-Wwrite-strings: The Rest
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "floatformat.h"
53 #include "remote.h"
54 #include "target-descriptions.h"
55 #include "dwarf2-frame.h"
56 #include "user-regs.h"
57 #include "valprint.h"
58 #include "ax.h"
59 #include <algorithm>
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68 static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
77
78 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
84
85 /* The sizes of floating point registers. */
86
87 enum
88 {
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91 };
92
93 enum
94 {
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97 };
98
99 static const char *mips_abi_string;
100
101 static const char *const mips_abi_strings[] = {
102 "auto",
103 "n32",
104 "o32",
105 "n64",
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110 };
111
112 /* Enum describing the different kinds of breakpoints. */
113
114 enum mips_breakpoint_kind
115 {
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127 };
128
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16[] = "mips16";
133 static const char mips_compression_micromips[] = "micromips";
134 static const char *const mips_compression_strings[] =
135 {
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139 };
140
141 static const char *mips_compression_string = mips_compression_mips16;
142
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
145 {
146 const char *name;
147 int regnum;
148 };
149
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156 };
157
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164 };
165
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175 #undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190 };
191
192 const struct register_alias mips_numeric_register_aliases[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198 #undef R
199 };
200
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203 #endif
204 static int mips_fpu_type_auto = 1;
205 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
206
207 static unsigned int mips_debug = 0;
208
209 /* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
214 struct target_desc *mips_tdesc_gp32;
215 struct target_desc *mips_tdesc_gp64;
216
217 const struct mips_regnum *
218 mips_regnum (struct gdbarch *gdbarch)
219 {
220 return gdbarch_tdep (gdbarch)->regnum;
221 }
222
223 static int
224 mips_fpa0_regnum (struct gdbarch *gdbarch)
225 {
226 return mips_regnum (gdbarch)->fp0 + 12;
227 }
228
229 /* Return 1 if REGNUM refers to a floating-point general register, raw
230 or cooked. Otherwise return 0. */
231
232 static int
233 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
234 {
235 int rawnum = regnum % gdbarch_num_regs (gdbarch);
236
237 return (rawnum >= mips_regnum (gdbarch)->fp0
238 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
239 }
240
241 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
242 == MIPS_ABI_EABI32 \
243 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
244
245 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
246 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
247
248 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
249 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
250
251 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
252
253 /* Return the MIPS ABI associated with GDBARCH. */
254 enum mips_abi
255 mips_abi (struct gdbarch *gdbarch)
256 {
257 return gdbarch_tdep (gdbarch)->mips_abi;
258 }
259
260 int
261 mips_isa_regsize (struct gdbarch *gdbarch)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* If we know how big the registers are, use that size. */
266 if (tdep->register_size_valid_p)
267 return tdep->register_size;
268
269 /* Fall back to the previous behavior. */
270 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
271 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
272 }
273
274 /* Return the currently configured (or set) saved register size. */
275
276 unsigned int
277 mips_abi_regsize (struct gdbarch *gdbarch)
278 {
279 switch (mips_abi (gdbarch))
280 {
281 case MIPS_ABI_EABI32:
282 case MIPS_ABI_O32:
283 return 4;
284 case MIPS_ABI_N32:
285 case MIPS_ABI_N64:
286 case MIPS_ABI_O64:
287 case MIPS_ABI_EABI64:
288 return 8;
289 case MIPS_ABI_UNKNOWN:
290 case MIPS_ABI_LAST:
291 default:
292 internal_error (__FILE__, __LINE__, _("bad switch"));
293 }
294 }
295
296 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
297 are some functions to handle addresses associated with compressed
298 code including but not limited to testing, setting, or clearing
299 bit 0 of such addresses. */
300
301 /* Return one iff compressed code is the MIPS16 instruction set. */
302
303 static int
304 is_mips16_isa (struct gdbarch *gdbarch)
305 {
306 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
307 }
308
309 /* Return one iff compressed code is the microMIPS instruction set. */
310
311 static int
312 is_micromips_isa (struct gdbarch *gdbarch)
313 {
314 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
315 }
316
317 /* Return one iff ADDR denotes compressed code. */
318
319 static int
320 is_compact_addr (CORE_ADDR addr)
321 {
322 return ((addr) & 1);
323 }
324
325 /* Return one iff ADDR denotes standard ISA code. */
326
327 static int
328 is_mips_addr (CORE_ADDR addr)
329 {
330 return !is_compact_addr (addr);
331 }
332
333 /* Return one iff ADDR denotes MIPS16 code. */
334
335 static int
336 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
337 {
338 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
339 }
340
341 /* Return one iff ADDR denotes microMIPS code. */
342
343 static int
344 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
345 {
346 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
347 }
348
349 /* Strip the ISA (compression) bit off from ADDR. */
350
351 static CORE_ADDR
352 unmake_compact_addr (CORE_ADDR addr)
353 {
354 return ((addr) & ~(CORE_ADDR) 1);
355 }
356
357 /* Add the ISA (compression) bit to ADDR. */
358
359 static CORE_ADDR
360 make_compact_addr (CORE_ADDR addr)
361 {
362 return ((addr) | (CORE_ADDR) 1);
363 }
364
365 /* Extern version of unmake_compact_addr; we use a separate function
366 so that unmake_compact_addr can be inlined throughout this file. */
367
368 CORE_ADDR
369 mips_unmake_compact_addr (CORE_ADDR addr)
370 {
371 return unmake_compact_addr (addr);
372 }
373
374 /* Functions for setting and testing a bit in a minimal symbol that
375 marks it as MIPS16 or microMIPS function. The MSB of the minimal
376 symbol's "info" field is used for this purpose.
377
378 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
379 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
380 one of the "special" bits in a minimal symbol to mark it accordingly.
381 The test checks an ELF-private flag that is valid for true function
382 symbols only; for synthetic symbols such as for PLT stubs that have
383 no ELF-private part at all the MIPS BFD backend arranges for this
384 information to be carried in the asymbol's udata field instead.
385
386 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
387 in a minimal symbol. */
388
389 static void
390 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
391 {
392 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
393 unsigned char st_other;
394
395 if ((sym->flags & BSF_SYNTHETIC) == 0)
396 st_other = elfsym->internal_elf_sym.st_other;
397 else if ((sym->flags & BSF_FUNCTION) != 0)
398 st_other = sym->udata.i;
399 else
400 return;
401
402 if (ELF_ST_IS_MICROMIPS (st_other))
403 {
404 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
405 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
406 }
407 else if (ELF_ST_IS_MIPS16 (st_other))
408 {
409 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
410 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
411 }
412 }
413
414 /* Return one iff MSYM refers to standard ISA code. */
415
416 static int
417 msymbol_is_mips (struct minimal_symbol *msym)
418 {
419 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
420 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
421 }
422
423 /* Return one iff MSYM refers to MIPS16 code. */
424
425 static int
426 msymbol_is_mips16 (struct minimal_symbol *msym)
427 {
428 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
429 }
430
431 /* Return one iff MSYM refers to microMIPS code. */
432
433 static int
434 msymbol_is_micromips (struct minimal_symbol *msym)
435 {
436 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
437 }
438
439 /* Set the ISA bit in the main symbol too, complementing the corresponding
440 minimal symbol setting and reflecting the run-time value of the symbol.
441 The need for comes from the ISA bit having been cleared as code in
442 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
443 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
444 of symbols referring to compressed code different in GDB to the values
445 used by actual code. That in turn makes them evaluate incorrectly in
446 expressions, producing results different to what the same expressions
447 yield when compiled into the program being debugged. */
448
449 static void
450 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
451 {
452 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
453 {
454 /* We are in symbol reading so it is OK to cast away constness. */
455 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
456 CORE_ADDR compact_block_start;
457 struct bound_minimal_symbol msym;
458
459 compact_block_start = BLOCK_START (block) | 1;
460 msym = lookup_minimal_symbol_by_pc (compact_block_start);
461 if (msym.minsym && !msymbol_is_mips (msym.minsym))
462 {
463 BLOCK_START (block) = compact_block_start;
464 }
465 }
466 }
467
468 /* XFER a value from the big/little/left end of the register.
469 Depending on the size of the value it might occupy the entire
470 register or just part of it. Make an allowance for this, aligning
471 things accordingly. */
472
473 static void
474 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
475 int reg_num, int length,
476 enum bfd_endian endian, gdb_byte *in,
477 const gdb_byte *out, int buf_offset)
478 {
479 int reg_offset = 0;
480
481 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
482 /* Need to transfer the left or right part of the register, based on
483 the targets byte order. */
484 switch (endian)
485 {
486 case BFD_ENDIAN_BIG:
487 reg_offset = register_size (gdbarch, reg_num) - length;
488 break;
489 case BFD_ENDIAN_LITTLE:
490 reg_offset = 0;
491 break;
492 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
493 reg_offset = 0;
494 break;
495 default:
496 internal_error (__FILE__, __LINE__, _("bad switch"));
497 }
498 if (mips_debug)
499 fprintf_unfiltered (gdb_stderr,
500 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
501 reg_num, reg_offset, buf_offset, length);
502 if (mips_debug && out != NULL)
503 {
504 int i;
505 fprintf_unfiltered (gdb_stdlog, "out ");
506 for (i = 0; i < length; i++)
507 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
508 }
509 if (in != NULL)
510 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
511 in + buf_offset);
512 if (out != NULL)
513 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
514 out + buf_offset);
515 if (mips_debug && in != NULL)
516 {
517 int i;
518 fprintf_unfiltered (gdb_stdlog, "in ");
519 for (i = 0; i < length; i++)
520 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
521 }
522 if (mips_debug)
523 fprintf_unfiltered (gdb_stdlog, "\n");
524 }
525
526 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
527 compatiblity mode. A return value of 1 means that we have
528 physical 64-bit registers, but should treat them as 32-bit registers. */
529
530 static int
531 mips2_fp_compat (struct frame_info *frame)
532 {
533 struct gdbarch *gdbarch = get_frame_arch (frame);
534 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
535 meaningful. */
536 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
537 return 0;
538
539 #if 0
540 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
541 in all the places we deal with FP registers. PR gdb/413. */
542 /* Otherwise check the FR bit in the status register - it controls
543 the FP compatiblity mode. If it is clear we are in compatibility
544 mode. */
545 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
546 return 1;
547 #endif
548
549 return 0;
550 }
551
552 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
553
554 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
555
556 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
557
558 /* The list of available "set mips " and "show mips " commands. */
559
560 static struct cmd_list_element *setmipscmdlist = NULL;
561 static struct cmd_list_element *showmipscmdlist = NULL;
562
563 /* Integer registers 0 thru 31 are handled explicitly by
564 mips_register_name(). Processor specific registers 32 and above
565 are listed in the following tables. */
566
567 enum
568 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
569
570 /* Generic MIPS. */
571
572 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
573 "sr", "lo", "hi", "bad", "cause", "pc",
574 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
575 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
576 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
577 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
578 "fsr", "fir",
579 };
580
581 /* Names of tx39 registers. */
582
583 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
584 "sr", "lo", "hi", "bad", "cause", "pc",
585 "", "", "", "", "", "", "", "",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "", "", "", "", "",
589 "", "", "", "",
590 "", "", "", "", "", "", "", "",
591 "", "", "config", "cache", "debug", "depc", "epc",
592 };
593
594 /* Names of registers with Linux kernels. */
595 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
596 "sr", "lo", "hi", "bad", "cause", "pc",
597 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
598 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
599 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
600 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
601 "fsr", "fir"
602 };
603
604
605 /* Return the name of the register corresponding to REGNO. */
606 static const char *
607 mips_register_name (struct gdbarch *gdbarch, int regno)
608 {
609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
610 /* GPR names for all ABIs other than n32/n64. */
611 static const char *mips_gpr_names[] = {
612 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
613 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
614 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
615 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
616 };
617
618 /* GPR names for n32 and n64 ABIs. */
619 static const char *mips_n32_n64_gpr_names[] = {
620 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
621 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
622 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
623 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
624 };
625
626 enum mips_abi abi = mips_abi (gdbarch);
627
628 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
629 but then don't make the raw register names visible. This (upper)
630 range of user visible register numbers are the pseudo-registers.
631
632 This approach was adopted accommodate the following scenario:
633 It is possible to debug a 64-bit device using a 32-bit
634 programming model. In such instances, the raw registers are
635 configured to be 64-bits wide, while the pseudo registers are
636 configured to be 32-bits wide. The registers that the user
637 sees - the pseudo registers - match the users expectations
638 given the programming model being used. */
639 int rawnum = regno % gdbarch_num_regs (gdbarch);
640 if (regno < gdbarch_num_regs (gdbarch))
641 return "";
642
643 /* The MIPS integer registers are always mapped from 0 to 31. The
644 names of the registers (which reflects the conventions regarding
645 register use) vary depending on the ABI. */
646 if (0 <= rawnum && rawnum < 32)
647 {
648 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
649 return mips_n32_n64_gpr_names[rawnum];
650 else
651 return mips_gpr_names[rawnum];
652 }
653 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
654 return tdesc_register_name (gdbarch, rawnum);
655 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
656 {
657 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
658 if (tdep->mips_processor_reg_names[rawnum - 32])
659 return tdep->mips_processor_reg_names[rawnum - 32];
660 return "";
661 }
662 else
663 internal_error (__FILE__, __LINE__,
664 _("mips_register_name: bad register number %d"), rawnum);
665 }
666
667 /* Return the groups that a MIPS register can be categorised into. */
668
669 static int
670 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
671 struct reggroup *reggroup)
672 {
673 int vector_p;
674 int float_p;
675 int raw_p;
676 int rawnum = regnum % gdbarch_num_regs (gdbarch);
677 int pseudo = regnum / gdbarch_num_regs (gdbarch);
678 if (reggroup == all_reggroup)
679 return pseudo;
680 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
681 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
682 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
683 (gdbarch), as not all architectures are multi-arch. */
684 raw_p = rawnum < gdbarch_num_regs (gdbarch);
685 if (gdbarch_register_name (gdbarch, regnum) == NULL
686 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
687 return 0;
688 if (reggroup == float_reggroup)
689 return float_p && pseudo;
690 if (reggroup == vector_reggroup)
691 return vector_p && pseudo;
692 if (reggroup == general_reggroup)
693 return (!vector_p && !float_p) && pseudo;
694 /* Save the pseudo registers. Need to make certain that any code
695 extracting register values from a saved register cache also uses
696 pseudo registers. */
697 if (reggroup == save_reggroup)
698 return raw_p && pseudo;
699 /* Restore the same pseudo register. */
700 if (reggroup == restore_reggroup)
701 return raw_p && pseudo;
702 return 0;
703 }
704
705 /* Return the groups that a MIPS register can be categorised into.
706 This version is only used if we have a target description which
707 describes real registers (and their groups). */
708
709 static int
710 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
711 struct reggroup *reggroup)
712 {
713 int rawnum = regnum % gdbarch_num_regs (gdbarch);
714 int pseudo = regnum / gdbarch_num_regs (gdbarch);
715 int ret;
716
717 /* Only save, restore, and display the pseudo registers. Need to
718 make certain that any code extracting register values from a
719 saved register cache also uses pseudo registers.
720
721 Note: saving and restoring the pseudo registers is slightly
722 strange; if we have 64 bits, we should save and restore all
723 64 bits. But this is hard and has little benefit. */
724 if (!pseudo)
725 return 0;
726
727 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
728 if (ret != -1)
729 return ret;
730
731 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
732 }
733
734 /* Map the symbol table registers which live in the range [1 *
735 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
736 registers. Take care of alignment and size problems. */
737
738 static enum register_status
739 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
740 int cookednum, gdb_byte *buf)
741 {
742 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
743 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
744 && cookednum < 2 * gdbarch_num_regs (gdbarch));
745 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
746 return regcache_raw_read (regcache, rawnum, buf);
747 else if (register_size (gdbarch, rawnum) >
748 register_size (gdbarch, cookednum))
749 {
750 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
751 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
752 else
753 {
754 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
755 LONGEST regval;
756 enum register_status status;
757
758 status = regcache_raw_read_signed (regcache, rawnum, &regval);
759 if (status == REG_VALID)
760 store_signed_integer (buf, 4, byte_order, regval);
761 return status;
762 }
763 }
764 else
765 internal_error (__FILE__, __LINE__, _("bad register size"));
766 }
767
768 static void
769 mips_pseudo_register_write (struct gdbarch *gdbarch,
770 struct regcache *regcache, int cookednum,
771 const gdb_byte *buf)
772 {
773 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
774 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
775 && cookednum < 2 * gdbarch_num_regs (gdbarch));
776 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
777 regcache_raw_write (regcache, rawnum, buf);
778 else if (register_size (gdbarch, rawnum) >
779 register_size (gdbarch, cookednum))
780 {
781 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
782 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
783 else
784 {
785 /* Sign extend the shortened version of the register prior
786 to placing it in the raw register. This is required for
787 some mips64 parts in order to avoid unpredictable behavior. */
788 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
789 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
790 regcache_raw_write_signed (regcache, rawnum, regval);
791 }
792 }
793 else
794 internal_error (__FILE__, __LINE__, _("bad register size"));
795 }
796
797 static int
798 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
799 struct agent_expr *ax, int reg)
800 {
801 int rawnum = reg % gdbarch_num_regs (gdbarch);
802 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
803 && reg < 2 * gdbarch_num_regs (gdbarch));
804
805 ax_reg_mask (ax, rawnum);
806
807 return 0;
808 }
809
810 static int
811 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
812 struct agent_expr *ax, int reg)
813 {
814 int rawnum = reg % gdbarch_num_regs (gdbarch);
815 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
816 && reg < 2 * gdbarch_num_regs (gdbarch));
817 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
818 {
819 ax_reg (ax, rawnum);
820
821 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
822 {
823 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
824 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
825 {
826 ax_const_l (ax, 32);
827 ax_simple (ax, aop_lsh);
828 }
829 ax_const_l (ax, 32);
830 ax_simple (ax, aop_rsh_signed);
831 }
832 }
833 else
834 internal_error (__FILE__, __LINE__, _("bad register size"));
835
836 return 0;
837 }
838
839 /* Table to translate 3-bit register field to actual register number. */
840 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
841
842 /* Heuristic_proc_start may hunt through the text section for a long
843 time across a 2400 baud serial line. Allows the user to limit this
844 search. */
845
846 static int heuristic_fence_post = 0;
847
848 /* Number of bytes of storage in the actual machine representation for
849 register N. NOTE: This defines the pseudo register type so need to
850 rebuild the architecture vector. */
851
852 static int mips64_transfers_32bit_regs_p = 0;
853
854 static void
855 set_mips64_transfers_32bit_regs (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 struct gdbarch_info info;
859 gdbarch_info_init (&info);
860 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
861 instead of relying on globals. Doing that would let generic code
862 handle the search for this specific architecture. */
863 if (!gdbarch_update_p (info))
864 {
865 mips64_transfers_32bit_regs_p = 0;
866 error (_("32-bit compatibility mode not supported"));
867 }
868 }
869
870 /* Convert to/from a register and the corresponding memory value. */
871
872 /* This predicate tests for the case of an 8 byte floating point
873 value that is being transferred to or from a pair of floating point
874 registers each of which are (or are considered to be) only 4 bytes
875 wide. */
876 static int
877 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
878 struct type *type)
879 {
880 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
881 && register_size (gdbarch, regnum) == 4
882 && mips_float_register_p (gdbarch, regnum)
883 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
884 }
885
886 /* This predicate tests for the case of a value of less than 8
887 bytes in width that is being transfered to or from an 8 byte
888 general purpose register. */
889 static int
890 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
891 struct type *type)
892 {
893 int num_regs = gdbarch_num_regs (gdbarch);
894
895 return (register_size (gdbarch, regnum) == 8
896 && regnum % num_regs > 0 && regnum % num_regs < 32
897 && TYPE_LENGTH (type) < 8);
898 }
899
900 static int
901 mips_convert_register_p (struct gdbarch *gdbarch,
902 int regnum, struct type *type)
903 {
904 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
905 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
906 }
907
908 static int
909 mips_register_to_value (struct frame_info *frame, int regnum,
910 struct type *type, gdb_byte *to,
911 int *optimizedp, int *unavailablep)
912 {
913 struct gdbarch *gdbarch = get_frame_arch (frame);
914
915 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
916 {
917 get_frame_register (frame, regnum + 0, to + 4);
918 get_frame_register (frame, regnum + 1, to + 0);
919
920 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
921 optimizedp, unavailablep))
922 return 0;
923
924 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
925 optimizedp, unavailablep))
926 return 0;
927 *optimizedp = *unavailablep = 0;
928 return 1;
929 }
930 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
931 {
932 int len = TYPE_LENGTH (type);
933 CORE_ADDR offset;
934
935 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
936 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
937 optimizedp, unavailablep))
938 return 0;
939
940 *optimizedp = *unavailablep = 0;
941 return 1;
942 }
943 else
944 {
945 internal_error (__FILE__, __LINE__,
946 _("mips_register_to_value: unrecognized case"));
947 }
948 }
949
950 static void
951 mips_value_to_register (struct frame_info *frame, int regnum,
952 struct type *type, const gdb_byte *from)
953 {
954 struct gdbarch *gdbarch = get_frame_arch (frame);
955
956 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
957 {
958 put_frame_register (frame, regnum + 0, from + 4);
959 put_frame_register (frame, regnum + 1, from + 0);
960 }
961 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
962 {
963 gdb_byte fill[8];
964 int len = TYPE_LENGTH (type);
965
966 /* Sign extend values, irrespective of type, that are stored to
967 a 64-bit general purpose register. (32-bit unsigned values
968 are stored as signed quantities within a 64-bit register.
969 When performing an operation, in compiled code, that combines
970 a 32-bit unsigned value with a signed 64-bit value, a type
971 conversion is first performed that zeroes out the high 32 bits.) */
972 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
973 {
974 if (from[0] & 0x80)
975 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
976 else
977 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
978 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
979 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
980 }
981 else
982 {
983 if (from[len-1] & 0x80)
984 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
985 else
986 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
987 put_frame_register_bytes (frame, regnum, 0, len, from);
988 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
989 }
990 }
991 else
992 {
993 internal_error (__FILE__, __LINE__,
994 _("mips_value_to_register: unrecognized case"));
995 }
996 }
997
998 /* Return the GDB type object for the "standard" data type of data in
999 register REG. */
1000
1001 static struct type *
1002 mips_register_type (struct gdbarch *gdbarch, int regnum)
1003 {
1004 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1005 if (mips_float_register_p (gdbarch, regnum))
1006 {
1007 /* The floating-point registers raw, or cooked, always match
1008 mips_isa_regsize(), and also map 1:1, byte for byte. */
1009 if (mips_isa_regsize (gdbarch) == 4)
1010 return builtin_type (gdbarch)->builtin_float;
1011 else
1012 return builtin_type (gdbarch)->builtin_double;
1013 }
1014 else if (regnum < gdbarch_num_regs (gdbarch))
1015 {
1016 /* The raw or ISA registers. These are all sized according to
1017 the ISA regsize. */
1018 if (mips_isa_regsize (gdbarch) == 4)
1019 return builtin_type (gdbarch)->builtin_int32;
1020 else
1021 return builtin_type (gdbarch)->builtin_int64;
1022 }
1023 else
1024 {
1025 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1026
1027 /* The cooked or ABI registers. These are sized according to
1028 the ABI (with a few complications). */
1029 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1030 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1031 return builtin_type (gdbarch)->builtin_int32;
1032 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1033 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1034 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1035 /* The pseudo/cooked view of the embedded registers is always
1036 32-bit. The raw view is handled below. */
1037 return builtin_type (gdbarch)->builtin_int32;
1038 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1039 /* The target, while possibly using a 64-bit register buffer,
1040 is only transfering 32-bits of each integer register.
1041 Reflect this in the cooked/pseudo (ABI) register value. */
1042 return builtin_type (gdbarch)->builtin_int32;
1043 else if (mips_abi_regsize (gdbarch) == 4)
1044 /* The ABI is restricted to 32-bit registers (the ISA could be
1045 32- or 64-bit). */
1046 return builtin_type (gdbarch)->builtin_int32;
1047 else
1048 /* 64-bit ABI. */
1049 return builtin_type (gdbarch)->builtin_int64;
1050 }
1051 }
1052
1053 /* Return the GDB type for the pseudo register REGNUM, which is the
1054 ABI-level view. This function is only called if there is a target
1055 description which includes registers, so we know precisely the
1056 types of hardware registers. */
1057
1058 static struct type *
1059 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1060 {
1061 const int num_regs = gdbarch_num_regs (gdbarch);
1062 int rawnum = regnum % num_regs;
1063 struct type *rawtype;
1064
1065 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1066
1067 /* Absent registers are still absent. */
1068 rawtype = gdbarch_register_type (gdbarch, rawnum);
1069 if (TYPE_LENGTH (rawtype) == 0)
1070 return rawtype;
1071
1072 /* Present the floating point registers however the hardware did;
1073 do not try to convert between FPU layouts. */
1074 if (mips_float_register_p (gdbarch, rawnum))
1075 return rawtype;
1076
1077 /* Floating-point control registers are always 32-bit even though for
1078 backwards compatibility reasons 64-bit targets will transfer them
1079 as 64-bit quantities even if using XML descriptions. */
1080 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1081 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1082 return builtin_type (gdbarch)->builtin_int32;
1083
1084 /* Use pointer types for registers if we can. For n32 we can not,
1085 since we do not have a 64-bit pointer type. */
1086 if (mips_abi_regsize (gdbarch)
1087 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1088 {
1089 if (rawnum == MIPS_SP_REGNUM
1090 || rawnum == mips_regnum (gdbarch)->badvaddr)
1091 return builtin_type (gdbarch)->builtin_data_ptr;
1092 else if (rawnum == mips_regnum (gdbarch)->pc)
1093 return builtin_type (gdbarch)->builtin_func_ptr;
1094 }
1095
1096 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1097 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1098 || rawnum == mips_regnum (gdbarch)->lo
1099 || rawnum == mips_regnum (gdbarch)->hi
1100 || rawnum == mips_regnum (gdbarch)->badvaddr
1101 || rawnum == mips_regnum (gdbarch)->cause
1102 || rawnum == mips_regnum (gdbarch)->pc
1103 || (mips_regnum (gdbarch)->dspacc != -1
1104 && rawnum >= mips_regnum (gdbarch)->dspacc
1105 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1106 return builtin_type (gdbarch)->builtin_int32;
1107
1108 /* The pseudo/cooked view of embedded registers is always
1109 32-bit, even if the target transfers 64-bit values for them.
1110 New targets relying on XML descriptions should only transfer
1111 the necessary 32 bits, but older versions of GDB expected 64,
1112 so allow the target to provide 64 bits without interfering
1113 with the displayed type. */
1114 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1115 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1116 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1117 return builtin_type (gdbarch)->builtin_int32;
1118
1119 /* For all other registers, pass through the hardware type. */
1120 return rawtype;
1121 }
1122
1123 /* Should the upper word of 64-bit addresses be zeroed? */
1124 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1125
1126 static int
1127 mips_mask_address_p (struct gdbarch_tdep *tdep)
1128 {
1129 switch (mask_address_var)
1130 {
1131 case AUTO_BOOLEAN_TRUE:
1132 return 1;
1133 case AUTO_BOOLEAN_FALSE:
1134 return 0;
1135 break;
1136 case AUTO_BOOLEAN_AUTO:
1137 return tdep->default_mask_address_p;
1138 default:
1139 internal_error (__FILE__, __LINE__,
1140 _("mips_mask_address_p: bad switch"));
1141 return -1;
1142 }
1143 }
1144
1145 static void
1146 show_mask_address (struct ui_file *file, int from_tty,
1147 struct cmd_list_element *c, const char *value)
1148 {
1149 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1150
1151 deprecated_show_value_hack (file, from_tty, c, value);
1152 switch (mask_address_var)
1153 {
1154 case AUTO_BOOLEAN_TRUE:
1155 printf_filtered ("The 32 bit mips address mask is enabled\n");
1156 break;
1157 case AUTO_BOOLEAN_FALSE:
1158 printf_filtered ("The 32 bit mips address mask is disabled\n");
1159 break;
1160 case AUTO_BOOLEAN_AUTO:
1161 printf_filtered
1162 ("The 32 bit address mask is set automatically. Currently %s\n",
1163 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1164 break;
1165 default:
1166 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1167 break;
1168 }
1169 }
1170
1171 /* Tell if the program counter value in MEMADDR is in a standard ISA
1172 function. */
1173
1174 int
1175 mips_pc_is_mips (CORE_ADDR memaddr)
1176 {
1177 struct bound_minimal_symbol sym;
1178
1179 /* Flags indicating that this is a MIPS16 or microMIPS function is
1180 stored by elfread.c in the high bit of the info field. Use this
1181 to decide if the function is standard MIPS. Otherwise if bit 0
1182 of the address is clear, then this is a standard MIPS function. */
1183 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1184 if (sym.minsym)
1185 return msymbol_is_mips (sym.minsym);
1186 else
1187 return is_mips_addr (memaddr);
1188 }
1189
1190 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1191
1192 int
1193 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1194 {
1195 struct bound_minimal_symbol sym;
1196
1197 /* A flag indicating that this is a MIPS16 function is stored by
1198 elfread.c in the high bit of the info field. Use this to decide
1199 if the function is MIPS16. Otherwise if bit 0 of the address is
1200 set, then ELF file flags will tell if this is a MIPS16 function. */
1201 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1202 if (sym.minsym)
1203 return msymbol_is_mips16 (sym.minsym);
1204 else
1205 return is_mips16_addr (gdbarch, memaddr);
1206 }
1207
1208 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1209
1210 int
1211 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1212 {
1213 struct bound_minimal_symbol sym;
1214
1215 /* A flag indicating that this is a microMIPS function is stored by
1216 elfread.c in the high bit of the info field. Use this to decide
1217 if the function is microMIPS. Otherwise if bit 0 of the address
1218 is set, then ELF file flags will tell if this is a microMIPS
1219 function. */
1220 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1221 if (sym.minsym)
1222 return msymbol_is_micromips (sym.minsym);
1223 else
1224 return is_micromips_addr (gdbarch, memaddr);
1225 }
1226
1227 /* Tell the ISA type of the function the program counter value in MEMADDR
1228 is in. */
1229
1230 static enum mips_isa
1231 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1232 {
1233 struct bound_minimal_symbol sym;
1234
1235 /* A flag indicating that this is a MIPS16 or a microMIPS function
1236 is stored by elfread.c in the high bit of the info field. Use
1237 this to decide if the function is MIPS16 or microMIPS or normal
1238 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1239 flags will tell if this is a MIPS16 or a microMIPS function. */
1240 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1241 if (sym.minsym)
1242 {
1243 if (msymbol_is_micromips (sym.minsym))
1244 return ISA_MICROMIPS;
1245 else if (msymbol_is_mips16 (sym.minsym))
1246 return ISA_MIPS16;
1247 else
1248 return ISA_MIPS;
1249 }
1250 else
1251 {
1252 if (is_mips_addr (memaddr))
1253 return ISA_MIPS;
1254 else if (is_micromips_addr (gdbarch, memaddr))
1255 return ISA_MICROMIPS;
1256 else
1257 return ISA_MIPS16;
1258 }
1259 }
1260
1261 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1262 The need for comes from the ISA bit having been cleared, making
1263 addresses in FDE, range records, etc. referring to compressed code
1264 different to those in line information, the symbol table and finally
1265 the PC register. That in turn confuses many operations. */
1266
1267 static CORE_ADDR
1268 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1269 {
1270 pc = unmake_compact_addr (pc);
1271 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1272 }
1273
1274 /* Recalculate the line record requested so that the resulting PC has
1275 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1276 this adjustment comes from some records associated with compressed
1277 code having the ISA bit cleared, most notably at function prologue
1278 ends. The ISA bit is in this context retrieved from the minimal
1279 symbol covering the address requested, which in turn has been
1280 constructed from the binary's symbol table rather than DWARF-2
1281 information. The correct setting of the ISA bit is required for
1282 breakpoint addresses to correctly match against the stop PC.
1283
1284 As line entries can specify relative address adjustments we need to
1285 keep track of the absolute value of the last line address recorded
1286 in line information, so that we can calculate the actual address to
1287 apply the ISA bit adjustment to. We use PC for this tracking and
1288 keep the original address there.
1289
1290 As such relative address adjustments can be odd within compressed
1291 code we need to keep track of the last line address with the ISA
1292 bit adjustment applied too, as the original address may or may not
1293 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1294 the adjusted address there.
1295
1296 For relative address adjustments we then use these variables to
1297 calculate the address intended by line information, which will be
1298 PC-relative, and return an updated adjustment carrying ISA bit
1299 information, which will be ADJ_PC-relative. For absolute address
1300 adjustments we just return the same address that we store in ADJ_PC
1301 too.
1302
1303 As the first line entry can be relative to an implied address value
1304 of 0 we need to have the initial address set up that we store in PC
1305 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1306 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1307
1308 static CORE_ADDR
1309 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1310 {
1311 static CORE_ADDR adj_pc;
1312 static CORE_ADDR pc;
1313 CORE_ADDR isa_pc;
1314
1315 pc = rel ? pc + addr : addr;
1316 isa_pc = mips_adjust_dwarf2_addr (pc);
1317 addr = rel ? isa_pc - adj_pc : isa_pc;
1318 adj_pc = isa_pc;
1319 return addr;
1320 }
1321
1322 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1323
1324 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1325 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1326 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1327 static const char mips_str_call_stub[] = "__call_stub_";
1328 static const char mips_str_fn_stub[] = "__fn_stub_";
1329
1330 /* This is used as a PIC thunk prefix. */
1331
1332 static const char mips_str_pic[] = ".pic.";
1333
1334 /* Return non-zero if the PC is inside a call thunk (aka stub or
1335 trampoline) that should be treated as a temporary frame. */
1336
1337 static int
1338 mips_in_frame_stub (CORE_ADDR pc)
1339 {
1340 CORE_ADDR start_addr;
1341 const char *name;
1342
1343 /* Find the starting address of the function containing the PC. */
1344 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1345 return 0;
1346
1347 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1348 if (startswith (name, mips_str_mips16_call_stub))
1349 return 1;
1350 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1351 if (startswith (name, mips_str_call_stub))
1352 return 1;
1353 /* If the PC is in __fn_stub_*, this is a call stub. */
1354 if (startswith (name, mips_str_fn_stub))
1355 return 1;
1356
1357 return 0; /* Not a stub. */
1358 }
1359
1360 /* MIPS believes that the PC has a sign extended value. Perhaps the
1361 all registers should be sign extended for simplicity? */
1362
1363 static CORE_ADDR
1364 mips_read_pc (struct regcache *regcache)
1365 {
1366 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1367 LONGEST pc;
1368
1369 regcache_cooked_read_signed (regcache, regnum, &pc);
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1375 {
1376 CORE_ADDR pc;
1377
1378 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1379 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1380 intermediate frames. In this case we can get the caller's address
1381 from $ra, or if $ra contains an address within a thunk as well, then
1382 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1383 and thus the caller's address is in $s2. */
1384 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1385 {
1386 pc = frame_unwind_register_signed
1387 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1388 if (mips_in_frame_stub (pc))
1389 pc = frame_unwind_register_signed
1390 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1391 }
1392 return pc;
1393 }
1394
1395 static CORE_ADDR
1396 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1397 {
1398 return frame_unwind_register_signed
1399 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1400 }
1401
1402 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1403 dummy frame. The frame ID's base needs to match the TOS value
1404 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1405 breakpoint. */
1406
1407 static struct frame_id
1408 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1409 {
1410 return frame_id_build
1411 (get_frame_register_signed (this_frame,
1412 gdbarch_num_regs (gdbarch)
1413 + MIPS_SP_REGNUM),
1414 get_frame_pc (this_frame));
1415 }
1416
1417 /* Implement the "write_pc" gdbarch method. */
1418
1419 void
1420 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1421 {
1422 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1423
1424 regcache_cooked_write_unsigned (regcache, regnum, pc);
1425 }
1426
1427 /* Fetch and return instruction from the specified location. Handle
1428 MIPS16/microMIPS as appropriate. */
1429
1430 static ULONGEST
1431 mips_fetch_instruction (struct gdbarch *gdbarch,
1432 enum mips_isa isa, CORE_ADDR addr, int *errp)
1433 {
1434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1435 gdb_byte buf[MIPS_INSN32_SIZE];
1436 int instlen;
1437 int err;
1438
1439 switch (isa)
1440 {
1441 case ISA_MICROMIPS:
1442 case ISA_MIPS16:
1443 instlen = MIPS_INSN16_SIZE;
1444 addr = unmake_compact_addr (addr);
1445 break;
1446 case ISA_MIPS:
1447 instlen = MIPS_INSN32_SIZE;
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1451 break;
1452 }
1453 err = target_read_memory (addr, buf, instlen);
1454 if (errp != NULL)
1455 *errp = err;
1456 if (err != 0)
1457 {
1458 if (errp == NULL)
1459 memory_error (TARGET_XFER_E_IO, addr);
1460 return 0;
1461 }
1462 return extract_unsigned_integer (buf, instlen, byte_order);
1463 }
1464
1465 /* These are the fields of 32 bit mips instructions. */
1466 #define mips32_op(x) (x >> 26)
1467 #define itype_op(x) (x >> 26)
1468 #define itype_rs(x) ((x >> 21) & 0x1f)
1469 #define itype_rt(x) ((x >> 16) & 0x1f)
1470 #define itype_immediate(x) (x & 0xffff)
1471
1472 #define jtype_op(x) (x >> 26)
1473 #define jtype_target(x) (x & 0x03ffffff)
1474
1475 #define rtype_op(x) (x >> 26)
1476 #define rtype_rs(x) ((x >> 21) & 0x1f)
1477 #define rtype_rt(x) ((x >> 16) & 0x1f)
1478 #define rtype_rd(x) ((x >> 11) & 0x1f)
1479 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1480 #define rtype_funct(x) (x & 0x3f)
1481
1482 /* MicroMIPS instruction fields. */
1483 #define micromips_op(x) ((x) >> 10)
1484
1485 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1486 bit and the size respectively of the field extracted. */
1487 #define b0s4_imm(x) ((x) & 0xf)
1488 #define b0s5_imm(x) ((x) & 0x1f)
1489 #define b0s5_reg(x) ((x) & 0x1f)
1490 #define b0s7_imm(x) ((x) & 0x7f)
1491 #define b0s10_imm(x) ((x) & 0x3ff)
1492 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1493 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1494 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1495 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1496 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1497 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1498 #define b6s4_op(x) (((x) >> 6) & 0xf)
1499 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1500
1501 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1502 respectively of the field extracted. */
1503 #define b0s6_op(x) ((x) & 0x3f)
1504 #define b0s11_op(x) ((x) & 0x7ff)
1505 #define b0s12_imm(x) ((x) & 0xfff)
1506 #define b0s16_imm(x) ((x) & 0xffff)
1507 #define b0s26_imm(x) ((x) & 0x3ffffff)
1508 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1509 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1510 #define b12s4_op(x) (((x) >> 12) & 0xf)
1511
1512 /* Return the size in bytes of the instruction INSN encoded in the ISA
1513 instruction set. */
1514
1515 static int
1516 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1517 {
1518 switch (isa)
1519 {
1520 case ISA_MICROMIPS:
1521 if ((micromips_op (insn) & 0x4) == 0x4
1522 || (micromips_op (insn) & 0x7) == 0x0)
1523 return 2 * MIPS_INSN16_SIZE;
1524 else
1525 return MIPS_INSN16_SIZE;
1526 case ISA_MIPS16:
1527 if ((insn & 0xf800) == 0xf000)
1528 return 2 * MIPS_INSN16_SIZE;
1529 else
1530 return MIPS_INSN16_SIZE;
1531 case ISA_MIPS:
1532 return MIPS_INSN32_SIZE;
1533 }
1534 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1535 }
1536
1537 static LONGEST
1538 mips32_relative_offset (ULONGEST inst)
1539 {
1540 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1541 }
1542
1543 /* Determine the address of the next instruction executed after the INST
1544 floating condition branch instruction at PC. COUNT specifies the
1545 number of the floating condition bits tested by the branch. */
1546
1547 static CORE_ADDR
1548 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1549 ULONGEST inst, CORE_ADDR pc, int count)
1550 {
1551 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1552 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1553 int tf = itype_rt (inst) & 1;
1554 int mask = (1 << count) - 1;
1555 ULONGEST fcs;
1556 int cond;
1557
1558 if (fcsr == -1)
1559 /* No way to handle; it'll most likely trap anyway. */
1560 return pc;
1561
1562 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1563 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1564
1565 if (((cond >> cnum) & mask) != mask * !tf)
1566 pc += mips32_relative_offset (inst);
1567 else
1568 pc += 4;
1569
1570 return pc;
1571 }
1572
1573 /* Return nonzero if the gdbarch is an Octeon series. */
1574
1575 static int
1576 is_octeon (struct gdbarch *gdbarch)
1577 {
1578 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1579
1580 return (info->mach == bfd_mach_mips_octeon
1581 || info->mach == bfd_mach_mips_octeonp
1582 || info->mach == bfd_mach_mips_octeon2);
1583 }
1584
1585 /* Return true if the OP represents the Octeon's BBIT instruction. */
1586
1587 static int
1588 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1589 {
1590 if (!is_octeon (gdbarch))
1591 return 0;
1592 /* BBIT0 is encoded as LWC2: 110 010. */
1593 /* BBIT032 is encoded as LDC2: 110 110. */
1594 /* BBIT1 is encoded as SWC2: 111 010. */
1595 /* BBIT132 is encoded as SDC2: 111 110. */
1596 if (op == 50 || op == 54 || op == 58 || op == 62)
1597 return 1;
1598 return 0;
1599 }
1600
1601
1602 /* Determine where to set a single step breakpoint while considering
1603 branch prediction. */
1604
1605 static CORE_ADDR
1606 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1607 {
1608 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1609 unsigned long inst;
1610 int op;
1611 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1612 op = itype_op (inst);
1613 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1614 instruction. */
1615 {
1616 if (op >> 2 == 5)
1617 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1618 {
1619 switch (op & 0x03)
1620 {
1621 case 0: /* BEQL */
1622 goto equal_branch;
1623 case 1: /* BNEL */
1624 goto neq_branch;
1625 case 2: /* BLEZL */
1626 goto less_branch;
1627 case 3: /* BGTZL */
1628 goto greater_branch;
1629 default:
1630 pc += 4;
1631 }
1632 }
1633 else if (op == 17 && itype_rs (inst) == 8)
1634 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1635 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1636 else if (op == 17 && itype_rs (inst) == 9
1637 && (itype_rt (inst) & 2) == 0)
1638 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1639 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1640 else if (op == 17 && itype_rs (inst) == 10
1641 && (itype_rt (inst) & 2) == 0)
1642 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1643 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1644 else if (op == 29)
1645 /* JALX: 011101 */
1646 /* The new PC will be alternate mode. */
1647 {
1648 unsigned long reg;
1649
1650 reg = jtype_target (inst) << 2;
1651 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1652 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1653 }
1654 else if (is_octeon_bbit_op (op, gdbarch))
1655 {
1656 int bit, branch_if;
1657
1658 branch_if = op == 58 || op == 62;
1659 bit = itype_rt (inst);
1660
1661 /* Take into account the *32 instructions. */
1662 if (op == 54 || op == 62)
1663 bit += 32;
1664
1665 if (((regcache_raw_get_signed (regcache,
1666 itype_rs (inst)) >> bit) & 1)
1667 == branch_if)
1668 pc += mips32_relative_offset (inst) + 4;
1669 else
1670 pc += 8; /* After the delay slot. */
1671 }
1672
1673 else
1674 pc += 4; /* Not a branch, next instruction is easy. */
1675 }
1676 else
1677 { /* This gets way messy. */
1678
1679 /* Further subdivide into SPECIAL, REGIMM and other. */
1680 switch (op & 0x07) /* Extract bits 28,27,26. */
1681 {
1682 case 0: /* SPECIAL */
1683 op = rtype_funct (inst);
1684 switch (op)
1685 {
1686 case 8: /* JR */
1687 case 9: /* JALR */
1688 /* Set PC to that address. */
1689 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1690 break;
1691 case 12: /* SYSCALL */
1692 {
1693 struct gdbarch_tdep *tdep;
1694
1695 tdep = gdbarch_tdep (gdbarch);
1696 if (tdep->syscall_next_pc != NULL)
1697 pc = tdep->syscall_next_pc (get_current_frame ());
1698 else
1699 pc += 4;
1700 }
1701 break;
1702 default:
1703 pc += 4;
1704 }
1705
1706 break; /* end SPECIAL */
1707 case 1: /* REGIMM */
1708 {
1709 op = itype_rt (inst); /* branch condition */
1710 switch (op)
1711 {
1712 case 0: /* BLTZ */
1713 case 2: /* BLTZL */
1714 case 16: /* BLTZAL */
1715 case 18: /* BLTZALL */
1716 less_branch:
1717 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1718 pc += mips32_relative_offset (inst) + 4;
1719 else
1720 pc += 8; /* after the delay slot */
1721 break;
1722 case 1: /* BGEZ */
1723 case 3: /* BGEZL */
1724 case 17: /* BGEZAL */
1725 case 19: /* BGEZALL */
1726 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1727 pc += mips32_relative_offset (inst) + 4;
1728 else
1729 pc += 8; /* after the delay slot */
1730 break;
1731 case 0x1c: /* BPOSGE32 */
1732 case 0x1e: /* BPOSGE64 */
1733 pc += 4;
1734 if (itype_rs (inst) == 0)
1735 {
1736 unsigned int pos = (op & 2) ? 64 : 32;
1737 int dspctl = mips_regnum (gdbarch)->dspctl;
1738
1739 if (dspctl == -1)
1740 /* No way to handle; it'll most likely trap anyway. */
1741 break;
1742
1743 if ((regcache_raw_get_unsigned (regcache,
1744 dspctl) & 0x7f) >= pos)
1745 pc += mips32_relative_offset (inst);
1746 else
1747 pc += 4;
1748 }
1749 break;
1750 /* All of the other instructions in the REGIMM category */
1751 default:
1752 pc += 4;
1753 }
1754 }
1755 break; /* end REGIMM */
1756 case 2: /* J */
1757 case 3: /* JAL */
1758 {
1759 unsigned long reg;
1760 reg = jtype_target (inst) << 2;
1761 /* Upper four bits get never changed... */
1762 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1763 }
1764 break;
1765 case 4: /* BEQ, BEQL */
1766 equal_branch:
1767 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1768 regcache_raw_get_signed (regcache, itype_rt (inst)))
1769 pc += mips32_relative_offset (inst) + 4;
1770 else
1771 pc += 8;
1772 break;
1773 case 5: /* BNE, BNEL */
1774 neq_branch:
1775 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1776 regcache_raw_get_signed (regcache, itype_rt (inst)))
1777 pc += mips32_relative_offset (inst) + 4;
1778 else
1779 pc += 8;
1780 break;
1781 case 6: /* BLEZ, BLEZL */
1782 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1783 pc += mips32_relative_offset (inst) + 4;
1784 else
1785 pc += 8;
1786 break;
1787 case 7:
1788 default:
1789 greater_branch: /* BGTZ, BGTZL */
1790 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1791 pc += mips32_relative_offset (inst) + 4;
1792 else
1793 pc += 8;
1794 break;
1795 } /* switch */
1796 } /* else */
1797 return pc;
1798 } /* mips32_next_pc */
1799
1800 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1801 INSN. */
1802
1803 static LONGEST
1804 micromips_relative_offset7 (ULONGEST insn)
1805 {
1806 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1807 }
1808
1809 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1810 INSN. */
1811
1812 static LONGEST
1813 micromips_relative_offset10 (ULONGEST insn)
1814 {
1815 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1816 }
1817
1818 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1819 INSN. */
1820
1821 static LONGEST
1822 micromips_relative_offset16 (ULONGEST insn)
1823 {
1824 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1825 }
1826
1827 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1828
1829 static int
1830 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1831 {
1832 ULONGEST insn;
1833
1834 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1835 return mips_insn_size (ISA_MICROMIPS, insn);
1836 }
1837
1838 /* Calculate the address of the next microMIPS instruction to execute
1839 after the INSN coprocessor 1 conditional branch instruction at the
1840 address PC. COUNT denotes the number of coprocessor condition bits
1841 examined by the branch. */
1842
1843 static CORE_ADDR
1844 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1845 ULONGEST insn, CORE_ADDR pc, int count)
1846 {
1847 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1848 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1849 int tf = b5s5_op (insn >> 16) & 1;
1850 int mask = (1 << count) - 1;
1851 ULONGEST fcs;
1852 int cond;
1853
1854 if (fcsr == -1)
1855 /* No way to handle; it'll most likely trap anyway. */
1856 return pc;
1857
1858 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1859 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1860
1861 if (((cond >> cnum) & mask) != mask * !tf)
1862 pc += micromips_relative_offset16 (insn);
1863 else
1864 pc += micromips_pc_insn_size (gdbarch, pc);
1865
1866 return pc;
1867 }
1868
1869 /* Calculate the address of the next microMIPS instruction to execute
1870 after the instruction at the address PC. */
1871
1872 static CORE_ADDR
1873 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1874 {
1875 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1876 ULONGEST insn;
1877
1878 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1879 pc += MIPS_INSN16_SIZE;
1880 switch (mips_insn_size (ISA_MICROMIPS, insn))
1881 {
1882 /* 32-bit instructions. */
1883 case 2 * MIPS_INSN16_SIZE:
1884 insn <<= 16;
1885 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1886 pc += MIPS_INSN16_SIZE;
1887 switch (micromips_op (insn >> 16))
1888 {
1889 case 0x00: /* POOL32A: bits 000000 */
1890 if (b0s6_op (insn) == 0x3c
1891 /* POOL32Axf: bits 000000 ... 111100 */
1892 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1893 /* JALR, JALR.HB: 000000 000x111100 111100 */
1894 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1895 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
1896 break;
1897
1898 case 0x10: /* POOL32I: bits 010000 */
1899 switch (b5s5_op (insn >> 16))
1900 {
1901 case 0x00: /* BLTZ: bits 010000 00000 */
1902 case 0x01: /* BLTZAL: bits 010000 00001 */
1903 case 0x11: /* BLTZALS: bits 010000 10001 */
1904 if (regcache_raw_get_signed (regcache,
1905 b0s5_reg (insn >> 16)) < 0)
1906 pc += micromips_relative_offset16 (insn);
1907 else
1908 pc += micromips_pc_insn_size (gdbarch, pc);
1909 break;
1910
1911 case 0x02: /* BGEZ: bits 010000 00010 */
1912 case 0x03: /* BGEZAL: bits 010000 00011 */
1913 case 0x13: /* BGEZALS: bits 010000 10011 */
1914 if (regcache_raw_get_signed (regcache,
1915 b0s5_reg (insn >> 16)) >= 0)
1916 pc += micromips_relative_offset16 (insn);
1917 else
1918 pc += micromips_pc_insn_size (gdbarch, pc);
1919 break;
1920
1921 case 0x04: /* BLEZ: bits 010000 00100 */
1922 if (regcache_raw_get_signed (regcache,
1923 b0s5_reg (insn >> 16)) <= 0)
1924 pc += micromips_relative_offset16 (insn);
1925 else
1926 pc += micromips_pc_insn_size (gdbarch, pc);
1927 break;
1928
1929 case 0x05: /* BNEZC: bits 010000 00101 */
1930 if (regcache_raw_get_signed (regcache,
1931 b0s5_reg (insn >> 16)) != 0)
1932 pc += micromips_relative_offset16 (insn);
1933 break;
1934
1935 case 0x06: /* BGTZ: bits 010000 00110 */
1936 if (regcache_raw_get_signed (regcache,
1937 b0s5_reg (insn >> 16)) > 0)
1938 pc += micromips_relative_offset16 (insn);
1939 else
1940 pc += micromips_pc_insn_size (gdbarch, pc);
1941 break;
1942
1943 case 0x07: /* BEQZC: bits 010000 00111 */
1944 if (regcache_raw_get_signed (regcache,
1945 b0s5_reg (insn >> 16)) == 0)
1946 pc += micromips_relative_offset16 (insn);
1947 break;
1948
1949 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1950 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1951 if (((insn >> 16) & 0x3) == 0x0)
1952 /* BC2F, BC2T: don't know how to handle these. */
1953 break;
1954 break;
1955
1956 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1957 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1958 {
1959 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1960 int dspctl = mips_regnum (gdbarch)->dspctl;
1961
1962 if (dspctl == -1)
1963 /* No way to handle; it'll most likely trap anyway. */
1964 break;
1965
1966 if ((regcache_raw_get_unsigned (regcache,
1967 dspctl) & 0x7f) >= pos)
1968 pc += micromips_relative_offset16 (insn);
1969 else
1970 pc += micromips_pc_insn_size (gdbarch, pc);
1971 }
1972 break;
1973
1974 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1975 /* BC1ANY2F: bits 010000 11100 xxx01 */
1976 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1977 /* BC1ANY2T: bits 010000 11101 xxx01 */
1978 if (((insn >> 16) & 0x2) == 0x0)
1979 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
1980 ((insn >> 16) & 0x1) + 1);
1981 break;
1982
1983 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1984 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1985 if (((insn >> 16) & 0x3) == 0x1)
1986 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
1987 break;
1988 }
1989 break;
1990
1991 case 0x1d: /* JALS: bits 011101 */
1992 case 0x35: /* J: bits 110101 */
1993 case 0x3d: /* JAL: bits 111101 */
1994 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1995 break;
1996
1997 case 0x25: /* BEQ: bits 100101 */
1998 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
1999 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2000 pc += micromips_relative_offset16 (insn);
2001 else
2002 pc += micromips_pc_insn_size (gdbarch, pc);
2003 break;
2004
2005 case 0x2d: /* BNE: bits 101101 */
2006 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2007 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2008 pc += micromips_relative_offset16 (insn);
2009 else
2010 pc += micromips_pc_insn_size (gdbarch, pc);
2011 break;
2012
2013 case 0x3c: /* JALX: bits 111100 */
2014 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2015 break;
2016 }
2017 break;
2018
2019 /* 16-bit instructions. */
2020 case MIPS_INSN16_SIZE:
2021 switch (micromips_op (insn))
2022 {
2023 case 0x11: /* POOL16C: bits 010001 */
2024 if ((b5s5_op (insn) & 0x1c) == 0xc)
2025 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2026 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2027 else if (b5s5_op (insn) == 0x18)
2028 /* JRADDIUSP: bits 010001 11000 */
2029 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2030 break;
2031
2032 case 0x23: /* BEQZ16: bits 100011 */
2033 {
2034 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2035
2036 if (regcache_raw_get_signed (regcache, rs) == 0)
2037 pc += micromips_relative_offset7 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 }
2041 break;
2042
2043 case 0x2b: /* BNEZ16: bits 101011 */
2044 {
2045 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2046
2047 if (regcache_raw_get_signed (regcache, rs) != 0)
2048 pc += micromips_relative_offset7 (insn);
2049 else
2050 pc += micromips_pc_insn_size (gdbarch, pc);
2051 }
2052 break;
2053
2054 case 0x33: /* B16: bits 110011 */
2055 pc += micromips_relative_offset10 (insn);
2056 break;
2057 }
2058 break;
2059 }
2060
2061 return pc;
2062 }
2063
2064 /* Decoding the next place to set a breakpoint is irregular for the
2065 mips 16 variant, but fortunately, there fewer instructions. We have
2066 to cope ith extensions for 16 bit instructions and a pair of actual
2067 32 bit instructions. We dont want to set a single step instruction
2068 on the extend instruction either. */
2069
2070 /* Lots of mips16 instruction formats */
2071 /* Predicting jumps requires itype,ritype,i8type
2072 and their extensions extItype,extritype,extI8type. */
2073 enum mips16_inst_fmts
2074 {
2075 itype, /* 0 immediate 5,10 */
2076 ritype, /* 1 5,3,8 */
2077 rrtype, /* 2 5,3,3,5 */
2078 rritype, /* 3 5,3,3,5 */
2079 rrrtype, /* 4 5,3,3,3,2 */
2080 rriatype, /* 5 5,3,3,1,4 */
2081 shifttype, /* 6 5,3,3,3,2 */
2082 i8type, /* 7 5,3,8 */
2083 i8movtype, /* 8 5,3,3,5 */
2084 i8mov32rtype, /* 9 5,3,5,3 */
2085 i64type, /* 10 5,3,8 */
2086 ri64type, /* 11 5,3,3,5 */
2087 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2088 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2089 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2090 extRRItype, /* 15 5,5,5,5,3,3,5 */
2091 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2092 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2093 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2094 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2095 extRi64type, /* 20 5,6,5,5,3,3,5 */
2096 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2097 };
2098 /* I am heaping all the fields of the formats into one structure and
2099 then, only the fields which are involved in instruction extension. */
2100 struct upk_mips16
2101 {
2102 CORE_ADDR offset;
2103 unsigned int regx; /* Function in i8 type. */
2104 unsigned int regy;
2105 };
2106
2107
2108 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2109 for the bits which make up the immediate extension. */
2110
2111 static CORE_ADDR
2112 extended_offset (unsigned int extension)
2113 {
2114 CORE_ADDR value;
2115
2116 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2117 value = value << 6;
2118 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2119 value = value << 5;
2120 value |= extension & 0x1f; /* Extract 4:0. */
2121
2122 return value;
2123 }
2124
2125 /* Only call this function if you know that this is an extendable
2126 instruction. It won't malfunction, but why make excess remote memory
2127 references? If the immediate operands get sign extended or something,
2128 do it after the extension is performed. */
2129 /* FIXME: Every one of these cases needs to worry about sign extension
2130 when the offset is to be used in relative addressing. */
2131
2132 static unsigned int
2133 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2134 {
2135 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2136 gdb_byte buf[8];
2137
2138 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2139 target_read_memory (pc, buf, 2);
2140 return extract_unsigned_integer (buf, 2, byte_order);
2141 }
2142
2143 static void
2144 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2145 unsigned int extension,
2146 unsigned int inst,
2147 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2148 {
2149 CORE_ADDR offset;
2150 int regx;
2151 int regy;
2152 switch (insn_format)
2153 {
2154 case itype:
2155 {
2156 CORE_ADDR value;
2157 if (extension)
2158 {
2159 value = extended_offset ((extension << 16) | inst);
2160 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2161 }
2162 else
2163 {
2164 value = inst & 0x7ff;
2165 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2166 }
2167 offset = value;
2168 regx = -1;
2169 regy = -1;
2170 }
2171 break;
2172 case ritype:
2173 case i8type:
2174 { /* A register identifier and an offset. */
2175 /* Most of the fields are the same as I type but the
2176 immediate value is of a different length. */
2177 CORE_ADDR value;
2178 if (extension)
2179 {
2180 value = extended_offset ((extension << 16) | inst);
2181 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2182 }
2183 else
2184 {
2185 value = inst & 0xff; /* 8 bits */
2186 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2187 }
2188 offset = value;
2189 regx = (inst >> 8) & 0x07; /* i8 funct */
2190 regy = -1;
2191 break;
2192 }
2193 case jalxtype:
2194 {
2195 unsigned long value;
2196 unsigned int nexthalf;
2197 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2198 value = value << 16;
2199 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2200 /* Low bit still set. */
2201 value |= nexthalf;
2202 offset = value;
2203 regx = -1;
2204 regy = -1;
2205 break;
2206 }
2207 default:
2208 internal_error (__FILE__, __LINE__, _("bad switch"));
2209 }
2210 upk->offset = offset;
2211 upk->regx = regx;
2212 upk->regy = regy;
2213 }
2214
2215
2216 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2217 and having a signed 16-bit OFFSET. */
2218
2219 static CORE_ADDR
2220 add_offset_16 (CORE_ADDR pc, int offset)
2221 {
2222 return pc + (offset << 1) + 2;
2223 }
2224
2225 static CORE_ADDR
2226 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2227 unsigned int extension, unsigned int insn)
2228 {
2229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2230 int op = (insn >> 11);
2231 switch (op)
2232 {
2233 case 2: /* Branch */
2234 {
2235 struct upk_mips16 upk;
2236 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2237 pc = add_offset_16 (pc, upk.offset);
2238 break;
2239 }
2240 case 3: /* JAL , JALX - Watch out, these are 32 bit
2241 instructions. */
2242 {
2243 struct upk_mips16 upk;
2244 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2245 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2246 if ((insn >> 10) & 0x01) /* Exchange mode */
2247 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2248 else
2249 pc |= 0x01;
2250 break;
2251 }
2252 case 4: /* beqz */
2253 {
2254 struct upk_mips16 upk;
2255 int reg;
2256 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2257 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2258 if (reg == 0)
2259 pc = add_offset_16 (pc, upk.offset);
2260 else
2261 pc += 2;
2262 break;
2263 }
2264 case 5: /* bnez */
2265 {
2266 struct upk_mips16 upk;
2267 int reg;
2268 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2269 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2270 if (reg != 0)
2271 pc = add_offset_16 (pc, upk.offset);
2272 else
2273 pc += 2;
2274 break;
2275 }
2276 case 12: /* I8 Formats btez btnez */
2277 {
2278 struct upk_mips16 upk;
2279 int reg;
2280 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2281 /* upk.regx contains the opcode */
2282 /* Test register is 24 */
2283 reg = regcache_raw_get_signed (regcache, 24);
2284 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2285 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2286 pc = add_offset_16 (pc, upk.offset);
2287 else
2288 pc += 2;
2289 break;
2290 }
2291 case 29: /* RR Formats JR, JALR, JALR-RA */
2292 {
2293 struct upk_mips16 upk;
2294 /* upk.fmt = rrtype; */
2295 op = insn & 0x1f;
2296 if (op == 0)
2297 {
2298 int reg;
2299 upk.regx = (insn >> 8) & 0x07;
2300 upk.regy = (insn >> 5) & 0x07;
2301 if ((upk.regy & 1) == 0)
2302 reg = mips_reg3_to_reg[upk.regx];
2303 else
2304 reg = 31; /* Function return instruction. */
2305 pc = regcache_raw_get_signed (regcache, reg);
2306 }
2307 else
2308 pc += 2;
2309 break;
2310 }
2311 case 30:
2312 /* This is an instruction extension. Fetch the real instruction
2313 (which follows the extension) and decode things based on
2314 that. */
2315 {
2316 pc += 2;
2317 pc = extended_mips16_next_pc (regcache, pc, insn,
2318 fetch_mips_16 (gdbarch, pc));
2319 break;
2320 }
2321 default:
2322 {
2323 pc += 2;
2324 break;
2325 }
2326 }
2327 return pc;
2328 }
2329
2330 static CORE_ADDR
2331 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2332 {
2333 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2334 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2335 return extended_mips16_next_pc (regcache, pc, 0, insn);
2336 }
2337
2338 /* The mips_next_pc function supports single_step when the remote
2339 target monitor or stub is not developed enough to do a single_step.
2340 It works by decoding the current instruction and predicting where a
2341 branch will go. This isn't hard because all the data is available.
2342 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2343 static CORE_ADDR
2344 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2345 {
2346 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2347
2348 if (mips_pc_is_mips16 (gdbarch, pc))
2349 return mips16_next_pc (regcache, pc);
2350 else if (mips_pc_is_micromips (gdbarch, pc))
2351 return micromips_next_pc (regcache, pc);
2352 else
2353 return mips32_next_pc (regcache, pc);
2354 }
2355
2356 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2357 or jump. */
2358
2359 static int
2360 mips16_instruction_is_compact_branch (unsigned short insn)
2361 {
2362 switch (insn & 0xf800)
2363 {
2364 case 0xe800:
2365 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2366 case 0x6000:
2367 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2368 case 0x2800: /* BNEZ */
2369 case 0x2000: /* BEQZ */
2370 case 0x1000: /* B */
2371 return 1;
2372 default:
2373 return 0;
2374 }
2375 }
2376
2377 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2378 or jump. */
2379
2380 static int
2381 micromips_instruction_is_compact_branch (unsigned short insn)
2382 {
2383 switch (micromips_op (insn))
2384 {
2385 case 0x11: /* POOL16C: bits 010001 */
2386 return (b5s5_op (insn) == 0x18
2387 /* JRADDIUSP: bits 010001 11000 */
2388 || b5s5_op (insn) == 0xd);
2389 /* JRC: bits 010011 01101 */
2390 case 0x10: /* POOL32I: bits 010000 */
2391 return (b5s5_op (insn) & 0x1d) == 0x5;
2392 /* BEQZC/BNEZC: bits 010000 001x1 */
2393 default:
2394 return 0;
2395 }
2396 }
2397
2398 struct mips_frame_cache
2399 {
2400 CORE_ADDR base;
2401 struct trad_frame_saved_reg *saved_regs;
2402 };
2403
2404 /* Set a register's saved stack address in temp_saved_regs. If an
2405 address has already been set for this register, do nothing; this
2406 way we will only recognize the first save of a given register in a
2407 function prologue.
2408
2409 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2410 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2411 Strictly speaking, only the second range is used as it is only second
2412 range (the ABI instead of ISA registers) that comes into play when finding
2413 saved registers in a frame. */
2414
2415 static void
2416 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2417 int regnum, CORE_ADDR offset)
2418 {
2419 if (this_cache != NULL
2420 && this_cache->saved_regs[regnum].addr == -1)
2421 {
2422 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2423 = offset;
2424 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2425 = offset;
2426 }
2427 }
2428
2429
2430 /* Fetch the immediate value from a MIPS16 instruction.
2431 If the previous instruction was an EXTEND, use it to extend
2432 the upper bits of the immediate value. This is a helper function
2433 for mips16_scan_prologue. */
2434
2435 static int
2436 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2437 unsigned short inst, /* current instruction */
2438 int nbits, /* number of bits in imm field */
2439 int scale, /* scale factor to be applied to imm */
2440 int is_signed) /* is the imm field signed? */
2441 {
2442 int offset;
2443
2444 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2445 {
2446 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2447 if (offset & 0x8000) /* check for negative extend */
2448 offset = 0 - (0x10000 - (offset & 0xffff));
2449 return offset | (inst & 0x1f);
2450 }
2451 else
2452 {
2453 int max_imm = 1 << nbits;
2454 int mask = max_imm - 1;
2455 int sign_bit = max_imm >> 1;
2456
2457 offset = inst & mask;
2458 if (is_signed && (offset & sign_bit))
2459 offset = 0 - (max_imm - offset);
2460 return offset * scale;
2461 }
2462 }
2463
2464
2465 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2466 the associated FRAME_CACHE if not null.
2467 Return the address of the first instruction past the prologue. */
2468
2469 static CORE_ADDR
2470 mips16_scan_prologue (struct gdbarch *gdbarch,
2471 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2472 struct frame_info *this_frame,
2473 struct mips_frame_cache *this_cache)
2474 {
2475 int prev_non_prologue_insn = 0;
2476 int this_non_prologue_insn;
2477 int non_prologue_insns = 0;
2478 CORE_ADDR prev_pc;
2479 CORE_ADDR cur_pc;
2480 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2481 CORE_ADDR sp;
2482 long frame_offset = 0; /* Size of stack frame. */
2483 long frame_adjust = 0; /* Offset of FP from SP. */
2484 int frame_reg = MIPS_SP_REGNUM;
2485 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2486 unsigned inst = 0; /* current instruction */
2487 unsigned entry_inst = 0; /* the entry instruction */
2488 unsigned save_inst = 0; /* the save instruction */
2489 int prev_delay_slot = 0;
2490 int in_delay_slot;
2491 int reg, offset;
2492
2493 int extend_bytes = 0;
2494 int prev_extend_bytes = 0;
2495 CORE_ADDR end_prologue_addr;
2496
2497 /* Can be called when there's no process, and hence when there's no
2498 THIS_FRAME. */
2499 if (this_frame != NULL)
2500 sp = get_frame_register_signed (this_frame,
2501 gdbarch_num_regs (gdbarch)
2502 + MIPS_SP_REGNUM);
2503 else
2504 sp = 0;
2505
2506 if (limit_pc > start_pc + 200)
2507 limit_pc = start_pc + 200;
2508 prev_pc = start_pc;
2509
2510 /* Permit at most one non-prologue non-control-transfer instruction
2511 in the middle which may have been reordered by the compiler for
2512 optimisation. */
2513 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2514 {
2515 this_non_prologue_insn = 0;
2516 in_delay_slot = 0;
2517
2518 /* Save the previous instruction. If it's an EXTEND, we'll extract
2519 the immediate offset extension from it in mips16_get_imm. */
2520 prev_inst = inst;
2521
2522 /* Fetch and decode the instruction. */
2523 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2524 cur_pc, NULL);
2525
2526 /* Normally we ignore extend instructions. However, if it is
2527 not followed by a valid prologue instruction, then this
2528 instruction is not part of the prologue either. We must
2529 remember in this case to adjust the end_prologue_addr back
2530 over the extend. */
2531 if ((inst & 0xf800) == 0xf000) /* extend */
2532 {
2533 extend_bytes = MIPS_INSN16_SIZE;
2534 continue;
2535 }
2536
2537 prev_extend_bytes = extend_bytes;
2538 extend_bytes = 0;
2539
2540 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2541 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2542 {
2543 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2544 if (offset < 0) /* Negative stack adjustment? */
2545 frame_offset -= offset;
2546 else
2547 /* Exit loop if a positive stack adjustment is found, which
2548 usually means that the stack cleanup code in the function
2549 epilogue is reached. */
2550 break;
2551 }
2552 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2553 {
2554 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2555 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2556 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2557 }
2558 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2559 {
2560 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2561 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2562 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2563 }
2564 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2565 {
2566 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2567 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2568 }
2569 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2570 {
2571 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2572 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2573 }
2574 else if (inst == 0x673d) /* move $s1, $sp */
2575 {
2576 frame_addr = sp;
2577 frame_reg = 17;
2578 }
2579 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2580 {
2581 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2582 frame_addr = sp + offset;
2583 frame_reg = 17;
2584 frame_adjust = offset;
2585 }
2586 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2587 {
2588 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2589 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2590 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2591 }
2592 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2593 {
2594 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2595 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2596 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2597 }
2598 else if ((inst & 0xf81f) == 0xe809
2599 && (inst & 0x700) != 0x700) /* entry */
2600 entry_inst = inst; /* Save for later processing. */
2601 else if ((inst & 0xff80) == 0x6480) /* save */
2602 {
2603 save_inst = inst; /* Save for later processing. */
2604 if (prev_extend_bytes) /* extend */
2605 save_inst |= prev_inst << 16;
2606 }
2607 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2608 {
2609 /* This instruction is part of the prologue, but we don't
2610 need to do anything special to handle it. */
2611 }
2612 else if (mips16_instruction_has_delay_slot (inst, 0))
2613 /* JAL/JALR/JALX/JR */
2614 {
2615 /* The instruction in the delay slot can be a part
2616 of the prologue, so move forward once more. */
2617 in_delay_slot = 1;
2618 if (mips16_instruction_has_delay_slot (inst, 1))
2619 /* JAL/JALX */
2620 {
2621 prev_extend_bytes = MIPS_INSN16_SIZE;
2622 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2623 }
2624 }
2625 else
2626 {
2627 this_non_prologue_insn = 1;
2628 }
2629
2630 non_prologue_insns += this_non_prologue_insn;
2631
2632 /* A jump or branch, or enough non-prologue insns seen? If so,
2633 then we must have reached the end of the prologue by now. */
2634 if (prev_delay_slot || non_prologue_insns > 1
2635 || mips16_instruction_is_compact_branch (inst))
2636 break;
2637
2638 prev_non_prologue_insn = this_non_prologue_insn;
2639 prev_delay_slot = in_delay_slot;
2640 prev_pc = cur_pc - prev_extend_bytes;
2641 }
2642
2643 /* The entry instruction is typically the first instruction in a function,
2644 and it stores registers at offsets relative to the value of the old SP
2645 (before the prologue). But the value of the sp parameter to this
2646 function is the new SP (after the prologue has been executed). So we
2647 can't calculate those offsets until we've seen the entire prologue,
2648 and can calculate what the old SP must have been. */
2649 if (entry_inst != 0)
2650 {
2651 int areg_count = (entry_inst >> 8) & 7;
2652 int sreg_count = (entry_inst >> 6) & 3;
2653
2654 /* The entry instruction always subtracts 32 from the SP. */
2655 frame_offset += 32;
2656
2657 /* Now we can calculate what the SP must have been at the
2658 start of the function prologue. */
2659 sp += frame_offset;
2660
2661 /* Check if a0-a3 were saved in the caller's argument save area. */
2662 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2663 {
2664 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2665 offset += mips_abi_regsize (gdbarch);
2666 }
2667
2668 /* Check if the ra register was pushed on the stack. */
2669 offset = -4;
2670 if (entry_inst & 0x20)
2671 {
2672 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2673 offset -= mips_abi_regsize (gdbarch);
2674 }
2675
2676 /* Check if the s0 and s1 registers were pushed on the stack. */
2677 for (reg = 16; reg < sreg_count + 16; reg++)
2678 {
2679 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2680 offset -= mips_abi_regsize (gdbarch);
2681 }
2682 }
2683
2684 /* The SAVE instruction is similar to ENTRY, except that defined by the
2685 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2686 size of the frame is specified as an immediate field of instruction
2687 and an extended variation exists which lets additional registers and
2688 frame space to be specified. The instruction always treats registers
2689 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2690 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2691 {
2692 static int args_table[16] = {
2693 0, 0, 0, 0, 1, 1, 1, 1,
2694 2, 2, 2, 0, 3, 3, 4, -1,
2695 };
2696 static int astatic_table[16] = {
2697 0, 1, 2, 3, 0, 1, 2, 3,
2698 0, 1, 2, 4, 0, 1, 0, -1,
2699 };
2700 int aregs = (save_inst >> 16) & 0xf;
2701 int xsregs = (save_inst >> 24) & 0x7;
2702 int args = args_table[aregs];
2703 int astatic = astatic_table[aregs];
2704 long frame_size;
2705
2706 if (args < 0)
2707 {
2708 warning (_("Invalid number of argument registers encoded in SAVE."));
2709 args = 0;
2710 }
2711 if (astatic < 0)
2712 {
2713 warning (_("Invalid number of static registers encoded in SAVE."));
2714 astatic = 0;
2715 }
2716
2717 /* For standard SAVE the frame size of 0 means 128. */
2718 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2719 if (frame_size == 0 && (save_inst >> 16) == 0)
2720 frame_size = 16;
2721 frame_size *= 8;
2722 frame_offset += frame_size;
2723
2724 /* Now we can calculate what the SP must have been at the
2725 start of the function prologue. */
2726 sp += frame_offset;
2727
2728 /* Check if A0-A3 were saved in the caller's argument save area. */
2729 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2730 {
2731 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2732 offset += mips_abi_regsize (gdbarch);
2733 }
2734
2735 offset = -4;
2736
2737 /* Check if the RA register was pushed on the stack. */
2738 if (save_inst & 0x40)
2739 {
2740 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2741 offset -= mips_abi_regsize (gdbarch);
2742 }
2743
2744 /* Check if the S8 register was pushed on the stack. */
2745 if (xsregs > 6)
2746 {
2747 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2748 offset -= mips_abi_regsize (gdbarch);
2749 xsregs--;
2750 }
2751 /* Check if S2-S7 were pushed on the stack. */
2752 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2753 {
2754 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2755 offset -= mips_abi_regsize (gdbarch);
2756 }
2757
2758 /* Check if the S1 register was pushed on the stack. */
2759 if (save_inst & 0x10)
2760 {
2761 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2762 offset -= mips_abi_regsize (gdbarch);
2763 }
2764 /* Check if the S0 register was pushed on the stack. */
2765 if (save_inst & 0x20)
2766 {
2767 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2768 offset -= mips_abi_regsize (gdbarch);
2769 }
2770
2771 /* Check if A0-A3 were pushed on the stack. */
2772 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2773 {
2774 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2775 offset -= mips_abi_regsize (gdbarch);
2776 }
2777 }
2778
2779 if (this_cache != NULL)
2780 {
2781 this_cache->base =
2782 (get_frame_register_signed (this_frame,
2783 gdbarch_num_regs (gdbarch) + frame_reg)
2784 + frame_offset - frame_adjust);
2785 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2786 be able to get rid of the assignment below, evetually. But it's
2787 still needed for now. */
2788 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2789 + mips_regnum (gdbarch)->pc]
2790 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2791 }
2792
2793 /* Set end_prologue_addr to the address of the instruction immediately
2794 after the last one we scanned. Unless the last one looked like a
2795 non-prologue instruction (and we looked ahead), in which case use
2796 its address instead. */
2797 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2798 ? prev_pc : cur_pc - prev_extend_bytes);
2799
2800 return end_prologue_addr;
2801 }
2802
2803 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2804 Procedures that use the 32-bit instruction set are handled by the
2805 mips_insn32 unwinder. */
2806
2807 static struct mips_frame_cache *
2808 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2809 {
2810 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2811 struct mips_frame_cache *cache;
2812
2813 if ((*this_cache) != NULL)
2814 return (struct mips_frame_cache *) (*this_cache);
2815 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2816 (*this_cache) = cache;
2817 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2818
2819 /* Analyze the function prologue. */
2820 {
2821 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2822 CORE_ADDR start_addr;
2823
2824 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2825 if (start_addr == 0)
2826 start_addr = heuristic_proc_start (gdbarch, pc);
2827 /* We can't analyze the prologue if we couldn't find the begining
2828 of the function. */
2829 if (start_addr == 0)
2830 return cache;
2831
2832 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2833 (struct mips_frame_cache *) *this_cache);
2834 }
2835
2836 /* gdbarch_sp_regnum contains the value and not the address. */
2837 trad_frame_set_value (cache->saved_regs,
2838 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2839 cache->base);
2840
2841 return (struct mips_frame_cache *) (*this_cache);
2842 }
2843
2844 static void
2845 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2846 struct frame_id *this_id)
2847 {
2848 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2849 this_cache);
2850 /* This marks the outermost frame. */
2851 if (info->base == 0)
2852 return;
2853 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2854 }
2855
2856 static struct value *
2857 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2858 void **this_cache, int regnum)
2859 {
2860 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2861 this_cache);
2862 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2863 }
2864
2865 static int
2866 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2867 struct frame_info *this_frame, void **this_cache)
2868 {
2869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2870 CORE_ADDR pc = get_frame_pc (this_frame);
2871 if (mips_pc_is_mips16 (gdbarch, pc))
2872 return 1;
2873 return 0;
2874 }
2875
2876 static const struct frame_unwind mips_insn16_frame_unwind =
2877 {
2878 NORMAL_FRAME,
2879 default_frame_unwind_stop_reason,
2880 mips_insn16_frame_this_id,
2881 mips_insn16_frame_prev_register,
2882 NULL,
2883 mips_insn16_frame_sniffer
2884 };
2885
2886 static CORE_ADDR
2887 mips_insn16_frame_base_address (struct frame_info *this_frame,
2888 void **this_cache)
2889 {
2890 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2891 this_cache);
2892 return info->base;
2893 }
2894
2895 static const struct frame_base mips_insn16_frame_base =
2896 {
2897 &mips_insn16_frame_unwind,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address,
2900 mips_insn16_frame_base_address
2901 };
2902
2903 static const struct frame_base *
2904 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2905 {
2906 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2907 CORE_ADDR pc = get_frame_pc (this_frame);
2908 if (mips_pc_is_mips16 (gdbarch, pc))
2909 return &mips_insn16_frame_base;
2910 else
2911 return NULL;
2912 }
2913
2914 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2915 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2916 interpreted directly, and then multiplied by 4. */
2917
2918 static int
2919 micromips_decode_imm9 (int imm)
2920 {
2921 imm = (imm ^ 0x100) - 0x100;
2922 if (imm > -3 && imm < 2)
2923 imm ^= 0x100;
2924 return imm << 2;
2925 }
2926
2927 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2928 the address of the first instruction past the prologue. */
2929
2930 static CORE_ADDR
2931 micromips_scan_prologue (struct gdbarch *gdbarch,
2932 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2933 struct frame_info *this_frame,
2934 struct mips_frame_cache *this_cache)
2935 {
2936 CORE_ADDR end_prologue_addr;
2937 int prev_non_prologue_insn = 0;
2938 int frame_reg = MIPS_SP_REGNUM;
2939 int this_non_prologue_insn;
2940 int non_prologue_insns = 0;
2941 long frame_offset = 0; /* Size of stack frame. */
2942 long frame_adjust = 0; /* Offset of FP from SP. */
2943 int prev_delay_slot = 0;
2944 int in_delay_slot;
2945 CORE_ADDR prev_pc;
2946 CORE_ADDR cur_pc;
2947 ULONGEST insn; /* current instruction */
2948 CORE_ADDR sp;
2949 long offset;
2950 long sp_adj;
2951 long v1_off = 0; /* The assumption is LUI will replace it. */
2952 int reglist;
2953 int breg;
2954 int dreg;
2955 int sreg;
2956 int treg;
2957 int loc;
2958 int op;
2959 int s;
2960 int i;
2961
2962 /* Can be called when there's no process, and hence when there's no
2963 THIS_FRAME. */
2964 if (this_frame != NULL)
2965 sp = get_frame_register_signed (this_frame,
2966 gdbarch_num_regs (gdbarch)
2967 + MIPS_SP_REGNUM);
2968 else
2969 sp = 0;
2970
2971 if (limit_pc > start_pc + 200)
2972 limit_pc = start_pc + 200;
2973 prev_pc = start_pc;
2974
2975 /* Permit at most one non-prologue non-control-transfer instruction
2976 in the middle which may have been reordered by the compiler for
2977 optimisation. */
2978 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2979 {
2980 this_non_prologue_insn = 0;
2981 in_delay_slot = 0;
2982 sp_adj = 0;
2983 loc = 0;
2984 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2985 loc += MIPS_INSN16_SIZE;
2986 switch (mips_insn_size (ISA_MICROMIPS, insn))
2987 {
2988 /* 32-bit instructions. */
2989 case 2 * MIPS_INSN16_SIZE:
2990 insn <<= 16;
2991 insn |= mips_fetch_instruction (gdbarch,
2992 ISA_MICROMIPS, cur_pc + loc, NULL);
2993 loc += MIPS_INSN16_SIZE;
2994 switch (micromips_op (insn >> 16))
2995 {
2996 /* Record $sp/$fp adjustment. */
2997 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2998 case 0x0: /* POOL32A: bits 000000 */
2999 case 0x16: /* POOL32S: bits 010110 */
3000 op = b0s11_op (insn);
3001 sreg = b0s5_reg (insn >> 16);
3002 treg = b5s5_reg (insn >> 16);
3003 dreg = b11s5_reg (insn);
3004 if (op == 0x1d0
3005 /* SUBU: bits 000000 00111010000 */
3006 /* DSUBU: bits 010110 00111010000 */
3007 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3008 && treg == 3)
3009 /* (D)SUBU $sp, $v1 */
3010 sp_adj = v1_off;
3011 else if (op != 0x150
3012 /* ADDU: bits 000000 00101010000 */
3013 /* DADDU: bits 010110 00101010000 */
3014 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3015 this_non_prologue_insn = 1;
3016 break;
3017
3018 case 0x8: /* POOL32B: bits 001000 */
3019 op = b12s4_op (insn);
3020 breg = b0s5_reg (insn >> 16);
3021 reglist = sreg = b5s5_reg (insn >> 16);
3022 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3023 if ((op == 0x9 || op == 0xc)
3024 /* SWP: bits 001000 1001 */
3025 /* SDP: bits 001000 1100 */
3026 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3027 /* S[DW]P reg,offset($sp) */
3028 {
3029 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3030 set_reg_offset (gdbarch, this_cache,
3031 sreg, sp + offset);
3032 set_reg_offset (gdbarch, this_cache,
3033 sreg + 1, sp + offset + s);
3034 }
3035 else if ((op == 0xd || op == 0xf)
3036 /* SWM: bits 001000 1101 */
3037 /* SDM: bits 001000 1111 */
3038 && breg == MIPS_SP_REGNUM
3039 /* SWM reglist,offset($sp) */
3040 && ((reglist >= 1 && reglist <= 9)
3041 || (reglist >= 16 && reglist <= 25)))
3042 {
3043 int sreglist = std::min(reglist & 0xf, 8);
3044
3045 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3046 for (i = 0; i < sreglist; i++)
3047 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3048 if ((reglist & 0xf) > 8)
3049 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3050 if ((reglist & 0x10) == 0x10)
3051 set_reg_offset (gdbarch, this_cache,
3052 MIPS_RA_REGNUM, sp + s * i++);
3053 }
3054 else
3055 this_non_prologue_insn = 1;
3056 break;
3057
3058 /* Record $sp/$fp adjustment. */
3059 /* Discard (D)ADDIU $gp used for PIC code. */
3060 case 0xc: /* ADDIU: bits 001100 */
3061 case 0x17: /* DADDIU: bits 010111 */
3062 sreg = b0s5_reg (insn >> 16);
3063 dreg = b5s5_reg (insn >> 16);
3064 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3065 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3066 /* (D)ADDIU $sp, imm */
3067 sp_adj = offset;
3068 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3069 /* (D)ADDIU $fp, $sp, imm */
3070 {
3071 frame_adjust = offset;
3072 frame_reg = 30;
3073 }
3074 else if (sreg != 28 || dreg != 28)
3075 /* (D)ADDIU $gp, imm */
3076 this_non_prologue_insn = 1;
3077 break;
3078
3079 /* LUI $v1 is used for larger $sp adjustments. */
3080 /* Discard LUI $gp used for PIC code. */
3081 case 0x10: /* POOL32I: bits 010000 */
3082 if (b5s5_op (insn >> 16) == 0xd
3083 /* LUI: bits 010000 001101 */
3084 && b0s5_reg (insn >> 16) == 3)
3085 /* LUI $v1, imm */
3086 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3087 else if (b5s5_op (insn >> 16) != 0xd
3088 /* LUI: bits 010000 001101 */
3089 || b0s5_reg (insn >> 16) != 28)
3090 /* LUI $gp, imm */
3091 this_non_prologue_insn = 1;
3092 break;
3093
3094 /* ORI $v1 is used for larger $sp adjustments. */
3095 case 0x14: /* ORI: bits 010100 */
3096 sreg = b0s5_reg (insn >> 16);
3097 dreg = b5s5_reg (insn >> 16);
3098 if (sreg == 3 && dreg == 3)
3099 /* ORI $v1, imm */
3100 v1_off |= b0s16_imm (insn);
3101 else
3102 this_non_prologue_insn = 1;
3103 break;
3104
3105 case 0x26: /* SWC1: bits 100110 */
3106 case 0x2e: /* SDC1: bits 101110 */
3107 breg = b0s5_reg (insn >> 16);
3108 if (breg != MIPS_SP_REGNUM)
3109 /* S[DW]C1 reg,offset($sp) */
3110 this_non_prologue_insn = 1;
3111 break;
3112
3113 case 0x36: /* SD: bits 110110 */
3114 case 0x3e: /* SW: bits 111110 */
3115 breg = b0s5_reg (insn >> 16);
3116 sreg = b5s5_reg (insn >> 16);
3117 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3118 if (breg == MIPS_SP_REGNUM)
3119 /* S[DW] reg,offset($sp) */
3120 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3121 else
3122 this_non_prologue_insn = 1;
3123 break;
3124
3125 default:
3126 /* The instruction in the delay slot can be a part
3127 of the prologue, so move forward once more. */
3128 if (micromips_instruction_has_delay_slot (insn, 0))
3129 in_delay_slot = 1;
3130 else
3131 this_non_prologue_insn = 1;
3132 break;
3133 }
3134 insn >>= 16;
3135 break;
3136
3137 /* 16-bit instructions. */
3138 case MIPS_INSN16_SIZE:
3139 switch (micromips_op (insn))
3140 {
3141 case 0x3: /* MOVE: bits 000011 */
3142 sreg = b0s5_reg (insn);
3143 dreg = b5s5_reg (insn);
3144 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3145 /* MOVE $fp, $sp */
3146 frame_reg = 30;
3147 else if ((sreg & 0x1c) != 0x4)
3148 /* MOVE reg, $a0-$a3 */
3149 this_non_prologue_insn = 1;
3150 break;
3151
3152 case 0x11: /* POOL16C: bits 010001 */
3153 if (b6s4_op (insn) == 0x5)
3154 /* SWM: bits 010001 0101 */
3155 {
3156 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3157 reglist = b4s2_regl (insn);
3158 for (i = 0; i <= reglist; i++)
3159 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3160 set_reg_offset (gdbarch, this_cache,
3161 MIPS_RA_REGNUM, sp + 4 * i++);
3162 }
3163 else
3164 this_non_prologue_insn = 1;
3165 break;
3166
3167 case 0x13: /* POOL16D: bits 010011 */
3168 if ((insn & 0x1) == 0x1)
3169 /* ADDIUSP: bits 010011 1 */
3170 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3171 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3172 /* ADDIUS5: bits 010011 0 */
3173 /* ADDIUS5 $sp, imm */
3174 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3175 else
3176 this_non_prologue_insn = 1;
3177 break;
3178
3179 case 0x32: /* SWSP: bits 110010 */
3180 offset = b0s5_imm (insn) << 2;
3181 sreg = b5s5_reg (insn);
3182 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3183 break;
3184
3185 default:
3186 /* The instruction in the delay slot can be a part
3187 of the prologue, so move forward once more. */
3188 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3189 in_delay_slot = 1;
3190 else
3191 this_non_prologue_insn = 1;
3192 break;
3193 }
3194 break;
3195 }
3196 if (sp_adj < 0)
3197 frame_offset -= sp_adj;
3198
3199 non_prologue_insns += this_non_prologue_insn;
3200
3201 /* A jump or branch, enough non-prologue insns seen or positive
3202 stack adjustment? If so, then we must have reached the end
3203 of the prologue by now. */
3204 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3205 || micromips_instruction_is_compact_branch (insn))
3206 break;
3207
3208 prev_non_prologue_insn = this_non_prologue_insn;
3209 prev_delay_slot = in_delay_slot;
3210 prev_pc = cur_pc;
3211 }
3212
3213 if (this_cache != NULL)
3214 {
3215 this_cache->base =
3216 (get_frame_register_signed (this_frame,
3217 gdbarch_num_regs (gdbarch) + frame_reg)
3218 + frame_offset - frame_adjust);
3219 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3220 be able to get rid of the assignment below, evetually. But it's
3221 still needed for now. */
3222 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3223 + mips_regnum (gdbarch)->pc]
3224 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3225 }
3226
3227 /* Set end_prologue_addr to the address of the instruction immediately
3228 after the last one we scanned. Unless the last one looked like a
3229 non-prologue instruction (and we looked ahead), in which case use
3230 its address instead. */
3231 end_prologue_addr
3232 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3233
3234 return end_prologue_addr;
3235 }
3236
3237 /* Heuristic unwinder for procedures using microMIPS instructions.
3238 Procedures that use the 32-bit instruction set are handled by the
3239 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3240
3241 static struct mips_frame_cache *
3242 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3243 {
3244 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3245 struct mips_frame_cache *cache;
3246
3247 if ((*this_cache) != NULL)
3248 return (struct mips_frame_cache *) (*this_cache);
3249
3250 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3251 (*this_cache) = cache;
3252 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3253
3254 /* Analyze the function prologue. */
3255 {
3256 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3257 CORE_ADDR start_addr;
3258
3259 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3260 if (start_addr == 0)
3261 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3262 /* We can't analyze the prologue if we couldn't find the begining
3263 of the function. */
3264 if (start_addr == 0)
3265 return cache;
3266
3267 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3268 (struct mips_frame_cache *) *this_cache);
3269 }
3270
3271 /* gdbarch_sp_regnum contains the value and not the address. */
3272 trad_frame_set_value (cache->saved_regs,
3273 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3274 cache->base);
3275
3276 return (struct mips_frame_cache *) (*this_cache);
3277 }
3278
3279 static void
3280 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3281 struct frame_id *this_id)
3282 {
3283 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3284 this_cache);
3285 /* This marks the outermost frame. */
3286 if (info->base == 0)
3287 return;
3288 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3289 }
3290
3291 static struct value *
3292 mips_micro_frame_prev_register (struct frame_info *this_frame,
3293 void **this_cache, int regnum)
3294 {
3295 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3296 this_cache);
3297 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3298 }
3299
3300 static int
3301 mips_micro_frame_sniffer (const struct frame_unwind *self,
3302 struct frame_info *this_frame, void **this_cache)
3303 {
3304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3305 CORE_ADDR pc = get_frame_pc (this_frame);
3306
3307 if (mips_pc_is_micromips (gdbarch, pc))
3308 return 1;
3309 return 0;
3310 }
3311
3312 static const struct frame_unwind mips_micro_frame_unwind =
3313 {
3314 NORMAL_FRAME,
3315 default_frame_unwind_stop_reason,
3316 mips_micro_frame_this_id,
3317 mips_micro_frame_prev_register,
3318 NULL,
3319 mips_micro_frame_sniffer
3320 };
3321
3322 static CORE_ADDR
3323 mips_micro_frame_base_address (struct frame_info *this_frame,
3324 void **this_cache)
3325 {
3326 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3327 this_cache);
3328 return info->base;
3329 }
3330
3331 static const struct frame_base mips_micro_frame_base =
3332 {
3333 &mips_micro_frame_unwind,
3334 mips_micro_frame_base_address,
3335 mips_micro_frame_base_address,
3336 mips_micro_frame_base_address
3337 };
3338
3339 static const struct frame_base *
3340 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3341 {
3342 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3343 CORE_ADDR pc = get_frame_pc (this_frame);
3344
3345 if (mips_pc_is_micromips (gdbarch, pc))
3346 return &mips_micro_frame_base;
3347 else
3348 return NULL;
3349 }
3350
3351 /* Mark all the registers as unset in the saved_regs array
3352 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3353
3354 static void
3355 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3356 {
3357 if (this_cache == NULL || this_cache->saved_regs == NULL)
3358 return;
3359
3360 {
3361 const int num_regs = gdbarch_num_regs (gdbarch);
3362 int i;
3363
3364 for (i = 0; i < num_regs; i++)
3365 {
3366 this_cache->saved_regs[i].addr = -1;
3367 }
3368 }
3369 }
3370
3371 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3372 the associated FRAME_CACHE if not null.
3373 Return the address of the first instruction past the prologue. */
3374
3375 static CORE_ADDR
3376 mips32_scan_prologue (struct gdbarch *gdbarch,
3377 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3378 struct frame_info *this_frame,
3379 struct mips_frame_cache *this_cache)
3380 {
3381 int prev_non_prologue_insn;
3382 int this_non_prologue_insn;
3383 int non_prologue_insns;
3384 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3385 frame-pointer. */
3386 int prev_delay_slot;
3387 CORE_ADDR prev_pc;
3388 CORE_ADDR cur_pc;
3389 CORE_ADDR sp;
3390 long frame_offset;
3391 int frame_reg = MIPS_SP_REGNUM;
3392
3393 CORE_ADDR end_prologue_addr;
3394 int seen_sp_adjust = 0;
3395 int load_immediate_bytes = 0;
3396 int in_delay_slot;
3397 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3398
3399 /* Can be called when there's no process, and hence when there's no
3400 THIS_FRAME. */
3401 if (this_frame != NULL)
3402 sp = get_frame_register_signed (this_frame,
3403 gdbarch_num_regs (gdbarch)
3404 + MIPS_SP_REGNUM);
3405 else
3406 sp = 0;
3407
3408 if (limit_pc > start_pc + 200)
3409 limit_pc = start_pc + 200;
3410
3411 restart:
3412 prev_non_prologue_insn = 0;
3413 non_prologue_insns = 0;
3414 prev_delay_slot = 0;
3415 prev_pc = start_pc;
3416
3417 /* Permit at most one non-prologue non-control-transfer instruction
3418 in the middle which may have been reordered by the compiler for
3419 optimisation. */
3420 frame_offset = 0;
3421 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3422 {
3423 unsigned long inst, high_word;
3424 long offset;
3425 int reg;
3426
3427 this_non_prologue_insn = 0;
3428 in_delay_slot = 0;
3429
3430 /* Fetch the instruction. */
3431 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3432 cur_pc, NULL);
3433
3434 /* Save some code by pre-extracting some useful fields. */
3435 high_word = (inst >> 16) & 0xffff;
3436 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3437 reg = high_word & 0x1f;
3438
3439 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3440 || high_word == 0x23bd /* addi $sp,$sp,-i */
3441 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3442 {
3443 if (offset < 0) /* Negative stack adjustment? */
3444 frame_offset -= offset;
3445 else
3446 /* Exit loop if a positive stack adjustment is found, which
3447 usually means that the stack cleanup code in the function
3448 epilogue is reached. */
3449 break;
3450 seen_sp_adjust = 1;
3451 }
3452 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3453 && !regsize_is_64_bits)
3454 {
3455 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3456 }
3457 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3458 && regsize_is_64_bits)
3459 {
3460 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3461 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3462 }
3463 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3464 {
3465 /* Old gcc frame, r30 is virtual frame pointer. */
3466 if (offset != frame_offset)
3467 frame_addr = sp + offset;
3468 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3469 {
3470 unsigned alloca_adjust;
3471
3472 frame_reg = 30;
3473 frame_addr = get_frame_register_signed
3474 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3475 frame_offset = 0;
3476
3477 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3478 if (alloca_adjust > 0)
3479 {
3480 /* FP > SP + frame_size. This may be because of
3481 an alloca or somethings similar. Fix sp to
3482 "pre-alloca" value, and try again. */
3483 sp += alloca_adjust;
3484 /* Need to reset the status of all registers. Otherwise,
3485 we will hit a guard that prevents the new address
3486 for each register to be recomputed during the second
3487 pass. */
3488 reset_saved_regs (gdbarch, this_cache);
3489 goto restart;
3490 }
3491 }
3492 }
3493 /* move $30,$sp. With different versions of gas this will be either
3494 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3495 Accept any one of these. */
3496 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3497 {
3498 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3499 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3500 {
3501 unsigned alloca_adjust;
3502
3503 frame_reg = 30;
3504 frame_addr = get_frame_register_signed
3505 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3506
3507 alloca_adjust = (unsigned) (frame_addr - sp);
3508 if (alloca_adjust > 0)
3509 {
3510 /* FP > SP + frame_size. This may be because of
3511 an alloca or somethings similar. Fix sp to
3512 "pre-alloca" value, and try again. */
3513 sp = frame_addr;
3514 /* Need to reset the status of all registers. Otherwise,
3515 we will hit a guard that prevents the new address
3516 for each register to be recomputed during the second
3517 pass. */
3518 reset_saved_regs (gdbarch, this_cache);
3519 goto restart;
3520 }
3521 }
3522 }
3523 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3524 && !regsize_is_64_bits)
3525 {
3526 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3527 }
3528 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3529 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3530 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3531 || high_word == 0x3c1c /* lui $gp,n */
3532 || high_word == 0x279c /* addiu $gp,$gp,n */
3533 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3534 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3535 )
3536 {
3537 /* These instructions are part of the prologue, but we don't
3538 need to do anything special to handle them. */
3539 }
3540 /* The instructions below load $at or $t0 with an immediate
3541 value in preparation for a stack adjustment via
3542 subu $sp,$sp,[$at,$t0]. These instructions could also
3543 initialize a local variable, so we accept them only before
3544 a stack adjustment instruction was seen. */
3545 else if (!seen_sp_adjust
3546 && !prev_delay_slot
3547 && (high_word == 0x3c01 /* lui $at,n */
3548 || high_word == 0x3c08 /* lui $t0,n */
3549 || high_word == 0x3421 /* ori $at,$at,n */
3550 || high_word == 0x3508 /* ori $t0,$t0,n */
3551 || high_word == 0x3401 /* ori $at,$zero,n */
3552 || high_word == 0x3408 /* ori $t0,$zero,n */
3553 ))
3554 {
3555 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3556 }
3557 /* Check for branches and jumps. The instruction in the delay
3558 slot can be a part of the prologue, so move forward once more. */
3559 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3560 {
3561 in_delay_slot = 1;
3562 }
3563 /* This instruction is not an instruction typically found
3564 in a prologue, so we must have reached the end of the
3565 prologue. */
3566 else
3567 {
3568 this_non_prologue_insn = 1;
3569 }
3570
3571 non_prologue_insns += this_non_prologue_insn;
3572
3573 /* A jump or branch, or enough non-prologue insns seen? If so,
3574 then we must have reached the end of the prologue by now. */
3575 if (prev_delay_slot || non_prologue_insns > 1)
3576 break;
3577
3578 prev_non_prologue_insn = this_non_prologue_insn;
3579 prev_delay_slot = in_delay_slot;
3580 prev_pc = cur_pc;
3581 }
3582
3583 if (this_cache != NULL)
3584 {
3585 this_cache->base =
3586 (get_frame_register_signed (this_frame,
3587 gdbarch_num_regs (gdbarch) + frame_reg)
3588 + frame_offset);
3589 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3590 this assignment below, eventually. But it's still needed
3591 for now. */
3592 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3593 + mips_regnum (gdbarch)->pc]
3594 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3595 + MIPS_RA_REGNUM];
3596 }
3597
3598 /* Set end_prologue_addr to the address of the instruction immediately
3599 after the last one we scanned. Unless the last one looked like a
3600 non-prologue instruction (and we looked ahead), in which case use
3601 its address instead. */
3602 end_prologue_addr
3603 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3604
3605 /* In a frameless function, we might have incorrectly
3606 skipped some load immediate instructions. Undo the skipping
3607 if the load immediate was not followed by a stack adjustment. */
3608 if (load_immediate_bytes && !seen_sp_adjust)
3609 end_prologue_addr -= load_immediate_bytes;
3610
3611 return end_prologue_addr;
3612 }
3613
3614 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3615 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3616 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3617 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3618
3619 static struct mips_frame_cache *
3620 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3621 {
3622 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3623 struct mips_frame_cache *cache;
3624
3625 if ((*this_cache) != NULL)
3626 return (struct mips_frame_cache *) (*this_cache);
3627
3628 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3629 (*this_cache) = cache;
3630 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3631
3632 /* Analyze the function prologue. */
3633 {
3634 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3635 CORE_ADDR start_addr;
3636
3637 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3638 if (start_addr == 0)
3639 start_addr = heuristic_proc_start (gdbarch, pc);
3640 /* We can't analyze the prologue if we couldn't find the begining
3641 of the function. */
3642 if (start_addr == 0)
3643 return cache;
3644
3645 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3646 (struct mips_frame_cache *) *this_cache);
3647 }
3648
3649 /* gdbarch_sp_regnum contains the value and not the address. */
3650 trad_frame_set_value (cache->saved_regs,
3651 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3652 cache->base);
3653
3654 return (struct mips_frame_cache *) (*this_cache);
3655 }
3656
3657 static void
3658 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3659 struct frame_id *this_id)
3660 {
3661 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3662 this_cache);
3663 /* This marks the outermost frame. */
3664 if (info->base == 0)
3665 return;
3666 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3667 }
3668
3669 static struct value *
3670 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3671 void **this_cache, int regnum)
3672 {
3673 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3674 this_cache);
3675 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3676 }
3677
3678 static int
3679 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3680 struct frame_info *this_frame, void **this_cache)
3681 {
3682 CORE_ADDR pc = get_frame_pc (this_frame);
3683 if (mips_pc_is_mips (pc))
3684 return 1;
3685 return 0;
3686 }
3687
3688 static const struct frame_unwind mips_insn32_frame_unwind =
3689 {
3690 NORMAL_FRAME,
3691 default_frame_unwind_stop_reason,
3692 mips_insn32_frame_this_id,
3693 mips_insn32_frame_prev_register,
3694 NULL,
3695 mips_insn32_frame_sniffer
3696 };
3697
3698 static CORE_ADDR
3699 mips_insn32_frame_base_address (struct frame_info *this_frame,
3700 void **this_cache)
3701 {
3702 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3703 this_cache);
3704 return info->base;
3705 }
3706
3707 static const struct frame_base mips_insn32_frame_base =
3708 {
3709 &mips_insn32_frame_unwind,
3710 mips_insn32_frame_base_address,
3711 mips_insn32_frame_base_address,
3712 mips_insn32_frame_base_address
3713 };
3714
3715 static const struct frame_base *
3716 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3717 {
3718 CORE_ADDR pc = get_frame_pc (this_frame);
3719 if (mips_pc_is_mips (pc))
3720 return &mips_insn32_frame_base;
3721 else
3722 return NULL;
3723 }
3724
3725 static struct trad_frame_cache *
3726 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3727 {
3728 CORE_ADDR pc;
3729 CORE_ADDR start_addr;
3730 CORE_ADDR stack_addr;
3731 struct trad_frame_cache *this_trad_cache;
3732 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3733 int num_regs = gdbarch_num_regs (gdbarch);
3734
3735 if ((*this_cache) != NULL)
3736 return (struct trad_frame_cache *) (*this_cache);
3737 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3738 (*this_cache) = this_trad_cache;
3739
3740 /* The return address is in the link register. */
3741 trad_frame_set_reg_realreg (this_trad_cache,
3742 gdbarch_pc_regnum (gdbarch),
3743 num_regs + MIPS_RA_REGNUM);
3744
3745 /* Frame ID, since it's a frameless / stackless function, no stack
3746 space is allocated and SP on entry is the current SP. */
3747 pc = get_frame_pc (this_frame);
3748 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3749 stack_addr = get_frame_register_signed (this_frame,
3750 num_regs + MIPS_SP_REGNUM);
3751 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3752
3753 /* Assume that the frame's base is the same as the
3754 stack-pointer. */
3755 trad_frame_set_this_base (this_trad_cache, stack_addr);
3756
3757 return this_trad_cache;
3758 }
3759
3760 static void
3761 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3762 struct frame_id *this_id)
3763 {
3764 struct trad_frame_cache *this_trad_cache
3765 = mips_stub_frame_cache (this_frame, this_cache);
3766 trad_frame_get_id (this_trad_cache, this_id);
3767 }
3768
3769 static struct value *
3770 mips_stub_frame_prev_register (struct frame_info *this_frame,
3771 void **this_cache, int regnum)
3772 {
3773 struct trad_frame_cache *this_trad_cache
3774 = mips_stub_frame_cache (this_frame, this_cache);
3775 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3776 }
3777
3778 static int
3779 mips_stub_frame_sniffer (const struct frame_unwind *self,
3780 struct frame_info *this_frame, void **this_cache)
3781 {
3782 gdb_byte dummy[4];
3783 struct obj_section *s;
3784 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3785 struct bound_minimal_symbol msym;
3786
3787 /* Use the stub unwinder for unreadable code. */
3788 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3789 return 1;
3790
3791 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3792 return 1;
3793
3794 /* Calling a PIC function from a non-PIC function passes through a
3795 stub. The stub for foo is named ".pic.foo". */
3796 msym = lookup_minimal_symbol_by_pc (pc);
3797 if (msym.minsym != NULL
3798 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3799 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3800 return 1;
3801
3802 return 0;
3803 }
3804
3805 static const struct frame_unwind mips_stub_frame_unwind =
3806 {
3807 NORMAL_FRAME,
3808 default_frame_unwind_stop_reason,
3809 mips_stub_frame_this_id,
3810 mips_stub_frame_prev_register,
3811 NULL,
3812 mips_stub_frame_sniffer
3813 };
3814
3815 static CORE_ADDR
3816 mips_stub_frame_base_address (struct frame_info *this_frame,
3817 void **this_cache)
3818 {
3819 struct trad_frame_cache *this_trad_cache
3820 = mips_stub_frame_cache (this_frame, this_cache);
3821 return trad_frame_get_this_base (this_trad_cache);
3822 }
3823
3824 static const struct frame_base mips_stub_frame_base =
3825 {
3826 &mips_stub_frame_unwind,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address,
3829 mips_stub_frame_base_address
3830 };
3831
3832 static const struct frame_base *
3833 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3834 {
3835 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3836 return &mips_stub_frame_base;
3837 else
3838 return NULL;
3839 }
3840
3841 /* mips_addr_bits_remove - remove useless address bits */
3842
3843 static CORE_ADDR
3844 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3845 {
3846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3847
3848 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3849 /* This hack is a work-around for existing boards using PMON, the
3850 simulator, and any other 64-bit targets that doesn't have true
3851 64-bit addressing. On these targets, the upper 32 bits of
3852 addresses are ignored by the hardware. Thus, the PC or SP are
3853 likely to have been sign extended to all 1s by instruction
3854 sequences that load 32-bit addresses. For example, a typical
3855 piece of code that loads an address is this:
3856
3857 lui $r2, <upper 16 bits>
3858 ori $r2, <lower 16 bits>
3859
3860 But the lui sign-extends the value such that the upper 32 bits
3861 may be all 1s. The workaround is simply to mask off these
3862 bits. In the future, gcc may be changed to support true 64-bit
3863 addressing, and this masking will have to be disabled. */
3864 return addr &= 0xffffffffUL;
3865 else
3866 return addr;
3867 }
3868
3869
3870 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3871 instruction and ending with a SC/SCD instruction. If such a sequence
3872 is found, attempt to step through it. A breakpoint is placed at the end of
3873 the sequence. */
3874
3875 /* Instructions used during single-stepping of atomic sequences, standard
3876 ISA version. */
3877 #define LL_OPCODE 0x30
3878 #define LLD_OPCODE 0x34
3879 #define SC_OPCODE 0x38
3880 #define SCD_OPCODE 0x3c
3881
3882 static VEC (CORE_ADDR) *
3883 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3884 {
3885 CORE_ADDR breaks[2] = {-1, -1};
3886 CORE_ADDR loc = pc;
3887 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3888 ULONGEST insn;
3889 int insn_count;
3890 int index;
3891 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3892 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3893 VEC (CORE_ADDR) *next_pcs = NULL;
3894
3895 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3896 /* Assume all atomic sequences start with a ll/lld instruction. */
3897 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3898 return NULL;
3899
3900 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3901 instructions. */
3902 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3903 {
3904 int is_branch = 0;
3905 loc += MIPS_INSN32_SIZE;
3906 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3907
3908 /* Assume that there is at most one branch in the atomic
3909 sequence. If a branch is found, put a breakpoint in its
3910 destination address. */
3911 switch (itype_op (insn))
3912 {
3913 case 0: /* SPECIAL */
3914 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3915 return 0; /* fallback to the standard single-step code. */
3916 break;
3917 case 1: /* REGIMM */
3918 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3919 || ((itype_rt (insn) & 0x1e) == 0
3920 && itype_rs (insn) == 0)); /* BPOSGE* */
3921 break;
3922 case 2: /* J */
3923 case 3: /* JAL */
3924 return 0; /* fallback to the standard single-step code. */
3925 case 4: /* BEQ */
3926 case 5: /* BNE */
3927 case 6: /* BLEZ */
3928 case 7: /* BGTZ */
3929 case 20: /* BEQL */
3930 case 21: /* BNEL */
3931 case 22: /* BLEZL */
3932 case 23: /* BGTTL */
3933 is_branch = 1;
3934 break;
3935 case 17: /* COP1 */
3936 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3937 && (itype_rt (insn) & 0x2) == 0);
3938 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3939 break;
3940 /* Fall through. */
3941 case 18: /* COP2 */
3942 case 19: /* COP3 */
3943 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3944 break;
3945 }
3946 if (is_branch)
3947 {
3948 branch_bp = loc + mips32_relative_offset (insn) + 4;
3949 if (last_breakpoint >= 1)
3950 return 0; /* More than one branch found, fallback to the
3951 standard single-step code. */
3952 breaks[1] = branch_bp;
3953 last_breakpoint++;
3954 }
3955
3956 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3957 break;
3958 }
3959
3960 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3961 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3962 return NULL;
3963
3964 loc += MIPS_INSN32_SIZE;
3965
3966 /* Insert a breakpoint right after the end of the atomic sequence. */
3967 breaks[0] = loc;
3968
3969 /* Check for duplicated breakpoints. Check also for a breakpoint
3970 placed (branch instruction's destination) in the atomic sequence. */
3971 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3972 last_breakpoint = 0;
3973
3974 /* Effectively inserts the breakpoints. */
3975 for (index = 0; index <= last_breakpoint; index++)
3976 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
3977
3978 return next_pcs;
3979 }
3980
3981 static VEC (CORE_ADDR) *
3982 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3983 CORE_ADDR pc)
3984 {
3985 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3986 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3987 CORE_ADDR breaks[2] = {-1, -1};
3988 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3989 destination. */
3990 CORE_ADDR loc = pc;
3991 int sc_found = 0;
3992 ULONGEST insn;
3993 int insn_count;
3994 int index;
3995 VEC (CORE_ADDR) *next_pcs = NULL;
3996
3997 /* Assume all atomic sequences start with a ll/lld instruction. */
3998 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3999 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4000 return NULL;
4001 loc += MIPS_INSN16_SIZE;
4002 insn <<= 16;
4003 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4004 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4005 return NULL;
4006 loc += MIPS_INSN16_SIZE;
4007
4008 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4009 that no atomic sequence is longer than "atomic_sequence_length"
4010 instructions. */
4011 for (insn_count = 0;
4012 !sc_found && insn_count < atomic_sequence_length;
4013 ++insn_count)
4014 {
4015 int is_branch = 0;
4016
4017 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4018 loc += MIPS_INSN16_SIZE;
4019
4020 /* Assume that there is at most one conditional branch in the
4021 atomic sequence. If a branch is found, put a breakpoint in
4022 its destination address. */
4023 switch (mips_insn_size (ISA_MICROMIPS, insn))
4024 {
4025 /* 32-bit instructions. */
4026 case 2 * MIPS_INSN16_SIZE:
4027 switch (micromips_op (insn))
4028 {
4029 case 0x10: /* POOL32I: bits 010000 */
4030 if ((b5s5_op (insn) & 0x18) != 0x0
4031 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4032 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4033 && (b5s5_op (insn) & 0x1d) != 0x11
4034 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4035 && ((b5s5_op (insn) & 0x1e) != 0x14
4036 || (insn & 0x3) != 0x0)
4037 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4038 && (b5s5_op (insn) & 0x1e) != 0x1a
4039 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4040 && ((b5s5_op (insn) & 0x1e) != 0x1c
4041 || (insn & 0x3) != 0x0)
4042 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4043 && ((b5s5_op (insn) & 0x1c) != 0x1c
4044 || (insn & 0x3) != 0x1))
4045 /* BC1ANY*: bits 010000 111xx xxx01 */
4046 break;
4047 /* Fall through. */
4048
4049 case 0x25: /* BEQ: bits 100101 */
4050 case 0x2d: /* BNE: bits 101101 */
4051 insn <<= 16;
4052 insn |= mips_fetch_instruction (gdbarch,
4053 ISA_MICROMIPS, loc, NULL);
4054 branch_bp = (loc + MIPS_INSN16_SIZE
4055 + micromips_relative_offset16 (insn));
4056 is_branch = 1;
4057 break;
4058
4059 case 0x00: /* POOL32A: bits 000000 */
4060 insn <<= 16;
4061 insn |= mips_fetch_instruction (gdbarch,
4062 ISA_MICROMIPS, loc, NULL);
4063 if (b0s6_op (insn) != 0x3c
4064 /* POOL32Axf: bits 000000 ... 111100 */
4065 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4066 /* JALR, JALR.HB: 000000 000x111100 111100 */
4067 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4068 break;
4069 /* Fall through. */
4070
4071 case 0x1d: /* JALS: bits 011101 */
4072 case 0x35: /* J: bits 110101 */
4073 case 0x3d: /* JAL: bits 111101 */
4074 case 0x3c: /* JALX: bits 111100 */
4075 return 0; /* Fall back to the standard single-step code. */
4076
4077 case 0x18: /* POOL32C: bits 011000 */
4078 if ((b12s4_op (insn) & 0xb) == 0xb)
4079 /* SC, SCD: bits 011000 1x11 */
4080 sc_found = 1;
4081 break;
4082 }
4083 loc += MIPS_INSN16_SIZE;
4084 break;
4085
4086 /* 16-bit instructions. */
4087 case MIPS_INSN16_SIZE:
4088 switch (micromips_op (insn))
4089 {
4090 case 0x23: /* BEQZ16: bits 100011 */
4091 case 0x2b: /* BNEZ16: bits 101011 */
4092 branch_bp = loc + micromips_relative_offset7 (insn);
4093 is_branch = 1;
4094 break;
4095
4096 case 0x11: /* POOL16C: bits 010001 */
4097 if ((b5s5_op (insn) & 0x1c) != 0xc
4098 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4099 && b5s5_op (insn) != 0x18)
4100 /* JRADDIUSP: bits 010001 11000 */
4101 break;
4102 return NULL; /* Fall back to the standard single-step code. */
4103
4104 case 0x33: /* B16: bits 110011 */
4105 return NULL; /* Fall back to the standard single-step code. */
4106 }
4107 break;
4108 }
4109 if (is_branch)
4110 {
4111 if (last_breakpoint >= 1)
4112 return NULL; /* More than one branch found, fallback to the
4113 standard single-step code. */
4114 breaks[1] = branch_bp;
4115 last_breakpoint++;
4116 }
4117 }
4118 if (!sc_found)
4119 return NULL;
4120
4121 /* Insert a breakpoint right after the end of the atomic sequence. */
4122 breaks[0] = loc;
4123
4124 /* Check for duplicated breakpoints. Check also for a breakpoint
4125 placed (branch instruction's destination) in the atomic sequence */
4126 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4127 last_breakpoint = 0;
4128
4129 /* Effectively inserts the breakpoints. */
4130 for (index = 0; index <= last_breakpoint; index++)
4131 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
4132
4133 return next_pcs;
4134 }
4135
4136 static VEC (CORE_ADDR) *
4137 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4138 {
4139 if (mips_pc_is_mips (pc))
4140 return mips_deal_with_atomic_sequence (gdbarch, pc);
4141 else if (mips_pc_is_micromips (gdbarch, pc))
4142 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4143 else
4144 return NULL;
4145 }
4146
4147 /* mips_software_single_step() is called just before we want to resume
4148 the inferior, if we want to single-step it but there is no hardware
4149 or kernel single-step support (MIPS on GNU/Linux for example). We find
4150 the target of the coming instruction and breakpoint it. */
4151
4152 VEC (CORE_ADDR) *
4153 mips_software_single_step (struct regcache *regcache)
4154 {
4155 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4156 CORE_ADDR pc, next_pc;
4157 VEC (CORE_ADDR) *next_pcs;
4158
4159 pc = regcache_read_pc (regcache);
4160 next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4161 if (next_pcs != NULL)
4162 return next_pcs;
4163
4164 next_pc = mips_next_pc (regcache, pc);
4165
4166 VEC_safe_push (CORE_ADDR, next_pcs, next_pc);
4167 return next_pcs;
4168 }
4169
4170 /* Test whether the PC points to the return instruction at the
4171 end of a function. */
4172
4173 static int
4174 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4175 {
4176 ULONGEST insn;
4177 ULONGEST hint;
4178
4179 /* This used to check for MIPS16, but this piece of code is never
4180 called for MIPS16 functions. And likewise microMIPS ones. */
4181 gdb_assert (mips_pc_is_mips (pc));
4182
4183 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4184 hint = 0x7c0;
4185 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4186 }
4187
4188
4189 /* This fencepost looks highly suspicious to me. Removing it also
4190 seems suspicious as it could affect remote debugging across serial
4191 lines. */
4192
4193 static CORE_ADDR
4194 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4195 {
4196 CORE_ADDR start_pc;
4197 CORE_ADDR fence;
4198 int instlen;
4199 int seen_adjsp = 0;
4200 struct inferior *inf;
4201
4202 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4203 start_pc = pc;
4204 fence = start_pc - heuristic_fence_post;
4205 if (start_pc == 0)
4206 return 0;
4207
4208 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4209 fence = VM_MIN_ADDRESS;
4210
4211 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4212
4213 inf = current_inferior ();
4214
4215 /* Search back for previous return. */
4216 for (start_pc -= instlen;; start_pc -= instlen)
4217 if (start_pc < fence)
4218 {
4219 /* It's not clear to me why we reach this point when
4220 stop_soon, but with this test, at least we
4221 don't print out warnings for every child forked (eg, on
4222 decstation). 22apr93 rich@cygnus.com. */
4223 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4224 {
4225 static int blurb_printed = 0;
4226
4227 warning (_("GDB can't find the start of the function at %s."),
4228 paddress (gdbarch, pc));
4229
4230 if (!blurb_printed)
4231 {
4232 /* This actually happens frequently in embedded
4233 development, when you first connect to a board
4234 and your stack pointer and pc are nowhere in
4235 particular. This message needs to give people
4236 in that situation enough information to
4237 determine that it's no big deal. */
4238 printf_filtered ("\n\
4239 GDB is unable to find the start of the function at %s\n\
4240 and thus can't determine the size of that function's stack frame.\n\
4241 This means that GDB may be unable to access that stack frame, or\n\
4242 the frames below it.\n\
4243 This problem is most likely caused by an invalid program counter or\n\
4244 stack pointer.\n\
4245 However, if you think GDB should simply search farther back\n\
4246 from %s for code which looks like the beginning of a\n\
4247 function, you can increase the range of the search using the `set\n\
4248 heuristic-fence-post' command.\n",
4249 paddress (gdbarch, pc), paddress (gdbarch, pc));
4250 blurb_printed = 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4257 {
4258 unsigned short inst;
4259
4260 /* On MIPS16, any one of the following is likely to be the
4261 start of a function:
4262 extend save
4263 save
4264 entry
4265 addiu sp,-n
4266 daddiu sp,-n
4267 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4268 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4269 if ((inst & 0xff80) == 0x6480) /* save */
4270 {
4271 if (start_pc - instlen >= fence)
4272 {
4273 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4274 start_pc - instlen, NULL);
4275 if ((inst & 0xf800) == 0xf000) /* extend */
4276 start_pc -= instlen;
4277 }
4278 break;
4279 }
4280 else if (((inst & 0xf81f) == 0xe809
4281 && (inst & 0x700) != 0x700) /* entry */
4282 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4283 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4284 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4285 break;
4286 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4287 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4288 seen_adjsp = 1;
4289 else
4290 seen_adjsp = 0;
4291 }
4292 else if (mips_pc_is_micromips (gdbarch, start_pc))
4293 {
4294 ULONGEST insn;
4295 int stop = 0;
4296 long offset;
4297 int dreg;
4298 int sreg;
4299
4300 /* On microMIPS, any one of the following is likely to be the
4301 start of a function:
4302 ADDIUSP -imm
4303 (D)ADDIU $sp, -imm
4304 LUI $gp, imm */
4305 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4306 switch (micromips_op (insn))
4307 {
4308 case 0xc: /* ADDIU: bits 001100 */
4309 case 0x17: /* DADDIU: bits 010111 */
4310 sreg = b0s5_reg (insn);
4311 dreg = b5s5_reg (insn);
4312 insn <<= 16;
4313 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4314 pc + MIPS_INSN16_SIZE, NULL);
4315 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4316 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4317 /* (D)ADDIU $sp, imm */
4318 && offset < 0)
4319 stop = 1;
4320 break;
4321
4322 case 0x10: /* POOL32I: bits 010000 */
4323 if (b5s5_op (insn) == 0xd
4324 /* LUI: bits 010000 001101 */
4325 && b0s5_reg (insn >> 16) == 28)
4326 /* LUI $gp, imm */
4327 stop = 1;
4328 break;
4329
4330 case 0x13: /* POOL16D: bits 010011 */
4331 if ((insn & 0x1) == 0x1)
4332 /* ADDIUSP: bits 010011 1 */
4333 {
4334 offset = micromips_decode_imm9 (b1s9_imm (insn));
4335 if (offset < 0)
4336 /* ADDIUSP -imm */
4337 stop = 1;
4338 }
4339 else
4340 /* ADDIUS5: bits 010011 0 */
4341 {
4342 dreg = b5s5_reg (insn);
4343 offset = (b1s4_imm (insn) ^ 8) - 8;
4344 if (dreg == MIPS_SP_REGNUM && offset < 0)
4345 /* ADDIUS5 $sp, -imm */
4346 stop = 1;
4347 }
4348 break;
4349 }
4350 if (stop)
4351 break;
4352 }
4353 else if (mips_about_to_return (gdbarch, start_pc))
4354 {
4355 /* Skip return and its delay slot. */
4356 start_pc += 2 * MIPS_INSN32_SIZE;
4357 break;
4358 }
4359
4360 return start_pc;
4361 }
4362
4363 struct mips_objfile_private
4364 {
4365 bfd_size_type size;
4366 char *contents;
4367 };
4368
4369 /* According to the current ABI, should the type be passed in a
4370 floating-point register (assuming that there is space)? When there
4371 is no FPU, FP are not even considered as possible candidates for
4372 FP registers and, consequently this returns false - forces FP
4373 arguments into integer registers. */
4374
4375 static int
4376 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4377 struct type *arg_type)
4378 {
4379 return ((typecode == TYPE_CODE_FLT
4380 || (MIPS_EABI (gdbarch)
4381 && (typecode == TYPE_CODE_STRUCT
4382 || typecode == TYPE_CODE_UNION)
4383 && TYPE_NFIELDS (arg_type) == 1
4384 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4385 == TYPE_CODE_FLT))
4386 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4387 }
4388
4389 /* On o32, argument passing in GPRs depends on the alignment of the type being
4390 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4391
4392 static int
4393 mips_type_needs_double_align (struct type *type)
4394 {
4395 enum type_code typecode = TYPE_CODE (type);
4396
4397 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4398 return 1;
4399 else if (typecode == TYPE_CODE_STRUCT)
4400 {
4401 if (TYPE_NFIELDS (type) < 1)
4402 return 0;
4403 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4404 }
4405 else if (typecode == TYPE_CODE_UNION)
4406 {
4407 int i, n;
4408
4409 n = TYPE_NFIELDS (type);
4410 for (i = 0; i < n; i++)
4411 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4412 return 1;
4413 return 0;
4414 }
4415 return 0;
4416 }
4417
4418 /* Adjust the address downward (direction of stack growth) so that it
4419 is correctly aligned for a new stack frame. */
4420 static CORE_ADDR
4421 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4422 {
4423 return align_down (addr, 16);
4424 }
4425
4426 /* Implement the "push_dummy_code" gdbarch method. */
4427
4428 static CORE_ADDR
4429 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4430 CORE_ADDR funaddr, struct value **args,
4431 int nargs, struct type *value_type,
4432 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4433 struct regcache *regcache)
4434 {
4435 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4436 CORE_ADDR nop_addr;
4437 CORE_ADDR bp_slot;
4438
4439 /* Reserve enough room on the stack for our breakpoint instruction. */
4440 bp_slot = sp - sizeof (nop_insn);
4441
4442 /* Return to microMIPS mode if calling microMIPS code to avoid
4443 triggering an address error exception on processors that only
4444 support microMIPS execution. */
4445 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4446 ? make_compact_addr (bp_slot) : bp_slot);
4447
4448 /* The breakpoint layer automatically adjusts the address of
4449 breakpoints inserted in a branch delay slot. With enough
4450 bad luck, the 4 bytes located just before our breakpoint
4451 instruction could look like a branch instruction, and thus
4452 trigger the adjustement, and break the function call entirely.
4453 So, we reserve those 4 bytes and write a nop instruction
4454 to prevent that from happening. */
4455 nop_addr = bp_slot - sizeof (nop_insn);
4456 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4457 sp = mips_frame_align (gdbarch, nop_addr);
4458
4459 /* Inferior resumes at the function entry point. */
4460 *real_pc = funaddr;
4461
4462 return sp;
4463 }
4464
4465 static CORE_ADDR
4466 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4467 struct regcache *regcache, CORE_ADDR bp_addr,
4468 int nargs, struct value **args, CORE_ADDR sp,
4469 int struct_return, CORE_ADDR struct_addr)
4470 {
4471 int argreg;
4472 int float_argreg;
4473 int argnum;
4474 int len = 0;
4475 int stack_offset = 0;
4476 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4477 CORE_ADDR func_addr = find_function_addr (function, NULL);
4478 int regsize = mips_abi_regsize (gdbarch);
4479
4480 /* For shared libraries, "t9" needs to point at the function
4481 address. */
4482 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4483
4484 /* Set the return address register to point to the entry point of
4485 the program, where a breakpoint lies in wait. */
4486 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4487
4488 /* First ensure that the stack and structure return address (if any)
4489 are properly aligned. The stack has to be at least 64-bit
4490 aligned even on 32-bit machines, because doubles must be 64-bit
4491 aligned. For n32 and n64, stack frames need to be 128-bit
4492 aligned, so we round to this widest known alignment. */
4493
4494 sp = align_down (sp, 16);
4495 struct_addr = align_down (struct_addr, 16);
4496
4497 /* Now make space on the stack for the args. We allocate more
4498 than necessary for EABI, because the first few arguments are
4499 passed in registers, but that's OK. */
4500 for (argnum = 0; argnum < nargs; argnum++)
4501 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4502 sp -= align_up (len, 16);
4503
4504 if (mips_debug)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4507 paddress (gdbarch, sp), (long) align_up (len, 16));
4508
4509 /* Initialize the integer and float register pointers. */
4510 argreg = MIPS_A0_REGNUM;
4511 float_argreg = mips_fpa0_regnum (gdbarch);
4512
4513 /* The struct_return pointer occupies the first parameter-passing reg. */
4514 if (struct_return)
4515 {
4516 if (mips_debug)
4517 fprintf_unfiltered (gdb_stdlog,
4518 "mips_eabi_push_dummy_call: "
4519 "struct_return reg=%d %s\n",
4520 argreg, paddress (gdbarch, struct_addr));
4521 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4522 }
4523
4524 /* Now load as many as possible of the first arguments into
4525 registers, and push the rest onto the stack. Loop thru args
4526 from first to last. */
4527 for (argnum = 0; argnum < nargs; argnum++)
4528 {
4529 const gdb_byte *val;
4530 gdb_byte valbuf[MAX_REGISTER_SIZE];
4531 struct value *arg = args[argnum];
4532 struct type *arg_type = check_typedef (value_type (arg));
4533 int len = TYPE_LENGTH (arg_type);
4534 enum type_code typecode = TYPE_CODE (arg_type);
4535
4536 if (mips_debug)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4539 argnum + 1, len, (int) typecode);
4540
4541 /* The EABI passes structures that do not fit in a register by
4542 reference. */
4543 if (len > regsize
4544 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4545 {
4546 store_unsigned_integer (valbuf, regsize, byte_order,
4547 value_address (arg));
4548 typecode = TYPE_CODE_PTR;
4549 len = regsize;
4550 val = valbuf;
4551 if (mips_debug)
4552 fprintf_unfiltered (gdb_stdlog, " push");
4553 }
4554 else
4555 val = value_contents (arg);
4556
4557 /* 32-bit ABIs always start floating point arguments in an
4558 even-numbered floating point register. Round the FP register
4559 up before the check to see if there are any FP registers
4560 left. Non MIPS_EABI targets also pass the FP in the integer
4561 registers so also round up normal registers. */
4562 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4563 {
4564 if ((float_argreg & 1))
4565 float_argreg++;
4566 }
4567
4568 /* Floating point arguments passed in registers have to be
4569 treated specially. On 32-bit architectures, doubles
4570 are passed in register pairs; the even register gets
4571 the low word, and the odd register gets the high word.
4572 On non-EABI processors, the first two floating point arguments are
4573 also copied to general registers, because MIPS16 functions
4574 don't use float registers for arguments. This duplication of
4575 arguments in general registers can't hurt non-MIPS16 functions
4576 because those registers are normally skipped. */
4577 /* MIPS_EABI squeezes a struct that contains a single floating
4578 point value into an FP register instead of pushing it onto the
4579 stack. */
4580 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4581 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4582 {
4583 /* EABI32 will pass doubles in consecutive registers, even on
4584 64-bit cores. At one time, we used to check the size of
4585 `float_argreg' to determine whether or not to pass doubles
4586 in consecutive registers, but this is not sufficient for
4587 making the ABI determination. */
4588 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4589 {
4590 int low_offset = gdbarch_byte_order (gdbarch)
4591 == BFD_ENDIAN_BIG ? 4 : 0;
4592 long regval;
4593
4594 /* Write the low word of the double to the even register(s). */
4595 regval = extract_signed_integer (val + low_offset,
4596 4, byte_order);
4597 if (mips_debug)
4598 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4599 float_argreg, phex (regval, 4));
4600 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4601
4602 /* Write the high word of the double to the odd register(s). */
4603 regval = extract_signed_integer (val + 4 - low_offset,
4604 4, byte_order);
4605 if (mips_debug)
4606 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4607 float_argreg, phex (regval, 4));
4608 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4609 }
4610 else
4611 {
4612 /* This is a floating point value that fits entirely
4613 in a single register. */
4614 /* On 32 bit ABI's the float_argreg is further adjusted
4615 above to ensure that it is even register aligned. */
4616 LONGEST regval = extract_signed_integer (val, len, byte_order);
4617 if (mips_debug)
4618 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4619 float_argreg, phex (regval, len));
4620 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4621 }
4622 }
4623 else
4624 {
4625 /* Copy the argument to general registers or the stack in
4626 register-sized pieces. Large arguments are split between
4627 registers and stack. */
4628 /* Note: structs whose size is not a multiple of regsize
4629 are treated specially: Irix cc passes
4630 them in registers where gcc sometimes puts them on the
4631 stack. For maximum compatibility, we will put them in
4632 both places. */
4633 int odd_sized_struct = (len > regsize && len % regsize != 0);
4634
4635 /* Note: Floating-point values that didn't fit into an FP
4636 register are only written to memory. */
4637 while (len > 0)
4638 {
4639 /* Remember if the argument was written to the stack. */
4640 int stack_used_p = 0;
4641 int partial_len = (len < regsize ? len : regsize);
4642
4643 if (mips_debug)
4644 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4645 partial_len);
4646
4647 /* Write this portion of the argument to the stack. */
4648 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4649 || odd_sized_struct
4650 || fp_register_arg_p (gdbarch, typecode, arg_type))
4651 {
4652 /* Should shorter than int integer values be
4653 promoted to int before being stored? */
4654 int longword_offset = 0;
4655 CORE_ADDR addr;
4656 stack_used_p = 1;
4657 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4658 {
4659 if (regsize == 8
4660 && (typecode == TYPE_CODE_INT
4661 || typecode == TYPE_CODE_PTR
4662 || typecode == TYPE_CODE_FLT) && len <= 4)
4663 longword_offset = regsize - len;
4664 else if ((typecode == TYPE_CODE_STRUCT
4665 || typecode == TYPE_CODE_UNION)
4666 && TYPE_LENGTH (arg_type) < regsize)
4667 longword_offset = regsize - len;
4668 }
4669
4670 if (mips_debug)
4671 {
4672 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4673 paddress (gdbarch, stack_offset));
4674 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4675 paddress (gdbarch, longword_offset));
4676 }
4677
4678 addr = sp + stack_offset + longword_offset;
4679
4680 if (mips_debug)
4681 {
4682 int i;
4683 fprintf_unfiltered (gdb_stdlog, " @%s ",
4684 paddress (gdbarch, addr));
4685 for (i = 0; i < partial_len; i++)
4686 {
4687 fprintf_unfiltered (gdb_stdlog, "%02x",
4688 val[i] & 0xff);
4689 }
4690 }
4691 write_memory (addr, val, partial_len);
4692 }
4693
4694 /* Note!!! This is NOT an else clause. Odd sized
4695 structs may go thru BOTH paths. Floating point
4696 arguments will not. */
4697 /* Write this portion of the argument to a general
4698 purpose register. */
4699 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4700 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4701 {
4702 LONGEST regval =
4703 extract_signed_integer (val, partial_len, byte_order);
4704
4705 if (mips_debug)
4706 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4707 argreg,
4708 phex (regval, regsize));
4709 regcache_cooked_write_signed (regcache, argreg, regval);
4710 argreg++;
4711 }
4712
4713 len -= partial_len;
4714 val += partial_len;
4715
4716 /* Compute the offset into the stack at which we will
4717 copy the next parameter.
4718
4719 In the new EABI (and the NABI32), the stack_offset
4720 only needs to be adjusted when it has been used. */
4721
4722 if (stack_used_p)
4723 stack_offset += align_up (partial_len, regsize);
4724 }
4725 }
4726 if (mips_debug)
4727 fprintf_unfiltered (gdb_stdlog, "\n");
4728 }
4729
4730 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4731
4732 /* Return adjusted stack pointer. */
4733 return sp;
4734 }
4735
4736 /* Determine the return value convention being used. */
4737
4738 static enum return_value_convention
4739 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4740 struct type *type, struct regcache *regcache,
4741 gdb_byte *readbuf, const gdb_byte *writebuf)
4742 {
4743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4744 int fp_return_type = 0;
4745 int offset, regnum, xfer;
4746
4747 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4748 return RETURN_VALUE_STRUCT_CONVENTION;
4749
4750 /* Floating point type? */
4751 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4752 {
4753 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4754 fp_return_type = 1;
4755 /* Structs with a single field of float type
4756 are returned in a floating point register. */
4757 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4758 || TYPE_CODE (type) == TYPE_CODE_UNION)
4759 && TYPE_NFIELDS (type) == 1)
4760 {
4761 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4762
4763 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4764 fp_return_type = 1;
4765 }
4766 }
4767
4768 if (fp_return_type)
4769 {
4770 /* A floating-point value belongs in the least significant part
4771 of FP0/FP1. */
4772 if (mips_debug)
4773 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4774 regnum = mips_regnum (gdbarch)->fp0;
4775 }
4776 else
4777 {
4778 /* An integer value goes in V0/V1. */
4779 if (mips_debug)
4780 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4781 regnum = MIPS_V0_REGNUM;
4782 }
4783 for (offset = 0;
4784 offset < TYPE_LENGTH (type);
4785 offset += mips_abi_regsize (gdbarch), regnum++)
4786 {
4787 xfer = mips_abi_regsize (gdbarch);
4788 if (offset + xfer > TYPE_LENGTH (type))
4789 xfer = TYPE_LENGTH (type) - offset;
4790 mips_xfer_register (gdbarch, regcache,
4791 gdbarch_num_regs (gdbarch) + regnum, xfer,
4792 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4793 offset);
4794 }
4795
4796 return RETURN_VALUE_REGISTER_CONVENTION;
4797 }
4798
4799
4800 /* N32/N64 ABI stuff. */
4801
4802 /* Search for a naturally aligned double at OFFSET inside a struct
4803 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4804 registers. */
4805
4806 static int
4807 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4808 int offset)
4809 {
4810 int i;
4811
4812 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4813 return 0;
4814
4815 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4816 return 0;
4817
4818 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4819 return 0;
4820
4821 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4822 {
4823 int pos;
4824 struct type *field_type;
4825
4826 /* We're only looking at normal fields. */
4827 if (field_is_static (&TYPE_FIELD (arg_type, i))
4828 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4829 continue;
4830
4831 /* If we have gone past the offset, there is no double to pass. */
4832 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4833 if (pos > offset)
4834 return 0;
4835
4836 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4837
4838 /* If this field is entirely before the requested offset, go
4839 on to the next one. */
4840 if (pos + TYPE_LENGTH (field_type) <= offset)
4841 continue;
4842
4843 /* If this is our special aligned double, we can stop. */
4844 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4845 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4846 return 1;
4847
4848 /* This field starts at or before the requested offset, and
4849 overlaps it. If it is a structure, recurse inwards. */
4850 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4851 }
4852
4853 return 0;
4854 }
4855
4856 static CORE_ADDR
4857 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4858 struct regcache *regcache, CORE_ADDR bp_addr,
4859 int nargs, struct value **args, CORE_ADDR sp,
4860 int struct_return, CORE_ADDR struct_addr)
4861 {
4862 int argreg;
4863 int float_argreg;
4864 int argnum;
4865 int len = 0;
4866 int stack_offset = 0;
4867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4868 CORE_ADDR func_addr = find_function_addr (function, NULL);
4869
4870 /* For shared libraries, "t9" needs to point at the function
4871 address. */
4872 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4873
4874 /* Set the return address register to point to the entry point of
4875 the program, where a breakpoint lies in wait. */
4876 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4877
4878 /* First ensure that the stack and structure return address (if any)
4879 are properly aligned. The stack has to be at least 64-bit
4880 aligned even on 32-bit machines, because doubles must be 64-bit
4881 aligned. For n32 and n64, stack frames need to be 128-bit
4882 aligned, so we round to this widest known alignment. */
4883
4884 sp = align_down (sp, 16);
4885 struct_addr = align_down (struct_addr, 16);
4886
4887 /* Now make space on the stack for the args. */
4888 for (argnum = 0; argnum < nargs; argnum++)
4889 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4890 sp -= align_up (len, 16);
4891
4892 if (mips_debug)
4893 fprintf_unfiltered (gdb_stdlog,
4894 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4895 paddress (gdbarch, sp), (long) align_up (len, 16));
4896
4897 /* Initialize the integer and float register pointers. */
4898 argreg = MIPS_A0_REGNUM;
4899 float_argreg = mips_fpa0_regnum (gdbarch);
4900
4901 /* The struct_return pointer occupies the first parameter-passing reg. */
4902 if (struct_return)
4903 {
4904 if (mips_debug)
4905 fprintf_unfiltered (gdb_stdlog,
4906 "mips_n32n64_push_dummy_call: "
4907 "struct_return reg=%d %s\n",
4908 argreg, paddress (gdbarch, struct_addr));
4909 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4910 }
4911
4912 /* Now load as many as possible of the first arguments into
4913 registers, and push the rest onto the stack. Loop thru args
4914 from first to last. */
4915 for (argnum = 0; argnum < nargs; argnum++)
4916 {
4917 const gdb_byte *val;
4918 struct value *arg = args[argnum];
4919 struct type *arg_type = check_typedef (value_type (arg));
4920 int len = TYPE_LENGTH (arg_type);
4921 enum type_code typecode = TYPE_CODE (arg_type);
4922
4923 if (mips_debug)
4924 fprintf_unfiltered (gdb_stdlog,
4925 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4926 argnum + 1, len, (int) typecode);
4927
4928 val = value_contents (arg);
4929
4930 /* A 128-bit long double value requires an even-odd pair of
4931 floating-point registers. */
4932 if (len == 16
4933 && fp_register_arg_p (gdbarch, typecode, arg_type)
4934 && (float_argreg & 1))
4935 {
4936 float_argreg++;
4937 argreg++;
4938 }
4939
4940 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4941 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4942 {
4943 /* This is a floating point value that fits entirely
4944 in a single register or a pair of registers. */
4945 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4946 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4949 float_argreg, phex (regval, reglen));
4950 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4951
4952 if (mips_debug)
4953 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4954 argreg, phex (regval, reglen));
4955 regcache_cooked_write_unsigned (regcache, argreg, regval);
4956 float_argreg++;
4957 argreg++;
4958 if (len == 16)
4959 {
4960 regval = extract_unsigned_integer (val + reglen,
4961 reglen, byte_order);
4962 if (mips_debug)
4963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4964 float_argreg, phex (regval, reglen));
4965 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4966
4967 if (mips_debug)
4968 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4969 argreg, phex (regval, reglen));
4970 regcache_cooked_write_unsigned (regcache, argreg, regval);
4971 float_argreg++;
4972 argreg++;
4973 }
4974 }
4975 else
4976 {
4977 /* Copy the argument to general registers or the stack in
4978 register-sized pieces. Large arguments are split between
4979 registers and stack. */
4980 /* For N32/N64, structs, unions, or other composite types are
4981 treated as a sequence of doublewords, and are passed in integer
4982 or floating point registers as though they were simple scalar
4983 parameters to the extent that they fit, with any excess on the
4984 stack packed according to the normal memory layout of the
4985 object.
4986 The caller does not reserve space for the register arguments;
4987 the callee is responsible for reserving it if required. */
4988 /* Note: Floating-point values that didn't fit into an FP
4989 register are only written to memory. */
4990 while (len > 0)
4991 {
4992 /* Remember if the argument was written to the stack. */
4993 int stack_used_p = 0;
4994 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4995
4996 if (mips_debug)
4997 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4998 partial_len);
4999
5000 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5001 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5002
5003 /* Write this portion of the argument to the stack. */
5004 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5005 {
5006 /* Should shorter than int integer values be
5007 promoted to int before being stored? */
5008 int longword_offset = 0;
5009 CORE_ADDR addr;
5010 stack_used_p = 1;
5011 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5012 {
5013 if ((typecode == TYPE_CODE_INT
5014 || typecode == TYPE_CODE_PTR)
5015 && len <= 4)
5016 longword_offset = MIPS64_REGSIZE - len;
5017 }
5018
5019 if (mips_debug)
5020 {
5021 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5022 paddress (gdbarch, stack_offset));
5023 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5024 paddress (gdbarch, longword_offset));
5025 }
5026
5027 addr = sp + stack_offset + longword_offset;
5028
5029 if (mips_debug)
5030 {
5031 int i;
5032 fprintf_unfiltered (gdb_stdlog, " @%s ",
5033 paddress (gdbarch, addr));
5034 for (i = 0; i < partial_len; i++)
5035 {
5036 fprintf_unfiltered (gdb_stdlog, "%02x",
5037 val[i] & 0xff);
5038 }
5039 }
5040 write_memory (addr, val, partial_len);
5041 }
5042
5043 /* Note!!! This is NOT an else clause. Odd sized
5044 structs may go thru BOTH paths. */
5045 /* Write this portion of the argument to a general
5046 purpose register. */
5047 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5048 {
5049 LONGEST regval;
5050
5051 /* Sign extend pointers, 32-bit integers and signed
5052 16-bit and 8-bit integers; everything else is taken
5053 as is. */
5054
5055 if ((partial_len == 4
5056 && (typecode == TYPE_CODE_PTR
5057 || typecode == TYPE_CODE_INT))
5058 || (partial_len < 4
5059 && typecode == TYPE_CODE_INT
5060 && !TYPE_UNSIGNED (arg_type)))
5061 regval = extract_signed_integer (val, partial_len,
5062 byte_order);
5063 else
5064 regval = extract_unsigned_integer (val, partial_len,
5065 byte_order);
5066
5067 /* A non-floating-point argument being passed in a
5068 general register. If a struct or union, and if
5069 the remaining length is smaller than the register
5070 size, we have to adjust the register value on
5071 big endian targets.
5072
5073 It does not seem to be necessary to do the
5074 same for integral types. */
5075
5076 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5077 && partial_len < MIPS64_REGSIZE
5078 && (typecode == TYPE_CODE_STRUCT
5079 || typecode == TYPE_CODE_UNION))
5080 regval <<= ((MIPS64_REGSIZE - partial_len)
5081 * TARGET_CHAR_BIT);
5082
5083 if (mips_debug)
5084 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5085 argreg,
5086 phex (regval, MIPS64_REGSIZE));
5087 regcache_cooked_write_unsigned (regcache, argreg, regval);
5088
5089 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5090 TYPE_LENGTH (arg_type) - len))
5091 {
5092 if (mips_debug)
5093 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5094 float_argreg,
5095 phex (regval, MIPS64_REGSIZE));
5096 regcache_cooked_write_unsigned (regcache, float_argreg,
5097 regval);
5098 }
5099
5100 float_argreg++;
5101 argreg++;
5102 }
5103
5104 len -= partial_len;
5105 val += partial_len;
5106
5107 /* Compute the offset into the stack at which we will
5108 copy the next parameter.
5109
5110 In N32 (N64?), the stack_offset only needs to be
5111 adjusted when it has been used. */
5112
5113 if (stack_used_p)
5114 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5115 }
5116 }
5117 if (mips_debug)
5118 fprintf_unfiltered (gdb_stdlog, "\n");
5119 }
5120
5121 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5122
5123 /* Return adjusted stack pointer. */
5124 return sp;
5125 }
5126
5127 static enum return_value_convention
5128 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5129 struct type *type, struct regcache *regcache,
5130 gdb_byte *readbuf, const gdb_byte *writebuf)
5131 {
5132 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5133
5134 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5135
5136 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5137 if needed), as appropriate for the type. Composite results (struct,
5138 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5139 following rules:
5140
5141 * A struct with only one or two floating point fields is returned in $f0
5142 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5143 case.
5144
5145 * Any other composite results of at most 128 bits are returned in
5146 $2 (first 64 bits) and $3 (remainder, if necessary).
5147
5148 * Larger composite results are handled by converting the function to a
5149 procedure with an implicit first parameter, which is a pointer to an area
5150 reserved by the caller to receive the result. [The o32-bit ABI requires
5151 that all composite results be handled by conversion to implicit first
5152 parameters. The MIPS/SGI Fortran implementation has always made a
5153 specific exception to return COMPLEX results in the floating point
5154 registers.] */
5155
5156 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5157 return RETURN_VALUE_STRUCT_CONVENTION;
5158 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5159 && TYPE_LENGTH (type) == 16
5160 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5161 {
5162 /* A 128-bit floating-point value fills both $f0 and $f2. The
5163 two registers are used in the same as memory order, so the
5164 eight bytes with the lower memory address are in $f0. */
5165 if (mips_debug)
5166 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5167 mips_xfer_register (gdbarch, regcache,
5168 (gdbarch_num_regs (gdbarch)
5169 + mips_regnum (gdbarch)->fp0),
5170 8, gdbarch_byte_order (gdbarch),
5171 readbuf, writebuf, 0);
5172 mips_xfer_register (gdbarch, regcache,
5173 (gdbarch_num_regs (gdbarch)
5174 + mips_regnum (gdbarch)->fp0 + 2),
5175 8, gdbarch_byte_order (gdbarch),
5176 readbuf ? readbuf + 8 : readbuf,
5177 writebuf ? writebuf + 8 : writebuf, 0);
5178 return RETURN_VALUE_REGISTER_CONVENTION;
5179 }
5180 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5181 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5182 {
5183 /* A single or double floating-point value that fits in FP0. */
5184 if (mips_debug)
5185 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5186 mips_xfer_register (gdbarch, regcache,
5187 (gdbarch_num_regs (gdbarch)
5188 + mips_regnum (gdbarch)->fp0),
5189 TYPE_LENGTH (type),
5190 gdbarch_byte_order (gdbarch),
5191 readbuf, writebuf, 0);
5192 return RETURN_VALUE_REGISTER_CONVENTION;
5193 }
5194 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5195 && TYPE_NFIELDS (type) <= 2
5196 && TYPE_NFIELDS (type) >= 1
5197 && ((TYPE_NFIELDS (type) == 1
5198 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5199 == TYPE_CODE_FLT))
5200 || (TYPE_NFIELDS (type) == 2
5201 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5202 == TYPE_CODE_FLT)
5203 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5204 == TYPE_CODE_FLT))))
5205 {
5206 /* A struct that contains one or two floats. Each value is part
5207 in the least significant part of their floating point
5208 register (or GPR, for soft float). */
5209 int regnum;
5210 int field;
5211 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5212 ? mips_regnum (gdbarch)->fp0
5213 : MIPS_V0_REGNUM);
5214 field < TYPE_NFIELDS (type); field++, regnum += 2)
5215 {
5216 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5217 / TARGET_CHAR_BIT);
5218 if (mips_debug)
5219 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5220 offset);
5221 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5222 {
5223 /* A 16-byte long double field goes in two consecutive
5224 registers. */
5225 mips_xfer_register (gdbarch, regcache,
5226 gdbarch_num_regs (gdbarch) + regnum,
5227 8,
5228 gdbarch_byte_order (gdbarch),
5229 readbuf, writebuf, offset);
5230 mips_xfer_register (gdbarch, regcache,
5231 gdbarch_num_regs (gdbarch) + regnum + 1,
5232 8,
5233 gdbarch_byte_order (gdbarch),
5234 readbuf, writebuf, offset + 8);
5235 }
5236 else
5237 mips_xfer_register (gdbarch, regcache,
5238 gdbarch_num_regs (gdbarch) + regnum,
5239 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5240 gdbarch_byte_order (gdbarch),
5241 readbuf, writebuf, offset);
5242 }
5243 return RETURN_VALUE_REGISTER_CONVENTION;
5244 }
5245 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5246 || TYPE_CODE (type) == TYPE_CODE_UNION
5247 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5248 {
5249 /* A composite type. Extract the left justified value,
5250 regardless of the byte order. I.e. DO NOT USE
5251 mips_xfer_lower. */
5252 int offset;
5253 int regnum;
5254 for (offset = 0, regnum = MIPS_V0_REGNUM;
5255 offset < TYPE_LENGTH (type);
5256 offset += register_size (gdbarch, regnum), regnum++)
5257 {
5258 int xfer = register_size (gdbarch, regnum);
5259 if (offset + xfer > TYPE_LENGTH (type))
5260 xfer = TYPE_LENGTH (type) - offset;
5261 if (mips_debug)
5262 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5263 offset, xfer, regnum);
5264 mips_xfer_register (gdbarch, regcache,
5265 gdbarch_num_regs (gdbarch) + regnum,
5266 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5267 offset);
5268 }
5269 return RETURN_VALUE_REGISTER_CONVENTION;
5270 }
5271 else
5272 {
5273 /* A scalar extract each part but least-significant-byte
5274 justified. */
5275 int offset;
5276 int regnum;
5277 for (offset = 0, regnum = MIPS_V0_REGNUM;
5278 offset < TYPE_LENGTH (type);
5279 offset += register_size (gdbarch, regnum), regnum++)
5280 {
5281 int xfer = register_size (gdbarch, regnum);
5282 if (offset + xfer > TYPE_LENGTH (type))
5283 xfer = TYPE_LENGTH (type) - offset;
5284 if (mips_debug)
5285 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5286 offset, xfer, regnum);
5287 mips_xfer_register (gdbarch, regcache,
5288 gdbarch_num_regs (gdbarch) + regnum,
5289 xfer, gdbarch_byte_order (gdbarch),
5290 readbuf, writebuf, offset);
5291 }
5292 return RETURN_VALUE_REGISTER_CONVENTION;
5293 }
5294 }
5295
5296 /* Which registers to use for passing floating-point values between
5297 function calls, one of floating-point, general and both kinds of
5298 registers. O32 and O64 use different register kinds for standard
5299 MIPS and MIPS16 code; to make the handling of cases where we may
5300 not know what kind of code is being used (e.g. no debug information)
5301 easier we sometimes use both kinds. */
5302
5303 enum mips_fval_reg
5304 {
5305 mips_fval_fpr,
5306 mips_fval_gpr,
5307 mips_fval_both
5308 };
5309
5310 /* O32 ABI stuff. */
5311
5312 static CORE_ADDR
5313 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5314 struct regcache *regcache, CORE_ADDR bp_addr,
5315 int nargs, struct value **args, CORE_ADDR sp,
5316 int struct_return, CORE_ADDR struct_addr)
5317 {
5318 int argreg;
5319 int float_argreg;
5320 int argnum;
5321 int len = 0;
5322 int stack_offset = 0;
5323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5324 CORE_ADDR func_addr = find_function_addr (function, NULL);
5325
5326 /* For shared libraries, "t9" needs to point at the function
5327 address. */
5328 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5329
5330 /* Set the return address register to point to the entry point of
5331 the program, where a breakpoint lies in wait. */
5332 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5333
5334 /* First ensure that the stack and structure return address (if any)
5335 are properly aligned. The stack has to be at least 64-bit
5336 aligned even on 32-bit machines, because doubles must be 64-bit
5337 aligned. For n32 and n64, stack frames need to be 128-bit
5338 aligned, so we round to this widest known alignment. */
5339
5340 sp = align_down (sp, 16);
5341 struct_addr = align_down (struct_addr, 16);
5342
5343 /* Now make space on the stack for the args. */
5344 for (argnum = 0; argnum < nargs; argnum++)
5345 {
5346 struct type *arg_type = check_typedef (value_type (args[argnum]));
5347
5348 /* Align to double-word if necessary. */
5349 if (mips_type_needs_double_align (arg_type))
5350 len = align_up (len, MIPS32_REGSIZE * 2);
5351 /* Allocate space on the stack. */
5352 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5353 }
5354 sp -= align_up (len, 16);
5355
5356 if (mips_debug)
5357 fprintf_unfiltered (gdb_stdlog,
5358 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5359 paddress (gdbarch, sp), (long) align_up (len, 16));
5360
5361 /* Initialize the integer and float register pointers. */
5362 argreg = MIPS_A0_REGNUM;
5363 float_argreg = mips_fpa0_regnum (gdbarch);
5364
5365 /* The struct_return pointer occupies the first parameter-passing reg. */
5366 if (struct_return)
5367 {
5368 if (mips_debug)
5369 fprintf_unfiltered (gdb_stdlog,
5370 "mips_o32_push_dummy_call: "
5371 "struct_return reg=%d %s\n",
5372 argreg, paddress (gdbarch, struct_addr));
5373 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5374 stack_offset += MIPS32_REGSIZE;
5375 }
5376
5377 /* Now load as many as possible of the first arguments into
5378 registers, and push the rest onto the stack. Loop thru args
5379 from first to last. */
5380 for (argnum = 0; argnum < nargs; argnum++)
5381 {
5382 const gdb_byte *val;
5383 struct value *arg = args[argnum];
5384 struct type *arg_type = check_typedef (value_type (arg));
5385 int len = TYPE_LENGTH (arg_type);
5386 enum type_code typecode = TYPE_CODE (arg_type);
5387
5388 if (mips_debug)
5389 fprintf_unfiltered (gdb_stdlog,
5390 "mips_o32_push_dummy_call: %d len=%d type=%d",
5391 argnum + 1, len, (int) typecode);
5392
5393 val = value_contents (arg);
5394
5395 /* 32-bit ABIs always start floating point arguments in an
5396 even-numbered floating point register. Round the FP register
5397 up before the check to see if there are any FP registers
5398 left. O32 targets also pass the FP in the integer registers
5399 so also round up normal registers. */
5400 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5401 {
5402 if ((float_argreg & 1))
5403 float_argreg++;
5404 }
5405
5406 /* Floating point arguments passed in registers have to be
5407 treated specially. On 32-bit architectures, doubles are
5408 passed in register pairs; the even FP register gets the
5409 low word, and the odd FP register gets the high word.
5410 On O32, the first two floating point arguments are also
5411 copied to general registers, following their memory order,
5412 because MIPS16 functions don't use float registers for
5413 arguments. This duplication of arguments in general
5414 registers can't hurt non-MIPS16 functions, because those
5415 registers are normally skipped. */
5416
5417 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5418 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5419 {
5420 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5421 {
5422 int freg_offset = gdbarch_byte_order (gdbarch)
5423 == BFD_ENDIAN_BIG ? 1 : 0;
5424 unsigned long regval;
5425
5426 /* First word. */
5427 regval = extract_unsigned_integer (val, 4, byte_order);
5428 if (mips_debug)
5429 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5430 float_argreg + freg_offset,
5431 phex (regval, 4));
5432 regcache_cooked_write_unsigned (regcache,
5433 float_argreg++ + freg_offset,
5434 regval);
5435 if (mips_debug)
5436 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5437 argreg, phex (regval, 4));
5438 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5439
5440 /* Second word. */
5441 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5442 if (mips_debug)
5443 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5444 float_argreg - freg_offset,
5445 phex (regval, 4));
5446 regcache_cooked_write_unsigned (regcache,
5447 float_argreg++ - freg_offset,
5448 regval);
5449 if (mips_debug)
5450 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5451 argreg, phex (regval, 4));
5452 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5453 }
5454 else
5455 {
5456 /* This is a floating point value that fits entirely
5457 in a single register. */
5458 /* On 32 bit ABI's the float_argreg is further adjusted
5459 above to ensure that it is even register aligned. */
5460 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5461 if (mips_debug)
5462 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5463 float_argreg, phex (regval, len));
5464 regcache_cooked_write_unsigned (regcache,
5465 float_argreg++, regval);
5466 /* Although two FP registers are reserved for each
5467 argument, only one corresponding integer register is
5468 reserved. */
5469 if (mips_debug)
5470 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5471 argreg, phex (regval, len));
5472 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5473 }
5474 /* Reserve space for the FP register. */
5475 stack_offset += align_up (len, MIPS32_REGSIZE);
5476 }
5477 else
5478 {
5479 /* Copy the argument to general registers or the stack in
5480 register-sized pieces. Large arguments are split between
5481 registers and stack. */
5482 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5483 are treated specially: Irix cc passes
5484 them in registers where gcc sometimes puts them on the
5485 stack. For maximum compatibility, we will put them in
5486 both places. */
5487 int odd_sized_struct = (len > MIPS32_REGSIZE
5488 && len % MIPS32_REGSIZE != 0);
5489 /* Structures should be aligned to eight bytes (even arg registers)
5490 on MIPS_ABI_O32, if their first member has double precision. */
5491 if (mips_type_needs_double_align (arg_type))
5492 {
5493 if ((argreg & 1))
5494 {
5495 argreg++;
5496 stack_offset += MIPS32_REGSIZE;
5497 }
5498 }
5499 while (len > 0)
5500 {
5501 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5502
5503 if (mips_debug)
5504 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5505 partial_len);
5506
5507 /* Write this portion of the argument to the stack. */
5508 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5509 || odd_sized_struct)
5510 {
5511 /* Should shorter than int integer values be
5512 promoted to int before being stored? */
5513 int longword_offset = 0;
5514 CORE_ADDR addr;
5515
5516 if (mips_debug)
5517 {
5518 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5519 paddress (gdbarch, stack_offset));
5520 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5521 paddress (gdbarch, longword_offset));
5522 }
5523
5524 addr = sp + stack_offset + longword_offset;
5525
5526 if (mips_debug)
5527 {
5528 int i;
5529 fprintf_unfiltered (gdb_stdlog, " @%s ",
5530 paddress (gdbarch, addr));
5531 for (i = 0; i < partial_len; i++)
5532 {
5533 fprintf_unfiltered (gdb_stdlog, "%02x",
5534 val[i] & 0xff);
5535 }
5536 }
5537 write_memory (addr, val, partial_len);
5538 }
5539
5540 /* Note!!! This is NOT an else clause. Odd sized
5541 structs may go thru BOTH paths. */
5542 /* Write this portion of the argument to a general
5543 purpose register. */
5544 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5545 {
5546 LONGEST regval = extract_signed_integer (val, partial_len,
5547 byte_order);
5548 /* Value may need to be sign extended, because
5549 mips_isa_regsize() != mips_abi_regsize(). */
5550
5551 /* A non-floating-point argument being passed in a
5552 general register. If a struct or union, and if
5553 the remaining length is smaller than the register
5554 size, we have to adjust the register value on
5555 big endian targets.
5556
5557 It does not seem to be necessary to do the
5558 same for integral types.
5559
5560 Also don't do this adjustment on O64 binaries.
5561
5562 cagney/2001-07-23: gdb/179: Also, GCC, when
5563 outputting LE O32 with sizeof (struct) <
5564 mips_abi_regsize(), generates a left shift
5565 as part of storing the argument in a register
5566 (the left shift isn't generated when
5567 sizeof (struct) >= mips_abi_regsize()). Since
5568 it is quite possible that this is GCC
5569 contradicting the LE/O32 ABI, GDB has not been
5570 adjusted to accommodate this. Either someone
5571 needs to demonstrate that the LE/O32 ABI
5572 specifies such a left shift OR this new ABI gets
5573 identified as such and GDB gets tweaked
5574 accordingly. */
5575
5576 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5577 && partial_len < MIPS32_REGSIZE
5578 && (typecode == TYPE_CODE_STRUCT
5579 || typecode == TYPE_CODE_UNION))
5580 regval <<= ((MIPS32_REGSIZE - partial_len)
5581 * TARGET_CHAR_BIT);
5582
5583 if (mips_debug)
5584 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5585 argreg,
5586 phex (regval, MIPS32_REGSIZE));
5587 regcache_cooked_write_unsigned (regcache, argreg, regval);
5588 argreg++;
5589
5590 /* Prevent subsequent floating point arguments from
5591 being passed in floating point registers. */
5592 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5593 }
5594
5595 len -= partial_len;
5596 val += partial_len;
5597
5598 /* Compute the offset into the stack at which we will
5599 copy the next parameter.
5600
5601 In older ABIs, the caller reserved space for
5602 registers that contained arguments. This was loosely
5603 refered to as their "home". Consequently, space is
5604 always allocated. */
5605
5606 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5607 }
5608 }
5609 if (mips_debug)
5610 fprintf_unfiltered (gdb_stdlog, "\n");
5611 }
5612
5613 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5614
5615 /* Return adjusted stack pointer. */
5616 return sp;
5617 }
5618
5619 static enum return_value_convention
5620 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5621 struct type *type, struct regcache *regcache,
5622 gdb_byte *readbuf, const gdb_byte *writebuf)
5623 {
5624 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5625 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5627 enum mips_fval_reg fval_reg;
5628
5629 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5630 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5631 || TYPE_CODE (type) == TYPE_CODE_UNION
5632 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5633 return RETURN_VALUE_STRUCT_CONVENTION;
5634 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5635 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5636 {
5637 /* A single-precision floating-point value. If reading in or copying,
5638 then we get it from/put it to FP0 for standard MIPS code or GPR2
5639 for MIPS16 code. If writing out only, then we put it to both FP0
5640 and GPR2. We do not support reading in with no function known, if
5641 this safety check ever triggers, then we'll have to try harder. */
5642 gdb_assert (function || !readbuf);
5643 if (mips_debug)
5644 switch (fval_reg)
5645 {
5646 case mips_fval_fpr:
5647 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5648 break;
5649 case mips_fval_gpr:
5650 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5651 break;
5652 case mips_fval_both:
5653 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5654 break;
5655 }
5656 if (fval_reg != mips_fval_gpr)
5657 mips_xfer_register (gdbarch, regcache,
5658 (gdbarch_num_regs (gdbarch)
5659 + mips_regnum (gdbarch)->fp0),
5660 TYPE_LENGTH (type),
5661 gdbarch_byte_order (gdbarch),
5662 readbuf, writebuf, 0);
5663 if (fval_reg != mips_fval_fpr)
5664 mips_xfer_register (gdbarch, regcache,
5665 gdbarch_num_regs (gdbarch) + 2,
5666 TYPE_LENGTH (type),
5667 gdbarch_byte_order (gdbarch),
5668 readbuf, writebuf, 0);
5669 return RETURN_VALUE_REGISTER_CONVENTION;
5670 }
5671 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5672 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5673 {
5674 /* A double-precision floating-point value. If reading in or copying,
5675 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5676 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5677 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5678 no function known, if this safety check ever triggers, then we'll
5679 have to try harder. */
5680 gdb_assert (function || !readbuf);
5681 if (mips_debug)
5682 switch (fval_reg)
5683 {
5684 case mips_fval_fpr:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5686 break;
5687 case mips_fval_gpr:
5688 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5689 break;
5690 case mips_fval_both:
5691 fprintf_unfiltered (gdb_stderr,
5692 "Return float in $fp1/$fp0 and $2/$3\n");
5693 break;
5694 }
5695 if (fval_reg != mips_fval_gpr)
5696 {
5697 /* The most significant part goes in FP1, and the least significant
5698 in FP0. */
5699 switch (gdbarch_byte_order (gdbarch))
5700 {
5701 case BFD_ENDIAN_LITTLE:
5702 mips_xfer_register (gdbarch, regcache,
5703 (gdbarch_num_regs (gdbarch)
5704 + mips_regnum (gdbarch)->fp0 + 0),
5705 4, gdbarch_byte_order (gdbarch),
5706 readbuf, writebuf, 0);
5707 mips_xfer_register (gdbarch, regcache,
5708 (gdbarch_num_regs (gdbarch)
5709 + mips_regnum (gdbarch)->fp0 + 1),
5710 4, gdbarch_byte_order (gdbarch),
5711 readbuf, writebuf, 4);
5712 break;
5713 case BFD_ENDIAN_BIG:
5714 mips_xfer_register (gdbarch, regcache,
5715 (gdbarch_num_regs (gdbarch)
5716 + mips_regnum (gdbarch)->fp0 + 1),
5717 4, gdbarch_byte_order (gdbarch),
5718 readbuf, writebuf, 0);
5719 mips_xfer_register (gdbarch, regcache,
5720 (gdbarch_num_regs (gdbarch)
5721 + mips_regnum (gdbarch)->fp0 + 0),
5722 4, gdbarch_byte_order (gdbarch),
5723 readbuf, writebuf, 4);
5724 break;
5725 default:
5726 internal_error (__FILE__, __LINE__, _("bad switch"));
5727 }
5728 }
5729 if (fval_reg != mips_fval_fpr)
5730 {
5731 /* The two 32-bit parts are always placed in GPR2 and GPR3
5732 following these registers' memory order. */
5733 mips_xfer_register (gdbarch, regcache,
5734 gdbarch_num_regs (gdbarch) + 2,
5735 4, gdbarch_byte_order (gdbarch),
5736 readbuf, writebuf, 0);
5737 mips_xfer_register (gdbarch, regcache,
5738 gdbarch_num_regs (gdbarch) + 3,
5739 4, gdbarch_byte_order (gdbarch),
5740 readbuf, writebuf, 4);
5741 }
5742 return RETURN_VALUE_REGISTER_CONVENTION;
5743 }
5744 #if 0
5745 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5746 && TYPE_NFIELDS (type) <= 2
5747 && TYPE_NFIELDS (type) >= 1
5748 && ((TYPE_NFIELDS (type) == 1
5749 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5750 == TYPE_CODE_FLT))
5751 || (TYPE_NFIELDS (type) == 2
5752 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5753 == TYPE_CODE_FLT)
5754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5755 == TYPE_CODE_FLT)))
5756 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5757 {
5758 /* A struct that contains one or two floats. Each value is part
5759 in the least significant part of their floating point
5760 register.. */
5761 gdb_byte reg[MAX_REGISTER_SIZE];
5762 int regnum;
5763 int field;
5764 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5765 field < TYPE_NFIELDS (type); field++, regnum += 2)
5766 {
5767 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5768 / TARGET_CHAR_BIT);
5769 if (mips_debug)
5770 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5771 offset);
5772 mips_xfer_register (gdbarch, regcache,
5773 gdbarch_num_regs (gdbarch) + regnum,
5774 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5775 gdbarch_byte_order (gdbarch),
5776 readbuf, writebuf, offset);
5777 }
5778 return RETURN_VALUE_REGISTER_CONVENTION;
5779 }
5780 #endif
5781 #if 0
5782 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5783 || TYPE_CODE (type) == TYPE_CODE_UNION)
5784 {
5785 /* A structure or union. Extract the left justified value,
5786 regardless of the byte order. I.e. DO NOT USE
5787 mips_xfer_lower. */
5788 int offset;
5789 int regnum;
5790 for (offset = 0, regnum = MIPS_V0_REGNUM;
5791 offset < TYPE_LENGTH (type);
5792 offset += register_size (gdbarch, regnum), regnum++)
5793 {
5794 int xfer = register_size (gdbarch, regnum);
5795 if (offset + xfer > TYPE_LENGTH (type))
5796 xfer = TYPE_LENGTH (type) - offset;
5797 if (mips_debug)
5798 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5799 offset, xfer, regnum);
5800 mips_xfer_register (gdbarch, regcache,
5801 gdbarch_num_regs (gdbarch) + regnum, xfer,
5802 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5803 }
5804 return RETURN_VALUE_REGISTER_CONVENTION;
5805 }
5806 #endif
5807 else
5808 {
5809 /* A scalar extract each part but least-significant-byte
5810 justified. o32 thinks registers are 4 byte, regardless of
5811 the ISA. */
5812 int offset;
5813 int regnum;
5814 for (offset = 0, regnum = MIPS_V0_REGNUM;
5815 offset < TYPE_LENGTH (type);
5816 offset += MIPS32_REGSIZE, regnum++)
5817 {
5818 int xfer = MIPS32_REGSIZE;
5819 if (offset + xfer > TYPE_LENGTH (type))
5820 xfer = TYPE_LENGTH (type) - offset;
5821 if (mips_debug)
5822 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5823 offset, xfer, regnum);
5824 mips_xfer_register (gdbarch, regcache,
5825 gdbarch_num_regs (gdbarch) + regnum, xfer,
5826 gdbarch_byte_order (gdbarch),
5827 readbuf, writebuf, offset);
5828 }
5829 return RETURN_VALUE_REGISTER_CONVENTION;
5830 }
5831 }
5832
5833 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5834 ABI. */
5835
5836 static CORE_ADDR
5837 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5838 struct regcache *regcache, CORE_ADDR bp_addr,
5839 int nargs,
5840 struct value **args, CORE_ADDR sp,
5841 int struct_return, CORE_ADDR struct_addr)
5842 {
5843 int argreg;
5844 int float_argreg;
5845 int argnum;
5846 int len = 0;
5847 int stack_offset = 0;
5848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5849 CORE_ADDR func_addr = find_function_addr (function, NULL);
5850
5851 /* For shared libraries, "t9" needs to point at the function
5852 address. */
5853 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5854
5855 /* Set the return address register to point to the entry point of
5856 the program, where a breakpoint lies in wait. */
5857 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5858
5859 /* First ensure that the stack and structure return address (if any)
5860 are properly aligned. The stack has to be at least 64-bit
5861 aligned even on 32-bit machines, because doubles must be 64-bit
5862 aligned. For n32 and n64, stack frames need to be 128-bit
5863 aligned, so we round to this widest known alignment. */
5864
5865 sp = align_down (sp, 16);
5866 struct_addr = align_down (struct_addr, 16);
5867
5868 /* Now make space on the stack for the args. */
5869 for (argnum = 0; argnum < nargs; argnum++)
5870 {
5871 struct type *arg_type = check_typedef (value_type (args[argnum]));
5872
5873 /* Allocate space on the stack. */
5874 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5875 }
5876 sp -= align_up (len, 16);
5877
5878 if (mips_debug)
5879 fprintf_unfiltered (gdb_stdlog,
5880 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5881 paddress (gdbarch, sp), (long) align_up (len, 16));
5882
5883 /* Initialize the integer and float register pointers. */
5884 argreg = MIPS_A0_REGNUM;
5885 float_argreg = mips_fpa0_regnum (gdbarch);
5886
5887 /* The struct_return pointer occupies the first parameter-passing reg. */
5888 if (struct_return)
5889 {
5890 if (mips_debug)
5891 fprintf_unfiltered (gdb_stdlog,
5892 "mips_o64_push_dummy_call: "
5893 "struct_return reg=%d %s\n",
5894 argreg, paddress (gdbarch, struct_addr));
5895 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5896 stack_offset += MIPS64_REGSIZE;
5897 }
5898
5899 /* Now load as many as possible of the first arguments into
5900 registers, and push the rest onto the stack. Loop thru args
5901 from first to last. */
5902 for (argnum = 0; argnum < nargs; argnum++)
5903 {
5904 const gdb_byte *val;
5905 struct value *arg = args[argnum];
5906 struct type *arg_type = check_typedef (value_type (arg));
5907 int len = TYPE_LENGTH (arg_type);
5908 enum type_code typecode = TYPE_CODE (arg_type);
5909
5910 if (mips_debug)
5911 fprintf_unfiltered (gdb_stdlog,
5912 "mips_o64_push_dummy_call: %d len=%d type=%d",
5913 argnum + 1, len, (int) typecode);
5914
5915 val = value_contents (arg);
5916
5917 /* Floating point arguments passed in registers have to be
5918 treated specially. On 32-bit architectures, doubles are
5919 passed in register pairs; the even FP register gets the
5920 low word, and the odd FP register gets the high word.
5921 On O64, the first two floating point arguments are also
5922 copied to general registers, because MIPS16 functions
5923 don't use float registers for arguments. This duplication
5924 of arguments in general registers can't hurt non-MIPS16
5925 functions because those registers are normally skipped. */
5926
5927 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5928 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5929 {
5930 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5931 if (mips_debug)
5932 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5933 float_argreg, phex (regval, len));
5934 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5935 if (mips_debug)
5936 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5937 argreg, phex (regval, len));
5938 regcache_cooked_write_unsigned (regcache, argreg, regval);
5939 argreg++;
5940 /* Reserve space for the FP register. */
5941 stack_offset += align_up (len, MIPS64_REGSIZE);
5942 }
5943 else
5944 {
5945 /* Copy the argument to general registers or the stack in
5946 register-sized pieces. Large arguments are split between
5947 registers and stack. */
5948 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5949 are treated specially: Irix cc passes them in registers
5950 where gcc sometimes puts them on the stack. For maximum
5951 compatibility, we will put them in both places. */
5952 int odd_sized_struct = (len > MIPS64_REGSIZE
5953 && len % MIPS64_REGSIZE != 0);
5954 while (len > 0)
5955 {
5956 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5957
5958 if (mips_debug)
5959 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5960 partial_len);
5961
5962 /* Write this portion of the argument to the stack. */
5963 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5964 || odd_sized_struct)
5965 {
5966 /* Should shorter than int integer values be
5967 promoted to int before being stored? */
5968 int longword_offset = 0;
5969 CORE_ADDR addr;
5970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5971 {
5972 if ((typecode == TYPE_CODE_INT
5973 || typecode == TYPE_CODE_PTR
5974 || typecode == TYPE_CODE_FLT)
5975 && len <= 4)
5976 longword_offset = MIPS64_REGSIZE - len;
5977 }
5978
5979 if (mips_debug)
5980 {
5981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5982 paddress (gdbarch, stack_offset));
5983 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5984 paddress (gdbarch, longword_offset));
5985 }
5986
5987 addr = sp + stack_offset + longword_offset;
5988
5989 if (mips_debug)
5990 {
5991 int i;
5992 fprintf_unfiltered (gdb_stdlog, " @%s ",
5993 paddress (gdbarch, addr));
5994 for (i = 0; i < partial_len; i++)
5995 {
5996 fprintf_unfiltered (gdb_stdlog, "%02x",
5997 val[i] & 0xff);
5998 }
5999 }
6000 write_memory (addr, val, partial_len);
6001 }
6002
6003 /* Note!!! This is NOT an else clause. Odd sized
6004 structs may go thru BOTH paths. */
6005 /* Write this portion of the argument to a general
6006 purpose register. */
6007 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6008 {
6009 LONGEST regval = extract_signed_integer (val, partial_len,
6010 byte_order);
6011 /* Value may need to be sign extended, because
6012 mips_isa_regsize() != mips_abi_regsize(). */
6013
6014 /* A non-floating-point argument being passed in a
6015 general register. If a struct or union, and if
6016 the remaining length is smaller than the register
6017 size, we have to adjust the register value on
6018 big endian targets.
6019
6020 It does not seem to be necessary to do the
6021 same for integral types. */
6022
6023 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6024 && partial_len < MIPS64_REGSIZE
6025 && (typecode == TYPE_CODE_STRUCT
6026 || typecode == TYPE_CODE_UNION))
6027 regval <<= ((MIPS64_REGSIZE - partial_len)
6028 * TARGET_CHAR_BIT);
6029
6030 if (mips_debug)
6031 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6032 argreg,
6033 phex (regval, MIPS64_REGSIZE));
6034 regcache_cooked_write_unsigned (regcache, argreg, regval);
6035 argreg++;
6036
6037 /* Prevent subsequent floating point arguments from
6038 being passed in floating point registers. */
6039 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6040 }
6041
6042 len -= partial_len;
6043 val += partial_len;
6044
6045 /* Compute the offset into the stack at which we will
6046 copy the next parameter.
6047
6048 In older ABIs, the caller reserved space for
6049 registers that contained arguments. This was loosely
6050 refered to as their "home". Consequently, space is
6051 always allocated. */
6052
6053 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6054 }
6055 }
6056 if (mips_debug)
6057 fprintf_unfiltered (gdb_stdlog, "\n");
6058 }
6059
6060 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6061
6062 /* Return adjusted stack pointer. */
6063 return sp;
6064 }
6065
6066 static enum return_value_convention
6067 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6068 struct type *type, struct regcache *regcache,
6069 gdb_byte *readbuf, const gdb_byte *writebuf)
6070 {
6071 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6072 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6074 enum mips_fval_reg fval_reg;
6075
6076 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6077 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6078 || TYPE_CODE (type) == TYPE_CODE_UNION
6079 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6080 return RETURN_VALUE_STRUCT_CONVENTION;
6081 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6082 {
6083 /* A floating-point value. If reading in or copying, then we get it
6084 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6085 If writing out only, then we put it to both FP0 and GPR2. We do
6086 not support reading in with no function known, if this safety
6087 check ever triggers, then we'll have to try harder. */
6088 gdb_assert (function || !readbuf);
6089 if (mips_debug)
6090 switch (fval_reg)
6091 {
6092 case mips_fval_fpr:
6093 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6094 break;
6095 case mips_fval_gpr:
6096 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6097 break;
6098 case mips_fval_both:
6099 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6100 break;
6101 }
6102 if (fval_reg != mips_fval_gpr)
6103 mips_xfer_register (gdbarch, regcache,
6104 (gdbarch_num_regs (gdbarch)
6105 + mips_regnum (gdbarch)->fp0),
6106 TYPE_LENGTH (type),
6107 gdbarch_byte_order (gdbarch),
6108 readbuf, writebuf, 0);
6109 if (fval_reg != mips_fval_fpr)
6110 mips_xfer_register (gdbarch, regcache,
6111 gdbarch_num_regs (gdbarch) + 2,
6112 TYPE_LENGTH (type),
6113 gdbarch_byte_order (gdbarch),
6114 readbuf, writebuf, 0);
6115 return RETURN_VALUE_REGISTER_CONVENTION;
6116 }
6117 else
6118 {
6119 /* A scalar extract each part but least-significant-byte
6120 justified. */
6121 int offset;
6122 int regnum;
6123 for (offset = 0, regnum = MIPS_V0_REGNUM;
6124 offset < TYPE_LENGTH (type);
6125 offset += MIPS64_REGSIZE, regnum++)
6126 {
6127 int xfer = MIPS64_REGSIZE;
6128 if (offset + xfer > TYPE_LENGTH (type))
6129 xfer = TYPE_LENGTH (type) - offset;
6130 if (mips_debug)
6131 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6132 offset, xfer, regnum);
6133 mips_xfer_register (gdbarch, regcache,
6134 gdbarch_num_regs (gdbarch) + regnum,
6135 xfer, gdbarch_byte_order (gdbarch),
6136 readbuf, writebuf, offset);
6137 }
6138 return RETURN_VALUE_REGISTER_CONVENTION;
6139 }
6140 }
6141
6142 /* Floating point register management.
6143
6144 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6145 64bit operations, these early MIPS cpus treat fp register pairs
6146 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6147 registers and offer a compatibility mode that emulates the MIPS2 fp
6148 model. When operating in MIPS2 fp compat mode, later cpu's split
6149 double precision floats into two 32-bit chunks and store them in
6150 consecutive fp regs. To display 64-bit floats stored in this
6151 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6152 Throw in user-configurable endianness and you have a real mess.
6153
6154 The way this works is:
6155 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6156 double-precision value will be split across two logical registers.
6157 The lower-numbered logical register will hold the low-order bits,
6158 regardless of the processor's endianness.
6159 - If we are on a 64-bit processor, and we are looking for a
6160 single-precision value, it will be in the low ordered bits
6161 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6162 save slot in memory.
6163 - If we are in 64-bit mode, everything is straightforward.
6164
6165 Note that this code only deals with "live" registers at the top of the
6166 stack. We will attempt to deal with saved registers later, when
6167 the raw/cooked register interface is in place. (We need a general
6168 interface that can deal with dynamic saved register sizes -- fp
6169 regs could be 32 bits wide in one frame and 64 on the frame above
6170 and below). */
6171
6172 /* Copy a 32-bit single-precision value from the current frame
6173 into rare_buffer. */
6174
6175 static void
6176 mips_read_fp_register_single (struct frame_info *frame, int regno,
6177 gdb_byte *rare_buffer)
6178 {
6179 struct gdbarch *gdbarch = get_frame_arch (frame);
6180 int raw_size = register_size (gdbarch, regno);
6181 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6182
6183 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6184 error (_("can't read register %d (%s)"),
6185 regno, gdbarch_register_name (gdbarch, regno));
6186 if (raw_size == 8)
6187 {
6188 /* We have a 64-bit value for this register. Find the low-order
6189 32 bits. */
6190 int offset;
6191
6192 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6193 offset = 4;
6194 else
6195 offset = 0;
6196
6197 memcpy (rare_buffer, raw_buffer + offset, 4);
6198 }
6199 else
6200 {
6201 memcpy (rare_buffer, raw_buffer, 4);
6202 }
6203 }
6204
6205 /* Copy a 64-bit double-precision value from the current frame into
6206 rare_buffer. This may include getting half of it from the next
6207 register. */
6208
6209 static void
6210 mips_read_fp_register_double (struct frame_info *frame, int regno,
6211 gdb_byte *rare_buffer)
6212 {
6213 struct gdbarch *gdbarch = get_frame_arch (frame);
6214 int raw_size = register_size (gdbarch, regno);
6215
6216 if (raw_size == 8 && !mips2_fp_compat (frame))
6217 {
6218 /* We have a 64-bit value for this register, and we should use
6219 all 64 bits. */
6220 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6221 error (_("can't read register %d (%s)"),
6222 regno, gdbarch_register_name (gdbarch, regno));
6223 }
6224 else
6225 {
6226 int rawnum = regno % gdbarch_num_regs (gdbarch);
6227
6228 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6229 internal_error (__FILE__, __LINE__,
6230 _("mips_read_fp_register_double: bad access to "
6231 "odd-numbered FP register"));
6232
6233 /* mips_read_fp_register_single will find the correct 32 bits from
6234 each register. */
6235 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6236 {
6237 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6238 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6239 }
6240 else
6241 {
6242 mips_read_fp_register_single (frame, regno, rare_buffer);
6243 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6244 }
6245 }
6246 }
6247
6248 static void
6249 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6250 int regnum)
6251 { /* Do values for FP (float) regs. */
6252 struct gdbarch *gdbarch = get_frame_arch (frame);
6253 gdb_byte *raw_buffer;
6254 double doub, flt1; /* Doubles extracted from raw hex data. */
6255 int inv1, inv2;
6256
6257 raw_buffer
6258 = ((gdb_byte *)
6259 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6260
6261 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6262 fprintf_filtered (file, "%*s",
6263 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6264 "");
6265
6266 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6267 {
6268 struct value_print_options opts;
6269
6270 /* 4-byte registers: Print hex and floating. Also print even
6271 numbered registers as doubles. */
6272 mips_read_fp_register_single (frame, regnum, raw_buffer);
6273 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6274 raw_buffer, &inv1);
6275
6276 get_formatted_print_options (&opts, 'x');
6277 print_scalar_formatted (raw_buffer,
6278 builtin_type (gdbarch)->builtin_uint32,
6279 &opts, 'w', file);
6280
6281 fprintf_filtered (file, " flt: ");
6282 if (inv1)
6283 fprintf_filtered (file, " <invalid float> ");
6284 else
6285 fprintf_filtered (file, "%-17.9g", flt1);
6286
6287 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6288 {
6289 mips_read_fp_register_double (frame, regnum, raw_buffer);
6290 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6291 raw_buffer, &inv2);
6292
6293 fprintf_filtered (file, " dbl: ");
6294 if (inv2)
6295 fprintf_filtered (file, "<invalid double>");
6296 else
6297 fprintf_filtered (file, "%-24.17g", doub);
6298 }
6299 }
6300 else
6301 {
6302 struct value_print_options opts;
6303
6304 /* Eight byte registers: print each one as hex, float and double. */
6305 mips_read_fp_register_single (frame, regnum, raw_buffer);
6306 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6307 raw_buffer, &inv1);
6308
6309 mips_read_fp_register_double (frame, regnum, raw_buffer);
6310 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6311 raw_buffer, &inv2);
6312
6313 get_formatted_print_options (&opts, 'x');
6314 print_scalar_formatted (raw_buffer,
6315 builtin_type (gdbarch)->builtin_uint64,
6316 &opts, 'g', file);
6317
6318 fprintf_filtered (file, " flt: ");
6319 if (inv1)
6320 fprintf_filtered (file, "<invalid float>");
6321 else
6322 fprintf_filtered (file, "%-17.9g", flt1);
6323
6324 fprintf_filtered (file, " dbl: ");
6325 if (inv2)
6326 fprintf_filtered (file, "<invalid double>");
6327 else
6328 fprintf_filtered (file, "%-24.17g", doub);
6329 }
6330 }
6331
6332 static void
6333 mips_print_register (struct ui_file *file, struct frame_info *frame,
6334 int regnum)
6335 {
6336 struct gdbarch *gdbarch = get_frame_arch (frame);
6337 struct value_print_options opts;
6338 struct value *val;
6339
6340 if (mips_float_register_p (gdbarch, regnum))
6341 {
6342 mips_print_fp_register (file, frame, regnum);
6343 return;
6344 }
6345
6346 val = get_frame_register_value (frame, regnum);
6347
6348 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6349
6350 /* The problem with printing numeric register names (r26, etc.) is that
6351 the user can't use them on input. Probably the best solution is to
6352 fix it so that either the numeric or the funky (a2, etc.) names
6353 are accepted on input. */
6354 if (regnum < MIPS_NUMREGS)
6355 fprintf_filtered (file, "(r%d): ", regnum);
6356 else
6357 fprintf_filtered (file, ": ");
6358
6359 get_formatted_print_options (&opts, 'x');
6360 val_print_scalar_formatted (value_type (val),
6361 value_embedded_offset (val),
6362 val,
6363 &opts, 0, file);
6364 }
6365
6366 /* Print IEEE exception condition bits in FLAGS. */
6367
6368 static void
6369 print_fpu_flags (struct ui_file *file, int flags)
6370 {
6371 if (flags & (1 << 0))
6372 fputs_filtered (" inexact", file);
6373 if (flags & (1 << 1))
6374 fputs_filtered (" uflow", file);
6375 if (flags & (1 << 2))
6376 fputs_filtered (" oflow", file);
6377 if (flags & (1 << 3))
6378 fputs_filtered (" div0", file);
6379 if (flags & (1 << 4))
6380 fputs_filtered (" inval", file);
6381 if (flags & (1 << 5))
6382 fputs_filtered (" unimp", file);
6383 fputc_filtered ('\n', file);
6384 }
6385
6386 /* Print interesting information about the floating point processor
6387 (if present) or emulator. */
6388
6389 static void
6390 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6391 struct frame_info *frame, const char *args)
6392 {
6393 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6394 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6395 ULONGEST fcs = 0;
6396 int i;
6397
6398 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6399 type = MIPS_FPU_NONE;
6400
6401 fprintf_filtered (file, "fpu type: %s\n",
6402 type == MIPS_FPU_DOUBLE ? "double-precision"
6403 : type == MIPS_FPU_SINGLE ? "single-precision"
6404 : "none / unused");
6405
6406 if (type == MIPS_FPU_NONE)
6407 return;
6408
6409 fprintf_filtered (file, "reg size: %d bits\n",
6410 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6411
6412 fputs_filtered ("cond :", file);
6413 if (fcs & (1 << 23))
6414 fputs_filtered (" 0", file);
6415 for (i = 1; i <= 7; i++)
6416 if (fcs & (1 << (24 + i)))
6417 fprintf_filtered (file, " %d", i);
6418 fputc_filtered ('\n', file);
6419
6420 fputs_filtered ("cause :", file);
6421 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6422 fputs ("mask :", stdout);
6423 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6424 fputs ("flags :", stdout);
6425 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6426
6427 fputs_filtered ("rounding: ", file);
6428 switch (fcs & 3)
6429 {
6430 case 0: fputs_filtered ("nearest\n", file); break;
6431 case 1: fputs_filtered ("zero\n", file); break;
6432 case 2: fputs_filtered ("+inf\n", file); break;
6433 case 3: fputs_filtered ("-inf\n", file); break;
6434 }
6435
6436 fputs_filtered ("flush :", file);
6437 if (fcs & (1 << 21))
6438 fputs_filtered (" nearest", file);
6439 if (fcs & (1 << 22))
6440 fputs_filtered (" override", file);
6441 if (fcs & (1 << 24))
6442 fputs_filtered (" zero", file);
6443 if ((fcs & (0xb << 21)) == 0)
6444 fputs_filtered (" no", file);
6445 fputc_filtered ('\n', file);
6446
6447 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6448 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6449 fputc_filtered ('\n', file);
6450
6451 default_print_float_info (gdbarch, file, frame, args);
6452 }
6453
6454 /* Replacement for generic do_registers_info.
6455 Print regs in pretty columns. */
6456
6457 static int
6458 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6459 int regnum)
6460 {
6461 fprintf_filtered (file, " ");
6462 mips_print_fp_register (file, frame, regnum);
6463 fprintf_filtered (file, "\n");
6464 return regnum + 1;
6465 }
6466
6467
6468 /* Print a row's worth of GP (int) registers, with name labels above. */
6469
6470 static int
6471 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6472 int start_regnum)
6473 {
6474 struct gdbarch *gdbarch = get_frame_arch (frame);
6475 /* Do values for GP (int) regs. */
6476 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6477 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6478 per row. */
6479 int col, byte;
6480 int regnum;
6481
6482 /* For GP registers, we print a separate row of names above the vals. */
6483 for (col = 0, regnum = start_regnum;
6484 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6485 + gdbarch_num_pseudo_regs (gdbarch);
6486 regnum++)
6487 {
6488 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6489 continue; /* unused register */
6490 if (mips_float_register_p (gdbarch, regnum))
6491 break; /* End the row: reached FP register. */
6492 /* Large registers are handled separately. */
6493 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6494 {
6495 if (col > 0)
6496 break; /* End the row before this register. */
6497
6498 /* Print this register on a row by itself. */
6499 mips_print_register (file, frame, regnum);
6500 fprintf_filtered (file, "\n");
6501 return regnum + 1;
6502 }
6503 if (col == 0)
6504 fprintf_filtered (file, " ");
6505 fprintf_filtered (file,
6506 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6507 gdbarch_register_name (gdbarch, regnum));
6508 col++;
6509 }
6510
6511 if (col == 0)
6512 return regnum;
6513
6514 /* Print the R0 to R31 names. */
6515 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6516 fprintf_filtered (file, "\n R%-4d",
6517 start_regnum % gdbarch_num_regs (gdbarch));
6518 else
6519 fprintf_filtered (file, "\n ");
6520
6521 /* Now print the values in hex, 4 or 8 to the row. */
6522 for (col = 0, regnum = start_regnum;
6523 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6524 + gdbarch_num_pseudo_regs (gdbarch);
6525 regnum++)
6526 {
6527 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6528 continue; /* unused register */
6529 if (mips_float_register_p (gdbarch, regnum))
6530 break; /* End row: reached FP register. */
6531 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6532 break; /* End row: large register. */
6533
6534 /* OK: get the data in raw format. */
6535 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6536 error (_("can't read register %d (%s)"),
6537 regnum, gdbarch_register_name (gdbarch, regnum));
6538 /* pad small registers */
6539 for (byte = 0;
6540 byte < (mips_abi_regsize (gdbarch)
6541 - register_size (gdbarch, regnum)); byte++)
6542 printf_filtered (" ");
6543 /* Now print the register value in hex, endian order. */
6544 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6545 for (byte =
6546 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6547 byte < register_size (gdbarch, regnum); byte++)
6548 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6549 else
6550 for (byte = register_size (gdbarch, regnum) - 1;
6551 byte >= 0; byte--)
6552 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6553 fprintf_filtered (file, " ");
6554 col++;
6555 }
6556 if (col > 0) /* ie. if we actually printed anything... */
6557 fprintf_filtered (file, "\n");
6558
6559 return regnum;
6560 }
6561
6562 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6563
6564 static void
6565 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6566 struct frame_info *frame, int regnum, int all)
6567 {
6568 if (regnum != -1) /* Do one specified register. */
6569 {
6570 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6571 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6572 error (_("Not a valid register for the current processor type"));
6573
6574 mips_print_register (file, frame, regnum);
6575 fprintf_filtered (file, "\n");
6576 }
6577 else
6578 /* Do all (or most) registers. */
6579 {
6580 regnum = gdbarch_num_regs (gdbarch);
6581 while (regnum < gdbarch_num_regs (gdbarch)
6582 + gdbarch_num_pseudo_regs (gdbarch))
6583 {
6584 if (mips_float_register_p (gdbarch, regnum))
6585 {
6586 if (all) /* True for "INFO ALL-REGISTERS" command. */
6587 regnum = print_fp_register_row (file, frame, regnum);
6588 else
6589 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6590 }
6591 else
6592 regnum = print_gp_register_row (file, frame, regnum);
6593 }
6594 }
6595 }
6596
6597 static int
6598 mips_single_step_through_delay (struct gdbarch *gdbarch,
6599 struct frame_info *frame)
6600 {
6601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6602 CORE_ADDR pc = get_frame_pc (frame);
6603 struct address_space *aspace;
6604 enum mips_isa isa;
6605 ULONGEST insn;
6606 int status;
6607 int size;
6608
6609 if ((mips_pc_is_mips (pc)
6610 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6611 || (mips_pc_is_micromips (gdbarch, pc)
6612 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6613 || (mips_pc_is_mips16 (gdbarch, pc)
6614 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6615 return 0;
6616
6617 isa = mips_pc_isa (gdbarch, pc);
6618 /* _has_delay_slot above will have validated the read. */
6619 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6620 size = mips_insn_size (isa, insn);
6621 aspace = get_frame_address_space (frame);
6622 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6623 }
6624
6625 /* To skip prologues, I use this predicate. Returns either PC itself
6626 if the code at PC does not look like a function prologue; otherwise
6627 returns an address that (if we're lucky) follows the prologue. If
6628 LENIENT, then we must skip everything which is involved in setting
6629 up the frame (it's OK to skip more, just so long as we don't skip
6630 anything which might clobber the registers which are being saved.
6631 We must skip more in the case where part of the prologue is in the
6632 delay slot of a non-prologue instruction). */
6633
6634 static CORE_ADDR
6635 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6636 {
6637 CORE_ADDR limit_pc;
6638 CORE_ADDR func_addr;
6639
6640 /* See if we can determine the end of the prologue via the symbol table.
6641 If so, then return either PC, or the PC after the prologue, whichever
6642 is greater. */
6643 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6644 {
6645 CORE_ADDR post_prologue_pc
6646 = skip_prologue_using_sal (gdbarch, func_addr);
6647 if (post_prologue_pc != 0)
6648 return std::max (pc, post_prologue_pc);
6649 }
6650
6651 /* Can't determine prologue from the symbol table, need to examine
6652 instructions. */
6653
6654 /* Find an upper limit on the function prologue using the debug
6655 information. If the debug information could not be used to provide
6656 that bound, then use an arbitrary large number as the upper bound. */
6657 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6658 if (limit_pc == 0)
6659 limit_pc = pc + 100; /* Magic. */
6660
6661 if (mips_pc_is_mips16 (gdbarch, pc))
6662 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6663 else if (mips_pc_is_micromips (gdbarch, pc))
6664 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6665 else
6666 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6667 }
6668
6669 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6670 This is a helper function for mips_stack_frame_destroyed_p. */
6671
6672 static int
6673 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6674 {
6675 CORE_ADDR func_addr = 0, func_end = 0;
6676
6677 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6678 {
6679 /* The MIPS epilogue is max. 12 bytes long. */
6680 CORE_ADDR addr = func_end - 12;
6681
6682 if (addr < func_addr + 4)
6683 addr = func_addr + 4;
6684 if (pc < addr)
6685 return 0;
6686
6687 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6688 {
6689 unsigned long high_word;
6690 unsigned long inst;
6691
6692 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6693 high_word = (inst >> 16) & 0xffff;
6694
6695 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6696 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6697 && inst != 0x03e00008 /* jr $ra */
6698 && inst != 0x00000000) /* nop */
6699 return 0;
6700 }
6701
6702 return 1;
6703 }
6704
6705 return 0;
6706 }
6707
6708 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6709 This is a helper function for mips_stack_frame_destroyed_p. */
6710
6711 static int
6712 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6713 {
6714 CORE_ADDR func_addr = 0;
6715 CORE_ADDR func_end = 0;
6716 CORE_ADDR addr;
6717 ULONGEST insn;
6718 long offset;
6719 int dreg;
6720 int sreg;
6721 int loc;
6722
6723 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6724 return 0;
6725
6726 /* The microMIPS epilogue is max. 12 bytes long. */
6727 addr = func_end - 12;
6728
6729 if (addr < func_addr + 2)
6730 addr = func_addr + 2;
6731 if (pc < addr)
6732 return 0;
6733
6734 for (; pc < func_end; pc += loc)
6735 {
6736 loc = 0;
6737 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6738 loc += MIPS_INSN16_SIZE;
6739 switch (mips_insn_size (ISA_MICROMIPS, insn))
6740 {
6741 /* 32-bit instructions. */
6742 case 2 * MIPS_INSN16_SIZE:
6743 insn <<= 16;
6744 insn |= mips_fetch_instruction (gdbarch,
6745 ISA_MICROMIPS, pc + loc, NULL);
6746 loc += MIPS_INSN16_SIZE;
6747 switch (micromips_op (insn >> 16))
6748 {
6749 case 0xc: /* ADDIU: bits 001100 */
6750 case 0x17: /* DADDIU: bits 010111 */
6751 sreg = b0s5_reg (insn >> 16);
6752 dreg = b5s5_reg (insn >> 16);
6753 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6754 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6755 /* (D)ADDIU $sp, imm */
6756 && offset >= 0)
6757 break;
6758 return 0;
6759
6760 default:
6761 return 0;
6762 }
6763 break;
6764
6765 /* 16-bit instructions. */
6766 case MIPS_INSN16_SIZE:
6767 switch (micromips_op (insn))
6768 {
6769 case 0x3: /* MOVE: bits 000011 */
6770 sreg = b0s5_reg (insn);
6771 dreg = b5s5_reg (insn);
6772 if (sreg == 0 && dreg == 0)
6773 /* MOVE $zero, $zero aka NOP */
6774 break;
6775 return 0;
6776
6777 case 0x11: /* POOL16C: bits 010001 */
6778 if (b5s5_op (insn) == 0x18
6779 /* JRADDIUSP: bits 010011 11000 */
6780 || (b5s5_op (insn) == 0xd
6781 /* JRC: bits 010011 01101 */
6782 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6783 /* JRC $ra */
6784 break;
6785 return 0;
6786
6787 case 0x13: /* POOL16D: bits 010011 */
6788 offset = micromips_decode_imm9 (b1s9_imm (insn));
6789 if ((insn & 0x1) == 0x1
6790 /* ADDIUSP: bits 010011 1 */
6791 && offset > 0)
6792 break;
6793 return 0;
6794
6795 default:
6796 return 0;
6797 }
6798 }
6799 }
6800
6801 return 1;
6802 }
6803
6804 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6805 This is a helper function for mips_stack_frame_destroyed_p. */
6806
6807 static int
6808 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6809 {
6810 CORE_ADDR func_addr = 0, func_end = 0;
6811
6812 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6813 {
6814 /* The MIPS epilogue is max. 12 bytes long. */
6815 CORE_ADDR addr = func_end - 12;
6816
6817 if (addr < func_addr + 4)
6818 addr = func_addr + 4;
6819 if (pc < addr)
6820 return 0;
6821
6822 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6823 {
6824 unsigned short inst;
6825
6826 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6827
6828 if ((inst & 0xf800) == 0xf000) /* extend */
6829 continue;
6830
6831 if (inst != 0x6300 /* addiu $sp,offset */
6832 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6833 && inst != 0xe820 /* jr $ra */
6834 && inst != 0xe8a0 /* jrc $ra */
6835 && inst != 0x6500) /* nop */
6836 return 0;
6837 }
6838
6839 return 1;
6840 }
6841
6842 return 0;
6843 }
6844
6845 /* Implement the stack_frame_destroyed_p gdbarch method.
6846
6847 The epilogue is defined here as the area at the end of a function,
6848 after an instruction which destroys the function's stack frame. */
6849
6850 static int
6851 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6852 {
6853 if (mips_pc_is_mips16 (gdbarch, pc))
6854 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6855 else if (mips_pc_is_micromips (gdbarch, pc))
6856 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6857 else
6858 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6859 }
6860
6861 /* Root of all "set mips "/"show mips " commands. This will eventually be
6862 used for all MIPS-specific commands. */
6863
6864 static void
6865 show_mips_command (char *args, int from_tty)
6866 {
6867 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6868 }
6869
6870 static void
6871 set_mips_command (char *args, int from_tty)
6872 {
6873 printf_unfiltered
6874 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6875 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6876 }
6877
6878 /* Commands to show/set the MIPS FPU type. */
6879
6880 static void
6881 show_mipsfpu_command (char *args, int from_tty)
6882 {
6883 const char *fpu;
6884
6885 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6886 {
6887 printf_unfiltered
6888 ("The MIPS floating-point coprocessor is unknown "
6889 "because the current architecture is not MIPS.\n");
6890 return;
6891 }
6892
6893 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6894 {
6895 case MIPS_FPU_SINGLE:
6896 fpu = "single-precision";
6897 break;
6898 case MIPS_FPU_DOUBLE:
6899 fpu = "double-precision";
6900 break;
6901 case MIPS_FPU_NONE:
6902 fpu = "absent (none)";
6903 break;
6904 default:
6905 internal_error (__FILE__, __LINE__, _("bad switch"));
6906 }
6907 if (mips_fpu_type_auto)
6908 printf_unfiltered ("The MIPS floating-point coprocessor "
6909 "is set automatically (currently %s)\n",
6910 fpu);
6911 else
6912 printf_unfiltered
6913 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6914 }
6915
6916
6917 static void
6918 set_mipsfpu_command (char *args, int from_tty)
6919 {
6920 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6921 "\"single\",\"none\" or \"auto\".\n");
6922 show_mipsfpu_command (args, from_tty);
6923 }
6924
6925 static void
6926 set_mipsfpu_single_command (char *args, int from_tty)
6927 {
6928 struct gdbarch_info info;
6929 gdbarch_info_init (&info);
6930 mips_fpu_type = MIPS_FPU_SINGLE;
6931 mips_fpu_type_auto = 0;
6932 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6933 instead of relying on globals. Doing that would let generic code
6934 handle the search for this specific architecture. */
6935 if (!gdbarch_update_p (info))
6936 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6937 }
6938
6939 static void
6940 set_mipsfpu_double_command (char *args, int from_tty)
6941 {
6942 struct gdbarch_info info;
6943 gdbarch_info_init (&info);
6944 mips_fpu_type = MIPS_FPU_DOUBLE;
6945 mips_fpu_type_auto = 0;
6946 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6947 instead of relying on globals. Doing that would let generic code
6948 handle the search for this specific architecture. */
6949 if (!gdbarch_update_p (info))
6950 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6951 }
6952
6953 static void
6954 set_mipsfpu_none_command (char *args, int from_tty)
6955 {
6956 struct gdbarch_info info;
6957 gdbarch_info_init (&info);
6958 mips_fpu_type = MIPS_FPU_NONE;
6959 mips_fpu_type_auto = 0;
6960 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6961 instead of relying on globals. Doing that would let generic code
6962 handle the search for this specific architecture. */
6963 if (!gdbarch_update_p (info))
6964 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6965 }
6966
6967 static void
6968 set_mipsfpu_auto_command (char *args, int from_tty)
6969 {
6970 mips_fpu_type_auto = 1;
6971 }
6972
6973 /* Just like reinit_frame_cache, but with the right arguments to be
6974 callable as an sfunc. */
6975
6976 static void
6977 reinit_frame_cache_sfunc (char *args, int from_tty,
6978 struct cmd_list_element *c)
6979 {
6980 reinit_frame_cache ();
6981 }
6982
6983 static int
6984 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6985 {
6986 gdb_disassembler *di
6987 = static_cast<gdb_disassembler *>(info->application_data);
6988 struct gdbarch *gdbarch = di->arch ();
6989
6990 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6991 disassembler needs to be able to locally determine the ISA, and
6992 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6993 work. */
6994 if (mips_pc_is_mips16 (gdbarch, memaddr))
6995 info->mach = bfd_mach_mips16;
6996 else if (mips_pc_is_micromips (gdbarch, memaddr))
6997 info->mach = bfd_mach_mips_micromips;
6998
6999 /* Round down the instruction address to the appropriate boundary. */
7000 memaddr &= (info->mach == bfd_mach_mips16
7001 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7002
7003 /* Set the disassembler options. */
7004 if (!info->disassembler_options)
7005 /* This string is not recognized explicitly by the disassembler,
7006 but it tells the disassembler to not try to guess the ABI from
7007 the bfd elf headers, such that, if the user overrides the ABI
7008 of a program linked as NewABI, the disassembly will follow the
7009 register naming conventions specified by the user. */
7010 info->disassembler_options = "gpr-names=32";
7011
7012 /* Call the appropriate disassembler based on the target endian-ness. */
7013 if (info->endian == BFD_ENDIAN_BIG)
7014 return print_insn_big_mips (memaddr, info);
7015 else
7016 return print_insn_little_mips (memaddr, info);
7017 }
7018
7019 static int
7020 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7021 {
7022 /* Set up the disassembler info, so that we get the right
7023 register names from libopcodes. */
7024 info->disassembler_options = "gpr-names=n32";
7025 info->flavour = bfd_target_elf_flavour;
7026
7027 return gdb_print_insn_mips (memaddr, info);
7028 }
7029
7030 static int
7031 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7032 {
7033 /* Set up the disassembler info, so that we get the right
7034 register names from libopcodes. */
7035 info->disassembler_options = "gpr-names=64";
7036 info->flavour = bfd_target_elf_flavour;
7037
7038 return gdb_print_insn_mips (memaddr, info);
7039 }
7040
7041 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7042
7043 static int
7044 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7045 {
7046 CORE_ADDR pc = *pcptr;
7047
7048 if (mips_pc_is_mips16 (gdbarch, pc))
7049 {
7050 *pcptr = unmake_compact_addr (pc);
7051 return MIPS_BP_KIND_MIPS16;
7052 }
7053 else if (mips_pc_is_micromips (gdbarch, pc))
7054 {
7055 ULONGEST insn;
7056 int status;
7057
7058 *pcptr = unmake_compact_addr (pc);
7059 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7060 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7061 return MIPS_BP_KIND_MICROMIPS16;
7062 else
7063 return MIPS_BP_KIND_MICROMIPS32;
7064 }
7065 else
7066 return MIPS_BP_KIND_MIPS32;
7067 }
7068
7069 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7070
7071 static const gdb_byte *
7072 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7073 {
7074 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7075
7076 switch (kind)
7077 {
7078 case MIPS_BP_KIND_MIPS16:
7079 {
7080 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7081 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7082
7083 *size = 2;
7084 if (byte_order_for_code == BFD_ENDIAN_BIG)
7085 return mips16_big_breakpoint;
7086 else
7087 return mips16_little_breakpoint;
7088 }
7089 case MIPS_BP_KIND_MICROMIPS16:
7090 {
7091 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7092 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7093
7094 *size = 2;
7095
7096 if (byte_order_for_code == BFD_ENDIAN_BIG)
7097 return micromips16_big_breakpoint;
7098 else
7099 return micromips16_little_breakpoint;
7100 }
7101 case MIPS_BP_KIND_MICROMIPS32:
7102 {
7103 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7104 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7105
7106 *size = 4;
7107 if (byte_order_for_code == BFD_ENDIAN_BIG)
7108 return micromips32_big_breakpoint;
7109 else
7110 return micromips32_little_breakpoint;
7111 }
7112 case MIPS_BP_KIND_MIPS32:
7113 {
7114 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7115 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7116
7117 *size = 4;
7118 if (byte_order_for_code == BFD_ENDIAN_BIG)
7119 return big_breakpoint;
7120 else
7121 return little_breakpoint;
7122 }
7123 default:
7124 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7125 };
7126 }
7127
7128 /* Return non-zero if the standard MIPS instruction INST has a branch
7129 delay slot (i.e. it is a jump or branch instruction). This function
7130 is based on mips32_next_pc. */
7131
7132 static int
7133 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7134 {
7135 int op;
7136 int rs;
7137 int rt;
7138
7139 op = itype_op (inst);
7140 if ((inst & 0xe0000000) != 0)
7141 {
7142 rs = itype_rs (inst);
7143 rt = itype_rt (inst);
7144 return (is_octeon_bbit_op (op, gdbarch)
7145 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7146 || op == 29 /* JALX: bits 011101 */
7147 || (op == 17
7148 && (rs == 8
7149 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7150 || (rs == 9 && (rt & 0x2) == 0)
7151 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7152 || (rs == 10 && (rt & 0x2) == 0))));
7153 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7154 }
7155 else
7156 switch (op & 0x07) /* extract bits 28,27,26 */
7157 {
7158 case 0: /* SPECIAL */
7159 op = rtype_funct (inst);
7160 return (op == 8 /* JR */
7161 || op == 9); /* JALR */
7162 break; /* end SPECIAL */
7163 case 1: /* REGIMM */
7164 rs = itype_rs (inst);
7165 rt = itype_rt (inst); /* branch condition */
7166 return ((rt & 0xc) == 0
7167 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7168 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7169 || ((rt & 0x1e) == 0x1c && rs == 0));
7170 /* BPOSGE32, BPOSGE64: bits 1110x */
7171 break; /* end REGIMM */
7172 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7173 return 1;
7174 break;
7175 }
7176 }
7177
7178 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7179 delay slot (i.e. it is a jump or branch instruction). */
7180
7181 static int
7182 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7183 {
7184 ULONGEST insn;
7185 int status;
7186
7187 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7188 if (status)
7189 return 0;
7190
7191 return mips32_instruction_has_delay_slot (gdbarch, insn);
7192 }
7193
7194 /* Return non-zero if the microMIPS instruction INSN, comprising the
7195 16-bit major opcode word in the high 16 bits and any second word
7196 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7197 jump or branch instruction). The instruction must be 32-bit if
7198 MUSTBE32 is set or can be any instruction otherwise. */
7199
7200 static int
7201 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7202 {
7203 ULONGEST major = insn >> 16;
7204
7205 switch (micromips_op (major))
7206 {
7207 /* 16-bit instructions. */
7208 case 0x33: /* B16: bits 110011 */
7209 case 0x2b: /* BNEZ16: bits 101011 */
7210 case 0x23: /* BEQZ16: bits 100011 */
7211 return !mustbe32;
7212 case 0x11: /* POOL16C: bits 010001 */
7213 return (!mustbe32
7214 && ((b5s5_op (major) == 0xc
7215 /* JR16: bits 010001 01100 */
7216 || (b5s5_op (major) & 0x1e) == 0xe)));
7217 /* JALR16, JALRS16: bits 010001 0111x */
7218 /* 32-bit instructions. */
7219 case 0x3d: /* JAL: bits 111101 */
7220 case 0x3c: /* JALX: bits 111100 */
7221 case 0x35: /* J: bits 110101 */
7222 case 0x2d: /* BNE: bits 101101 */
7223 case 0x25: /* BEQ: bits 100101 */
7224 case 0x1d: /* JALS: bits 011101 */
7225 return 1;
7226 case 0x10: /* POOL32I: bits 010000 */
7227 return ((b5s5_op (major) & 0x1c) == 0x0
7228 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7229 || (b5s5_op (major) & 0x1d) == 0x4
7230 /* BLEZ, BGTZ: bits 010000 001x0 */
7231 || (b5s5_op (major) & 0x1d) == 0x11
7232 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7233 || ((b5s5_op (major) & 0x1e) == 0x14
7234 && (major & 0x3) == 0x0)
7235 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7236 || (b5s5_op (major) & 0x1e) == 0x1a
7237 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7238 || ((b5s5_op (major) & 0x1e) == 0x1c
7239 && (major & 0x3) == 0x0)
7240 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7241 || ((b5s5_op (major) & 0x1c) == 0x1c
7242 && (major & 0x3) == 0x1));
7243 /* BC1ANY*: bits 010000 111xx xxx01 */
7244 case 0x0: /* POOL32A: bits 000000 */
7245 return (b0s6_op (insn) == 0x3c
7246 /* POOL32Axf: bits 000000 ... 111100 */
7247 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7248 /* JALR, JALR.HB: 000000 000x111100 111100 */
7249 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7250 default:
7251 return 0;
7252 }
7253 }
7254
7255 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7256 slot (i.e. it is a non-compact jump instruction). The instruction
7257 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7258
7259 static int
7260 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7261 CORE_ADDR addr, int mustbe32)
7262 {
7263 ULONGEST insn;
7264 int status;
7265 int size;
7266
7267 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7268 if (status)
7269 return 0;
7270 size = mips_insn_size (ISA_MICROMIPS, insn);
7271 insn <<= 16;
7272 if (size == 2 * MIPS_INSN16_SIZE)
7273 {
7274 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7275 if (status)
7276 return 0;
7277 }
7278
7279 return micromips_instruction_has_delay_slot (insn, mustbe32);
7280 }
7281
7282 /* Return non-zero if the MIPS16 instruction INST, which must be
7283 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7284 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7285 instruction). This function is based on mips16_next_pc. */
7286
7287 static int
7288 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7289 {
7290 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7291 return !mustbe32;
7292 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7293 }
7294
7295 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7296 slot (i.e. it is a non-compact jump instruction). The instruction
7297 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7298
7299 static int
7300 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7301 CORE_ADDR addr, int mustbe32)
7302 {
7303 unsigned short insn;
7304 int status;
7305
7306 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7307 if (status)
7308 return 0;
7309
7310 return mips16_instruction_has_delay_slot (insn, mustbe32);
7311 }
7312
7313 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7314 This assumes KSSEG exists. */
7315
7316 static CORE_ADDR
7317 mips_segment_boundary (CORE_ADDR bpaddr)
7318 {
7319 CORE_ADDR mask = CORE_ADDR_MAX;
7320 int segsize;
7321
7322 if (sizeof (CORE_ADDR) == 8)
7323 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7324 a compiler warning produced where CORE_ADDR is a 32-bit type even
7325 though in that case this is dead code). */
7326 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7327 {
7328 case 3:
7329 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7330 segsize = 29; /* 32-bit compatibility segment */
7331 else
7332 segsize = 62; /* xkseg */
7333 break;
7334 case 2: /* xkphys */
7335 segsize = 59;
7336 break;
7337 default: /* xksseg (1), xkuseg/kuseg (0) */
7338 segsize = 62;
7339 break;
7340 }
7341 else if (bpaddr & 0x80000000) /* kernel segment */
7342 segsize = 29;
7343 else
7344 segsize = 31; /* user segment */
7345 mask <<= segsize;
7346 return bpaddr & mask;
7347 }
7348
7349 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7350 it backwards if necessary. Return the address of the new location. */
7351
7352 static CORE_ADDR
7353 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7354 {
7355 CORE_ADDR prev_addr;
7356 CORE_ADDR boundary;
7357 CORE_ADDR func_addr;
7358
7359 /* If a breakpoint is set on the instruction in a branch delay slot,
7360 GDB gets confused. When the breakpoint is hit, the PC isn't on
7361 the instruction in the branch delay slot, the PC will point to
7362 the branch instruction. Since the PC doesn't match any known
7363 breakpoints, GDB reports a trap exception.
7364
7365 There are two possible fixes for this problem.
7366
7367 1) When the breakpoint gets hit, see if the BD bit is set in the
7368 Cause register (which indicates the last exception occurred in a
7369 branch delay slot). If the BD bit is set, fix the PC to point to
7370 the instruction in the branch delay slot.
7371
7372 2) When the user sets the breakpoint, don't allow him to set the
7373 breakpoint on the instruction in the branch delay slot. Instead
7374 move the breakpoint to the branch instruction (which will have
7375 the same result).
7376
7377 The problem with the first solution is that if the user then
7378 single-steps the processor, the branch instruction will get
7379 skipped (since GDB thinks the PC is on the instruction in the
7380 branch delay slot).
7381
7382 So, we'll use the second solution. To do this we need to know if
7383 the instruction we're trying to set the breakpoint on is in the
7384 branch delay slot. */
7385
7386 boundary = mips_segment_boundary (bpaddr);
7387
7388 /* Make sure we don't scan back before the beginning of the current
7389 function, since we may fetch constant data or insns that look like
7390 a jump. Of course we might do that anyway if the compiler has
7391 moved constants inline. :-( */
7392 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7393 && func_addr > boundary && func_addr <= bpaddr)
7394 boundary = func_addr;
7395
7396 if (mips_pc_is_mips (bpaddr))
7397 {
7398 if (bpaddr == boundary)
7399 return bpaddr;
7400
7401 /* If the previous instruction has a branch delay slot, we have
7402 to move the breakpoint to the branch instruction. */
7403 prev_addr = bpaddr - 4;
7404 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7405 bpaddr = prev_addr;
7406 }
7407 else
7408 {
7409 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7410 CORE_ADDR addr, jmpaddr;
7411 int i;
7412
7413 boundary = unmake_compact_addr (boundary);
7414
7415 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7416 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7417 so try for that first, then try the 2 byte JALR/JR.
7418 The microMIPS ASE has a whole range of jumps and branches
7419 with delay slots, some of which take 4 bytes and some take
7420 2 bytes, so the idea is the same.
7421 FIXME: We have to assume that bpaddr is not the second half
7422 of an extended instruction. */
7423 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7424 ? micromips_insn_at_pc_has_delay_slot
7425 : mips16_insn_at_pc_has_delay_slot);
7426
7427 jmpaddr = 0;
7428 addr = bpaddr;
7429 for (i = 1; i < 4; i++)
7430 {
7431 if (unmake_compact_addr (addr) == boundary)
7432 break;
7433 addr -= MIPS_INSN16_SIZE;
7434 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7435 /* Looks like a JR/JALR at [target-1], but it could be
7436 the second word of a previous JAL/JALX, so record it
7437 and check back one more. */
7438 jmpaddr = addr;
7439 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7440 {
7441 if (i == 2)
7442 /* Looks like a JAL/JALX at [target-2], but it could also
7443 be the second word of a previous JAL/JALX, record it,
7444 and check back one more. */
7445 jmpaddr = addr;
7446 else
7447 /* Looks like a JAL/JALX at [target-3], so any previously
7448 recorded JAL/JALX or JR/JALR must be wrong, because:
7449
7450 >-3: JAL
7451 -2: JAL-ext (can't be JAL/JALX)
7452 -1: bdslot (can't be JR/JALR)
7453 0: target insn
7454
7455 Of course it could be another JAL-ext which looks
7456 like a JAL, but in that case we'd have broken out
7457 of this loop at [target-2]:
7458
7459 -4: JAL
7460 >-3: JAL-ext
7461 -2: bdslot (can't be jmp)
7462 -1: JR/JALR
7463 0: target insn */
7464 jmpaddr = 0;
7465 }
7466 else
7467 {
7468 /* Not a jump instruction: if we're at [target-1] this
7469 could be the second word of a JAL/JALX, so continue;
7470 otherwise we're done. */
7471 if (i > 1)
7472 break;
7473 }
7474 }
7475
7476 if (jmpaddr)
7477 bpaddr = jmpaddr;
7478 }
7479
7480 return bpaddr;
7481 }
7482
7483 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7484 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7485
7486 static int
7487 mips_is_stub_suffix (const char *suffix, int zero)
7488 {
7489 switch (suffix[0])
7490 {
7491 case '0':
7492 return zero && suffix[1] == '\0';
7493 case '1':
7494 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7495 case '2':
7496 case '5':
7497 case '6':
7498 case '9':
7499 return suffix[1] == '\0';
7500 default:
7501 return 0;
7502 }
7503 }
7504
7505 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7506 call stubs, one of sf, df, sc, or dc. */
7507
7508 static int
7509 mips_is_stub_mode (const char *mode)
7510 {
7511 return ((mode[0] == 's' || mode[0] == 'd')
7512 && (mode[1] == 'f' || mode[1] == 'c'));
7513 }
7514
7515 /* Code at PC is a compiler-generated stub. Such a stub for a function
7516 bar might have a name like __fn_stub_bar, and might look like this:
7517
7518 mfc1 $4, $f13
7519 mfc1 $5, $f12
7520 mfc1 $6, $f15
7521 mfc1 $7, $f14
7522
7523 followed by (or interspersed with):
7524
7525 j bar
7526
7527 or:
7528
7529 lui $25, %hi(bar)
7530 addiu $25, $25, %lo(bar)
7531 jr $25
7532
7533 ($1 may be used in old code; for robustness we accept any register)
7534 or, in PIC code:
7535
7536 lui $28, %hi(_gp_disp)
7537 addiu $28, $28, %lo(_gp_disp)
7538 addu $28, $28, $25
7539 lw $25, %got(bar)
7540 addiu $25, $25, %lo(bar)
7541 jr $25
7542
7543 In the case of a __call_stub_bar stub, the sequence to set up
7544 arguments might look like this:
7545
7546 mtc1 $4, $f13
7547 mtc1 $5, $f12
7548 mtc1 $6, $f15
7549 mtc1 $7, $f14
7550
7551 followed by (or interspersed with) one of the jump sequences above.
7552
7553 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7554 of J or JR, respectively, followed by:
7555
7556 mfc1 $2, $f0
7557 mfc1 $3, $f1
7558 jr $18
7559
7560 We are at the beginning of the stub here, and scan down and extract
7561 the target address from the jump immediate instruction or, if a jump
7562 register instruction is used, from the register referred. Return
7563 the value of PC calculated or 0 if inconclusive.
7564
7565 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7566
7567 static CORE_ADDR
7568 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7569 {
7570 struct gdbarch *gdbarch = get_frame_arch (frame);
7571 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7572 int addrreg = MIPS_ZERO_REGNUM;
7573 CORE_ADDR start_pc = pc;
7574 CORE_ADDR target_pc = 0;
7575 CORE_ADDR addr = 0;
7576 CORE_ADDR gp = 0;
7577 int status = 0;
7578 int i;
7579
7580 for (i = 0;
7581 status == 0 && target_pc == 0 && i < 20;
7582 i++, pc += MIPS_INSN32_SIZE)
7583 {
7584 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7585 CORE_ADDR imm;
7586 int rt;
7587 int rs;
7588 int rd;
7589
7590 switch (itype_op (inst))
7591 {
7592 case 0: /* SPECIAL */
7593 switch (rtype_funct (inst))
7594 {
7595 case 8: /* JR */
7596 case 9: /* JALR */
7597 rs = rtype_rs (inst);
7598 if (rs == MIPS_GP_REGNUM)
7599 target_pc = gp; /* Hmm... */
7600 else if (rs == addrreg)
7601 target_pc = addr;
7602 break;
7603
7604 case 0x21: /* ADDU */
7605 rt = rtype_rt (inst);
7606 rs = rtype_rs (inst);
7607 rd = rtype_rd (inst);
7608 if (rd == MIPS_GP_REGNUM
7609 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7610 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7611 gp += start_pc;
7612 break;
7613 }
7614 break;
7615
7616 case 2: /* J */
7617 case 3: /* JAL */
7618 target_pc = jtype_target (inst) << 2;
7619 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7620 break;
7621
7622 case 9: /* ADDIU */
7623 rt = itype_rt (inst);
7624 rs = itype_rs (inst);
7625 if (rt == rs)
7626 {
7627 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7628 if (rt == MIPS_GP_REGNUM)
7629 gp += imm;
7630 else if (rt == addrreg)
7631 addr += imm;
7632 }
7633 break;
7634
7635 case 0xf: /* LUI */
7636 rt = itype_rt (inst);
7637 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7638 if (rt == MIPS_GP_REGNUM)
7639 gp = imm;
7640 else if (rt != MIPS_ZERO_REGNUM)
7641 {
7642 addrreg = rt;
7643 addr = imm;
7644 }
7645 break;
7646
7647 case 0x23: /* LW */
7648 rt = itype_rt (inst);
7649 rs = itype_rs (inst);
7650 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7651 if (gp != 0 && rs == MIPS_GP_REGNUM)
7652 {
7653 gdb_byte buf[4];
7654
7655 memset (buf, 0, sizeof (buf));
7656 status = target_read_memory (gp + imm, buf, sizeof (buf));
7657 addrreg = rt;
7658 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7659 }
7660 break;
7661 }
7662 }
7663
7664 return target_pc;
7665 }
7666
7667 /* If PC is in a MIPS16 call or return stub, return the address of the
7668 target PC, which is either the callee or the caller. There are several
7669 cases which must be handled:
7670
7671 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7672 and the target PC is in $31 ($ra).
7673 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7674 and the target PC is in $2.
7675 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7676 i.e. before the JALR instruction, this is effectively a call stub
7677 and the target PC is in $2. Otherwise this is effectively
7678 a return stub and the target PC is in $18.
7679 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7680 JAL or JALR instruction, this is effectively a call stub and the
7681 target PC is buried in the instruction stream. Otherwise this
7682 is effectively a return stub and the target PC is in $18.
7683 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7684 stub and the target PC is buried in the instruction stream.
7685
7686 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7687 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7688 gory details. */
7689
7690 static CORE_ADDR
7691 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7692 {
7693 struct gdbarch *gdbarch = get_frame_arch (frame);
7694 CORE_ADDR start_addr;
7695 const char *name;
7696 size_t prefixlen;
7697
7698 /* Find the starting address and name of the function containing the PC. */
7699 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7700 return 0;
7701
7702 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7703 and the target PC is in $31 ($ra). */
7704 prefixlen = strlen (mips_str_mips16_ret_stub);
7705 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7706 && mips_is_stub_mode (name + prefixlen)
7707 && name[prefixlen + 2] == '\0')
7708 return get_frame_register_signed
7709 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7710
7711 /* If the PC is in __mips16_call_stub_*, this is one of the call
7712 call/return stubs. */
7713 prefixlen = strlen (mips_str_mips16_call_stub);
7714 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7715 {
7716 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7717 and the target PC is in $2. */
7718 if (mips_is_stub_suffix (name + prefixlen, 0))
7719 return get_frame_register_signed
7720 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7721
7722 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7723 i.e. before the JALR instruction, this is effectively a call stub
7724 and the target PC is in $2. Otherwise this is effectively
7725 a return stub and the target PC is in $18. */
7726 else if (mips_is_stub_mode (name + prefixlen)
7727 && name[prefixlen + 2] == '_'
7728 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7729 {
7730 if (pc == start_addr)
7731 /* This is the 'call' part of a call stub. The return
7732 address is in $2. */
7733 return get_frame_register_signed
7734 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7735 else
7736 /* This is the 'return' part of a call stub. The return
7737 address is in $18. */
7738 return get_frame_register_signed
7739 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7740 }
7741 else
7742 return 0; /* Not a stub. */
7743 }
7744
7745 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7746 compiler-generated call or call/return stubs. */
7747 if (startswith (name, mips_str_fn_stub)
7748 || startswith (name, mips_str_call_stub))
7749 {
7750 if (pc == start_addr)
7751 /* This is the 'call' part of a call stub. Call this helper
7752 to scan through this code for interesting instructions
7753 and determine the final PC. */
7754 return mips_get_mips16_fn_stub_pc (frame, pc);
7755 else
7756 /* This is the 'return' part of a call stub. The return address
7757 is in $18. */
7758 return get_frame_register_signed
7759 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7760 }
7761
7762 return 0; /* Not a stub. */
7763 }
7764
7765 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7766 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7767
7768 static int
7769 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7770 {
7771 CORE_ADDR start_addr;
7772 size_t prefixlen;
7773
7774 /* Find the starting address of the function containing the PC. */
7775 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7776 return 0;
7777
7778 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7779 the start, i.e. after the JALR instruction, this is effectively
7780 a return stub. */
7781 prefixlen = strlen (mips_str_mips16_call_stub);
7782 if (pc != start_addr
7783 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7784 && mips_is_stub_mode (name + prefixlen)
7785 && name[prefixlen + 2] == '_'
7786 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7787 return 1;
7788
7789 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7790 the JAL or JALR instruction, this is effectively a return stub. */
7791 prefixlen = strlen (mips_str_call_fp_stub);
7792 if (pc != start_addr
7793 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7794 return 1;
7795
7796 /* Consume the .pic. prefix of any PIC stub, this function must return
7797 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7798 or the call stub path will trigger in handle_inferior_event causing
7799 it to go astray. */
7800 prefixlen = strlen (mips_str_pic);
7801 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7802 name += prefixlen;
7803
7804 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7805 prefixlen = strlen (mips_str_mips16_ret_stub);
7806 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7807 && mips_is_stub_mode (name + prefixlen)
7808 && name[prefixlen + 2] == '\0')
7809 return 1;
7810
7811 return 0; /* Not a stub. */
7812 }
7813
7814 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7815 PC of the stub target. The stub just loads $t9 and jumps to it,
7816 so that $t9 has the correct value at function entry. */
7817
7818 static CORE_ADDR
7819 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7820 {
7821 struct gdbarch *gdbarch = get_frame_arch (frame);
7822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7823 struct bound_minimal_symbol msym;
7824 int i;
7825 gdb_byte stub_code[16];
7826 int32_t stub_words[4];
7827
7828 /* The stub for foo is named ".pic.foo", and is either two
7829 instructions inserted before foo or a three instruction sequence
7830 which jumps to foo. */
7831 msym = lookup_minimal_symbol_by_pc (pc);
7832 if (msym.minsym == NULL
7833 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7834 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7835 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7836 return 0;
7837
7838 /* A two-instruction header. */
7839 if (MSYMBOL_SIZE (msym.minsym) == 8)
7840 return pc + 8;
7841
7842 /* A three-instruction (plus delay slot) trampoline. */
7843 if (MSYMBOL_SIZE (msym.minsym) == 16)
7844 {
7845 if (target_read_memory (pc, stub_code, 16) != 0)
7846 return 0;
7847 for (i = 0; i < 4; i++)
7848 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7849 4, byte_order);
7850
7851 /* A stub contains these instructions:
7852 lui t9, %hi(target)
7853 j target
7854 addiu t9, t9, %lo(target)
7855 nop
7856
7857 This works even for N64, since stubs are only generated with
7858 -msym32. */
7859 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7860 && (stub_words[1] & 0xfc000000U) == 0x08000000
7861 && (stub_words[2] & 0xffff0000U) == 0x27390000
7862 && stub_words[3] == 0x00000000)
7863 return ((((stub_words[0] & 0x0000ffff) << 16)
7864 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7865 }
7866
7867 /* Not a recognized stub. */
7868 return 0;
7869 }
7870
7871 static CORE_ADDR
7872 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7873 {
7874 CORE_ADDR requested_pc = pc;
7875 CORE_ADDR target_pc;
7876 CORE_ADDR new_pc;
7877
7878 do
7879 {
7880 target_pc = pc;
7881
7882 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7883 if (new_pc)
7884 pc = new_pc;
7885
7886 new_pc = find_solib_trampoline_target (frame, pc);
7887 if (new_pc)
7888 pc = new_pc;
7889
7890 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7891 if (new_pc)
7892 pc = new_pc;
7893 }
7894 while (pc != target_pc);
7895
7896 return pc != requested_pc ? pc : 0;
7897 }
7898
7899 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7900 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7901
7902 static int
7903 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7904 {
7905 int regnum;
7906 if (num >= 0 && num < 32)
7907 regnum = num;
7908 else if (num >= 38 && num < 70)
7909 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7910 else if (num == 70)
7911 regnum = mips_regnum (gdbarch)->hi;
7912 else if (num == 71)
7913 regnum = mips_regnum (gdbarch)->lo;
7914 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7915 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7916 else
7917 return -1;
7918 return gdbarch_num_regs (gdbarch) + regnum;
7919 }
7920
7921
7922 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7923 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7924
7925 static int
7926 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7927 {
7928 int regnum;
7929 if (num >= 0 && num < 32)
7930 regnum = num;
7931 else if (num >= 32 && num < 64)
7932 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7933 else if (num == 64)
7934 regnum = mips_regnum (gdbarch)->hi;
7935 else if (num == 65)
7936 regnum = mips_regnum (gdbarch)->lo;
7937 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7938 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7939 else
7940 return -1;
7941 return gdbarch_num_regs (gdbarch) + regnum;
7942 }
7943
7944 static int
7945 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7946 {
7947 /* Only makes sense to supply raw registers. */
7948 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7949 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7950 decide if it is valid. Should instead define a standard sim/gdb
7951 register numbering scheme. */
7952 if (gdbarch_register_name (gdbarch,
7953 gdbarch_num_regs (gdbarch) + regnum) != NULL
7954 && gdbarch_register_name (gdbarch,
7955 gdbarch_num_regs (gdbarch)
7956 + regnum)[0] != '\0')
7957 return regnum;
7958 else
7959 return LEGACY_SIM_REGNO_IGNORE;
7960 }
7961
7962
7963 /* Convert an integer into an address. Extracting the value signed
7964 guarantees a correctly sign extended address. */
7965
7966 static CORE_ADDR
7967 mips_integer_to_address (struct gdbarch *gdbarch,
7968 struct type *type, const gdb_byte *buf)
7969 {
7970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7971 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7972 }
7973
7974 /* Dummy virtual frame pointer method. This is no more or less accurate
7975 than most other architectures; we just need to be explicit about it,
7976 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7977 an assertion failure. */
7978
7979 static void
7980 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7981 CORE_ADDR pc, int *reg, LONGEST *offset)
7982 {
7983 *reg = MIPS_SP_REGNUM;
7984 *offset = 0;
7985 }
7986
7987 static void
7988 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7989 {
7990 enum mips_abi *abip = (enum mips_abi *) obj;
7991 const char *name = bfd_get_section_name (abfd, sect);
7992
7993 if (*abip != MIPS_ABI_UNKNOWN)
7994 return;
7995
7996 if (!startswith (name, ".mdebug."))
7997 return;
7998
7999 if (strcmp (name, ".mdebug.abi32") == 0)
8000 *abip = MIPS_ABI_O32;
8001 else if (strcmp (name, ".mdebug.abiN32") == 0)
8002 *abip = MIPS_ABI_N32;
8003 else if (strcmp (name, ".mdebug.abi64") == 0)
8004 *abip = MIPS_ABI_N64;
8005 else if (strcmp (name, ".mdebug.abiO64") == 0)
8006 *abip = MIPS_ABI_O64;
8007 else if (strcmp (name, ".mdebug.eabi32") == 0)
8008 *abip = MIPS_ABI_EABI32;
8009 else if (strcmp (name, ".mdebug.eabi64") == 0)
8010 *abip = MIPS_ABI_EABI64;
8011 else
8012 warning (_("unsupported ABI %s."), name + 8);
8013 }
8014
8015 static void
8016 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8017 {
8018 int *lbp = (int *) obj;
8019 const char *name = bfd_get_section_name (abfd, sect);
8020
8021 if (startswith (name, ".gcc_compiled_long32"))
8022 *lbp = 32;
8023 else if (startswith (name, ".gcc_compiled_long64"))
8024 *lbp = 64;
8025 else if (startswith (name, ".gcc_compiled_long"))
8026 warning (_("unrecognized .gcc_compiled_longXX"));
8027 }
8028
8029 static enum mips_abi
8030 global_mips_abi (void)
8031 {
8032 int i;
8033
8034 for (i = 0; mips_abi_strings[i] != NULL; i++)
8035 if (mips_abi_strings[i] == mips_abi_string)
8036 return (enum mips_abi) i;
8037
8038 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8039 }
8040
8041 /* Return the default compressed instruction set, either of MIPS16
8042 or microMIPS, selected when none could have been determined from
8043 the ELF header of the binary being executed (or no binary has been
8044 selected. */
8045
8046 static enum mips_isa
8047 global_mips_compression (void)
8048 {
8049 int i;
8050
8051 for (i = 0; mips_compression_strings[i] != NULL; i++)
8052 if (mips_compression_strings[i] == mips_compression_string)
8053 return (enum mips_isa) i;
8054
8055 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8056 }
8057
8058 static void
8059 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8060 {
8061 /* If the size matches the set of 32-bit or 64-bit integer registers,
8062 assume that's what we've got. */
8063 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8064 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8065
8066 /* If the size matches the full set of registers GDB traditionally
8067 knows about, including floating point, for either 32-bit or
8068 64-bit, assume that's what we've got. */
8069 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8070 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8071
8072 /* Otherwise we don't have a useful guess. */
8073 }
8074
8075 static struct value *
8076 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8077 {
8078 const int *reg_p = (const int *) baton;
8079 return value_of_register (*reg_p, frame);
8080 }
8081
8082 static struct gdbarch *
8083 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8084 {
8085 struct gdbarch *gdbarch;
8086 struct gdbarch_tdep *tdep;
8087 int elf_flags;
8088 enum mips_abi mips_abi, found_abi, wanted_abi;
8089 int i, num_regs;
8090 enum mips_fpu_type fpu_type;
8091 struct tdesc_arch_data *tdesc_data = NULL;
8092 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8093 const char **reg_names;
8094 struct mips_regnum mips_regnum, *regnum;
8095 enum mips_isa mips_isa;
8096 int dspacc;
8097 int dspctl;
8098
8099 /* Fill in the OS dependent register numbers and names. */
8100 if (info.osabi == GDB_OSABI_LINUX)
8101 {
8102 mips_regnum.fp0 = 38;
8103 mips_regnum.pc = 37;
8104 mips_regnum.cause = 36;
8105 mips_regnum.badvaddr = 35;
8106 mips_regnum.hi = 34;
8107 mips_regnum.lo = 33;
8108 mips_regnum.fp_control_status = 70;
8109 mips_regnum.fp_implementation_revision = 71;
8110 mips_regnum.dspacc = -1;
8111 mips_regnum.dspctl = -1;
8112 dspacc = 72;
8113 dspctl = 78;
8114 num_regs = 90;
8115 reg_names = mips_linux_reg_names;
8116 }
8117 else
8118 {
8119 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8120 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8121 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8122 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8123 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8124 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8125 mips_regnum.fp_control_status = 70;
8126 mips_regnum.fp_implementation_revision = 71;
8127 mips_regnum.dspacc = dspacc = -1;
8128 mips_regnum.dspctl = dspctl = -1;
8129 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8130 if (info.bfd_arch_info != NULL
8131 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8132 reg_names = mips_tx39_reg_names;
8133 else
8134 reg_names = mips_generic_reg_names;
8135 }
8136
8137 /* Check any target description for validity. */
8138 if (tdesc_has_registers (info.target_desc))
8139 {
8140 static const char *const mips_gprs[] = {
8141 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8142 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8143 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8144 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8145 };
8146 static const char *const mips_fprs[] = {
8147 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8148 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8149 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8150 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8151 };
8152
8153 const struct tdesc_feature *feature;
8154 int valid_p;
8155
8156 feature = tdesc_find_feature (info.target_desc,
8157 "org.gnu.gdb.mips.cpu");
8158 if (feature == NULL)
8159 return NULL;
8160
8161 tdesc_data = tdesc_data_alloc ();
8162
8163 valid_p = 1;
8164 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8165 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8166 mips_gprs[i]);
8167
8168
8169 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8170 mips_regnum.lo, "lo");
8171 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8172 mips_regnum.hi, "hi");
8173 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8174 mips_regnum.pc, "pc");
8175
8176 if (!valid_p)
8177 {
8178 tdesc_data_cleanup (tdesc_data);
8179 return NULL;
8180 }
8181
8182 feature = tdesc_find_feature (info.target_desc,
8183 "org.gnu.gdb.mips.cp0");
8184 if (feature == NULL)
8185 {
8186 tdesc_data_cleanup (tdesc_data);
8187 return NULL;
8188 }
8189
8190 valid_p = 1;
8191 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8192 mips_regnum.badvaddr, "badvaddr");
8193 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8194 MIPS_PS_REGNUM, "status");
8195 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8196 mips_regnum.cause, "cause");
8197
8198 if (!valid_p)
8199 {
8200 tdesc_data_cleanup (tdesc_data);
8201 return NULL;
8202 }
8203
8204 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8205 backend is not prepared for that, though. */
8206 feature = tdesc_find_feature (info.target_desc,
8207 "org.gnu.gdb.mips.fpu");
8208 if (feature == NULL)
8209 {
8210 tdesc_data_cleanup (tdesc_data);
8211 return NULL;
8212 }
8213
8214 valid_p = 1;
8215 for (i = 0; i < 32; i++)
8216 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8217 i + mips_regnum.fp0, mips_fprs[i]);
8218
8219 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8220 mips_regnum.fp_control_status,
8221 "fcsr");
8222 valid_p
8223 &= tdesc_numbered_register (feature, tdesc_data,
8224 mips_regnum.fp_implementation_revision,
8225 "fir");
8226
8227 if (!valid_p)
8228 {
8229 tdesc_data_cleanup (tdesc_data);
8230 return NULL;
8231 }
8232
8233 num_regs = mips_regnum.fp_implementation_revision + 1;
8234
8235 if (dspacc >= 0)
8236 {
8237 feature = tdesc_find_feature (info.target_desc,
8238 "org.gnu.gdb.mips.dsp");
8239 /* The DSP registers are optional; it's OK if they are absent. */
8240 if (feature != NULL)
8241 {
8242 i = 0;
8243 valid_p = 1;
8244 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8245 dspacc + i++, "hi1");
8246 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8247 dspacc + i++, "lo1");
8248 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8249 dspacc + i++, "hi2");
8250 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8251 dspacc + i++, "lo2");
8252 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8253 dspacc + i++, "hi3");
8254 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8255 dspacc + i++, "lo3");
8256
8257 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8258 dspctl, "dspctl");
8259
8260 if (!valid_p)
8261 {
8262 tdesc_data_cleanup (tdesc_data);
8263 return NULL;
8264 }
8265
8266 mips_regnum.dspacc = dspacc;
8267 mips_regnum.dspctl = dspctl;
8268
8269 num_regs = mips_regnum.dspctl + 1;
8270 }
8271 }
8272
8273 /* It would be nice to detect an attempt to use a 64-bit ABI
8274 when only 32-bit registers are provided. */
8275 reg_names = NULL;
8276 }
8277
8278 /* First of all, extract the elf_flags, if available. */
8279 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8280 elf_flags = elf_elfheader (info.abfd)->e_flags;
8281 else if (arches != NULL)
8282 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8283 else
8284 elf_flags = 0;
8285 if (gdbarch_debug)
8286 fprintf_unfiltered (gdb_stdlog,
8287 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8288
8289 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8290 switch ((elf_flags & EF_MIPS_ABI))
8291 {
8292 case E_MIPS_ABI_O32:
8293 found_abi = MIPS_ABI_O32;
8294 break;
8295 case E_MIPS_ABI_O64:
8296 found_abi = MIPS_ABI_O64;
8297 break;
8298 case E_MIPS_ABI_EABI32:
8299 found_abi = MIPS_ABI_EABI32;
8300 break;
8301 case E_MIPS_ABI_EABI64:
8302 found_abi = MIPS_ABI_EABI64;
8303 break;
8304 default:
8305 if ((elf_flags & EF_MIPS_ABI2))
8306 found_abi = MIPS_ABI_N32;
8307 else
8308 found_abi = MIPS_ABI_UNKNOWN;
8309 break;
8310 }
8311
8312 /* GCC creates a pseudo-section whose name describes the ABI. */
8313 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8314 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8315
8316 /* If we have no useful BFD information, use the ABI from the last
8317 MIPS architecture (if there is one). */
8318 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8319 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8320
8321 /* Try the architecture for any hint of the correct ABI. */
8322 if (found_abi == MIPS_ABI_UNKNOWN
8323 && info.bfd_arch_info != NULL
8324 && info.bfd_arch_info->arch == bfd_arch_mips)
8325 {
8326 switch (info.bfd_arch_info->mach)
8327 {
8328 case bfd_mach_mips3900:
8329 found_abi = MIPS_ABI_EABI32;
8330 break;
8331 case bfd_mach_mips4100:
8332 case bfd_mach_mips5000:
8333 found_abi = MIPS_ABI_EABI64;
8334 break;
8335 case bfd_mach_mips8000:
8336 case bfd_mach_mips10000:
8337 /* On Irix, ELF64 executables use the N64 ABI. The
8338 pseudo-sections which describe the ABI aren't present
8339 on IRIX. (Even for executables created by gcc.) */
8340 if (info.abfd != NULL
8341 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8342 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8343 found_abi = MIPS_ABI_N64;
8344 else
8345 found_abi = MIPS_ABI_N32;
8346 break;
8347 }
8348 }
8349
8350 /* Default 64-bit objects to N64 instead of O32. */
8351 if (found_abi == MIPS_ABI_UNKNOWN
8352 && info.abfd != NULL
8353 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8354 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8355 found_abi = MIPS_ABI_N64;
8356
8357 if (gdbarch_debug)
8358 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8359 found_abi);
8360
8361 /* What has the user specified from the command line? */
8362 wanted_abi = global_mips_abi ();
8363 if (gdbarch_debug)
8364 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8365 wanted_abi);
8366
8367 /* Now that we have found what the ABI for this binary would be,
8368 check whether the user is overriding it. */
8369 if (wanted_abi != MIPS_ABI_UNKNOWN)
8370 mips_abi = wanted_abi;
8371 else if (found_abi != MIPS_ABI_UNKNOWN)
8372 mips_abi = found_abi;
8373 else
8374 mips_abi = MIPS_ABI_O32;
8375 if (gdbarch_debug)
8376 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8377 mips_abi);
8378
8379 /* Determine the default compressed ISA. */
8380 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8381 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8382 mips_isa = ISA_MICROMIPS;
8383 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8384 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8385 mips_isa = ISA_MIPS16;
8386 else
8387 mips_isa = global_mips_compression ();
8388 mips_compression_string = mips_compression_strings[mips_isa];
8389
8390 /* Also used when doing an architecture lookup. */
8391 if (gdbarch_debug)
8392 fprintf_unfiltered (gdb_stdlog,
8393 "mips_gdbarch_init: "
8394 "mips64_transfers_32bit_regs_p = %d\n",
8395 mips64_transfers_32bit_regs_p);
8396
8397 /* Determine the MIPS FPU type. */
8398 #ifdef HAVE_ELF
8399 if (info.abfd
8400 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8401 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8402 Tag_GNU_MIPS_ABI_FP);
8403 #endif /* HAVE_ELF */
8404
8405 if (!mips_fpu_type_auto)
8406 fpu_type = mips_fpu_type;
8407 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8408 {
8409 switch (elf_fpu_type)
8410 {
8411 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8412 fpu_type = MIPS_FPU_DOUBLE;
8413 break;
8414 case Val_GNU_MIPS_ABI_FP_SINGLE:
8415 fpu_type = MIPS_FPU_SINGLE;
8416 break;
8417 case Val_GNU_MIPS_ABI_FP_SOFT:
8418 default:
8419 /* Soft float or unknown. */
8420 fpu_type = MIPS_FPU_NONE;
8421 break;
8422 }
8423 }
8424 else if (info.bfd_arch_info != NULL
8425 && info.bfd_arch_info->arch == bfd_arch_mips)
8426 switch (info.bfd_arch_info->mach)
8427 {
8428 case bfd_mach_mips3900:
8429 case bfd_mach_mips4100:
8430 case bfd_mach_mips4111:
8431 case bfd_mach_mips4120:
8432 fpu_type = MIPS_FPU_NONE;
8433 break;
8434 case bfd_mach_mips4650:
8435 fpu_type = MIPS_FPU_SINGLE;
8436 break;
8437 default:
8438 fpu_type = MIPS_FPU_DOUBLE;
8439 break;
8440 }
8441 else if (arches != NULL)
8442 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8443 else
8444 fpu_type = MIPS_FPU_DOUBLE;
8445 if (gdbarch_debug)
8446 fprintf_unfiltered (gdb_stdlog,
8447 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8448
8449 /* Check for blatant incompatibilities. */
8450
8451 /* If we have only 32-bit registers, then we can't debug a 64-bit
8452 ABI. */
8453 if (info.target_desc
8454 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8455 && mips_abi != MIPS_ABI_EABI32
8456 && mips_abi != MIPS_ABI_O32)
8457 {
8458 if (tdesc_data != NULL)
8459 tdesc_data_cleanup (tdesc_data);
8460 return NULL;
8461 }
8462
8463 /* Try to find a pre-existing architecture. */
8464 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8465 arches != NULL;
8466 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8467 {
8468 /* MIPS needs to be pedantic about which ABI and the compressed
8469 ISA variation the object is using. */
8470 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8471 continue;
8472 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8473 continue;
8474 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8475 continue;
8476 /* Need to be pedantic about which register virtual size is
8477 used. */
8478 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8479 != mips64_transfers_32bit_regs_p)
8480 continue;
8481 /* Be pedantic about which FPU is selected. */
8482 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8483 continue;
8484
8485 if (tdesc_data != NULL)
8486 tdesc_data_cleanup (tdesc_data);
8487 return arches->gdbarch;
8488 }
8489
8490 /* Need a new architecture. Fill in a target specific vector. */
8491 tdep = XNEW (struct gdbarch_tdep);
8492 gdbarch = gdbarch_alloc (&info, tdep);
8493 tdep->elf_flags = elf_flags;
8494 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8495 tdep->found_abi = found_abi;
8496 tdep->mips_abi = mips_abi;
8497 tdep->mips_isa = mips_isa;
8498 tdep->mips_fpu_type = fpu_type;
8499 tdep->register_size_valid_p = 0;
8500 tdep->register_size = 0;
8501
8502 if (info.target_desc)
8503 {
8504 /* Some useful properties can be inferred from the target. */
8505 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8506 {
8507 tdep->register_size_valid_p = 1;
8508 tdep->register_size = 4;
8509 }
8510 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8511 {
8512 tdep->register_size_valid_p = 1;
8513 tdep->register_size = 8;
8514 }
8515 }
8516
8517 /* Initially set everything according to the default ABI/ISA. */
8518 set_gdbarch_short_bit (gdbarch, 16);
8519 set_gdbarch_int_bit (gdbarch, 32);
8520 set_gdbarch_float_bit (gdbarch, 32);
8521 set_gdbarch_double_bit (gdbarch, 64);
8522 set_gdbarch_long_double_bit (gdbarch, 64);
8523 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8524 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8525 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8526
8527 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8528 mips_ax_pseudo_register_collect);
8529 set_gdbarch_ax_pseudo_register_push_stack
8530 (gdbarch, mips_ax_pseudo_register_push_stack);
8531
8532 set_gdbarch_elf_make_msymbol_special (gdbarch,
8533 mips_elf_make_msymbol_special);
8534 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8535 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8536 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8537
8538 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8539 *regnum = mips_regnum;
8540 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8541 set_gdbarch_num_regs (gdbarch, num_regs);
8542 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8543 set_gdbarch_register_name (gdbarch, mips_register_name);
8544 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8545 tdep->mips_processor_reg_names = reg_names;
8546 tdep->regnum = regnum;
8547
8548 switch (mips_abi)
8549 {
8550 case MIPS_ABI_O32:
8551 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8552 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8553 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8554 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8555 tdep->default_mask_address_p = 0;
8556 set_gdbarch_long_bit (gdbarch, 32);
8557 set_gdbarch_ptr_bit (gdbarch, 32);
8558 set_gdbarch_long_long_bit (gdbarch, 64);
8559 break;
8560 case MIPS_ABI_O64:
8561 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8562 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8563 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8564 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8565 tdep->default_mask_address_p = 0;
8566 set_gdbarch_long_bit (gdbarch, 32);
8567 set_gdbarch_ptr_bit (gdbarch, 32);
8568 set_gdbarch_long_long_bit (gdbarch, 64);
8569 break;
8570 case MIPS_ABI_EABI32:
8571 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8572 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8573 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8574 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8575 tdep->default_mask_address_p = 0;
8576 set_gdbarch_long_bit (gdbarch, 32);
8577 set_gdbarch_ptr_bit (gdbarch, 32);
8578 set_gdbarch_long_long_bit (gdbarch, 64);
8579 break;
8580 case MIPS_ABI_EABI64:
8581 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8582 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8583 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8584 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8585 tdep->default_mask_address_p = 0;
8586 set_gdbarch_long_bit (gdbarch, 64);
8587 set_gdbarch_ptr_bit (gdbarch, 64);
8588 set_gdbarch_long_long_bit (gdbarch, 64);
8589 break;
8590 case MIPS_ABI_N32:
8591 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8592 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8593 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8594 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8595 tdep->default_mask_address_p = 0;
8596 set_gdbarch_long_bit (gdbarch, 32);
8597 set_gdbarch_ptr_bit (gdbarch, 32);
8598 set_gdbarch_long_long_bit (gdbarch, 64);
8599 set_gdbarch_long_double_bit (gdbarch, 128);
8600 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8601 break;
8602 case MIPS_ABI_N64:
8603 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8604 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8605 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8606 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8607 tdep->default_mask_address_p = 0;
8608 set_gdbarch_long_bit (gdbarch, 64);
8609 set_gdbarch_ptr_bit (gdbarch, 64);
8610 set_gdbarch_long_long_bit (gdbarch, 64);
8611 set_gdbarch_long_double_bit (gdbarch, 128);
8612 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8613 break;
8614 default:
8615 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8616 }
8617
8618 /* GCC creates a pseudo-section whose name specifies the size of
8619 longs, since -mlong32 or -mlong64 may be used independent of
8620 other options. How those options affect pointer sizes is ABI and
8621 architecture dependent, so use them to override the default sizes
8622 set by the ABI. This table shows the relationship between ABI,
8623 -mlongXX, and size of pointers:
8624
8625 ABI -mlongXX ptr bits
8626 --- -------- --------
8627 o32 32 32
8628 o32 64 32
8629 n32 32 32
8630 n32 64 64
8631 o64 32 32
8632 o64 64 64
8633 n64 32 32
8634 n64 64 64
8635 eabi32 32 32
8636 eabi32 64 32
8637 eabi64 32 32
8638 eabi64 64 64
8639
8640 Note that for o32 and eabi32, pointers are always 32 bits
8641 regardless of any -mlongXX option. For all others, pointers and
8642 longs are the same, as set by -mlongXX or set by defaults. */
8643
8644 if (info.abfd != NULL)
8645 {
8646 int long_bit = 0;
8647
8648 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8649 if (long_bit)
8650 {
8651 set_gdbarch_long_bit (gdbarch, long_bit);
8652 switch (mips_abi)
8653 {
8654 case MIPS_ABI_O32:
8655 case MIPS_ABI_EABI32:
8656 break;
8657 case MIPS_ABI_N32:
8658 case MIPS_ABI_O64:
8659 case MIPS_ABI_N64:
8660 case MIPS_ABI_EABI64:
8661 set_gdbarch_ptr_bit (gdbarch, long_bit);
8662 break;
8663 default:
8664 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8665 }
8666 }
8667 }
8668
8669 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8670 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8671 comment:
8672
8673 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8674 flag in object files because to do so would make it impossible to
8675 link with libraries compiled without "-gp32". This is
8676 unnecessarily restrictive.
8677
8678 We could solve this problem by adding "-gp32" multilibs to gcc,
8679 but to set this flag before gcc is built with such multilibs will
8680 break too many systems.''
8681
8682 But even more unhelpfully, the default linker output target for
8683 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8684 for 64-bit programs - you need to change the ABI to change this,
8685 and not all gcc targets support that currently. Therefore using
8686 this flag to detect 32-bit mode would do the wrong thing given
8687 the current gcc - it would make GDB treat these 64-bit programs
8688 as 32-bit programs by default. */
8689
8690 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8691 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8692
8693 /* Add/remove bits from an address. The MIPS needs be careful to
8694 ensure that all 32 bit addresses are sign extended to 64 bits. */
8695 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8696
8697 /* Unwind the frame. */
8698 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8699 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8700 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8701
8702 /* Map debug register numbers onto internal register numbers. */
8703 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8704 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8705 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8706 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8707 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8708 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8709
8710 /* MIPS version of CALL_DUMMY. */
8711
8712 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8713 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8714 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8715
8716 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8717
8718 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8719 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8720 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8721
8722 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8723 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8724 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8725 set_gdbarch_adjust_breakpoint_address (gdbarch,
8726 mips_adjust_breakpoint_address);
8727
8728 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8729
8730 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8731
8732 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8733 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8734 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8735
8736 set_gdbarch_register_type (gdbarch, mips_register_type);
8737
8738 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8739
8740 if (mips_abi == MIPS_ABI_N32)
8741 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8742 else if (mips_abi == MIPS_ABI_N64)
8743 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8744 else
8745 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8746
8747 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8748 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8749 need to all be folded into the target vector. Since they are
8750 being used as guards for target_stopped_by_watchpoint, why not have
8751 target_stopped_by_watchpoint return the type of watchpoint that the code
8752 is sitting on? */
8753 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8754
8755 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8756
8757 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8758 to support MIPS16. This is a bad thing. Make sure not to do it
8759 if we have an OS ABI that actually supports shared libraries, since
8760 shared library support is more important. If we have an OS someday
8761 that supports both shared libraries and MIPS16, we'll have to find
8762 a better place for these.
8763 macro/2012-04-25: But that applies to return trampolines only and
8764 currently no MIPS OS ABI uses shared libraries that have them. */
8765 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8766
8767 set_gdbarch_single_step_through_delay (gdbarch,
8768 mips_single_step_through_delay);
8769
8770 /* Virtual tables. */
8771 set_gdbarch_vbit_in_delta (gdbarch, 1);
8772
8773 mips_register_g_packet_guesses (gdbarch);
8774
8775 /* Hook in OS ABI-specific overrides, if they have been registered. */
8776 info.tdep_info = tdesc_data;
8777 gdbarch_init_osabi (info, gdbarch);
8778
8779 /* The hook may have adjusted num_regs, fetch the final value and
8780 set pc_regnum and sp_regnum now that it has been fixed. */
8781 num_regs = gdbarch_num_regs (gdbarch);
8782 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8783 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8784
8785 /* Unwind the frame. */
8786 dwarf2_append_unwinders (gdbarch);
8787 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8788 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8789 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8790 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8791 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8792 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8793 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8794 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8795 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8796
8797 if (tdesc_data)
8798 {
8799 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8800 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8801
8802 /* Override the normal target description methods to handle our
8803 dual real and pseudo registers. */
8804 set_gdbarch_register_name (gdbarch, mips_register_name);
8805 set_gdbarch_register_reggroup_p (gdbarch,
8806 mips_tdesc_register_reggroup_p);
8807
8808 num_regs = gdbarch_num_regs (gdbarch);
8809 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8810 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8811 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8812 }
8813
8814 /* Add ABI-specific aliases for the registers. */
8815 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8816 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8817 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8818 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8819 else
8820 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8821 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8822 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8823
8824 /* Add some other standard aliases. */
8825 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8826 user_reg_add (gdbarch, mips_register_aliases[i].name,
8827 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8828
8829 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8830 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8831 value_of_mips_user_reg,
8832 &mips_numeric_register_aliases[i].regnum);
8833
8834 return gdbarch;
8835 }
8836
8837 static void
8838 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8839 {
8840 struct gdbarch_info info;
8841
8842 /* Force the architecture to update, and (if it's a MIPS architecture)
8843 mips_gdbarch_init will take care of the rest. */
8844 gdbarch_info_init (&info);
8845 gdbarch_update_p (info);
8846 }
8847
8848 /* Print out which MIPS ABI is in use. */
8849
8850 static void
8851 show_mips_abi (struct ui_file *file,
8852 int from_tty,
8853 struct cmd_list_element *ignored_cmd,
8854 const char *ignored_value)
8855 {
8856 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8857 fprintf_filtered
8858 (file,
8859 "The MIPS ABI is unknown because the current architecture "
8860 "is not MIPS.\n");
8861 else
8862 {
8863 enum mips_abi global_abi = global_mips_abi ();
8864 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8865 const char *actual_abi_str = mips_abi_strings[actual_abi];
8866
8867 if (global_abi == MIPS_ABI_UNKNOWN)
8868 fprintf_filtered
8869 (file,
8870 "The MIPS ABI is set automatically (currently \"%s\").\n",
8871 actual_abi_str);
8872 else if (global_abi == actual_abi)
8873 fprintf_filtered
8874 (file,
8875 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8876 actual_abi_str);
8877 else
8878 {
8879 /* Probably shouldn't happen... */
8880 fprintf_filtered (file,
8881 "The (auto detected) MIPS ABI \"%s\" is in use "
8882 "even though the user setting was \"%s\".\n",
8883 actual_abi_str, mips_abi_strings[global_abi]);
8884 }
8885 }
8886 }
8887
8888 /* Print out which MIPS compressed ISA encoding is used. */
8889
8890 static void
8891 show_mips_compression (struct ui_file *file, int from_tty,
8892 struct cmd_list_element *c, const char *value)
8893 {
8894 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8895 value);
8896 }
8897
8898 static void
8899 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8900 {
8901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8902 if (tdep != NULL)
8903 {
8904 int ef_mips_arch;
8905 int ef_mips_32bitmode;
8906 /* Determine the ISA. */
8907 switch (tdep->elf_flags & EF_MIPS_ARCH)
8908 {
8909 case E_MIPS_ARCH_1:
8910 ef_mips_arch = 1;
8911 break;
8912 case E_MIPS_ARCH_2:
8913 ef_mips_arch = 2;
8914 break;
8915 case E_MIPS_ARCH_3:
8916 ef_mips_arch = 3;
8917 break;
8918 case E_MIPS_ARCH_4:
8919 ef_mips_arch = 4;
8920 break;
8921 default:
8922 ef_mips_arch = 0;
8923 break;
8924 }
8925 /* Determine the size of a pointer. */
8926 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8927 fprintf_unfiltered (file,
8928 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8929 tdep->elf_flags);
8930 fprintf_unfiltered (file,
8931 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8932 ef_mips_32bitmode);
8933 fprintf_unfiltered (file,
8934 "mips_dump_tdep: ef_mips_arch = %d\n",
8935 ef_mips_arch);
8936 fprintf_unfiltered (file,
8937 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8938 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8939 fprintf_unfiltered (file,
8940 "mips_dump_tdep: "
8941 "mips_mask_address_p() %d (default %d)\n",
8942 mips_mask_address_p (tdep),
8943 tdep->default_mask_address_p);
8944 }
8945 fprintf_unfiltered (file,
8946 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8947 MIPS_DEFAULT_FPU_TYPE,
8948 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8949 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8950 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8951 : "???"));
8952 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8953 MIPS_EABI (gdbarch));
8954 fprintf_unfiltered (file,
8955 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8956 MIPS_FPU_TYPE (gdbarch),
8957 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8958 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8959 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
8960 : "???"));
8961 }
8962
8963 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
8964
8965 void
8966 _initialize_mips_tdep (void)
8967 {
8968 static struct cmd_list_element *mipsfpulist = NULL;
8969 struct cmd_list_element *c;
8970
8971 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8972 if (MIPS_ABI_LAST + 1
8973 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8974 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8975
8976 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8977
8978 mips_pdr_data = register_objfile_data ();
8979
8980 /* Create feature sets with the appropriate properties. The values
8981 are not important. */
8982 mips_tdesc_gp32 = allocate_target_description ();
8983 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8984
8985 mips_tdesc_gp64 = allocate_target_description ();
8986 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8987
8988 /* Add root prefix command for all "set mips"/"show mips" commands. */
8989 add_prefix_cmd ("mips", no_class, set_mips_command,
8990 _("Various MIPS specific commands."),
8991 &setmipscmdlist, "set mips ", 0, &setlist);
8992
8993 add_prefix_cmd ("mips", no_class, show_mips_command,
8994 _("Various MIPS specific commands."),
8995 &showmipscmdlist, "show mips ", 0, &showlist);
8996
8997 /* Allow the user to override the ABI. */
8998 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8999 &mips_abi_string, _("\
9000 Set the MIPS ABI used by this program."), _("\
9001 Show the MIPS ABI used by this program."), _("\
9002 This option can be set to one of:\n\
9003 auto - the default ABI associated with the current binary\n\
9004 o32\n\
9005 o64\n\
9006 n32\n\
9007 n64\n\
9008 eabi32\n\
9009 eabi64"),
9010 mips_abi_update,
9011 show_mips_abi,
9012 &setmipscmdlist, &showmipscmdlist);
9013
9014 /* Allow the user to set the ISA to assume for compressed code if ELF
9015 file flags don't tell or there is no program file selected. This
9016 setting is updated whenever unambiguous ELF file flags are interpreted,
9017 and carried over to subsequent sessions. */
9018 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9019 &mips_compression_string, _("\
9020 Set the compressed ISA encoding used by MIPS code."), _("\
9021 Show the compressed ISA encoding used by MIPS code."), _("\
9022 Select the compressed ISA encoding used in functions that have no symbol\n\
9023 information available. The encoding can be set to either of:\n\
9024 mips16\n\
9025 micromips\n\
9026 and is updated automatically from ELF file flags if available."),
9027 mips_abi_update,
9028 show_mips_compression,
9029 &setmipscmdlist, &showmipscmdlist);
9030
9031 /* Let the user turn off floating point and set the fence post for
9032 heuristic_proc_start. */
9033
9034 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9035 _("Set use of MIPS floating-point coprocessor."),
9036 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9037 add_cmd ("single", class_support, set_mipsfpu_single_command,
9038 _("Select single-precision MIPS floating-point coprocessor."),
9039 &mipsfpulist);
9040 add_cmd ("double", class_support, set_mipsfpu_double_command,
9041 _("Select double-precision MIPS floating-point coprocessor."),
9042 &mipsfpulist);
9043 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9044 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9045 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9046 add_cmd ("none", class_support, set_mipsfpu_none_command,
9047 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9048 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9049 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9050 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9051 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9052 _("Select MIPS floating-point coprocessor automatically."),
9053 &mipsfpulist);
9054 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9055 _("Show current use of MIPS floating-point coprocessor target."),
9056 &showlist);
9057
9058 /* We really would like to have both "0" and "unlimited" work, but
9059 command.c doesn't deal with that. So make it a var_zinteger
9060 because the user can always use "999999" or some such for unlimited. */
9061 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9062 &heuristic_fence_post, _("\
9063 Set the distance searched for the start of a function."), _("\
9064 Show the distance searched for the start of a function."), _("\
9065 If you are debugging a stripped executable, GDB needs to search through the\n\
9066 program for the start of a function. This command sets the distance of the\n\
9067 search. The only need to set it is when debugging a stripped executable."),
9068 reinit_frame_cache_sfunc,
9069 NULL, /* FIXME: i18n: The distance searched for
9070 the start of a function is %s. */
9071 &setlist, &showlist);
9072
9073 /* Allow the user to control whether the upper bits of 64-bit
9074 addresses should be zeroed. */
9075 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9076 &mask_address_var, _("\
9077 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9078 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9079 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9080 allow GDB to determine the correct value."),
9081 NULL, show_mask_address,
9082 &setmipscmdlist, &showmipscmdlist);
9083
9084 /* Allow the user to control the size of 32 bit registers within the
9085 raw remote packet. */
9086 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9087 &mips64_transfers_32bit_regs_p, _("\
9088 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9089 _("\
9090 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9091 _("\
9092 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9093 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9094 64 bits for others. Use \"off\" to disable compatibility mode"),
9095 set_mips64_transfers_32bit_regs,
9096 NULL, /* FIXME: i18n: Compatibility with 64-bit
9097 MIPS target that transfers 32-bit
9098 quantities is %s. */
9099 &setlist, &showlist);
9100
9101 /* Debug this files internals. */
9102 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9103 &mips_debug, _("\
9104 Set mips debugging."), _("\
9105 Show mips debugging."), _("\
9106 When non-zero, mips specific debugging is enabled."),
9107 NULL,
9108 NULL, /* FIXME: i18n: Mips debugging is
9109 currently %s. */
9110 &setdebuglist, &showdebuglist);
9111 }
This page took 0.220566 seconds and 5 git commands to generate.