double to the even register(s). */
4425 regval = extract_signed_integer (val + low_offset,
4426 4, byte_order);
4427 if (mips_debug)
4428 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4429 float_argreg, phex (regval, 4));
4430 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4431
4432 /* Write the high word of the double to the odd register(s). */
4433 regval = extract_signed_integer (val + 4 - low_offset,
4434 4, byte_order);
4435 if (mips_debug)
4436 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4437 float_argreg, phex (regval, 4));
4438 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4439 }
4440 else
4441 {
4442 /* This is a floating point value that fits entirely
4443 in a single register. */
4444 /* On 32 bit ABI's the float_argreg is further adjusted
4445 above to ensure that it is even register aligned. */
4446 LONGEST regval = extract_signed_integer (val, len, byte_order);
4447 if (mips_debug)
4448 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4449 float_argreg, phex (regval, len));
4450 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4451 }
4452 }
4453 else
4454 {
4455 /* Copy the argument to general registers or the stack in
4456 register-sized pieces. Large arguments are split between
4457 registers and stack. */
4458 /* Note: structs whose size is not a multiple of regsize
4459 are treated specially: Irix cc passes
4460 them in registers where gcc sometimes puts them on the
4461 stack. For maximum compatibility, we will put them in
4462 both places. */
4463 int odd_sized_struct = (len > regsize && len % regsize != 0);
4464
4465 /* Note: Floating-point values that didn't fit into an FP
4466 register are only written to memory. */
4467 while (len > 0)
4468 {
4469 /* Remember if the argument was written to the stack. */
4470 int stack_used_p = 0;
4471 int partial_len = (len < regsize ? len : regsize);
4472
4473 if (mips_debug)
4474 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4475 partial_len);
4476
4477 /* Write this portion of the argument to the stack. */
4478 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4479 || odd_sized_struct
4480 || fp_register_arg_p (gdbarch, typecode, arg_type))
4481 {
4482 /* Should shorter than int integer values be
4483 promoted to int before being stored? */
4484 int longword_offset = 0;
4485 CORE_ADDR addr;
4486 stack_used_p = 1;
4487 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4488 {
4489 if (regsize == 8
4490 && (typecode == TYPE_CODE_INT
4491 || typecode == TYPE_CODE_PTR
4492 || typecode == TYPE_CODE_FLT) && len <= 4)
4493 longword_offset = regsize - len;
4494 else if ((typecode == TYPE_CODE_STRUCT
4495 || typecode == TYPE_CODE_UNION)
4496 && TYPE_LENGTH (arg_type) < regsize)
4497 longword_offset = regsize - len;
4498 }
4499
4500 if (mips_debug)
4501 {
4502 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4503 paddress (gdbarch, stack_offset));
4504 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4505 paddress (gdbarch, longword_offset));
4506 }
4507
4508 addr = sp + stack_offset + longword_offset;
4509
4510 if (mips_debug)
4511 {
4512 int i;
4513 fprintf_unfiltered (gdb_stdlog, " @%s ",
4514 paddress (gdbarch, addr));
4515 for (i = 0; i < partial_len; i++)
4516 {
4517 fprintf_unfiltered (gdb_stdlog, "%02x",
4518 val[i] & 0xff);
4519 }
4520 }
4521 write_memory (addr, val, partial_len);
4522 }
4523
4524 /* Note!!! This is NOT an else clause. Odd sized
4525 structs may go thru BOTH paths. Floating point
4526 arguments will not. */
4527 /* Write this portion of the argument to a general
4528 purpose register. */
4529 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4530 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4531 {
4532 LONGEST regval =
4533 extract_signed_integer (val, partial_len, byte_order);
4534
4535 if (mips_debug)
4536 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4537 argreg,
4538 phex (regval, regsize));
4539 regcache_cooked_write_signed (regcache, argreg, regval);
4540 argreg++;
4541 }
4542
4543 len -= partial_len;
4544 val += partial_len;
4545
4546 /* Compute the offset into the stack at which we will
4547 copy the next parameter.
4548
4549 In the new EABI (and the NABI32), the stack_offset
4550 only needs to be adjusted when it has been used. */
4551
4552 if (stack_used_p)
4553 stack_offset += align_up (partial_len, regsize);
4554 }
4555 }
4556 if (mips_debug)
4557 fprintf_unfiltered (gdb_stdlog, "\n");
4558 }
4559
4560 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4561
4562 /* Return adjusted stack pointer. */
4563 return sp;
4564 }
4565
4566 /* Determine the return value convention being used. */
4567
4568 static enum return_value_convention
4569 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4570 struct type *type, struct regcache *regcache,
4571 gdb_byte *readbuf, const gdb_byte *writebuf)
4572 {
4573 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4574 int fp_return_type = 0;
4575 int offset, regnum, xfer;
4576
4577 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4578 return RETURN_VALUE_STRUCT_CONVENTION;
4579
4580 /* Floating point type? */
4581 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4582 {
4583 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4584 fp_return_type = 1;
4585 /* Structs with a single field of float type
4586 are returned in a floating point register. */
4587 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4588 || TYPE_CODE (type) == TYPE_CODE_UNION)
4589 && TYPE_NFIELDS (type) == 1)
4590 {
4591 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4592
4593 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4594 fp_return_type = 1;
4595 }
4596 }
4597
4598 if (fp_return_type)
4599 {
4600 /* A floating-point value belongs in the least significant part
4601 of FP0/FP1. */
4602 if (mips_debug)
4603 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4604 regnum = mips_regnum (gdbarch)->fp0;
4605 }
4606 else
4607 {
4608 /* An integer value goes in V0/V1. */
4609 if (mips_debug)
4610 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4611 regnum = MIPS_V0_REGNUM;
4612 }
4613 for (offset = 0;
4614 offset < TYPE_LENGTH (type);
4615 offset += mips_abi_regsize (gdbarch), regnum++)
4616 {
4617 xfer = mips_abi_regsize (gdbarch);
4618 if (offset + xfer > TYPE_LENGTH (type))
4619 xfer = TYPE_LENGTH (type) - offset;
4620 mips_xfer_register (gdbarch, regcache,
4621 gdbarch_num_regs (gdbarch) + regnum, xfer,
4622 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4623 offset);
4624 }
4625
4626 return RETURN_VALUE_REGISTER_CONVENTION;
4627 }
4628
4629
4630 /* N32/N64 ABI stuff. */
4631
4632 /* Search for a naturally aligned double at OFFSET inside a struct
4633 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4634 registers. */
4635
4636 static int
4637 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4638 int offset)
4639 {
4640 int i;
4641
4642 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4643 return 0;
4644
4645 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4646 return 0;
4647
4648 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4649 return 0;
4650
4651 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4652 {
4653 int pos;
4654 struct type *field_type;
4655
4656 /* We're only looking at normal fields. */
4657 if (field_is_static (&TYPE_FIELD (arg_type, i))
4658 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4659 continue;
4660
4661 /* If we have gone past the offset, there is no double to pass. */
4662 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4663 if (pos > offset)
4664 return 0;
4665
4666 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4667
4668 /* If this field is entirely before the requested offset, go
4669 on to the next one. */
4670 if (pos + TYPE_LENGTH (field_type) <= offset)
4671 continue;
4672
4673 /* If this is our special aligned double, we can stop. */
4674 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4675 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4676 return 1;
4677
4678 /* This field starts at or before the requested offset, and
4679 overlaps it. If it is a structure, recurse inwards. */
4680 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4681 }
4682
4683 return 0;
4684 }
4685
4686 static CORE_ADDR
4687 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4688 struct regcache *regcache, CORE_ADDR bp_addr,
4689 int nargs, struct value **args, CORE_ADDR sp,
4690 int struct_return, CORE_ADDR struct_addr)
4691 {
4692 int argreg;
4693 int float_argreg;
4694 int argnum;
4695 int len = 0;
4696 int stack_offset = 0;
4697 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4698 CORE_ADDR func_addr = find_function_addr (function, NULL);
4699
4700 /* For shared libraries, "t9" needs to point at the function
4701 address. */
4702 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4703
4704 /* Set the return address register to point to the entry point of
4705 the program, where a breakpoint lies in wait. */
4706 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4707
4708 /* First ensure that the stack and structure return address (if any)
4709 are properly aligned. The stack has to be at least 64-bit
4710 aligned even on 32-bit machines, because doubles must be 64-bit
4711 aligned. For n32 and n64, stack frames need to be 128-bit
4712 aligned, so we round to this widest known alignment. */
4713
4714 sp = align_down (sp, 16);
4715 struct_addr = align_down (struct_addr, 16);
4716
4717 /* Now make space on the stack for the args. */
4718 for (argnum = 0; argnum < nargs; argnum++)
4719 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4720 sp -= align_up (len, 16);
4721
4722 if (mips_debug)
4723 fprintf_unfiltered (gdb_stdlog,
4724 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4725 paddress (gdbarch, sp), (long) align_up (len, 16));
4726
4727 /* Initialize the integer and float register pointers. */
4728 argreg = MIPS_A0_REGNUM;
4729 float_argreg = mips_fpa0_regnum (gdbarch);
4730
4731 /* The struct_return pointer occupies the first parameter-passing reg. */
4732 if (struct_return)
4733 {
4734 if (mips_debug)
4735 fprintf_unfiltered (gdb_stdlog,
4736 "mips_n32n64_push_dummy_call: "
4737 "struct_return reg=%d %s\n",
4738 argreg, paddress (gdbarch, struct_addr));
4739 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4740 }
4741
4742 /* Now load as many as possible of the first arguments into
4743 registers, and push the rest onto the stack. Loop thru args
4744 from first to last. */
4745 for (argnum = 0; argnum < nargs; argnum++)
4746 {
4747 const gdb_byte *val;
4748 struct value *arg = args[argnum];
4749 struct type *arg_type = check_typedef (value_type (arg));
4750 int len = TYPE_LENGTH (arg_type);
4751 enum type_code typecode = TYPE_CODE (arg_type);
4752
4753 if (mips_debug)
4754 fprintf_unfiltered (gdb_stdlog,
4755 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4756 argnum + 1, len, (int) typecode);
4757
4758 val = value_contents (arg);
4759
4760 /* A 128-bit long double value requires an even-odd pair of
4761 floating-point registers. */
4762 if (len == 16
4763 && fp_register_arg_p (gdbarch, typecode, arg_type)
4764 && (float_argreg & 1))
4765 {
4766 float_argreg++;
4767 argreg++;
4768 }
4769
4770 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4771 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4772 {
4773 /* This is a floating point value that fits entirely
4774 in a single register or a pair of registers. */
4775 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4776 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4779 float_argreg, phex (regval, reglen));
4780 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4781
4782 if (mips_debug)
4783 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4784 argreg, phex (regval, reglen));
4785 regcache_cooked_write_unsigned (regcache, argreg, regval);
4786 float_argreg++;
4787 argreg++;
4788 if (len == 16)
4789 {
4790 regval = extract_unsigned_integer (val + reglen,
4791 reglen, byte_order);
4792 if (mips_debug)
4793 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4794 float_argreg, phex (regval, reglen));
4795 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4796
4797 if (mips_debug)
4798 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4799 argreg, phex (regval, reglen));
4800 regcache_cooked_write_unsigned (regcache, argreg, regval);
4801 float_argreg++;
4802 argreg++;
4803 }
4804 }
4805 else
4806 {
4807 /* Copy the argument to general registers or the stack in
4808 register-sized pieces. Large arguments are split between
4809 registers and stack. */
4810 /* For N32/N64, structs, unions, or other composite types are
4811 treated as a sequence of doublewords, and are passed in integer
4812 or floating point registers as though they were simple scalar
4813 parameters to the extent that they fit, with any excess on the
4814 stack packed according to the normal memory layout of the
4815 object.
4816 The caller does not reserve space for the register arguments;
4817 the callee is responsible for reserving it if required. */
4818 /* Note: Floating-point values that didn't fit into an FP
4819 register are only written to memory. */
4820 while (len > 0)
4821 {
4822 /* Remember if the argument was written to the stack. */
4823 int stack_used_p = 0;
4824 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4825
4826 if (mips_debug)
4827 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4828 partial_len);
4829
4830 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4831 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
4832
4833 /* Write this portion of the argument to the stack. */
4834 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
4835 {
4836 /* Should shorter than int integer values be
4837 promoted to int before being stored? */
4838 int longword_offset = 0;
4839 CORE_ADDR addr;
4840 stack_used_p = 1;
4841 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4842 {
4843 if ((typecode == TYPE_CODE_INT
4844 || typecode == TYPE_CODE_PTR)
4845 && len <= 4)
4846 longword_offset = MIPS64_REGSIZE - len;
4847 }
4848
4849 if (mips_debug)
4850 {
4851 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4852 paddress (gdbarch, stack_offset));
4853 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4854 paddress (gdbarch, longword_offset));
4855 }
4856
4857 addr = sp + stack_offset + longword_offset;
4858
4859 if (mips_debug)
4860 {
4861 int i;
4862 fprintf_unfiltered (gdb_stdlog, " @%s ",
4863 paddress (gdbarch, addr));
4864 for (i = 0; i < partial_len; i++)
4865 {
4866 fprintf_unfiltered (gdb_stdlog, "%02x",
4867 val[i] & 0xff);
4868 }
4869 }
4870 write_memory (addr, val, partial_len);
4871 }
4872
4873 /* Note!!! This is NOT an else clause. Odd sized
4874 structs may go thru BOTH paths. */
4875 /* Write this portion of the argument to a general
4876 purpose register. */
4877 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4878 {
4879 LONGEST regval;
4880
4881 /* Sign extend pointers, 32-bit integers and signed
4882 16-bit and 8-bit integers; everything else is taken
4883 as is. */
4884
4885 if ((partial_len == 4
4886 && (typecode == TYPE_CODE_PTR
4887 || typecode == TYPE_CODE_INT))
4888 || (partial_len < 4
4889 && typecode == TYPE_CODE_INT
4890 && !TYPE_UNSIGNED (arg_type)))
4891 regval = extract_signed_integer (val, partial_len,
4892 byte_order);
4893 else
4894 regval = extract_unsigned_integer (val, partial_len,
4895 byte_order);
4896
4897 /* A non-floating-point argument being passed in a
4898 general register. If a struct or union, and if
4899 the remaining length is smaller than the register
4900 size, we have to adjust the register value on
4901 big endian targets.
4902
4903 It does not seem to be necessary to do the
4904 same for integral types. */
4905
4906 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4907 && partial_len < MIPS64_REGSIZE
4908 && (typecode == TYPE_CODE_STRUCT
4909 || typecode == TYPE_CODE_UNION))
4910 regval <<= ((MIPS64_REGSIZE - partial_len)
4911 * TARGET_CHAR_BIT);
4912
4913 if (mips_debug)
4914 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4915 argreg,
4916 phex (regval, MIPS64_REGSIZE));
4917 regcache_cooked_write_unsigned (regcache, argreg, regval);
4918
4919 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
4920 TYPE_LENGTH (arg_type) - len))
4921 {
4922 if (mips_debug)
4923 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
4924 float_argreg,
4925 phex (regval, MIPS64_REGSIZE));
4926 regcache_cooked_write_unsigned (regcache, float_argreg,
4927 regval);
4928 }
4929
4930 float_argreg++;
4931 argreg++;
4932 }
4933
4934 len -= partial_len;
4935 val += partial_len;
4936
4937 /* Compute the offset into the stack at which we will
4938 copy the next parameter.
4939
4940 In N32 (N64?), the stack_offset only needs to be
4941 adjusted when it has been used. */
4942
4943 if (stack_used_p)
4944 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4945 }
4946 }
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stdlog, "\n");
4949 }
4950
4951 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4952
4953 /* Return adjusted stack pointer. */
4954 return sp;
4955 }
4956
4957 static enum return_value_convention
4958 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
4959 struct type *type, struct regcache *regcache,
4960 gdb_byte *readbuf, const gdb_byte *writebuf)
4961 {
4962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4963
4964 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
4965
4966 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
4967 if needed), as appropriate for the type. Composite results (struct,
4968 union, or array) are returned in $2/$f0 and $3/$f2 according to the
4969 following rules:
4970
4971 * A struct with only one or two floating point fields is returned in $f0
4972 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
4973 case.
4974
4975 * Any other composite results of at most 128 bits are returned in
4976 $2 (first 64 bits) and $3 (remainder, if necessary).
4977
4978 * Larger composite results are handled by converting the function to a
4979 procedure with an implicit first parameter, which is a pointer to an area
4980 reserved by the caller to receive the result. [The o32-bit ABI requires
4981 that all composite results be handled by conversion to implicit first
4982 parameters. The MIPS/SGI Fortran implementation has always made a
4983 specific exception to return COMPLEX results in the floating point
4984 registers.] */
4985
4986 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
4987 return RETURN_VALUE_STRUCT_CONVENTION;
4988 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4989 && TYPE_LENGTH (type) == 16
4990 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4991 {
4992 /* A 128-bit floating-point value fills both $f0 and $f2. The
4993 two registers are used in the same as memory order, so the
4994 eight bytes with the lower memory address are in $f0. */
4995 if (mips_debug)
4996 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
4997 mips_xfer_register (gdbarch, regcache,
4998 (gdbarch_num_regs (gdbarch)
4999 + mips_regnum (gdbarch)->fp0),
5000 8, gdbarch_byte_order (gdbarch),
5001 readbuf, writebuf, 0);
5002 mips_xfer_register (gdbarch, regcache,
5003 (gdbarch_num_regs (gdbarch)
5004 + mips_regnum (gdbarch)->fp0 + 2),
5005 8, gdbarch_byte_order (gdbarch),
5006 readbuf ? readbuf + 8 : readbuf,
5007 writebuf ? writebuf + 8 : writebuf, 0);
5008 return RETURN_VALUE_REGISTER_CONVENTION;
5009 }
5010 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5011 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5012 {
5013 /* A single or double floating-point value that fits in FP0. */
5014 if (mips_debug)
5015 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5016 mips_xfer_register (gdbarch, regcache,
5017 (gdbarch_num_regs (gdbarch)
5018 + mips_regnum (gdbarch)->fp0),
5019 TYPE_LENGTH (type),
5020 gdbarch_byte_order (gdbarch),
5021 readbuf, writebuf, 0);
5022 return RETURN_VALUE_REGISTER_CONVENTION;
5023 }
5024 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5025 && TYPE_NFIELDS (type) <= 2
5026 && TYPE_NFIELDS (type) >= 1
5027 && ((TYPE_NFIELDS (type) == 1
5028 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5029 == TYPE_CODE_FLT))
5030 || (TYPE_NFIELDS (type) == 2
5031 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5032 == TYPE_CODE_FLT)
5033 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5034 == TYPE_CODE_FLT))))
5035 {
5036 /* A struct that contains one or two floats. Each value is part
5037 in the least significant part of their floating point
5038 register (or GPR, for soft float). */
5039 int regnum;
5040 int field;
5041 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5042 ? mips_regnum (gdbarch)->fp0
5043 : MIPS_V0_REGNUM);
5044 field < TYPE_NFIELDS (type); field++, regnum += 2)
5045 {
5046 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5047 / TARGET_CHAR_BIT);
5048 if (mips_debug)
5049 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5050 offset);
5051 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5052 {
5053 /* A 16-byte long double field goes in two consecutive
5054 registers. */
5055 mips_xfer_register (gdbarch, regcache,
5056 gdbarch_num_regs (gdbarch) + regnum,
5057 8,
5058 gdbarch_byte_order (gdbarch),
5059 readbuf, writebuf, offset);
5060 mips_xfer_register (gdbarch, regcache,
5061 gdbarch_num_regs (gdbarch) + regnum + 1,
5062 8,
5063 gdbarch_byte_order (gdbarch),
5064 readbuf, writebuf, offset + 8);
5065 }
5066 else
5067 mips_xfer_register (gdbarch, regcache,
5068 gdbarch_num_regs (gdbarch) + regnum,
5069 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5070 gdbarch_byte_order (gdbarch),
5071 readbuf, writebuf, offset);
5072 }
5073 return RETURN_VALUE_REGISTER_CONVENTION;
5074 }
5075 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5076 || TYPE_CODE (type) == TYPE_CODE_UNION
5077 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5078 {
5079 /* A composite type. Extract the left justified value,
5080 regardless of the byte order. I.e. DO NOT USE
5081 mips_xfer_lower. */
5082 int offset;
5083 int regnum;
5084 for (offset = 0, regnum = MIPS_V0_REGNUM;
5085 offset < TYPE_LENGTH (type);
5086 offset += register_size (gdbarch, regnum), regnum++)
5087 {
5088 int xfer = register_size (gdbarch, regnum);
5089 if (offset + xfer > TYPE_LENGTH (type))
5090 xfer = TYPE_LENGTH (type) - offset;
5091 if (mips_debug)
5092 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5093 offset, xfer, regnum);
5094 mips_xfer_register (gdbarch, regcache,
5095 gdbarch_num_regs (gdbarch) + regnum,
5096 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5097 offset);
5098 }
5099 return RETURN_VALUE_REGISTER_CONVENTION;
5100 }
5101 else
5102 {
5103 /* A scalar extract each part but least-significant-byte
5104 justified. */
5105 int offset;
5106 int regnum;
5107 for (offset = 0, regnum = MIPS_V0_REGNUM;
5108 offset < TYPE_LENGTH (type);
5109 offset += register_size (gdbarch, regnum), regnum++)
5110 {
5111 int xfer = register_size (gdbarch, regnum);
5112 if (offset + xfer > TYPE_LENGTH (type))
5113 xfer = TYPE_LENGTH (type) - offset;
5114 if (mips_debug)
5115 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5116 offset, xfer, regnum);
5117 mips_xfer_register (gdbarch, regcache,
5118 gdbarch_num_regs (gdbarch) + regnum,
5119 xfer, gdbarch_byte_order (gdbarch),
5120 readbuf, writebuf, offset);
5121 }
5122 return RETURN_VALUE_REGISTER_CONVENTION;
5123 }
5124 }
5125
5126 /* Which registers to use for passing floating-point values between
5127 function calls, one of floating-point, general and both kinds of
5128 registers. O32 and O64 use different register kinds for standard
5129 MIPS and MIPS16 code; to make the handling of cases where we may
5130 not know what kind of code is being used (e.g. no debug information)
5131 easier we sometimes use both kinds. */
5132
5133 enum mips_fval_reg
5134 {
5135 mips_fval_fpr,
5136 mips_fval_gpr,
5137 mips_fval_both
5138 };
5139
5140 /* O32 ABI stuff. */
5141
5142 static CORE_ADDR
5143 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5144 struct regcache *regcache, CORE_ADDR bp_addr,
5145 int nargs, struct value **args, CORE_ADDR sp,
5146 int struct_return, CORE_ADDR struct_addr)
5147 {
5148 int argreg;
5149 int float_argreg;
5150 int argnum;
5151 int len = 0;
5152 int stack_offset = 0;
5153 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5154 CORE_ADDR func_addr = find_function_addr (function, NULL);
5155
5156 /* For shared libraries, "t9" needs to point at the function
5157 address. */
5158 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5159
5160 /* Set the return address register to point to the entry point of
5161 the program, where a breakpoint lies in wait. */
5162 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5163
5164 /* First ensure that the stack and structure return address (if any)
5165 are properly aligned. The stack has to be at least 64-bit
5166 aligned even on 32-bit machines, because doubles must be 64-bit
5167 aligned. For n32 and n64, stack frames need to be 128-bit
5168 aligned, so we round to this widest known alignment. */
5169
5170 sp = align_down (sp, 16);
5171 struct_addr = align_down (struct_addr, 16);
5172
5173 /* Now make space on the stack for the args. */
5174 for (argnum = 0; argnum < nargs; argnum++)
5175 {
5176 struct type *arg_type = check_typedef (value_type (args[argnum]));
5177
5178 /* Align to double-word if necessary. */
5179 if (mips_type_needs_double_align (arg_type))
5180 len = align_up (len, MIPS32_REGSIZE * 2);
5181 /* Allocate space on the stack. */
5182 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5183 }
5184 sp -= align_up (len, 16);
5185
5186 if (mips_debug)
5187 fprintf_unfiltered (gdb_stdlog,
5188 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5189 paddress (gdbarch, sp), (long) align_up (len, 16));
5190
5191 /* Initialize the integer and float register pointers. */
5192 argreg = MIPS_A0_REGNUM;
5193 float_argreg = mips_fpa0_regnum (gdbarch);
5194
5195 /* The struct_return pointer occupies the first parameter-passing reg. */
5196 if (struct_return)
5197 {
5198 if (mips_debug)
5199 fprintf_unfiltered (gdb_stdlog,
5200 "mips_o32_push_dummy_call: "
5201 "struct_return reg=%d %s\n",
5202 argreg, paddress (gdbarch, struct_addr));
5203 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5204 stack_offset += MIPS32_REGSIZE;
5205 }
5206
5207 /* Now load as many as possible of the first arguments into
5208 registers, and push the rest onto the stack. Loop thru args
5209 from first to last. */
5210 for (argnum = 0; argnum < nargs; argnum++)
5211 {
5212 const gdb_byte *val;
5213 struct value *arg = args[argnum];
5214 struct type *arg_type = check_typedef (value_type (arg));
5215 int len = TYPE_LENGTH (arg_type);
5216 enum type_code typecode = TYPE_CODE (arg_type);
5217
5218 if (mips_debug)
5219 fprintf_unfiltered (gdb_stdlog,
5220 "mips_o32_push_dummy_call: %d len=%d type=%d",
5221 argnum + 1, len, (int) typecode);
5222
5223 val = value_contents (arg);
5224
5225 /* 32-bit ABIs always start floating point arguments in an
5226 even-numbered floating point register. Round the FP register
5227 up before the check to see if there are any FP registers
5228 left. O32 targets also pass the FP in the integer registers
5229 so also round up normal registers. */
5230 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5231 {
5232 if ((float_argreg & 1))
5233 float_argreg++;
5234 }
5235
5236 /* Floating point arguments passed in registers have to be
5237 treated specially. On 32-bit architectures, doubles are
5238 passed in register pairs; the even FP register gets the
5239 low word, and the odd FP register gets the high word.
5240 On O32, the first two floating point arguments are also
5241 copied to general registers, following their memory order,
5242 because MIPS16 functions don't use float registers for
5243 arguments. This duplication of arguments in general
5244 registers can't hurt non-MIPS16 functions, because those
5245 registers are normally skipped. */
5246
5247 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5248 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5249 {
5250 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5251 {
5252 int freg_offset = gdbarch_byte_order (gdbarch)
5253 == BFD_ENDIAN_BIG ? 1 : 0;
5254 unsigned long regval;
5255
5256 /* First word. */
5257 regval = extract_unsigned_integer (val, 4, byte_order);
5258 if (mips_debug)
5259 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5260 float_argreg + freg_offset,
5261 phex (regval, 4));
5262 regcache_cooked_write_unsigned (regcache,
5263 float_argreg++ + freg_offset,
5264 regval);
5265 if (mips_debug)
5266 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5267 argreg, phex (regval, 4));
5268 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5269
5270 /* Second word. */
5271 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5272 if (mips_debug)
5273 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5274 float_argreg - freg_offset,
5275 phex (regval, 4));
5276 regcache_cooked_write_unsigned (regcache,
5277 float_argreg++ - freg_offset,
5278 regval);
5279 if (mips_debug)
5280 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5281 argreg, phex (regval, 4));
5282 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5283 }
5284 else
5285 {
5286 /* This is a floating point value that fits entirely
5287 in a single register. */
5288 /* On 32 bit ABI's the float_argreg is further adjusted
5289 above to ensure that it is even register aligned. */
5290 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5291 if (mips_debug)
5292 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5293 float_argreg, phex (regval, len));
5294 regcache_cooked_write_unsigned (regcache,
5295 float_argreg++, regval);
5296 /* Although two FP registers are reserved for each
5297 argument, only one corresponding integer register is
5298 reserved. */
5299 if (mips_debug)
5300 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5301 argreg, phex (regval, len));
5302 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5303 }
5304 /* Reserve space for the FP register. */
5305 stack_offset += align_up (len, MIPS32_REGSIZE);
5306 }
5307 else
5308 {
5309 /* Copy the argument to general registers or the stack in
5310 register-sized pieces. Large arguments are split between
5311 registers and stack. */
5312 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5313 are treated specially: Irix cc passes
5314 them in registers where gcc sometimes puts them on the
5315 stack. For maximum compatibility, we will put them in
5316 both places. */
5317 int odd_sized_struct = (len > MIPS32_REGSIZE
5318 && len % MIPS32_REGSIZE != 0);
5319 /* Structures should be aligned to eight bytes (even arg registers)
5320 on MIPS_ABI_O32, if their first member has double precision. */
5321 if (mips_type_needs_double_align (arg_type))
5322 {
5323 if ((argreg & 1))
5324 {
5325 argreg++;
5326 stack_offset += MIPS32_REGSIZE;
5327 }
5328 }
5329 while (len > 0)
5330 {
5331 /* Remember if the argument was written to the stack. */
5332 int stack_used_p = 0;
5333 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5334
5335 if (mips_debug)
5336 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5337 partial_len);
5338
5339 /* Write this portion of the argument to the stack. */
5340 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5341 || odd_sized_struct)
5342 {
5343 /* Should shorter than int integer values be
5344 promoted to int before being stored? */
5345 int longword_offset = 0;
5346 CORE_ADDR addr;
5347 stack_used_p = 1;
5348
5349 if (mips_debug)
5350 {
5351 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5352 paddress (gdbarch, stack_offset));
5353 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5354 paddress (gdbarch, longword_offset));
5355 }
5356
5357 addr = sp + stack_offset + longword_offset;
5358
5359 if (mips_debug)
5360 {
5361 int i;
5362 fprintf_unfiltered (gdb_stdlog, " @%s ",
5363 paddress (gdbarch, addr));
5364 for (i = 0; i < partial_len; i++)
5365 {
5366 fprintf_unfiltered (gdb_stdlog, "%02x",
5367 val[i] & 0xff);
5368 }
5369 }
5370 write_memory (addr, val, partial_len);
5371 }
5372
5373 /* Note!!! This is NOT an else clause. Odd sized
5374 structs may go thru BOTH paths. */
5375 /* Write this portion of the argument to a general
5376 purpose register. */
5377 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5378 {
5379 LONGEST regval = extract_signed_integer (val, partial_len,
5380 byte_order);
5381 /* Value may need to be sign extended, because
5382 mips_isa_regsize() != mips_abi_regsize(). */
5383
5384 /* A non-floating-point argument being passed in a
5385 general register. If a struct or union, and if
5386 the remaining length is smaller than the register
5387 size, we have to adjust the register value on
5388 big endian targets.
5389
5390 It does not seem to be necessary to do the
5391 same for integral types.
5392
5393 Also don't do this adjustment on O64 binaries.
5394
5395 cagney/2001-07-23: gdb/179: Also, GCC, when
5396 outputting LE O32 with sizeof (struct) <
5397 mips_abi_regsize(), generates a left shift
5398 as part of storing the argument in a register
5399 (the left shift isn't generated when
5400 sizeof (struct) >= mips_abi_regsize()). Since
5401 it is quite possible that this is GCC
5402 contradicting the LE/O32 ABI, GDB has not been
5403 adjusted to accommodate this. Either someone
5404 needs to demonstrate that the LE/O32 ABI
5405 specifies such a left shift OR this new ABI gets
5406 identified as such and GDB gets tweaked
5407 accordingly. */
5408
5409 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5410 && partial_len < MIPS32_REGSIZE
5411 && (typecode == TYPE_CODE_STRUCT
5412 || typecode == TYPE_CODE_UNION))
5413 regval <<= ((MIPS32_REGSIZE - partial_len)
5414 * TARGET_CHAR_BIT);
5415
5416 if (mips_debug)
5417 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5418 argreg,
5419 phex (regval, MIPS32_REGSIZE));
5420 regcache_cooked_write_unsigned (regcache, argreg, regval);
5421 argreg++;
5422
5423 /* Prevent subsequent floating point arguments from
5424 being passed in floating point registers. */
5425 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5426 }
5427
5428 len -= partial_len;
5429 val += partial_len;
5430
5431 /* Compute the offset into the stack at which we will
5432 copy the next parameter.
5433
5434 In older ABIs, the caller reserved space for
5435 registers that contained arguments. This was loosely
5436 refered to as their "home". Consequently, space is
5437 always allocated. */
5438
5439 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5440 }
5441 }
5442 if (mips_debug)
5443 fprintf_unfiltered (gdb_stdlog, "\n");
5444 }
5445
5446 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5447
5448 /* Return adjusted stack pointer. */
5449 return sp;
5450 }
5451
5452 static enum return_value_convention
5453 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5454 struct type *type, struct regcache *regcache,
5455 gdb_byte *readbuf, const gdb_byte *writebuf)
5456 {
5457 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5458 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5460 enum mips_fval_reg fval_reg;
5461
5462 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5463 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5464 || TYPE_CODE (type) == TYPE_CODE_UNION
5465 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5466 return RETURN_VALUE_STRUCT_CONVENTION;
5467 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5468 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5469 {
5470 /* A single-precision floating-point value. If reading in or copying,
5471 then we get it from/put it to FP0 for standard MIPS code or GPR2
5472 for MIPS16 code. If writing out only, then we put it to both FP0
5473 and GPR2. We do not support reading in with no function known, if
5474 this safety check ever triggers, then we'll have to try harder. */
5475 gdb_assert (function || !readbuf);
5476 if (mips_debug)
5477 switch (fval_reg)
5478 {
5479 case mips_fval_fpr:
5480 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5481 break;
5482 case mips_fval_gpr:
5483 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5484 break;
5485 case mips_fval_both:
5486 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5487 break;
5488 }
5489 if (fval_reg != mips_fval_gpr)
5490 mips_xfer_register (gdbarch, regcache,
5491 (gdbarch_num_regs (gdbarch)
5492 + mips_regnum (gdbarch)->fp0),
5493 TYPE_LENGTH (type),
5494 gdbarch_byte_order (gdbarch),
5495 readbuf, writebuf, 0);
5496 if (fval_reg != mips_fval_fpr)
5497 mips_xfer_register (gdbarch, regcache,
5498 gdbarch_num_regs (gdbarch) + 2,
5499 TYPE_LENGTH (type),
5500 gdbarch_byte_order (gdbarch),
5501 readbuf, writebuf, 0);
5502 return RETURN_VALUE_REGISTER_CONVENTION;
5503 }
5504 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5505 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5506 {
5507 /* A double-precision floating-point value. If reading in or copying,
5508 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5509 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5510 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5511 no function known, if this safety check ever triggers, then we'll
5512 have to try harder. */
5513 gdb_assert (function || !readbuf);
5514 if (mips_debug)
5515 switch (fval_reg)
5516 {
5517 case mips_fval_fpr:
5518 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5519 break;
5520 case mips_fval_gpr:
5521 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5522 break;
5523 case mips_fval_both:
5524 fprintf_unfiltered (gdb_stderr,
5525 "Return float in $fp1/$fp0 and $2/$3\n");
5526 break;
5527 }
5528 if (fval_reg != mips_fval_gpr)
5529 {
5530 /* The most significant part goes in FP1, and the least significant
5531 in FP0. */
5532 switch (gdbarch_byte_order (gdbarch))
5533 {
5534 case BFD_ENDIAN_LITTLE:
5535 mips_xfer_register (gdbarch, regcache,
5536 (gdbarch_num_regs (gdbarch)
5537 + mips_regnum (gdbarch)->fp0 + 0),
5538 4, gdbarch_byte_order (gdbarch),
5539 readbuf, writebuf, 0);
5540 mips_xfer_register (gdbarch, regcache,
5541 (gdbarch_num_regs (gdbarch)
5542 + mips_regnum (gdbarch)->fp0 + 1),
5543 4, gdbarch_byte_order (gdbarch),
5544 readbuf, writebuf, 4);
5545 break;
5546 case BFD_ENDIAN_BIG:
5547 mips_xfer_register (gdbarch, regcache,
5548 (gdbarch_num_regs (gdbarch)
5549 + mips_regnum (gdbarch)->fp0 + 1),
5550 4, gdbarch_byte_order (gdbarch),
5551 readbuf, writebuf, 0);
5552 mips_xfer_register (gdbarch, regcache,
5553 (gdbarch_num_regs (gdbarch)
5554 + mips_regnum (gdbarch)->fp0 + 0),
5555 4, gdbarch_byte_order (gdbarch),
5556 readbuf, writebuf, 4);
5557 break;
5558 default:
5559 internal_error (__FILE__, __LINE__, _("bad switch"));
5560 }
5561 }
5562 if (fval_reg != mips_fval_fpr)
5563 {
5564 /* The two 32-bit parts are always placed in GPR2 and GPR3
5565 following these registers' memory order. */
5566 mips_xfer_register (gdbarch, regcache,
5567 gdbarch_num_regs (gdbarch) + 2,
5568 4, gdbarch_byte_order (gdbarch),
5569 readbuf, writebuf, 0);
5570 mips_xfer_register (gdbarch, regcache,
5571 gdbarch_num_regs (gdbarch) + 3,
5572 4, gdbarch_byte_order (gdbarch),
5573 readbuf, writebuf, 4);
5574 }
5575 return RETURN_VALUE_REGISTER_CONVENTION;
5576 }
5577 #if 0
5578 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5579 && TYPE_NFIELDS (type) <= 2
5580 && TYPE_NFIELDS (type) >= 1
5581 && ((TYPE_NFIELDS (type) == 1
5582 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5583 == TYPE_CODE_FLT))
5584 || (TYPE_NFIELDS (type) == 2
5585 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5586 == TYPE_CODE_FLT)
5587 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5588 == TYPE_CODE_FLT)))
5589 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5590 {
5591 /* A struct that contains one or two floats. Each value is part
5592 in the least significant part of their floating point
5593 register.. */
5594 gdb_byte reg[MAX_REGISTER_SIZE];
5595 int regnum;
5596 int field;
5597 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5598 field < TYPE_NFIELDS (type); field++, regnum += 2)
5599 {
5600 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5601 / TARGET_CHAR_BIT);
5602 if (mips_debug)
5603 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5604 offset);
5605 mips_xfer_register (gdbarch, regcache,
5606 gdbarch_num_regs (gdbarch) + regnum,
5607 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5608 gdbarch_byte_order (gdbarch),
5609 readbuf, writebuf, offset);
5610 }
5611 return RETURN_VALUE_REGISTER_CONVENTION;
5612 }
5613 #endif
5614 #if 0
5615 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5616 || TYPE_CODE (type) == TYPE_CODE_UNION)
5617 {
5618 /* A structure or union. Extract the left justified value,
5619 regardless of the byte order. I.e. DO NOT USE
5620 mips_xfer_lower. */
5621 int offset;
5622 int regnum;
5623 for (offset = 0, regnum = MIPS_V0_REGNUM;
5624 offset < TYPE_LENGTH (type);
5625 offset += register_size (gdbarch, regnum), regnum++)
5626 {
5627 int xfer = register_size (gdbarch, regnum);
5628 if (offset + xfer > TYPE_LENGTH (type))
5629 xfer = TYPE_LENGTH (type) - offset;
5630 if (mips_debug)
5631 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5632 offset, xfer, regnum);
5633 mips_xfer_register (gdbarch, regcache,
5634 gdbarch_num_regs (gdbarch) + regnum, xfer,
5635 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5636 }
5637 return RETURN_VALUE_REGISTER_CONVENTION;
5638 }
5639 #endif
5640 else
5641 {
5642 /* A scalar extract each part but least-significant-byte
5643 justified. o32 thinks registers are 4 byte, regardless of
5644 the ISA. */
5645 int offset;
5646 int regnum;
5647 for (offset = 0, regnum = MIPS_V0_REGNUM;
5648 offset < TYPE_LENGTH (type);
5649 offset += MIPS32_REGSIZE, regnum++)
5650 {
5651 int xfer = MIPS32_REGSIZE;
5652 if (offset + xfer > TYPE_LENGTH (type))
5653 xfer = TYPE_LENGTH (type) - offset;
5654 if (mips_debug)
5655 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5656 offset, xfer, regnum);
5657 mips_xfer_register (gdbarch, regcache,
5658 gdbarch_num_regs (gdbarch) + regnum, xfer,
5659 gdbarch_byte_order (gdbarch),
5660 readbuf, writebuf, offset);
5661 }
5662 return RETURN_VALUE_REGISTER_CONVENTION;
5663 }
5664 }
5665
5666 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5667 ABI. */
5668
5669 static CORE_ADDR
5670 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5671 struct regcache *regcache, CORE_ADDR bp_addr,
5672 int nargs,
5673 struct value **args, CORE_ADDR sp,
5674 int struct_return, CORE_ADDR struct_addr)
5675 {
5676 int argreg;
5677 int float_argreg;
5678 int argnum;
5679 int len = 0;
5680 int stack_offset = 0;
5681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5682 CORE_ADDR func_addr = find_function_addr (function, NULL);
5683
5684 /* For shared libraries, "t9" needs to point at the function
5685 address. */
5686 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5687
5688 /* Set the return address register to point to the entry point of
5689 the program, where a breakpoint lies in wait. */
5690 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5691
5692 /* First ensure that the stack and structure return address (if any)
5693 are properly aligned. The stack has to be at least 64-bit
5694 aligned even on 32-bit machines, because doubles must be 64-bit
5695 aligned. For n32 and n64, stack frames need to be 128-bit
5696 aligned, so we round to this widest known alignment. */
5697
5698 sp = align_down (sp, 16);
5699 struct_addr = align_down (struct_addr, 16);
5700
5701 /* Now make space on the stack for the args. */
5702 for (argnum = 0; argnum < nargs; argnum++)
5703 {
5704 struct type *arg_type = check_typedef (value_type (args[argnum]));
5705
5706 /* Allocate space on the stack. */
5707 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5708 }
5709 sp -= align_up (len, 16);
5710
5711 if (mips_debug)
5712 fprintf_unfiltered (gdb_stdlog,
5713 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5714 paddress (gdbarch, sp), (long) align_up (len, 16));
5715
5716 /* Initialize the integer and float register pointers. */
5717 argreg = MIPS_A0_REGNUM;
5718 float_argreg = mips_fpa0_regnum (gdbarch);
5719
5720 /* The struct_return pointer occupies the first parameter-passing reg. */
5721 if (struct_return)
5722 {
5723 if (mips_debug)
5724 fprintf_unfiltered (gdb_stdlog,
5725 "mips_o64_push_dummy_call: "
5726 "struct_return reg=%d %s\n",
5727 argreg, paddress (gdbarch, struct_addr));
5728 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5729 stack_offset += MIPS64_REGSIZE;
5730 }
5731
5732 /* Now load as many as possible of the first arguments into
5733 registers, and push the rest onto the stack. Loop thru args
5734 from first to last. */
5735 for (argnum = 0; argnum < nargs; argnum++)
5736 {
5737 const gdb_byte *val;
5738 gdb_byte valbuf[MAX_REGISTER_SIZE];
5739 struct value *arg = args[argnum];
5740 struct type *arg_type = check_typedef (value_type (arg));
5741 int len = TYPE_LENGTH (arg_type);
5742 enum type_code typecode = TYPE_CODE (arg_type);
5743
5744 if (mips_debug)
5745 fprintf_unfiltered (gdb_stdlog,
5746 "mips_o64_push_dummy_call: %d len=%d type=%d",
5747 argnum + 1, len, (int) typecode);
5748
5749 val = value_contents (arg);
5750
5751 /* Function pointer arguments to mips16 code need to be made into
5752 mips16 pointers. */
5753 if (typecode == TYPE_CODE_PTR
5754 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
5755 {
5756 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
5757 len, byte_order);
5758 if (!mips_pc_is_mips (addr))
5759 {
5760 store_signed_integer (valbuf, len, byte_order,
5761 make_compact_addr (addr));
5762 val = valbuf;
5763 }
5764 }
5765
5766 /* Floating point arguments passed in registers have to be
5767 treated specially. On 32-bit architectures, doubles are
5768 passed in register pairs; the even FP register gets the
5769 low word, and the odd FP register gets the high word.
5770 On O64, the first two floating point arguments are also
5771 copied to general registers, because MIPS16 functions
5772 don't use float registers for arguments. This duplication
5773 of arguments in general registers can't hurt non-MIPS16
5774 functions because those registers are normally skipped. */
5775
5776 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5777 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5778 {
5779 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5780 if (mips_debug)
5781 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5782 float_argreg, phex (regval, len));
5783 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5784 if (mips_debug)
5785 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5786 argreg, phex (regval, len));
5787 regcache_cooked_write_unsigned (regcache, argreg, regval);
5788 argreg++;
5789 /* Reserve space for the FP register. */
5790 stack_offset += align_up (len, MIPS64_REGSIZE);
5791 }
5792 else
5793 {
5794 /* Copy the argument to general registers or the stack in
5795 register-sized pieces. Large arguments are split between
5796 registers and stack. */
5797 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5798 are treated specially: Irix cc passes them in registers
5799 where gcc sometimes puts them on the stack. For maximum
5800 compatibility, we will put them in both places. */
5801 int odd_sized_struct = (len > MIPS64_REGSIZE
5802 && len % MIPS64_REGSIZE != 0);
5803 while (len > 0)
5804 {
5805 /* Remember if the argument was written to the stack. */
5806 int stack_used_p = 0;
5807 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5808
5809 if (mips_debug)
5810 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5811 partial_len);
5812
5813 /* Write this portion of the argument to the stack. */
5814 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5815 || odd_sized_struct)
5816 {
5817 /* Should shorter than int integer values be
5818 promoted to int before being stored? */
5819 int longword_offset = 0;
5820 CORE_ADDR addr;
5821 stack_used_p = 1;
5822 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5823 {
5824 if ((typecode == TYPE_CODE_INT
5825 || typecode == TYPE_CODE_PTR
5826 || typecode == TYPE_CODE_FLT)
5827 && len <= 4)
5828 longword_offset = MIPS64_REGSIZE - len;
5829 }
5830
5831 if (mips_debug)
5832 {
5833 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5834 paddress (gdbarch, stack_offset));
5835 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5836 paddress (gdbarch, longword_offset));
5837 }
5838
5839 addr = sp + stack_offset + longword_offset;
5840
5841 if (mips_debug)
5842 {
5843 int i;
5844 fprintf_unfiltered (gdb_stdlog, " @%s ",
5845 paddress (gdbarch, addr));
5846 for (i = 0; i < partial_len; i++)
5847 {
5848 fprintf_unfiltered (gdb_stdlog, "%02x",
5849 val[i] & 0xff);
5850 }
5851 }
5852 write_memory (addr, val, partial_len);
5853 }
5854
5855 /* Note!!! This is NOT an else clause. Odd sized
5856 structs may go thru BOTH paths. */
5857 /* Write this portion of the argument to a general
5858 purpose register. */
5859 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5860 {
5861 LONGEST regval = extract_signed_integer (val, partial_len,
5862 byte_order);
5863 /* Value may need to be sign extended, because
5864 mips_isa_regsize() != mips_abi_regsize(). */
5865
5866 /* A non-floating-point argument being passed in a
5867 general register. If a struct or union, and if
5868 the remaining length is smaller than the register
5869 size, we have to adjust the register value on
5870 big endian targets.
5871
5872 It does not seem to be necessary to do the
5873 same for integral types. */
5874
5875 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5876 && partial_len < MIPS64_REGSIZE
5877 && (typecode == TYPE_CODE_STRUCT
5878 || typecode == TYPE_CODE_UNION))
5879 regval <<= ((MIPS64_REGSIZE - partial_len)
5880 * TARGET_CHAR_BIT);
5881
5882 if (mips_debug)
5883 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5884 argreg,
5885 phex (regval, MIPS64_REGSIZE));
5886 regcache_cooked_write_unsigned (regcache, argreg, regval);
5887 argreg++;
5888
5889 /* Prevent subsequent floating point arguments from
5890 being passed in floating point registers. */
5891 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5892 }
5893
5894 len -= partial_len;
5895 val += partial_len;
5896
5897 /* Compute the offset into the stack at which we will
5898 copy the next parameter.
5899
5900 In older ABIs, the caller reserved space for
5901 registers that contained arguments. This was loosely
5902 refered to as their "home". Consequently, space is
5903 always allocated. */
5904
5905 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5906 }
5907 }
5908 if (mips_debug)
5909 fprintf_unfiltered (gdb_stdlog, "\n");
5910 }
5911
5912 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5913
5914 /* Return adjusted stack pointer. */
5915 return sp;
5916 }
5917
5918 static enum return_value_convention
5919 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
5920 struct type *type, struct regcache *regcache,
5921 gdb_byte *readbuf, const gdb_byte *writebuf)
5922 {
5923 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5924 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5926 enum mips_fval_reg fval_reg;
5927
5928 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5929 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5930 || TYPE_CODE (type) == TYPE_CODE_UNION
5931 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5932 return RETURN_VALUE_STRUCT_CONVENTION;
5933 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
5934 {
5935 /* A floating-point value. If reading in or copying, then we get it
5936 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
5937 If writing out only, then we put it to both FP0 and GPR2. We do
5938 not support reading in with no function known, if this safety
5939 check ever triggers, then we'll have to try harder. */
5940 gdb_assert (function || !readbuf);
5941 if (mips_debug)
5942 switch (fval_reg)
5943 {
5944 case mips_fval_fpr:
5945 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5946 break;
5947 case mips_fval_gpr:
5948 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5949 break;
5950 case mips_fval_both:
5951 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5952 break;
5953 }
5954 if (fval_reg != mips_fval_gpr)
5955 mips_xfer_register (gdbarch, regcache,
5956 (gdbarch_num_regs (gdbarch)
5957 + mips_regnum (gdbarch)->fp0),
5958 TYPE_LENGTH (type),
5959 gdbarch_byte_order (gdbarch),
5960 readbuf, writebuf, 0);
5961 if (fval_reg != mips_fval_fpr)
5962 mips_xfer_register (gdbarch, regcache,
5963 gdbarch_num_regs (gdbarch) + 2,
5964 TYPE_LENGTH (type),
5965 gdbarch_byte_order (gdbarch),
5966 readbuf, writebuf, 0);
5967 return RETURN_VALUE_REGISTER_CONVENTION;
5968 }
5969 else
5970 {
5971 /* A scalar extract each part but least-significant-byte
5972 justified. */
5973 int offset;
5974 int regnum;
5975 for (offset = 0, regnum = MIPS_V0_REGNUM;
5976 offset < TYPE_LENGTH (type);
5977 offset += MIPS64_REGSIZE, regnum++)
5978 {
5979 int xfer = MIPS64_REGSIZE;
5980 if (offset + xfer > TYPE_LENGTH (type))
5981 xfer = TYPE_LENGTH (type) - offset;
5982 if (mips_debug)
5983 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5984 offset, xfer, regnum);
5985 mips_xfer_register (gdbarch, regcache,
5986 gdbarch_num_regs (gdbarch) + regnum,
5987 xfer, gdbarch_byte_order (gdbarch),
5988 readbuf, writebuf, offset);
5989 }
5990 return RETURN_VALUE_REGISTER_CONVENTION;
5991 }
5992 }
5993
5994 /* Floating point register management.
5995
5996 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
5997 64bit operations, these early MIPS cpus treat fp register pairs
5998 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
5999 registers and offer a compatibility mode that emulates the MIPS2 fp
6000 model. When operating in MIPS2 fp compat mode, later cpu's split
6001 double precision floats into two 32-bit chunks and store them in
6002 consecutive fp regs. To display 64-bit floats stored in this
6003 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6004 Throw in user-configurable endianness and you have a real mess.
6005
6006 The way this works is:
6007 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6008 double-precision value will be split across two logical registers.
6009 The lower-numbered logical register will hold the low-order bits,
6010 regardless of the processor's endianness.
6011 - If we are on a 64-bit processor, and we are looking for a
6012 single-precision value, it will be in the low ordered bits
6013 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6014 save slot in memory.
6015 - If we are in 64-bit mode, everything is straightforward.
6016
6017 Note that this code only deals with "live" registers at the top of the
6018 stack. We will attempt to deal with saved registers later, when
6019 the raw/cooked register interface is in place. (We need a general
6020 interface that can deal with dynamic saved register sizes -- fp
6021 regs could be 32 bits wide in one frame and 64 on the frame above
6022 and below). */
6023
6024 /* Copy a 32-bit single-precision value from the current frame
6025 into rare_buffer. */
6026
6027 static void
6028 mips_read_fp_register_single (struct frame_info *frame, int regno,
6029 gdb_byte *rare_buffer)
6030 {
6031 struct gdbarch *gdbarch = get_frame_arch (frame);
6032 int raw_size = register_size (gdbarch, regno);
6033 gdb_byte *raw_buffer = alloca (raw_size);
6034
6035 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6036 error (_("can't read register %d (%s)"),
6037 regno, gdbarch_register_name (gdbarch, regno));
6038 if (raw_size == 8)
6039 {
6040 /* We have a 64-bit value for this register. Find the low-order
6041 32 bits. */
6042 int offset;
6043
6044 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6045 offset = 4;
6046 else
6047 offset = 0;
6048
6049 memcpy (rare_buffer, raw_buffer + offset, 4);
6050 }
6051 else
6052 {
6053 memcpy (rare_buffer, raw_buffer, 4);
6054 }
6055 }
6056
6057 /* Copy a 64-bit double-precision value from the current frame into
6058 rare_buffer. This may include getting half of it from the next
6059 register. */
6060
6061 static void
6062 mips_read_fp_register_double (struct frame_info *frame, int regno,
6063 gdb_byte *rare_buffer)
6064 {
6065 struct gdbarch *gdbarch = get_frame_arch (frame);
6066 int raw_size = register_size (gdbarch, regno);
6067
6068 if (raw_size == 8 && !mips2_fp_compat (frame))
6069 {
6070 /* We have a 64-bit value for this register, and we should use
6071 all 64 bits. */
6072 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6073 error (_("can't read register %d (%s)"),
6074 regno, gdbarch_register_name (gdbarch, regno));
6075 }
6076 else
6077 {
6078 int rawnum = regno % gdbarch_num_regs (gdbarch);
6079
6080 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6081 internal_error (__FILE__, __LINE__,
6082 _("mips_read_fp_register_double: bad access to "
6083 "odd-numbered FP register"));
6084
6085 /* mips_read_fp_register_single will find the correct 32 bits from
6086 each register. */
6087 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6088 {
6089 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6090 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6091 }
6092 else
6093 {
6094 mips_read_fp_register_single (frame, regno, rare_buffer);
6095 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6096 }
6097 }
6098 }
6099
6100 static void
6101 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6102 int regnum)
6103 { /* Do values for FP (float) regs. */
6104 struct gdbarch *gdbarch = get_frame_arch (frame);
6105 gdb_byte *raw_buffer;
6106 double doub, flt1; /* Doubles extracted from raw hex data. */
6107 int inv1, inv2;
6108
6109 raw_buffer = alloca (2 * register_size (gdbarch,
6110 mips_regnum (gdbarch)->fp0));
6111
6112 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6113 fprintf_filtered (file, "%*s",
6114 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6115 "");
6116
6117 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6118 {
6119 struct value_print_options opts;
6120
6121 /* 4-byte registers: Print hex and floating. Also print even
6122 numbered registers as doubles. */
6123 mips_read_fp_register_single (frame, regnum, raw_buffer);
6124 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6125 raw_buffer, &inv1);
6126
6127 get_formatted_print_options (&opts, 'x');
6128 print_scalar_formatted (raw_buffer,
6129 builtin_type (gdbarch)->builtin_uint32,
6130 &opts, 'w', file);
6131
6132 fprintf_filtered (file, " flt: ");
6133 if (inv1)
6134 fprintf_filtered (file, " <invalid float> ");
6135 else
6136 fprintf_filtered (file, "%-17.9g", flt1);
6137
6138 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6139 {
6140 mips_read_fp_register_double (frame, regnum, raw_buffer);
6141 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6142 raw_buffer, &inv2);
6143
6144 fprintf_filtered (file, " dbl: ");
6145 if (inv2)
6146 fprintf_filtered (file, "<invalid double>");
6147 else
6148 fprintf_filtered (file, "%-24.17g", doub);
6149 }
6150 }
6151 else
6152 {
6153 struct value_print_options opts;
6154
6155 /* Eight byte registers: print each one as hex, float and double. */
6156 mips_read_fp_register_single (frame, regnum, raw_buffer);
6157 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6158 raw_buffer, &inv1);
6159
6160 mips_read_fp_register_double (frame, regnum, raw_buffer);
6161 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6162 raw_buffer, &inv2);
6163
6164 get_formatted_print_options (&opts, 'x');
6165 print_scalar_formatted (raw_buffer,
6166 builtin_type (gdbarch)->builtin_uint64,
6167 &opts, 'g', file);
6168
6169 fprintf_filtered (file, " flt: ");
6170 if (inv1)
6171 fprintf_filtered (file, "<invalid float>");
6172 else
6173 fprintf_filtered (file, "%-17.9g", flt1);
6174
6175 fprintf_filtered (file, " dbl: ");
6176 if (inv2)
6177 fprintf_filtered (file, "<invalid double>");
6178 else
6179 fprintf_filtered (file, "%-24.17g", doub);
6180 }
6181 }
6182
6183 static void
6184 mips_print_register (struct ui_file *file, struct frame_info *frame,
6185 int regnum)
6186 {
6187 struct gdbarch *gdbarch = get_frame_arch (frame);
6188 struct value_print_options opts;
6189 struct value *val;
6190
6191 if (mips_float_register_p (gdbarch, regnum))
6192 {
6193 mips_print_fp_register (file, frame, regnum);
6194 return;
6195 }
6196
6197 val = get_frame_register_value (frame, regnum);
6198 if (value_optimized_out (val))
6199 {
6200 fprintf_filtered (file, "%s: [Invalid]",
6201 gdbarch_register_name (gdbarch, regnum));
6202 return;
6203 }
6204
6205 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6206
6207 /* The problem with printing numeric register names (r26, etc.) is that
6208 the user can't use them on input. Probably the best solution is to
6209 fix it so that either the numeric or the funky (a2, etc.) names
6210 are accepted on input. */
6211 if (regnum < MIPS_NUMREGS)
6212 fprintf_filtered (file, "(r%d): ", regnum);
6213 else
6214 fprintf_filtered (file, ": ");
6215
6216 get_formatted_print_options (&opts, 'x');
6217 val_print_scalar_formatted (value_type (val),
6218 value_contents_for_printing (val),
6219 value_embedded_offset (val),
6220 val,
6221 &opts, 0, file);
6222 }
6223
6224 /* Replacement for generic do_registers_info.
6225 Print regs in pretty columns. */
6226
6227 static int
6228 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6229 int regnum)
6230 {
6231 fprintf_filtered (file, " ");
6232 mips_print_fp_register (file, frame, regnum);
6233 fprintf_filtered (file, "\n");
6234 return regnum + 1;
6235 }
6236
6237
6238 /* Print a row's worth of GP (int) registers, with name labels above. */
6239
6240 static int
6241 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6242 int start_regnum)
6243 {
6244 struct gdbarch *gdbarch = get_frame_arch (frame);
6245 /* Do values for GP (int) regs. */
6246 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6247 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6248 per row. */
6249 int col, byte;
6250 int regnum;
6251
6252 /* For GP registers, we print a separate row of names above the vals. */
6253 for (col = 0, regnum = start_regnum;
6254 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6255 + gdbarch_num_pseudo_regs (gdbarch);
6256 regnum++)
6257 {
6258 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6259 continue; /* unused register */
6260 if (mips_float_register_p (gdbarch, regnum))
6261 break; /* End the row: reached FP register. */
6262 /* Large registers are handled separately. */
6263 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6264 {
6265 if (col > 0)
6266 break; /* End the row before this register. */
6267
6268 /* Print this register on a row by itself. */
6269 mips_print_register (file, frame, regnum);
6270 fprintf_filtered (file, "\n");
6271 return regnum + 1;
6272 }
6273 if (col == 0)
6274 fprintf_filtered (file, " ");
6275 fprintf_filtered (file,
6276 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6277 gdbarch_register_name (gdbarch, regnum));
6278 col++;
6279 }
6280
6281 if (col == 0)
6282 return regnum;
6283
6284 /* Print the R0 to R31 names. */
6285 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6286 fprintf_filtered (file, "\n R%-4d",
6287 start_regnum % gdbarch_num_regs (gdbarch));
6288 else
6289 fprintf_filtered (file, "\n ");
6290
6291 /* Now print the values in hex, 4 or 8 to the row. */
6292 for (col = 0, regnum = start_regnum;
6293 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6294 + gdbarch_num_pseudo_regs (gdbarch);
6295 regnum++)
6296 {
6297 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6298 continue; /* unused register */
6299 if (mips_float_register_p (gdbarch, regnum))
6300 break; /* End row: reached FP register. */
6301 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6302 break; /* End row: large register. */
6303
6304 /* OK: get the data in raw format. */
6305 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6306 error (_("can't read register %d (%s)"),
6307 regnum, gdbarch_register_name (gdbarch, regnum));
6308 /* pad small registers */
6309 for (byte = 0;
6310 byte < (mips_abi_regsize (gdbarch)
6311 - register_size (gdbarch, regnum)); byte++)
6312 printf_filtered (" ");
6313 /* Now print the register value in hex, endian order. */
6314 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6315 for (byte =
6316 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6317 byte < register_size (gdbarch, regnum); byte++)
6318 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6319 else
6320 for (byte = register_size (gdbarch, regnum) - 1;
6321 byte >= 0; byte--)
6322 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6323 fprintf_filtered (file, " ");
6324 col++;
6325 }
6326 if (col > 0) /* ie. if we actually printed anything... */
6327 fprintf_filtered (file, "\n");
6328
6329 return regnum;
6330 }
6331
6332 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6333
6334 static void
6335 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6336 struct frame_info *frame, int regnum, int all)
6337 {
6338 if (regnum != -1) /* Do one specified register. */
6339 {
6340 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6341 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6342 error (_("Not a valid register for the current processor type"));
6343
6344 mips_print_register (file, frame, regnum);
6345 fprintf_filtered (file, "\n");
6346 }
6347 else
6348 /* Do all (or most) registers. */
6349 {
6350 regnum = gdbarch_num_regs (gdbarch);
6351 while (regnum < gdbarch_num_regs (gdbarch)
6352 + gdbarch_num_pseudo_regs (gdbarch))
6353 {
6354 if (mips_float_register_p (gdbarch, regnum))
6355 {
6356 if (all) /* True for "INFO ALL-REGISTERS" command. */
6357 regnum = print_fp_register_row (file, frame, regnum);
6358 else
6359 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6360 }
6361 else
6362 regnum = print_gp_register_row (file, frame, regnum);
6363 }
6364 }
6365 }
6366
6367 static int
6368 mips_single_step_through_delay (struct gdbarch *gdbarch,
6369 struct frame_info *frame)
6370 {
6371 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6372 CORE_ADDR pc = get_frame_pc (frame);
6373 struct address_space *aspace;
6374 enum mips_isa isa;
6375 ULONGEST insn;
6376 int status;
6377 int size;
6378
6379 if ((mips_pc_is_mips (pc)
6380 && !mips32_instruction_has_delay_slot (gdbarch, pc))
6381 || (mips_pc_is_micromips (gdbarch, pc)
6382 && !micromips_instruction_has_delay_slot (gdbarch, pc, 0))
6383 || (mips_pc_is_mips16 (gdbarch, pc)
6384 && !mips16_instruction_has_delay_slot (gdbarch, pc, 0)))
6385 return 0;
6386
6387 isa = mips_pc_isa (gdbarch, pc);
6388 /* _has_delay_slot above will have validated the read. */
6389 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6390 size = mips_insn_size (isa, insn);
6391 aspace = get_frame_address_space (frame);
6392 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6393 }
6394
6395 /* To skip prologues, I use this predicate. Returns either PC itself
6396 if the code at PC does not look like a function prologue; otherwise
6397 returns an address that (if we're lucky) follows the prologue. If
6398 LENIENT, then we must skip everything which is involved in setting
6399 up the frame (it's OK to skip more, just so long as we don't skip
6400 anything which might clobber the registers which are being saved.
6401 We must skip more in the case where part of the prologue is in the
6402 delay slot of a non-prologue instruction). */
6403
6404 static CORE_ADDR
6405 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6406 {
6407 CORE_ADDR limit_pc;
6408 CORE_ADDR func_addr;
6409
6410 /* See if we can determine the end of the prologue via the symbol table.
6411 If so, then return either PC, or the PC after the prologue, whichever
6412 is greater. */
6413 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6414 {
6415 CORE_ADDR post_prologue_pc
6416 = skip_prologue_using_sal (gdbarch, func_addr);
6417 if (post_prologue_pc != 0)
6418 return max (pc, post_prologue_pc);
6419 }
6420
6421 /* Can't determine prologue from the symbol table, need to examine
6422 instructions. */
6423
6424 /* Find an upper limit on the function prologue using the debug
6425 information. If the debug information could not be used to provide
6426 that bound, then use an arbitrary large number as the upper bound. */
6427 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6428 if (limit_pc == 0)
6429 limit_pc = pc + 100; /* Magic. */
6430
6431 if (mips_pc_is_mips16 (gdbarch, pc))
6432 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6433 else if (mips_pc_is_micromips (gdbarch, pc))
6434 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6435 else
6436 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6437 }
6438
6439 /* Check whether the PC is in a function epilogue (32-bit version).
6440 This is a helper function for mips_in_function_epilogue_p. */
6441 static int
6442 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6443 {
6444 CORE_ADDR func_addr = 0, func_end = 0;
6445
6446 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6447 {
6448 /* The MIPS epilogue is max. 12 bytes long. */
6449 CORE_ADDR addr = func_end - 12;
6450
6451 if (addr < func_addr + 4)
6452 addr = func_addr + 4;
6453 if (pc < addr)
6454 return 0;
6455
6456 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6457 {
6458 unsigned long high_word;
6459 unsigned long inst;
6460
6461 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6462 high_word = (inst >> 16) & 0xffff;
6463
6464 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6465 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6466 && inst != 0x03e00008 /* jr $ra */
6467 && inst != 0x00000000) /* nop */
6468 return 0;
6469 }
6470
6471 return 1;
6472 }
6473
6474 return 0;
6475 }
6476
6477 /* Check whether the PC is in a function epilogue (microMIPS version).
6478 This is a helper function for mips_in_function_epilogue_p. */
6479
6480 static int
6481 micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6482 {
6483 CORE_ADDR func_addr = 0;
6484 CORE_ADDR func_end = 0;
6485 CORE_ADDR addr;
6486 ULONGEST insn;
6487 long offset;
6488 int dreg;
6489 int sreg;
6490 int loc;
6491
6492 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6493 return 0;
6494
6495 /* The microMIPS epilogue is max. 12 bytes long. */
6496 addr = func_end - 12;
6497
6498 if (addr < func_addr + 2)
6499 addr = func_addr + 2;
6500 if (pc < addr)
6501 return 0;
6502
6503 for (; pc < func_end; pc += loc)
6504 {
6505 loc = 0;
6506 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6507 loc += MIPS_INSN16_SIZE;
6508 switch (mips_insn_size (ISA_MICROMIPS, insn))
6509 {
6510 /* 48-bit instructions. */
6511 case 3 * MIPS_INSN16_SIZE:
6512 /* No epilogue instructions in this category. */
6513 return 0;
6514
6515 /* 32-bit instructions. */
6516 case 2 * MIPS_INSN16_SIZE:
6517 insn <<= 16;
6518 insn |= mips_fetch_instruction (gdbarch,
6519 ISA_MICROMIPS, pc + loc, NULL);
6520 loc += MIPS_INSN16_SIZE;
6521 switch (micromips_op (insn >> 16))
6522 {
6523 case 0xc: /* ADDIU: bits 001100 */
6524 case 0x17: /* DADDIU: bits 010111 */
6525 sreg = b0s5_reg (insn >> 16);
6526 dreg = b5s5_reg (insn >> 16);
6527 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6528 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6529 /* (D)ADDIU $sp, imm */
6530 && offset >= 0)
6531 break;
6532 return 0;
6533
6534 default:
6535 return 0;
6536 }
6537 break;
6538
6539 /* 16-bit instructions. */
6540 case MIPS_INSN16_SIZE:
6541 switch (micromips_op (insn))
6542 {
6543 case 0x3: /* MOVE: bits 000011 */
6544 sreg = b0s5_reg (insn);
6545 dreg = b5s5_reg (insn);
6546 if (sreg == 0 && dreg == 0)
6547 /* MOVE $zero, $zero aka NOP */
6548 break;
6549 return 0;
6550
6551 case 0x11: /* POOL16C: bits 010001 */
6552 if (b5s5_op (insn) == 0x18
6553 /* JRADDIUSP: bits 010011 11000 */
6554 || (b5s5_op (insn) == 0xd
6555 /* JRC: bits 010011 01101 */
6556 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6557 /* JRC $ra */
6558 break;
6559 return 0;
6560
6561 case 0x13: /* POOL16D: bits 010011 */
6562 offset = micromips_decode_imm9 (b1s9_imm (insn));
6563 if ((insn & 0x1) == 0x1
6564 /* ADDIUSP: bits 010011 1 */
6565 && offset > 0)
6566 break;
6567 return 0;
6568
6569 default:
6570 return 0;
6571 }
6572 }
6573 }
6574
6575 return 1;
6576 }
6577
6578 /* Check whether the PC is in a function epilogue (16-bit version).
6579 This is a helper function for mips_in_function_epilogue_p. */
6580 static int
6581 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6582 {
6583 CORE_ADDR func_addr = 0, func_end = 0;
6584
6585 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6586 {
6587 /* The MIPS epilogue is max. 12 bytes long. */
6588 CORE_ADDR addr = func_end - 12;
6589
6590 if (addr < func_addr + 4)
6591 addr = func_addr + 4;
6592 if (pc < addr)
6593 return 0;
6594
6595 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6596 {
6597 unsigned short inst;
6598
6599 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6600
6601 if ((inst & 0xf800) == 0xf000) /* extend */
6602 continue;
6603
6604 if (inst != 0x6300 /* addiu $sp,offset */
6605 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6606 && inst != 0xe820 /* jr $ra */
6607 && inst != 0xe8a0 /* jrc $ra */
6608 && inst != 0x6500) /* nop */
6609 return 0;
6610 }
6611
6612 return 1;
6613 }
6614
6615 return 0;
6616 }
6617
6618 /* The epilogue is defined here as the area at the end of a function,
6619 after an instruction which destroys the function's stack frame. */
6620 static int
6621 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6622 {
6623 if (mips_pc_is_mips16 (gdbarch, pc))
6624 return mips16_in_function_epilogue_p (gdbarch, pc);
6625 else if (mips_pc_is_micromips (gdbarch, pc))
6626 return micromips_in_function_epilogue_p (gdbarch, pc);
6627 else
6628 return mips32_in_function_epilogue_p (gdbarch, pc);
6629 }
6630
6631 /* Root of all "set mips "/"show mips " commands. This will eventually be
6632 used for all MIPS-specific commands. */
6633
6634 static void
6635 show_mips_command (char *args, int from_tty)
6636 {
6637 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6638 }
6639
6640 static void
6641 set_mips_command (char *args, int from_tty)
6642 {
6643 printf_unfiltered
6644 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6645 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6646 }
6647
6648 /* Commands to show/set the MIPS FPU type. */
6649
6650 static void
6651 show_mipsfpu_command (char *args, int from_tty)
6652 {
6653 char *fpu;
6654
6655 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6656 {
6657 printf_unfiltered
6658 ("The MIPS floating-point coprocessor is unknown "
6659 "because the current architecture is not MIPS.\n");
6660 return;
6661 }
6662
6663 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6664 {
6665 case MIPS_FPU_SINGLE:
6666 fpu = "single-precision";
6667 break;
6668 case MIPS_FPU_DOUBLE:
6669 fpu = "double-precision";
6670 break;
6671 case MIPS_FPU_NONE:
6672 fpu = "absent (none)";
6673 break;
6674 default:
6675 internal_error (__FILE__, __LINE__, _("bad switch"));
6676 }
6677 if (mips_fpu_type_auto)
6678 printf_unfiltered ("The MIPS floating-point coprocessor "
6679 "is set automatically (currently %s)\n",
6680 fpu);
6681 else
6682 printf_unfiltered
6683 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6684 }
6685
6686
6687 static void
6688 set_mipsfpu_command (char *args, int from_tty)
6689 {
6690 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6691 "\"single\",\"none\" or \"auto\".\n");
6692 show_mipsfpu_command (args, from_tty);
6693 }
6694
6695 static void
6696 set_mipsfpu_single_command (char *args, int from_tty)
6697 {
6698 struct gdbarch_info info;
6699 gdbarch_info_init (&info);
6700 mips_fpu_type = MIPS_FPU_SINGLE;
6701 mips_fpu_type_auto = 0;
6702 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6703 instead of relying on globals. Doing that would let generic code
6704 handle the search for this specific architecture. */
6705 if (!gdbarch_update_p (info))
6706 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6707 }
6708
6709 static void
6710 set_mipsfpu_double_command (char *args, int from_tty)
6711 {
6712 struct gdbarch_info info;
6713 gdbarch_info_init (&info);
6714 mips_fpu_type = MIPS_FPU_DOUBLE;
6715 mips_fpu_type_auto = 0;
6716 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6717 instead of relying on globals. Doing that would let generic code
6718 handle the search for this specific architecture. */
6719 if (!gdbarch_update_p (info))
6720 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6721 }
6722
6723 static void
6724 set_mipsfpu_none_command (char *args, int from_tty)
6725 {
6726 struct gdbarch_info info;
6727 gdbarch_info_init (&info);
6728 mips_fpu_type = MIPS_FPU_NONE;
6729 mips_fpu_type_auto = 0;
6730 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6731 instead of relying on globals. Doing that would let generic code
6732 handle the search for this specific architecture. */
6733 if (!gdbarch_update_p (info))
6734 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6735 }
6736
6737 static void
6738 set_mipsfpu_auto_command (char *args, int from_tty)
6739 {
6740 mips_fpu_type_auto = 1;
6741 }
6742
6743 /* Attempt to identify the particular processor model by reading the
6744 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
6745 the relevant processor still exists (it dates back to '94) and
6746 secondly this is not the way to do this. The processor type should
6747 be set by forcing an architecture change. */
6748
6749 void
6750 deprecated_mips_set_processor_regs_hack (void)
6751 {
6752 struct regcache *regcache = get_current_regcache ();
6753 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6755 ULONGEST prid;
6756
6757 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
6758 if ((prid & ~0xf) == 0x700)
6759 tdep->mips_processor_reg_names = mips_r3041_reg_names;
6760 }
6761
6762 /* Just like reinit_frame_cache, but with the right arguments to be
6763 callable as an sfunc. */
6764
6765 static void
6766 reinit_frame_cache_sfunc (char *args, int from_tty,
6767 struct cmd_list_element *c)
6768 {
6769 reinit_frame_cache ();
6770 }
6771
6772 static int
6773 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6774 {
6775 struct gdbarch *gdbarch = info->application_data;
6776
6777 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6778 disassembler needs to be able to locally determine the ISA, and
6779 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6780 work. */
6781 if (mips_pc_is_mips16 (gdbarch, memaddr))
6782 info->mach = bfd_mach_mips16;
6783 else if (mips_pc_is_micromips (gdbarch, memaddr))
6784 info->mach = bfd_mach_mips_micromips;
6785
6786 /* Round down the instruction address to the appropriate boundary. */
6787 memaddr &= (info->mach == bfd_mach_mips16
6788 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6789
6790 /* Set the disassembler options. */
6791 if (!info->disassembler_options)
6792 /* This string is not recognized explicitly by the disassembler,
6793 but it tells the disassembler to not try to guess the ABI from
6794 the bfd elf headers, such that, if the user overrides the ABI
6795 of a program linked as NewABI, the disassembly will follow the
6796 register naming conventions specified by the user. */
6797 info->disassembler_options = "gpr-names=32";
6798
6799 /* Call the appropriate disassembler based on the target endian-ness. */
6800 if (info->endian == BFD_ENDIAN_BIG)
6801 return print_insn_big_mips (memaddr, info);
6802 else
6803 return print_insn_little_mips (memaddr, info);
6804 }
6805
6806 static int
6807 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
6808 {
6809 /* Set up the disassembler info, so that we get the right
6810 register names from libopcodes. */
6811 info->disassembler_options = "gpr-names=n32";
6812 info->flavour = bfd_target_elf_flavour;
6813
6814 return gdb_print_insn_mips (memaddr, info);
6815 }
6816
6817 static int
6818 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
6819 {
6820 /* Set up the disassembler info, so that we get the right
6821 register names from libopcodes. */
6822 info->disassembler_options = "gpr-names=64";
6823 info->flavour = bfd_target_elf_flavour;
6824
6825 return gdb_print_insn_mips (memaddr, info);
6826 }
6827
6828 /* This function implements gdbarch_breakpoint_from_pc. It uses the
6829 program counter value to determine whether a 16- or 32-bit breakpoint
6830 should be used. It returns a pointer to a string of bytes that encode a
6831 breakpoint instruction, stores the length of the string to *lenptr, and
6832 adjusts pc (if necessary) to point to the actual memory location where
6833 the breakpoint should be inserted. */
6834
6835 static const gdb_byte *
6836 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
6837 CORE_ADDR *pcptr, int *lenptr)
6838 {
6839 CORE_ADDR pc = *pcptr;
6840
6841 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6842 {
6843 if (mips_pc_is_mips16 (gdbarch, pc))
6844 {
6845 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
6846 *pcptr = unmake_compact_addr (pc);
6847 *lenptr = sizeof (mips16_big_breakpoint);
6848 return mips16_big_breakpoint;
6849 }
6850 else if (mips_pc_is_micromips (gdbarch, pc))
6851 {
6852 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
6853 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
6854 ULONGEST insn;
6855 int status;
6856 int size;
6857
6858 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6859 size = status ? 2
6860 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6861 *pcptr = unmake_compact_addr (pc);
6862 *lenptr = size;
6863 return (size == 2) ? micromips16_big_breakpoint
6864 : micromips32_big_breakpoint;
6865 }
6866 else
6867 {
6868 /* The IDT board uses an unusual breakpoint value, and
6869 sometimes gets confused when it sees the usual MIPS
6870 breakpoint instruction. */
6871 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
6872 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
6873 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
6874 /* Likewise, IRIX appears to expect a different breakpoint,
6875 although this is not apparent until you try to use pthreads. */
6876 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
6877
6878 *lenptr = sizeof (big_breakpoint);
6879
6880 if (strcmp (target_shortname, "mips") == 0)
6881 return idt_big_breakpoint;
6882 else if (strcmp (target_shortname, "ddb") == 0
6883 || strcmp (target_shortname, "pmon") == 0
6884 || strcmp (target_shortname, "lsi") == 0)
6885 return pmon_big_breakpoint;
6886 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
6887 return irix_big_breakpoint;
6888 else
6889 return big_breakpoint;
6890 }
6891 }
6892 else
6893 {
6894 if (mips_pc_is_mips16 (gdbarch, pc))
6895 {
6896 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
6897 *pcptr = unmake_compact_addr (pc);
6898 *lenptr = sizeof (mips16_little_breakpoint);
6899 return mips16_little_breakpoint;
6900 }
6901 else if (mips_pc_is_micromips (gdbarch, pc))
6902 {
6903 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
6904 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
6905 ULONGEST insn;
6906 int status;
6907 int size;
6908
6909 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6910 size = status ? 2
6911 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6912 *pcptr = unmake_compact_addr (pc);
6913 *lenptr = size;
6914 return (size == 2) ? micromips16_little_breakpoint
6915 : micromips32_little_breakpoint;
6916 }
6917 else
6918 {
6919 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
6920 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
6921 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
6922
6923 *lenptr = sizeof (little_breakpoint);
6924
6925 if (strcmp (target_shortname, "mips") == 0)
6926 return idt_little_breakpoint;
6927 else if (strcmp (target_shortname, "ddb") == 0
6928 || strcmp (target_shortname, "pmon") == 0
6929 || strcmp (target_shortname, "lsi") == 0)
6930 return pmon_little_breakpoint;
6931 else
6932 return little_breakpoint;
6933 }
6934 }
6935 }
6936
6937 /* Determine the remote breakpoint kind suitable for the PC. The following
6938 kinds are used:
6939
6940 * 2 -- 16-bit MIPS16 mode breakpoint,
6941
6942 * 3 -- 16-bit microMIPS mode breakpoint,
6943
6944 * 4 -- 32-bit standard MIPS mode breakpoint,
6945
6946 * 5 -- 32-bit microMIPS mode breakpoint. */
6947
6948 static void
6949 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
6950 int *kindptr)
6951 {
6952 CORE_ADDR pc = *pcptr;
6953
6954 if (mips_pc_is_mips16 (gdbarch, pc))
6955 {
6956 *pcptr = unmake_compact_addr (pc);
6957 *kindptr = 2;
6958 }
6959 else if (mips_pc_is_micromips (gdbarch, pc))
6960 {
6961 ULONGEST insn;
6962 int status;
6963 int size;
6964
6965 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6966 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6967 *pcptr = unmake_compact_addr (pc);
6968 *kindptr = size | 1;
6969 }
6970 else
6971 *kindptr = 4;
6972 }
6973
6974 /* Return non-zero if the ADDR instruction has a branch delay slot
6975 (i.e. it is a jump or branch instruction). This function is based
6976 on mips32_next_pc. */
6977
6978 static int
6979 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
6980 {
6981 unsigned long inst;
6982 int status;
6983 int op;
6984 int rs;
6985 int rt;
6986
6987 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
6988 if (status)
6989 return 0;
6990
6991 op = itype_op (inst);
6992 if ((inst & 0xe0000000) != 0)
6993 {
6994 rs = itype_rs (inst);
6995 rt = itype_rt (inst);
6996 return (is_octeon_bbit_op (op, gdbarch)
6997 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
6998 || op == 29 /* JALX: bits 011101 */
6999 || (op == 17
7000 && (rs == 8
7001 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7002 || (rs == 9 && (rt & 0x2) == 0)
7003 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7004 || (rs == 10 && (rt & 0x2) == 0))));
7005 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7006 }
7007 else
7008 switch (op & 0x07) /* extract bits 28,27,26 */
7009 {
7010 case 0: /* SPECIAL */
7011 op = rtype_funct (inst);
7012 return (op == 8 /* JR */
7013 || op == 9); /* JALR */
7014 break; /* end SPECIAL */
7015 case 1: /* REGIMM */
7016 rs = itype_rs (inst);
7017 rt = itype_rt (inst); /* branch condition */
7018 return ((rt & 0xc) == 0
7019 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7020 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7021 || ((rt & 0x1e) == 0x1c && rs == 0));
7022 /* BPOSGE32, BPOSGE64: bits 1110x */
7023 break; /* end REGIMM */
7024 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7025 return 1;
7026 break;
7027 }
7028 }
7029
7030 /* Return non-zero if the ADDR instruction, which must be a 32-bit
7031 instruction if MUSTBE32 is set or can be any instruction otherwise,
7032 has a branch delay slot (i.e. it is a non-compact jump instruction). */
7033
7034 static int
7035 micromips_instruction_has_delay_slot (struct gdbarch *gdbarch,
7036 CORE_ADDR addr, int mustbe32)
7037 {
7038 ULONGEST insn;
7039 int status;
7040
7041 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7042 if (status)
7043 return 0;
7044
7045 if (!mustbe32) /* 16-bit instructions. */
7046 return (micromips_op (insn) == 0x11
7047 /* POOL16C: bits 010001 */
7048 && (b5s5_op (insn) == 0xc
7049 /* JR16: bits 010001 01100 */
7050 || (b5s5_op (insn) & 0x1e) == 0xe))
7051 /* JALR16, JALRS16: bits 010001 0111x */
7052 || (micromips_op (insn) & 0x37) == 0x23
7053 /* BEQZ16, BNEZ16: bits 10x011 */
7054 || micromips_op (insn) == 0x33;
7055 /* B16: bits 110011 */
7056
7057 /* 32-bit instructions. */
7058 if (micromips_op (insn) == 0x0)
7059 /* POOL32A: bits 000000 */
7060 {
7061 insn <<= 16;
7062 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7063 if (status)
7064 return 0;
7065 return b0s6_op (insn) == 0x3c
7066 /* POOL32Axf: bits 000000 ... 111100 */
7067 && (b6s10_ext (insn) & 0x2bf) == 0x3c;
7068 /* JALR, JALR.HB: 000000 000x111100 111100 */
7069 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7070 }
7071
7072 return (micromips_op (insn) == 0x10
7073 /* POOL32I: bits 010000 */
7074 && ((b5s5_op (insn) & 0x1c) == 0x0
7075 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7076 || (b5s5_op (insn) & 0x1d) == 0x4
7077 /* BLEZ, BGTZ: bits 010000 001x0 */
7078 || (b5s5_op (insn) & 0x1d) == 0x11
7079 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7080 || ((b5s5_op (insn) & 0x1e) == 0x14
7081 && (insn & 0x3) == 0x0)
7082 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7083 || (b5s5_op (insn) & 0x1e) == 0x1a
7084 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7085 || ((b5s5_op (insn) & 0x1e) == 0x1c
7086 && (insn & 0x3) == 0x0)
7087 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7088 || ((b5s5_op (insn) & 0x1c) == 0x1c
7089 && (insn & 0x3) == 0x1)))
7090 /* BC1ANY*: bits 010000 111xx xxx01 */
7091 || (micromips_op (insn) & 0x1f) == 0x1d
7092 /* JALS, JAL: bits x11101 */
7093 || (micromips_op (insn) & 0x37) == 0x25
7094 /* BEQ, BNE: bits 10x101 */
7095 || micromips_op (insn) == 0x35
7096 /* J: bits 110101 */
7097 || micromips_op (insn) == 0x3c;
7098 /* JALX: bits 111100 */
7099 }
7100
7101 static int
7102 mips16_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr,
7103 int mustbe32)
7104 {
7105 unsigned short inst;
7106 int status;
7107
7108 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7109 if (status)
7110 return 0;
7111
7112 if (!mustbe32)
7113 return (inst & 0xf89f) == 0xe800; /* JR/JALR (16-bit instruction) */
7114 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7115 }
7116
7117 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7118 This assumes KSSEG exists. */
7119
7120 static CORE_ADDR
7121 mips_segment_boundary (CORE_ADDR bpaddr)
7122 {
7123 CORE_ADDR mask = CORE_ADDR_MAX;
7124 int segsize;
7125
7126 if (sizeof (CORE_ADDR) == 8)
7127 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7128 a compiler warning produced where CORE_ADDR is a 32-bit type even
7129 though in that case this is dead code). */
7130 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7131 {
7132 case 3:
7133 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7134 segsize = 29; /* 32-bit compatibility segment */
7135 else
7136 segsize = 62; /* xkseg */
7137 break;
7138 case 2: /* xkphys */
7139 segsize = 59;
7140 break;
7141 default: /* xksseg (1), xkuseg/kuseg (0) */
7142 segsize = 62;
7143 break;
7144 }
7145 else if (bpaddr & 0x80000000) /* kernel segment */
7146 segsize = 29;
7147 else
7148 segsize = 31; /* user segment */
7149 mask <<= segsize;
7150 return bpaddr & mask;
7151 }
7152
7153 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7154 it backwards if necessary. Return the address of the new location. */
7155
7156 static CORE_ADDR
7157 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7158 {
7159 CORE_ADDR prev_addr;
7160 CORE_ADDR boundary;
7161 CORE_ADDR func_addr;
7162
7163 /* If a breakpoint is set on the instruction in a branch delay slot,
7164 GDB gets confused. When the breakpoint is hit, the PC isn't on
7165 the instruction in the branch delay slot, the PC will point to
7166 the branch instruction. Since the PC doesn't match any known
7167 breakpoints, GDB reports a trap exception.
7168
7169 There are two possible fixes for this problem.
7170
7171 1) When the breakpoint gets hit, see if the BD bit is set in the
7172 Cause register (which indicates the last exception occurred in a
7173 branch delay slot). If the BD bit is set, fix the PC to point to
7174 the instruction in the branch delay slot.
7175
7176 2) When the user sets the breakpoint, don't allow him to set the
7177 breakpoint on the instruction in the branch delay slot. Instead
7178 move the breakpoint to the branch instruction (which will have
7179 the same result).
7180
7181 The problem with the first solution is that if the user then
7182 single-steps the processor, the branch instruction will get
7183 skipped (since GDB thinks the PC is on the instruction in the
7184 branch delay slot).
7185
7186 So, we'll use the second solution. To do this we need to know if
7187 the instruction we're trying to set the breakpoint on is in the
7188 branch delay slot. */
7189
7190 boundary = mips_segment_boundary (bpaddr);
7191
7192 /* Make sure we don't scan back before the beginning of the current
7193 function, since we may fetch constant data or insns that look like
7194 a jump. Of course we might do that anyway if the compiler has
7195 moved constants inline. :-( */
7196 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7197 && func_addr > boundary && func_addr <= bpaddr)
7198 boundary = func_addr;
7199
7200 if (mips_pc_is_mips (bpaddr))
7201 {
7202 if (bpaddr == boundary)
7203 return bpaddr;
7204
7205 /* If the previous instruction has a branch delay slot, we have
7206 to move the breakpoint to the branch instruction. */
7207 prev_addr = bpaddr - 4;
7208 if (mips32_instruction_has_delay_slot (gdbarch, prev_addr))
7209 bpaddr = prev_addr;
7210 }
7211 else
7212 {
7213 int (*instruction_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7214 CORE_ADDR addr, jmpaddr;
7215 int i;
7216
7217 boundary = unmake_compact_addr (boundary);
7218
7219 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7220 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7221 so try for that first, then try the 2 byte JALR/JR.
7222 The microMIPS ASE has a whole range of jumps and branches
7223 with delay slots, some of which take 4 bytes and some take
7224 2 bytes, so the idea is the same.
7225 FIXME: We have to assume that bpaddr is not the second half
7226 of an extended instruction. */
7227 instruction_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7228 ? micromips_instruction_has_delay_slot
7229 : mips16_instruction_has_delay_slot);
7230
7231 jmpaddr = 0;
7232 addr = bpaddr;
7233 for (i = 1; i < 4; i++)
7234 {
7235 if (unmake_compact_addr (addr) == boundary)
7236 break;
7237 addr -= MIPS_INSN16_SIZE;
7238 if (i == 1 && instruction_has_delay_slot (gdbarch, addr, 0))
7239 /* Looks like a JR/JALR at [target-1], but it could be
7240 the second word of a previous JAL/JALX, so record it
7241 and check back one more. */
7242 jmpaddr = addr;
7243 else if (i > 1 && instruction_has_delay_slot (gdbarch, addr, 1))
7244 {
7245 if (i == 2)
7246 /* Looks like a JAL/JALX at [target-2], but it could also
7247 be the second word of a previous JAL/JALX, record it,
7248 and check back one more. */
7249 jmpaddr = addr;
7250 else
7251 /* Looks like a JAL/JALX at [target-3], so any previously
7252 recorded JAL/JALX or JR/JALR must be wrong, because:
7253
7254 >-3: JAL
7255 -2: JAL-ext (can't be JAL/JALX)
7256 -1: bdslot (can't be JR/JALR)
7257 0: target insn
7258
7259 Of course it could be another JAL-ext which looks
7260 like a JAL, but in that case we'd have broken out
7261 of this loop at [target-2]:
7262
7263 -4: JAL
7264 >-3: JAL-ext
7265 -2: bdslot (can't be jmp)
7266 -1: JR/JALR
7267 0: target insn */
7268 jmpaddr = 0;
7269 }
7270 else
7271 {
7272 /* Not a jump instruction: if we're at [target-1] this
7273 could be the second word of a JAL/JALX, so continue;
7274 otherwise we're done. */
7275 if (i > 1)
7276 break;
7277 }
7278 }
7279
7280 if (jmpaddr)
7281 bpaddr = jmpaddr;
7282 }
7283
7284 return bpaddr;
7285 }
7286
7287 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7288 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7289
7290 static int
7291 mips_is_stub_suffix (const char *suffix, int zero)
7292 {
7293 switch (suffix[0])
7294 {
7295 case '0':
7296 return zero && suffix[1] == '\0';
7297 case '1':
7298 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7299 case '2':
7300 case '5':
7301 case '6':
7302 case '9':
7303 return suffix[1] == '\0';
7304 default:
7305 return 0;
7306 }
7307 }
7308
7309 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7310 call stubs, one of sf, df, sc, or dc. */
7311
7312 static int
7313 mips_is_stub_mode (const char *mode)
7314 {
7315 return ((mode[0] == 's' || mode[0] == 'd')
7316 && (mode[1] == 'f' || mode[1] == 'c'));
7317 }
7318
7319 /* Code at PC is a compiler-generated stub. Such a stub for a function
7320 bar might have a name like __fn_stub_bar, and might look like this:
7321
7322 mfc1 $4, $f13
7323 mfc1 $5, $f12
7324 mfc1 $6, $f15
7325 mfc1 $7, $f14
7326
7327 followed by (or interspersed with):
7328
7329 j bar
7330
7331 or:
7332
7333 lui $25, %hi(bar)
7334 addiu $25, $25, %lo(bar)
7335 jr $25
7336
7337 ($1 may be used in old code; for robustness we accept any register)
7338 or, in PIC code:
7339
7340 lui $28, %hi(_gp_disp)
7341 addiu $28, $28, %lo(_gp_disp)
7342 addu $28, $28, $25
7343 lw $25, %got(bar)
7344 addiu $25, $25, %lo(bar)
7345 jr $25
7346
7347 In the case of a __call_stub_bar stub, the sequence to set up
7348 arguments might look like this:
7349
7350 mtc1 $4, $f13
7351 mtc1 $5, $f12
7352 mtc1 $6, $f15
7353 mtc1 $7, $f14
7354
7355 followed by (or interspersed with) one of the jump sequences above.
7356
7357 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7358 of J or JR, respectively, followed by:
7359
7360 mfc1 $2, $f0
7361 mfc1 $3, $f1
7362 jr $18
7363
7364 We are at the beginning of the stub here, and scan down and extract
7365 the target address from the jump immediate instruction or, if a jump
7366 register instruction is used, from the register referred. Return
7367 the value of PC calculated or 0 if inconclusive.
7368
7369 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7370
7371 static CORE_ADDR
7372 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7373 {
7374 struct gdbarch *gdbarch = get_frame_arch (frame);
7375 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7376 int addrreg = MIPS_ZERO_REGNUM;
7377 CORE_ADDR start_pc = pc;
7378 CORE_ADDR target_pc = 0;
7379 CORE_ADDR addr = 0;
7380 CORE_ADDR gp = 0;
7381 int status = 0;
7382 int i;
7383
7384 for (i = 0;
7385 status == 0 && target_pc == 0 && i < 20;
7386 i++, pc += MIPS_INSN32_SIZE)
7387 {
7388 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7389 CORE_ADDR imm;
7390 int rt;
7391 int rs;
7392 int rd;
7393
7394 switch (itype_op (inst))
7395 {
7396 case 0: /* SPECIAL */
7397 switch (rtype_funct (inst))
7398 {
7399 case 8: /* JR */
7400 case 9: /* JALR */
7401 rs = rtype_rs (inst);
7402 if (rs == MIPS_GP_REGNUM)
7403 target_pc = gp; /* Hmm... */
7404 else if (rs == addrreg)
7405 target_pc = addr;
7406 break;
7407
7408 case 0x21: /* ADDU */
7409 rt = rtype_rt (inst);
7410 rs = rtype_rs (inst);
7411 rd = rtype_rd (inst);
7412 if (rd == MIPS_GP_REGNUM
7413 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7414 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7415 gp += start_pc;
7416 break;
7417 }
7418 break;
7419
7420 case 2: /* J */
7421 case 3: /* JAL */
7422 target_pc = jtype_target (inst) << 2;
7423 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7424 break;
7425
7426 case 9: /* ADDIU */
7427 rt = itype_rt (inst);
7428 rs = itype_rs (inst);
7429 if (rt == rs)
7430 {
7431 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7432 if (rt == MIPS_GP_REGNUM)
7433 gp += imm;
7434 else if (rt == addrreg)
7435 addr += imm;
7436 }
7437 break;
7438
7439 case 0xf: /* LUI */
7440 rt = itype_rt (inst);
7441 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7442 if (rt == MIPS_GP_REGNUM)
7443 gp = imm;
7444 else if (rt != MIPS_ZERO_REGNUM)
7445 {
7446 addrreg = rt;
7447 addr = imm;
7448 }
7449 break;
7450
7451 case 0x23: /* LW */
7452 rt = itype_rt (inst);
7453 rs = itype_rs (inst);
7454 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7455 if (gp != 0 && rs == MIPS_GP_REGNUM)
7456 {
7457 gdb_byte buf[4];
7458
7459 memset (buf, 0, sizeof (buf));
7460 status = target_read_memory (gp + imm, buf, sizeof (buf));
7461 addrreg = rt;
7462 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7463 }
7464 break;
7465 }
7466 }
7467
7468 return target_pc;
7469 }
7470
7471 /* If PC is in a MIPS16 call or return stub, return the address of the
7472 target PC, which is either the callee or the caller. There are several
7473 cases which must be handled:
7474
7475 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7476 and the target PC is in $31 ($ra).
7477 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7478 and the target PC is in $2.
7479 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7480 i.e. before the JALR instruction, this is effectively a call stub
7481 and the target PC is in $2. Otherwise this is effectively
7482 a return stub and the target PC is in $18.
7483 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7484 JAL or JALR instruction, this is effectively a call stub and the
7485 target PC is buried in the instruction stream. Otherwise this
7486 is effectively a return stub and the target PC is in $18.
7487 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7488 stub and the target PC is buried in the instruction stream.
7489
7490 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7491 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7492 gory details. */
7493
7494 static CORE_ADDR
7495 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7496 {
7497 struct gdbarch *gdbarch = get_frame_arch (frame);
7498 CORE_ADDR start_addr;
7499 const char *name;
7500 size_t prefixlen;
7501
7502 /* Find the starting address and name of the function containing the PC. */
7503 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7504 return 0;
7505
7506 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7507 and the target PC is in $31 ($ra). */
7508 prefixlen = strlen (mips_str_mips16_ret_stub);
7509 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7510 && mips_is_stub_mode (name + prefixlen)
7511 && name[prefixlen + 2] == '\0')
7512 return get_frame_register_signed
7513 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7514
7515 /* If the PC is in __mips16_call_stub_*, this is one of the call
7516 call/return stubs. */
7517 prefixlen = strlen (mips_str_mips16_call_stub);
7518 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7519 {
7520 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7521 and the target PC is in $2. */
7522 if (mips_is_stub_suffix (name + prefixlen, 0))
7523 return get_frame_register_signed
7524 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7525
7526 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7527 i.e. before the JALR instruction, this is effectively a call stub
7528 and the target PC is in $2. Otherwise this is effectively
7529 a return stub and the target PC is in $18. */
7530 else if (mips_is_stub_mode (name + prefixlen)
7531 && name[prefixlen + 2] == '_'
7532 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7533 {
7534 if (pc == start_addr)
7535 /* This is the 'call' part of a call stub. The return
7536 address is in $2. */
7537 return get_frame_register_signed
7538 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7539 else
7540 /* This is the 'return' part of a call stub. The return
7541 address is in $18. */
7542 return get_frame_register_signed
7543 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7544 }
7545 else
7546 return 0; /* Not a stub. */
7547 }
7548
7549 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7550 compiler-generated call or call/return stubs. */
7551 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
7552 || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
7553 {
7554 if (pc == start_addr)
7555 /* This is the 'call' part of a call stub. Call this helper
7556 to scan through this code for interesting instructions
7557 and determine the final PC. */
7558 return mips_get_mips16_fn_stub_pc (frame, pc);
7559 else
7560 /* This is the 'return' part of a call stub. The return address
7561 is in $18. */
7562 return get_frame_register_signed
7563 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7564 }
7565
7566 return 0; /* Not a stub. */
7567 }
7568
7569 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7570 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7571
7572 static int
7573 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7574 {
7575 CORE_ADDR start_addr;
7576 size_t prefixlen;
7577
7578 /* Find the starting address of the function containing the PC. */
7579 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7580 return 0;
7581
7582 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7583 the start, i.e. after the JALR instruction, this is effectively
7584 a return stub. */
7585 prefixlen = strlen (mips_str_mips16_call_stub);
7586 if (pc != start_addr
7587 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7588 && mips_is_stub_mode (name + prefixlen)
7589 && name[prefixlen + 2] == '_'
7590 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7591 return 1;
7592
7593 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7594 the JAL or JALR instruction, this is effectively a return stub. */
7595 prefixlen = strlen (mips_str_call_fp_stub);
7596 if (pc != start_addr
7597 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7598 return 1;
7599
7600 /* Consume the .pic. prefix of any PIC stub, this function must return
7601 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7602 or the call stub path will trigger in handle_inferior_event causing
7603 it to go astray. */
7604 prefixlen = strlen (mips_str_pic);
7605 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7606 name += prefixlen;
7607
7608 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7609 prefixlen = strlen (mips_str_mips16_ret_stub);
7610 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7611 && mips_is_stub_mode (name + prefixlen)
7612 && name[prefixlen + 2] == '\0')
7613 return 1;
7614
7615 return 0; /* Not a stub. */
7616 }
7617
7618 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7619 PC of the stub target. The stub just loads $t9 and jumps to it,
7620 so that $t9 has the correct value at function entry. */
7621
7622 static CORE_ADDR
7623 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7624 {
7625 struct gdbarch *gdbarch = get_frame_arch (frame);
7626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7627 struct bound_minimal_symbol msym;
7628 int i;
7629 gdb_byte stub_code[16];
7630 int32_t stub_words[4];
7631
7632 /* The stub for foo is named ".pic.foo", and is either two
7633 instructions inserted before foo or a three instruction sequence
7634 which jumps to foo. */
7635 msym = lookup_minimal_symbol_by_pc (pc);
7636 if (msym.minsym == NULL
7637 || SYMBOL_VALUE_ADDRESS (msym.minsym) != pc
7638 || SYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7639 || strncmp (SYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) != 0)
7640 return 0;
7641
7642 /* A two-instruction header. */
7643 if (MSYMBOL_SIZE (msym.minsym) == 8)
7644 return pc + 8;
7645
7646 /* A three-instruction (plus delay slot) trampoline. */
7647 if (MSYMBOL_SIZE (msym.minsym) == 16)
7648 {
7649 if (target_read_memory (pc, stub_code, 16) != 0)
7650 return 0;
7651 for (i = 0; i < 4; i++)
7652 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7653 4, byte_order);
7654
7655 /* A stub contains these instructions:
7656 lui t9, %hi(target)
7657 j target
7658 addiu t9, t9, %lo(target)
7659 nop
7660
7661 This works even for N64, since stubs are only generated with
7662 -msym32. */
7663 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7664 && (stub_words[1] & 0xfc000000U) == 0x08000000
7665 && (stub_words[2] & 0xffff0000U) == 0x27390000
7666 && stub_words[3] == 0x00000000)
7667 return ((((stub_words[0] & 0x0000ffff) << 16)
7668 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7669 }
7670
7671 /* Not a recognized stub. */
7672 return 0;
7673 }
7674
7675 static CORE_ADDR
7676 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7677 {
7678 CORE_ADDR requested_pc = pc;
7679 CORE_ADDR target_pc;
7680 CORE_ADDR new_pc;
7681
7682 do
7683 {
7684 target_pc = pc;
7685
7686 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7687 if (new_pc)
7688 {
7689 pc = new_pc;
7690 if (is_compact_addr (pc))
7691 pc = unmake_compact_addr (pc);
7692 }
7693
7694 new_pc = find_solib_trampoline_target (frame, pc);
7695 if (new_pc)
7696 {
7697 pc = new_pc;
7698 if (is_compact_addr (pc))
7699 pc = unmake_compact_addr (pc);
7700 }
7701
7702 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7703 if (new_pc)
7704 {
7705 pc = new_pc;
7706 if (is_compact_addr (pc))
7707 pc = unmake_compact_addr (pc);
7708 }
7709 }
7710 while (pc != target_pc);
7711
7712 return pc != requested_pc ? pc : 0;
7713 }
7714
7715 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7716 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7717
7718 static int
7719 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7720 {
7721 int regnum;
7722 if (num >= 0 && num < 32)
7723 regnum = num;
7724 else if (num >= 38 && num < 70)
7725 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7726 else if (num == 70)
7727 regnum = mips_regnum (gdbarch)->hi;
7728 else if (num == 71)
7729 regnum = mips_regnum (gdbarch)->lo;
7730 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7731 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7732 else
7733 /* This will hopefully (eventually) provoke a warning. Should
7734 we be calling complaint() here? */
7735 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7736 return gdbarch_num_regs (gdbarch) + regnum;
7737 }
7738
7739
7740 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7741 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7742
7743 static int
7744 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7745 {
7746 int regnum;
7747 if (num >= 0 && num < 32)
7748 regnum = num;
7749 else if (num >= 32 && num < 64)
7750 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7751 else if (num == 64)
7752 regnum = mips_regnum (gdbarch)->hi;
7753 else if (num == 65)
7754 regnum = mips_regnum (gdbarch)->lo;
7755 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7756 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7757 else
7758 /* This will hopefully (eventually) provoke a warning. Should we
7759 be calling complaint() here? */
7760 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7761 return gdbarch_num_regs (gdbarch) + regnum;
7762 }
7763
7764 static int
7765 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7766 {
7767 /* Only makes sense to supply raw registers. */
7768 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7769 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7770 decide if it is valid. Should instead define a standard sim/gdb
7771 register numbering scheme. */
7772 if (gdbarch_register_name (gdbarch,
7773 gdbarch_num_regs (gdbarch) + regnum) != NULL
7774 && gdbarch_register_name (gdbarch,
7775 gdbarch_num_regs (gdbarch)
7776 + regnum)[0] != '\0')
7777 return regnum;
7778 else
7779 return LEGACY_SIM_REGNO_IGNORE;
7780 }
7781
7782
7783 /* Convert an integer into an address. Extracting the value signed
7784 guarantees a correctly sign extended address. */
7785
7786 static CORE_ADDR
7787 mips_integer_to_address (struct gdbarch *gdbarch,
7788 struct type *type, const gdb_byte *buf)
7789 {
7790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7791 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7792 }
7793
7794 /* Dummy virtual frame pointer method. This is no more or less accurate
7795 than most other architectures; we just need to be explicit about it,
7796 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7797 an assertion failure. */
7798
7799 static void
7800 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7801 CORE_ADDR pc, int *reg, LONGEST *offset)
7802 {
7803 *reg = MIPS_SP_REGNUM;
7804 *offset = 0;
7805 }
7806
7807 static void
7808 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7809 {
7810 enum mips_abi *abip = (enum mips_abi *) obj;
7811 const char *name = bfd_get_section_name (abfd, sect);
7812
7813 if (*abip != MIPS_ABI_UNKNOWN)
7814 return;
7815
7816 if (strncmp (name, ".mdebug.", 8) != 0)
7817 return;
7818
7819 if (strcmp (name, ".mdebug.abi32") == 0)
7820 *abip = MIPS_ABI_O32;
7821 else if (strcmp (name, ".mdebug.abiN32") == 0)
7822 *abip = MIPS_ABI_N32;
7823 else if (strcmp (name, ".mdebug.abi64") == 0)
7824 *abip = MIPS_ABI_N64;
7825 else if (strcmp (name, ".mdebug.abiO64") == 0)
7826 *abip = MIPS_ABI_O64;
7827 else if (strcmp (name, ".mdebug.eabi32") == 0)
7828 *abip = MIPS_ABI_EABI32;
7829 else if (strcmp (name, ".mdebug.eabi64") == 0)
7830 *abip = MIPS_ABI_EABI64;
7831 else
7832 warning (_("unsupported ABI %s."), name + 8);
7833 }
7834
7835 static void
7836 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
7837 {
7838 int *lbp = (int *) obj;
7839 const char *name = bfd_get_section_name (abfd, sect);
7840
7841 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
7842 *lbp = 32;
7843 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
7844 *lbp = 64;
7845 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
7846 warning (_("unrecognized .gcc_compiled_longXX"));
7847 }
7848
7849 static enum mips_abi
7850 global_mips_abi (void)
7851 {
7852 int i;
7853
7854 for (i = 0; mips_abi_strings[i] != NULL; i++)
7855 if (mips_abi_strings[i] == mips_abi_string)
7856 return (enum mips_abi) i;
7857
7858 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
7859 }
7860
7861 /* Return the default compressed instruction set, either of MIPS16
7862 or microMIPS, selected when none could have been determined from
7863 the ELF header of the binary being executed (or no binary has been
7864 selected. */
7865
7866 static enum mips_isa
7867 global_mips_compression (void)
7868 {
7869 int i;
7870
7871 for (i = 0; mips_compression_strings[i] != NULL; i++)
7872 if (mips_compression_strings[i] == mips_compression_string)
7873 return (enum mips_isa) i;
7874
7875 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
7876 }
7877
7878 static void
7879 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
7880 {
7881 /* If the size matches the set of 32-bit or 64-bit integer registers,
7882 assume that's what we've got. */
7883 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
7884 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
7885
7886 /* If the size matches the full set of registers GDB traditionally
7887 knows about, including floating point, for either 32-bit or
7888 64-bit, assume that's what we've got. */
7889 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
7890 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
7891
7892 /* Otherwise we don't have a useful guess. */
7893 }
7894
7895 static struct value *
7896 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
7897 {
7898 const int *reg_p = baton;
7899 return value_of_register (*reg_p, frame);
7900 }
7901
7902 static struct gdbarch *
7903 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7904 {
7905 struct gdbarch *gdbarch;
7906 struct gdbarch_tdep *tdep;
7907 int elf_flags;
7908 enum mips_abi mips_abi, found_abi, wanted_abi;
7909 int i, num_regs;
7910 enum mips_fpu_type fpu_type;
7911 struct tdesc_arch_data *tdesc_data = NULL;
7912 int elf_fpu_type = 0;
7913 const char **reg_names;
7914 struct mips_regnum mips_regnum, *regnum;
7915 enum mips_isa mips_isa;
7916 int dspacc;
7917 int dspctl;
7918
7919 /* Fill in the OS dependent register numbers and names. */
7920 if (info.osabi == GDB_OSABI_IRIX)
7921 {
7922 mips_regnum.fp0 = 32;
7923 mips_regnum.pc = 64;
7924 mips_regnum.cause = 65;
7925 mips_regnum.badvaddr = 66;
7926 mips_regnum.hi = 67;
7927 mips_regnum.lo = 68;
7928 mips_regnum.fp_control_status = 69;
7929 mips_regnum.fp_implementation_revision = 70;
7930 mips_regnum.dspacc = dspacc = -1;
7931 mips_regnum.dspctl = dspctl = -1;
7932 num_regs = 71;
7933 reg_names = mips_irix_reg_names;
7934 }
7935 else if (info.osabi == GDB_OSABI_LINUX)
7936 {
7937 mips_regnum.fp0 = 38;
7938 mips_regnum.pc = 37;
7939 mips_regnum.cause = 36;
7940 mips_regnum.badvaddr = 35;
7941 mips_regnum.hi = 34;
7942 mips_regnum.lo = 33;
7943 mips_regnum.fp_control_status = 70;
7944 mips_regnum.fp_implementation_revision = 71;
7945 mips_regnum.dspacc = -1;
7946 mips_regnum.dspctl = -1;
7947 dspacc = 72;
7948 dspctl = 78;
7949 num_regs = 79;
7950 reg_names = mips_linux_reg_names;
7951 }
7952 else
7953 {
7954 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
7955 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
7956 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
7957 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
7958 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
7959 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
7960 mips_regnum.fp_control_status = 70;
7961 mips_regnum.fp_implementation_revision = 71;
7962 mips_regnum.dspacc = dspacc = -1;
7963 mips_regnum.dspctl = dspctl = -1;
7964 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
7965 if (info.bfd_arch_info != NULL
7966 && info.bfd_arch_info->mach == bfd_mach_mips3900)
7967 reg_names = mips_tx39_reg_names;
7968 else
7969 reg_names = mips_generic_reg_names;
7970 }
7971
7972 /* Check any target description for validity. */
7973 if (tdesc_has_registers (info.target_desc))
7974 {
7975 static const char *const mips_gprs[] = {
7976 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7977 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7978 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7979 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7980 };
7981 static const char *const mips_fprs[] = {
7982 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7983 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7984 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7985 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
7986 };
7987
7988 const struct tdesc_feature *feature;
7989 int valid_p;
7990
7991 feature = tdesc_find_feature (info.target_desc,
7992 "org.gnu.gdb.mips.cpu");
7993 if (feature == NULL)
7994 return NULL;
7995
7996 tdesc_data = tdesc_data_alloc ();
7997
7998 valid_p = 1;
7999 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8000 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8001 mips_gprs[i]);
8002
8003
8004 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8005 mips_regnum.lo, "lo");
8006 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8007 mips_regnum.hi, "hi");
8008 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8009 mips_regnum.pc, "pc");
8010
8011 if (!valid_p)
8012 {
8013 tdesc_data_cleanup (tdesc_data);
8014 return NULL;
8015 }
8016
8017 feature = tdesc_find_feature (info.target_desc,
8018 "org.gnu.gdb.mips.cp0");
8019 if (feature == NULL)
8020 {
8021 tdesc_data_cleanup (tdesc_data);
8022 return NULL;
8023 }
8024
8025 valid_p = 1;
8026 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8027 mips_regnum.badvaddr, "badvaddr");
8028 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8029 MIPS_PS_REGNUM, "status");
8030 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8031 mips_regnum.cause, "cause");
8032
8033 if (!valid_p)
8034 {
8035 tdesc_data_cleanup (tdesc_data);
8036 return NULL;
8037 }
8038
8039 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8040 backend is not prepared for that, though. */
8041 feature = tdesc_find_feature (info.target_desc,
8042 "org.gnu.gdb.mips.fpu");
8043 if (feature == NULL)
8044 {
8045 tdesc_data_cleanup (tdesc_data);
8046 return NULL;
8047 }
8048
8049 valid_p = 1;
8050 for (i = 0; i < 32; i++)
8051 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8052 i + mips_regnum.fp0, mips_fprs[i]);
8053
8054 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8055 mips_regnum.fp_control_status,
8056 "fcsr");
8057 valid_p
8058 &= tdesc_numbered_register (feature, tdesc_data,
8059 mips_regnum.fp_implementation_revision,
8060 "fir");
8061
8062 if (!valid_p)
8063 {
8064 tdesc_data_cleanup (tdesc_data);
8065 return NULL;
8066 }
8067
8068 if (dspacc >= 0)
8069 {
8070 feature = tdesc_find_feature (info.target_desc,
8071 "org.gnu.gdb.mips.dsp");
8072 /* The DSP registers are optional; it's OK if they are absent. */
8073 if (feature != NULL)
8074 {
8075 i = 0;
8076 valid_p = 1;
8077 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8078 dspacc + i++, "hi1");
8079 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8080 dspacc + i++, "lo1");
8081 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8082 dspacc + i++, "hi2");
8083 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8084 dspacc + i++, "lo2");
8085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8086 dspacc + i++, "hi3");
8087 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8088 dspacc + i++, "lo3");
8089
8090 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8091 dspctl, "dspctl");
8092
8093 if (!valid_p)
8094 {
8095 tdesc_data_cleanup (tdesc_data);
8096 return NULL;
8097 }
8098
8099 mips_regnum.dspacc = dspacc;
8100 mips_regnum.dspctl = dspctl;
8101 }
8102 }
8103
8104 /* It would be nice to detect an attempt to use a 64-bit ABI
8105 when only 32-bit registers are provided. */
8106 reg_names = NULL;
8107 }
8108
8109 /* First of all, extract the elf_flags, if available. */
8110 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8111 elf_flags = elf_elfheader (info.abfd)->e_flags;
8112 else if (arches != NULL)
8113 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8114 else
8115 elf_flags = 0;
8116 if (gdbarch_debug)
8117 fprintf_unfiltered (gdb_stdlog,
8118 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8119
8120 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8121 switch ((elf_flags & EF_MIPS_ABI))
8122 {
8123 case E_MIPS_ABI_O32:
8124 found_abi = MIPS_ABI_O32;
8125 break;
8126 case E_MIPS_ABI_O64:
8127 found_abi = MIPS_ABI_O64;
8128 break;
8129 case E_MIPS_ABI_EABI32:
8130 found_abi = MIPS_ABI_EABI32;
8131 break;
8132 case E_MIPS_ABI_EABI64:
8133 found_abi = MIPS_ABI_EABI64;
8134 break;
8135 default:
8136 if ((elf_flags & EF_MIPS_ABI2))
8137 found_abi = MIPS_ABI_N32;
8138 else
8139 found_abi = MIPS_ABI_UNKNOWN;
8140 break;
8141 }
8142
8143 /* GCC creates a pseudo-section whose name describes the ABI. */
8144 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8145 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8146
8147 /* If we have no useful BFD information, use the ABI from the last
8148 MIPS architecture (if there is one). */
8149 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8150 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8151
8152 /* Try the architecture for any hint of the correct ABI. */
8153 if (found_abi == MIPS_ABI_UNKNOWN
8154 && info.bfd_arch_info != NULL
8155 && info.bfd_arch_info->arch == bfd_arch_mips)
8156 {
8157 switch (info.bfd_arch_info->mach)
8158 {
8159 case bfd_mach_mips3900:
8160 found_abi = MIPS_ABI_EABI32;
8161 break;
8162 case bfd_mach_mips4100:
8163 case bfd_mach_mips5000:
8164 found_abi = MIPS_ABI_EABI64;
8165 break;
8166 case bfd_mach_mips8000:
8167 case bfd_mach_mips10000:
8168 /* On Irix, ELF64 executables use the N64 ABI. The
8169 pseudo-sections which describe the ABI aren't present
8170 on IRIX. (Even for executables created by gcc.) */
8171 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8172 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8173 found_abi = MIPS_ABI_N64;
8174 else
8175 found_abi = MIPS_ABI_N32;
8176 break;
8177 }
8178 }
8179
8180 /* Default 64-bit objects to N64 instead of O32. */
8181 if (found_abi == MIPS_ABI_UNKNOWN
8182 && info.abfd != NULL
8183 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8184 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8185 found_abi = MIPS_ABI_N64;
8186
8187 if (gdbarch_debug)
8188 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8189 found_abi);
8190
8191 /* What has the user specified from the command line? */
8192 wanted_abi = global_mips_abi ();
8193 if (gdbarch_debug)
8194 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8195 wanted_abi);
8196
8197 /* Now that we have found what the ABI for this binary would be,
8198 check whether the user is overriding it. */
8199 if (wanted_abi != MIPS_ABI_UNKNOWN)
8200 mips_abi = wanted_abi;
8201 else if (found_abi != MIPS_ABI_UNKNOWN)
8202 mips_abi = found_abi;
8203 else
8204 mips_abi = MIPS_ABI_O32;
8205 if (gdbarch_debug)
8206 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8207 mips_abi);
8208
8209 /* Determine the default compressed ISA. */
8210 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8211 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8212 mips_isa = ISA_MICROMIPS;
8213 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8214 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8215 mips_isa = ISA_MIPS16;
8216 else
8217 mips_isa = global_mips_compression ();
8218 mips_compression_string = mips_compression_strings[mips_isa];
8219
8220 /* Also used when doing an architecture lookup. */
8221 if (gdbarch_debug)
8222 fprintf_unfiltered (gdb_stdlog,
8223 "mips_gdbarch_init: "
8224 "mips64_transfers_32bit_regs_p = %d\n",
8225 mips64_transfers_32bit_regs_p);
8226
8227 /* Determine the MIPS FPU type. */
8228 #ifdef HAVE_ELF
8229 if (info.abfd
8230 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8231 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8232 Tag_GNU_MIPS_ABI_FP);
8233 #endif /* HAVE_ELF */
8234
8235 if (!mips_fpu_type_auto)
8236 fpu_type = mips_fpu_type;
8237 else if (elf_fpu_type != 0)
8238 {
8239 switch (elf_fpu_type)
8240 {
8241 case 1:
8242 fpu_type = MIPS_FPU_DOUBLE;
8243 break;
8244 case 2:
8245 fpu_type = MIPS_FPU_SINGLE;
8246 break;
8247 case 3:
8248 default:
8249 /* Soft float or unknown. */
8250 fpu_type = MIPS_FPU_NONE;
8251 break;
8252 }
8253 }
8254 else if (info.bfd_arch_info != NULL
8255 && info.bfd_arch_info->arch == bfd_arch_mips)
8256 switch (info.bfd_arch_info->mach)
8257 {
8258 case bfd_mach_mips3900:
8259 case bfd_mach_mips4100:
8260 case bfd_mach_mips4111:
8261 case bfd_mach_mips4120:
8262 fpu_type = MIPS_FPU_NONE;
8263 break;
8264 case bfd_mach_mips4650:
8265 fpu_type = MIPS_FPU_SINGLE;
8266 break;
8267 default:
8268 fpu_type = MIPS_FPU_DOUBLE;
8269 break;
8270 }
8271 else if (arches != NULL)
8272 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8273 else
8274 fpu_type = MIPS_FPU_DOUBLE;
8275 if (gdbarch_debug)
8276 fprintf_unfiltered (gdb_stdlog,
8277 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8278
8279 /* Check for blatant incompatibilities. */
8280
8281 /* If we have only 32-bit registers, then we can't debug a 64-bit
8282 ABI. */
8283 if (info.target_desc
8284 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8285 && mips_abi != MIPS_ABI_EABI32
8286 && mips_abi != MIPS_ABI_O32)
8287 {
8288 if (tdesc_data != NULL)
8289 tdesc_data_cleanup (tdesc_data);
8290 return NULL;
8291 }
8292
8293 /* Try to find a pre-existing architecture. */
8294 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8295 arches != NULL;
8296 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8297 {
8298 /* MIPS needs to be pedantic about which ABI the object is
8299 using. */
8300 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8301 continue;
8302 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8303 continue;
8304 /* Need to be pedantic about which register virtual size is
8305 used. */
8306 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8307 != mips64_transfers_32bit_regs_p)
8308 continue;
8309 /* Be pedantic about which FPU is selected. */
8310 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8311 continue;
8312
8313 if (tdesc_data != NULL)
8314 tdesc_data_cleanup (tdesc_data);
8315 return arches->gdbarch;
8316 }
8317
8318 /* Need a new architecture. Fill in a target specific vector. */
8319 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
8320 gdbarch = gdbarch_alloc (&info, tdep);
8321 tdep->elf_flags = elf_flags;
8322 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8323 tdep->found_abi = found_abi;
8324 tdep->mips_abi = mips_abi;
8325 tdep->mips_isa = mips_isa;
8326 tdep->mips_fpu_type = fpu_type;
8327 tdep->register_size_valid_p = 0;
8328 tdep->register_size = 0;
8329 tdep->gregset = NULL;
8330 tdep->gregset64 = NULL;
8331 tdep->fpregset = NULL;
8332 tdep->fpregset64 = NULL;
8333
8334 if (info.target_desc)
8335 {
8336 /* Some useful properties can be inferred from the target. */
8337 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8338 {
8339 tdep->register_size_valid_p = 1;
8340 tdep->register_size = 4;
8341 }
8342 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8343 {
8344 tdep->register_size_valid_p = 1;
8345 tdep->register_size = 8;
8346 }
8347 }
8348
8349 /* Initially set everything according to the default ABI/ISA. */
8350 set_gdbarch_short_bit (gdbarch, 16);
8351 set_gdbarch_int_bit (gdbarch, 32);
8352 set_gdbarch_float_bit (gdbarch, 32);
8353 set_gdbarch_double_bit (gdbarch, 64);
8354 set_gdbarch_long_double_bit (gdbarch, 64);
8355 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8356 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8357 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8358
8359 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8360 mips_ax_pseudo_register_collect);
8361 set_gdbarch_ax_pseudo_register_push_stack
8362 (gdbarch, mips_ax_pseudo_register_push_stack);
8363
8364 set_gdbarch_elf_make_msymbol_special (gdbarch,
8365 mips_elf_make_msymbol_special);
8366
8367 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8368 *regnum = mips_regnum;
8369 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8370 set_gdbarch_num_regs (gdbarch, num_regs);
8371 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8372 set_gdbarch_register_name (gdbarch, mips_register_name);
8373 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8374 tdep->mips_processor_reg_names = reg_names;
8375 tdep->regnum = regnum;
8376
8377 switch (mips_abi)
8378 {
8379 case MIPS_ABI_O32:
8380 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8381 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8382 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8383 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8384 tdep->default_mask_address_p = 0;
8385 set_gdbarch_long_bit (gdbarch, 32);
8386 set_gdbarch_ptr_bit (gdbarch, 32);
8387 set_gdbarch_long_long_bit (gdbarch, 64);
8388 break;
8389 case MIPS_ABI_O64:
8390 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8391 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8392 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8393 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8394 tdep->default_mask_address_p = 0;
8395 set_gdbarch_long_bit (gdbarch, 32);
8396 set_gdbarch_ptr_bit (gdbarch, 32);
8397 set_gdbarch_long_long_bit (gdbarch, 64);
8398 break;
8399 case MIPS_ABI_EABI32:
8400 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8401 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8402 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8403 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8404 tdep->default_mask_address_p = 0;
8405 set_gdbarch_long_bit (gdbarch, 32);
8406 set_gdbarch_ptr_bit (gdbarch, 32);
8407 set_gdbarch_long_long_bit (gdbarch, 64);
8408 break;
8409 case MIPS_ABI_EABI64:
8410 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8411 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8412 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8413 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8414 tdep->default_mask_address_p = 0;
8415 set_gdbarch_long_bit (gdbarch, 64);
8416 set_gdbarch_ptr_bit (gdbarch, 64);
8417 set_gdbarch_long_long_bit (gdbarch, 64);
8418 break;
8419 case MIPS_ABI_N32:
8420 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8421 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8422 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8423 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8424 tdep->default_mask_address_p = 0;
8425 set_gdbarch_long_bit (gdbarch, 32);
8426 set_gdbarch_ptr_bit (gdbarch, 32);
8427 set_gdbarch_long_long_bit (gdbarch, 64);
8428 set_gdbarch_long_double_bit (gdbarch, 128);
8429 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8430 break;
8431 case MIPS_ABI_N64:
8432 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8433 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8434 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8435 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8436 tdep->default_mask_address_p = 0;
8437 set_gdbarch_long_bit (gdbarch, 64);
8438 set_gdbarch_ptr_bit (gdbarch, 64);
8439 set_gdbarch_long_long_bit (gdbarch, 64);
8440 set_gdbarch_long_double_bit (gdbarch, 128);
8441 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8442 break;
8443 default:
8444 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8445 }
8446
8447 /* GCC creates a pseudo-section whose name specifies the size of
8448 longs, since -mlong32 or -mlong64 may be used independent of
8449 other options. How those options affect pointer sizes is ABI and
8450 architecture dependent, so use them to override the default sizes
8451 set by the ABI. This table shows the relationship between ABI,
8452 -mlongXX, and size of pointers:
8453
8454 ABI -mlongXX ptr bits
8455 --- -------- --------
8456 o32 32 32
8457 o32 64 32
8458 n32 32 32
8459 n32 64 64
8460 o64 32 32
8461 o64 64 64
8462 n64 32 32
8463 n64 64 64
8464 eabi32 32 32
8465 eabi32 64 32
8466 eabi64 32 32
8467 eabi64 64 64
8468
8469 Note that for o32 and eabi32, pointers are always 32 bits
8470 regardless of any -mlongXX option. For all others, pointers and
8471 longs are the same, as set by -mlongXX or set by defaults. */
8472
8473 if (info.abfd != NULL)
8474 {
8475 int long_bit = 0;
8476
8477 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8478 if (long_bit)
8479 {
8480 set_gdbarch_long_bit (gdbarch, long_bit);
8481 switch (mips_abi)
8482 {
8483 case MIPS_ABI_O32:
8484 case MIPS_ABI_EABI32:
8485 break;
8486 case MIPS_ABI_N32:
8487 case MIPS_ABI_O64:
8488 case MIPS_ABI_N64:
8489 case MIPS_ABI_EABI64:
8490 set_gdbarch_ptr_bit (gdbarch, long_bit);
8491 break;
8492 default:
8493 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8494 }
8495 }
8496 }
8497
8498 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8499 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8500 comment:
8501
8502 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8503 flag in object files because to do so would make it impossible to
8504 link with libraries compiled without "-gp32". This is
8505 unnecessarily restrictive.
8506
8507 We could solve this problem by adding "-gp32" multilibs to gcc,
8508 but to set this flag before gcc is built with such multilibs will
8509 break too many systems.''
8510
8511 But even more unhelpfully, the default linker output target for
8512 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8513 for 64-bit programs - you need to change the ABI to change this,
8514 and not all gcc targets support that currently. Therefore using
8515 this flag to detect 32-bit mode would do the wrong thing given
8516 the current gcc - it would make GDB treat these 64-bit programs
8517 as 32-bit programs by default. */
8518
8519 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8520 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8521
8522 /* Add/remove bits from an address. The MIPS needs be careful to
8523 ensure that all 32 bit addresses are sign extended to 64 bits. */
8524 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8525
8526 /* Unwind the frame. */
8527 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8528 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8529 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8530
8531 /* Map debug register numbers onto internal register numbers. */
8532 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8533 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8534 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8535 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8536 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8537 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8538
8539 /* MIPS version of CALL_DUMMY. */
8540
8541 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8542 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8543 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8544
8545 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8546 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8547 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8548
8549 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8550 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8551 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8552 mips_remote_breakpoint_from_pc);
8553 set_gdbarch_adjust_breakpoint_address (gdbarch,
8554 mips_adjust_breakpoint_address);
8555
8556 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8557
8558 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
8559
8560 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8561 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8562 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8563
8564 set_gdbarch_register_type (gdbarch, mips_register_type);
8565
8566 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8567
8568 if (mips_abi == MIPS_ABI_N32)
8569 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8570 else if (mips_abi == MIPS_ABI_N64)
8571 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8572 else
8573 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8574
8575 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8576 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8577 need to all be folded into the target vector. Since they are
8578 being used as guards for target_stopped_by_watchpoint, why not have
8579 target_stopped_by_watchpoint return the type of watchpoint that the code
8580 is sitting on? */
8581 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8582
8583 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8584
8585 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8586 to support MIPS16. This is a bad thing. Make sure not to do it
8587 if we have an OS ABI that actually supports shared libraries, since
8588 shared library support is more important. If we have an OS someday
8589 that supports both shared libraries and MIPS16, we'll have to find
8590 a better place for these.
8591 macro/2012-04-25: But that applies to return trampolines only and
8592 currently no MIPS OS ABI uses shared libraries that have them. */
8593 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8594
8595 set_gdbarch_single_step_through_delay (gdbarch,
8596 mips_single_step_through_delay);
8597
8598 /* Virtual tables. */
8599 set_gdbarch_vbit_in_delta (gdbarch, 1);
8600
8601 mips_register_g_packet_guesses (gdbarch);
8602
8603 /* Hook in OS ABI-specific overrides, if they have been registered. */
8604 info.tdep_info = (void *) tdesc_data;
8605 gdbarch_init_osabi (info, gdbarch);
8606
8607 /* The hook may have adjusted num_regs, fetch the final value and
8608 set pc_regnum and sp_regnum now that it has been fixed. */
8609 num_regs = gdbarch_num_regs (gdbarch);
8610 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8611 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8612
8613 /* Unwind the frame. */
8614 dwarf2_append_unwinders (gdbarch);
8615 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8616 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8617 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8618 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8619 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8620 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8621 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8622 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8623 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8624
8625 if (tdesc_data)
8626 {
8627 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8628 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8629
8630 /* Override the normal target description methods to handle our
8631 dual real and pseudo registers. */
8632 set_gdbarch_register_name (gdbarch, mips_register_name);
8633 set_gdbarch_register_reggroup_p (gdbarch,
8634 mips_tdesc_register_reggroup_p);
8635
8636 num_regs = gdbarch_num_regs (gdbarch);
8637 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8638 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8639 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8640 }
8641
8642 /* Add ABI-specific aliases for the registers. */
8643 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8644 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8645 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8646 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8647 else
8648 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8649 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8650 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8651
8652 /* Add some other standard aliases. */
8653 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8654 user_reg_add (gdbarch, mips_register_aliases[i].name,
8655 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8656
8657 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8658 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8659 value_of_mips_user_reg,
8660 &mips_numeric_register_aliases[i].regnum);
8661
8662 return gdbarch;
8663 }
8664
8665 static void
8666 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8667 {
8668 struct gdbarch_info info;
8669
8670 /* Force the architecture to update, and (if it's a MIPS architecture)
8671 mips_gdbarch_init will take care of the rest. */
8672 gdbarch_info_init (&info);
8673 gdbarch_update_p (info);
8674 }
8675
8676 /* Print out which MIPS ABI is in use. */
8677
8678 static void
8679 show_mips_abi (struct ui_file *file,
8680 int from_tty,
8681 struct cmd_list_element *ignored_cmd,
8682 const char *ignored_value)
8683 {
8684 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8685 fprintf_filtered
8686 (file,
8687 "The MIPS ABI is unknown because the current architecture "
8688 "is not MIPS.\n");
8689 else
8690 {
8691 enum mips_abi global_abi = global_mips_abi ();
8692 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8693 const char *actual_abi_str = mips_abi_strings[actual_abi];
8694
8695 if (global_abi == MIPS_ABI_UNKNOWN)
8696 fprintf_filtered
8697 (file,
8698 "The MIPS ABI is set automatically (currently \"%s\").\n",
8699 actual_abi_str);
8700 else if (global_abi == actual_abi)
8701 fprintf_filtered
8702 (file,
8703 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8704 actual_abi_str);
8705 else
8706 {
8707 /* Probably shouldn't happen... */
8708 fprintf_filtered (file,
8709 "The (auto detected) MIPS ABI \"%s\" is in use "
8710 "even though the user setting was \"%s\".\n",
8711 actual_abi_str, mips_abi_strings[global_abi]);
8712 }
8713 }
8714 }
8715
8716 /* Print out which MIPS compressed ISA encoding is used. */
8717
8718 static void
8719 show_mips_compression (struct ui_file *file, int from_tty,
8720 struct cmd_list_element *c, const char *value)
8721 {
8722 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8723 value);
8724 }
8725
8726 static void
8727 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8728 {
8729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8730 if (tdep != NULL)
8731 {
8732 int ef_mips_arch;
8733 int ef_mips_32bitmode;
8734 /* Determine the ISA. */
8735 switch (tdep->elf_flags & EF_MIPS_ARCH)
8736 {
8737 case E_MIPS_ARCH_1:
8738 ef_mips_arch = 1;
8739 break;
8740 case E_MIPS_ARCH_2:
8741 ef_mips_arch = 2;
8742 break;
8743 case E_MIPS_ARCH_3:
8744 ef_mips_arch = 3;
8745 break;
8746 case E_MIPS_ARCH_4:
8747 ef_mips_arch = 4;
8748 break;
8749 default:
8750 ef_mips_arch = 0;
8751 break;
8752 }
8753 /* Determine the size of a pointer. */
8754 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8755 fprintf_unfiltered (file,
8756 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8757 tdep->elf_flags);
8758 fprintf_unfiltered (file,
8759 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8760 ef_mips_32bitmode);
8761 fprintf_unfiltered (file,
8762 "mips_dump_tdep: ef_mips_arch = %d\n",
8763 ef_mips_arch);
8764 fprintf_unfiltered (file,
8765 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8766 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8767 fprintf_unfiltered (file,
8768 "mips_dump_tdep: "
8769 "mips_mask_address_p() %d (default %d)\n",
8770 mips_mask_address_p (tdep),
8771 tdep->default_mask_address_p);
8772 }
8773 fprintf_unfiltered (file,
8774 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8775 MIPS_DEFAULT_FPU_TYPE,
8776 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8777 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8778 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8779 : "???"));
8780 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8781 MIPS_EABI (gdbarch));
8782 fprintf_unfiltered (file,
8783 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8784 MIPS_FPU_TYPE (gdbarch),
8785 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8786 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8787 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
8788 : "???"));
8789 }
8790
8791 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
8792
8793 void
8794 _initialize_mips_tdep (void)
8795 {
8796 static struct cmd_list_element *mipsfpulist = NULL;
8797 struct cmd_list_element *c;
8798
8799 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8800 if (MIPS_ABI_LAST + 1
8801 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8802 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8803
8804 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8805
8806 mips_pdr_data = register_objfile_data ();
8807
8808 /* Create feature sets with the appropriate properties. The values
8809 are not important. */
8810 mips_tdesc_gp32 = allocate_target_description ();
8811 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8812
8813 mips_tdesc_gp64 = allocate_target_description ();
8814 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8815
8816 /* Add root prefix command for all "set mips"/"show mips" commands. */
8817 add_prefix_cmd ("mips", no_class, set_mips_command,
8818 _("Various MIPS specific commands."),
8819 &setmipscmdlist, "set mips ", 0, &setlist);
8820
8821 add_prefix_cmd ("mips", no_class, show_mips_command,
8822 _("Various MIPS specific commands."),
8823 &showmipscmdlist, "show mips ", 0, &showlist);
8824
8825 /* Allow the user to override the ABI. */
8826 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8827 &mips_abi_string, _("\
8828 Set the MIPS ABI used by this program."), _("\
8829 Show the MIPS ABI used by this program."), _("\
8830 This option can be set to one of:\n\
8831 auto - the default ABI associated with the current binary\n\
8832 o32\n\
8833 o64\n\
8834 n32\n\
8835 n64\n\
8836 eabi32\n\
8837 eabi64"),
8838 mips_abi_update,
8839 show_mips_abi,
8840 &setmipscmdlist, &showmipscmdlist);
8841
8842 /* Allow the user to set the ISA to assume for compressed code if ELF
8843 file flags don't tell or there is no program file selected. This
8844 setting is updated whenever unambiguous ELF file flags are interpreted,
8845 and carried over to subsequent sessions. */
8846 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
8847 &mips_compression_string, _("\
8848 Set the compressed ISA encoding used by MIPS code."), _("\
8849 Show the compressed ISA encoding used by MIPS code."), _("\
8850 Select the compressed ISA encoding used in functions that have no symbol\n\
8851 information available. The encoding can be set to either of:\n\
8852 mips16\n\
8853 micromips\n\
8854 and is updated automatically from ELF file flags if available."),
8855 mips_abi_update,
8856 show_mips_compression,
8857 &setmipscmdlist, &showmipscmdlist);
8858
8859 /* Let the user turn off floating point and set the fence post for
8860 heuristic_proc_start. */
8861
8862 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
8863 _("Set use of MIPS floating-point coprocessor."),
8864 &mipsfpulist, "set mipsfpu ", 0, &setlist);
8865 add_cmd ("single", class_support, set_mipsfpu_single_command,
8866 _("Select single-precision MIPS floating-point coprocessor."),
8867 &mipsfpulist);
8868 add_cmd ("double", class_support, set_mipsfpu_double_command,
8869 _("Select double-precision MIPS floating-point coprocessor."),
8870 &mipsfpulist);
8871 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
8872 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
8873 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
8874 add_cmd ("none", class_support, set_mipsfpu_none_command,
8875 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
8876 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
8877 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
8878 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
8879 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
8880 _("Select MIPS floating-point coprocessor automatically."),
8881 &mipsfpulist);
8882 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
8883 _("Show current use of MIPS floating-point coprocessor target."),
8884 &showlist);
8885
8886 /* We really would like to have both "0" and "unlimited" work, but
8887 command.c doesn't deal with that. So make it a var_zinteger
8888 because the user can always use "999999" or some such for unlimited. */
8889 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
8890 &heuristic_fence_post, _("\
8891 Set the distance searched for the start of a function."), _("\
8892 Show the distance searched for the start of a function."), _("\
8893 If you are debugging a stripped executable, GDB needs to search through the\n\
8894 program for the start of a function. This command sets the distance of the\n\
8895 search. The only need to set it is when debugging a stripped executable."),
8896 reinit_frame_cache_sfunc,
8897 NULL, /* FIXME: i18n: The distance searched for
8898 the start of a function is %s. */
8899 &setlist, &showlist);
8900
8901 /* Allow the user to control whether the upper bits of 64-bit
8902 addresses should be zeroed. */
8903 add_setshow_auto_boolean_cmd ("mask-address", no_class,
8904 &mask_address_var, _("\
8905 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
8906 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
8907 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
8908 allow GDB to determine the correct value."),
8909 NULL, show_mask_address,
8910 &setmipscmdlist, &showmipscmdlist);
8911
8912 /* Allow the user to control the size of 32 bit registers within the
8913 raw remote packet. */
8914 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
8915 &mips64_transfers_32bit_regs_p, _("\
8916 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8917 _("\
8918 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8919 _("\
8920 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
8921 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
8922 64 bits for others. Use \"off\" to disable compatibility mode"),
8923 set_mips64_transfers_32bit_regs,
8924 NULL, /* FIXME: i18n: Compatibility with 64-bit
8925 MIPS target that transfers 32-bit
8926 quantities is %s. */
8927 &setlist, &showlist);
8928
8929 /* Debug this files internals. */
8930 add_setshow_zuinteger_cmd ("mips", class_maintenance,
8931 &mips_debug, _("\
8932 Set mips debugging."), _("\
8933 Show mips debugging."), _("\
8934 When non-zero, mips specific debugging is enabled."),
8935 NULL,
8936 NULL, /* FIXME: i18n: Mips debugging is
8937 currently %s. */
8938 &setdebuglist, &showdebuglist);
8939 }
This page took 0.378327 seconds and 5 git commands to generate.