target_read_memory&co: no longer return target_xfer_status
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "frame-unwind.h"
48 #include "frame-base.h"
49 #include "trad-frame.h"
50 #include "infcall.h"
51 #include "floatformat.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
64 ULONGEST inst);
65 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
66 static int mips16_instruction_has_delay_slot (unsigned short inst,
67 int mustbe32);
68
69 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
70 CORE_ADDR addr);
71 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr, int mustbe32);
73 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75
76 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
77 struct frame_info *, const char *);
78
79 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
80 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
81 #define ST0_FR (1 << 26)
82
83 /* The sizes of floating point registers. */
84
85 enum
86 {
87 MIPS_FPU_SINGLE_REGSIZE = 4,
88 MIPS_FPU_DOUBLE_REGSIZE = 8
89 };
90
91 enum
92 {
93 MIPS32_REGSIZE = 4,
94 MIPS64_REGSIZE = 8
95 };
96
97 static const char *mips_abi_string;
98
99 static const char *const mips_abi_strings[] = {
100 "auto",
101 "n32",
102 "o32",
103 "n64",
104 "o64",
105 "eabi32",
106 "eabi64",
107 NULL
108 };
109
110 /* For backwards compatibility we default to MIPS16. This flag is
111 overridden as soon as unambiguous ELF file flags tell us the
112 compressed ISA encoding used. */
113 static const char mips_compression_mips16[] = "mips16";
114 static const char mips_compression_micromips[] = "micromips";
115 static const char *const mips_compression_strings[] =
116 {
117 mips_compression_mips16,
118 mips_compression_micromips,
119 NULL
120 };
121
122 static const char *mips_compression_string = mips_compression_mips16;
123
124 /* The standard register names, and all the valid aliases for them. */
125 struct register_alias
126 {
127 const char *name;
128 int regnum;
129 };
130
131 /* Aliases for o32 and most other ABIs. */
132 const struct register_alias mips_o32_aliases[] = {
133 { "ta0", 12 },
134 { "ta1", 13 },
135 { "ta2", 14 },
136 { "ta3", 15 }
137 };
138
139 /* Aliases for n32 and n64. */
140 const struct register_alias mips_n32_n64_aliases[] = {
141 { "ta0", 8 },
142 { "ta1", 9 },
143 { "ta2", 10 },
144 { "ta3", 11 }
145 };
146
147 /* Aliases for ABI-independent registers. */
148 const struct register_alias mips_register_aliases[] = {
149 /* The architecture manuals specify these ABI-independent names for
150 the GPRs. */
151 #define R(n) { "r" #n, n }
152 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
153 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
154 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
155 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
156 #undef R
157
158 /* k0 and k1 are sometimes called these instead (for "kernel
159 temp"). */
160 { "kt0", 26 },
161 { "kt1", 27 },
162
163 /* This is the traditional GDB name for the CP0 status register. */
164 { "sr", MIPS_PS_REGNUM },
165
166 /* This is the traditional GDB name for the CP0 BadVAddr register. */
167 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
168
169 /* This is the traditional GDB name for the FCSR. */
170 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
171 };
172
173 const struct register_alias mips_numeric_register_aliases[] = {
174 #define R(n) { #n, n }
175 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
176 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
177 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
178 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
179 #undef R
180 };
181
182 #ifndef MIPS_DEFAULT_FPU_TYPE
183 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
184 #endif
185 static int mips_fpu_type_auto = 1;
186 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
187
188 static unsigned int mips_debug = 0;
189
190 /* Properties (for struct target_desc) describing the g/G packet
191 layout. */
192 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
193 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
194
195 struct target_desc *mips_tdesc_gp32;
196 struct target_desc *mips_tdesc_gp64;
197
198 const struct mips_regnum *
199 mips_regnum (struct gdbarch *gdbarch)
200 {
201 return gdbarch_tdep (gdbarch)->regnum;
202 }
203
204 static int
205 mips_fpa0_regnum (struct gdbarch *gdbarch)
206 {
207 return mips_regnum (gdbarch)->fp0 + 12;
208 }
209
210 /* Return 1 if REGNUM refers to a floating-point general register, raw
211 or cooked. Otherwise return 0. */
212
213 static int
214 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
215 {
216 int rawnum = regnum % gdbarch_num_regs (gdbarch);
217
218 return (rawnum >= mips_regnum (gdbarch)->fp0
219 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
220 }
221
222 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
223 == MIPS_ABI_EABI32 \
224 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
225
226 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
227 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
228
229 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
230 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
231
232 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
233
234 /* Return the MIPS ABI associated with GDBARCH. */
235 enum mips_abi
236 mips_abi (struct gdbarch *gdbarch)
237 {
238 return gdbarch_tdep (gdbarch)->mips_abi;
239 }
240
241 int
242 mips_isa_regsize (struct gdbarch *gdbarch)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245
246 /* If we know how big the registers are, use that size. */
247 if (tdep->register_size_valid_p)
248 return tdep->register_size;
249
250 /* Fall back to the previous behavior. */
251 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
252 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
253 }
254
255 /* Return the currently configured (or set) saved register size. */
256
257 unsigned int
258 mips_abi_regsize (struct gdbarch *gdbarch)
259 {
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 }
276
277 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
278 are some functions to handle addresses associated with compressed
279 code including but not limited to testing, setting, or clearing
280 bit 0 of such addresses. */
281
282 /* Return one iff compressed code is the MIPS16 instruction set. */
283
284 static int
285 is_mips16_isa (struct gdbarch *gdbarch)
286 {
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
288 }
289
290 /* Return one iff compressed code is the microMIPS instruction set. */
291
292 static int
293 is_micromips_isa (struct gdbarch *gdbarch)
294 {
295 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
296 }
297
298 /* Return one iff ADDR denotes compressed code. */
299
300 static int
301 is_compact_addr (CORE_ADDR addr)
302 {
303 return ((addr) & 1);
304 }
305
306 /* Return one iff ADDR denotes standard ISA code. */
307
308 static int
309 is_mips_addr (CORE_ADDR addr)
310 {
311 return !is_compact_addr (addr);
312 }
313
314 /* Return one iff ADDR denotes MIPS16 code. */
315
316 static int
317 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318 {
319 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
320 }
321
322 /* Return one iff ADDR denotes microMIPS code. */
323
324 static int
325 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
326 {
327 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
328 }
329
330 /* Strip the ISA (compression) bit off from ADDR. */
331
332 static CORE_ADDR
333 unmake_compact_addr (CORE_ADDR addr)
334 {
335 return ((addr) & ~(CORE_ADDR) 1);
336 }
337
338 /* Add the ISA (compression) bit to ADDR. */
339
340 static CORE_ADDR
341 make_compact_addr (CORE_ADDR addr)
342 {
343 return ((addr) | (CORE_ADDR) 1);
344 }
345
346 /* Extern version of unmake_compact_addr; we use a separate function
347 so that unmake_compact_addr can be inlined throughout this file. */
348
349 CORE_ADDR
350 mips_unmake_compact_addr (CORE_ADDR addr)
351 {
352 return unmake_compact_addr (addr);
353 }
354
355 /* Functions for setting and testing a bit in a minimal symbol that
356 marks it as MIPS16 or microMIPS function. The MSB of the minimal
357 symbol's "info" field is used for this purpose.
358
359 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
360 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
361 one of the "special" bits in a minimal symbol to mark it accordingly.
362 The test checks an ELF-private flag that is valid for true function
363 symbols only; for synthetic symbols such as for PLT stubs that have
364 no ELF-private part at all the MIPS BFD backend arranges for this
365 information to be carried in the asymbol's udata field instead.
366
367 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
368 in a minimal symbol. */
369
370 static void
371 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
372 {
373 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
374 unsigned char st_other;
375
376 if ((sym->flags & BSF_SYNTHETIC) == 0)
377 st_other = elfsym->internal_elf_sym.st_other;
378 else if ((sym->flags & BSF_FUNCTION) != 0)
379 st_other = sym->udata.i;
380 else
381 return;
382
383 if (ELF_ST_IS_MICROMIPS (st_other))
384 {
385 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
386 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
387 }
388 else if (ELF_ST_IS_MIPS16 (st_other))
389 {
390 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
391 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
392 }
393 }
394
395 /* Return one iff MSYM refers to standard ISA code. */
396
397 static int
398 msymbol_is_mips (struct minimal_symbol *msym)
399 {
400 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
401 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
402 }
403
404 /* Return one iff MSYM refers to MIPS16 code. */
405
406 static int
407 msymbol_is_mips16 (struct minimal_symbol *msym)
408 {
409 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
410 }
411
412 /* Return one iff MSYM refers to microMIPS code. */
413
414 static int
415 msymbol_is_micromips (struct minimal_symbol *msym)
416 {
417 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
418 }
419
420 /* Set the ISA bit in the main symbol too, complementing the corresponding
421 minimal symbol setting and reflecting the run-time value of the symbol.
422 The need for comes from the ISA bit having been cleared as code in
423 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
424 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
425 of symbols referring to compressed code different in GDB to the values
426 used by actual code. That in turn makes them evaluate incorrectly in
427 expressions, producing results different to what the same expressions
428 yield when compiled into the program being debugged. */
429
430 static void
431 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
432 {
433 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
434 {
435 /* We are in symbol reading so it is OK to cast away constness. */
436 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
437 CORE_ADDR compact_block_start;
438 struct bound_minimal_symbol msym;
439
440 compact_block_start = BLOCK_START (block) | 1;
441 msym = lookup_minimal_symbol_by_pc (compact_block_start);
442 if (msym.minsym && !msymbol_is_mips (msym.minsym))
443 {
444 BLOCK_START (block) = compact_block_start;
445 }
446 }
447 }
448
449 /* XFER a value from the big/little/left end of the register.
450 Depending on the size of the value it might occupy the entire
451 register or just part of it. Make an allowance for this, aligning
452 things accordingly. */
453
454 static void
455 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
456 int reg_num, int length,
457 enum bfd_endian endian, gdb_byte *in,
458 const gdb_byte *out, int buf_offset)
459 {
460 int reg_offset = 0;
461
462 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
463 /* Need to transfer the left or right part of the register, based on
464 the targets byte order. */
465 switch (endian)
466 {
467 case BFD_ENDIAN_BIG:
468 reg_offset = register_size (gdbarch, reg_num) - length;
469 break;
470 case BFD_ENDIAN_LITTLE:
471 reg_offset = 0;
472 break;
473 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
474 reg_offset = 0;
475 break;
476 default:
477 internal_error (__FILE__, __LINE__, _("bad switch"));
478 }
479 if (mips_debug)
480 fprintf_unfiltered (gdb_stderr,
481 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
482 reg_num, reg_offset, buf_offset, length);
483 if (mips_debug && out != NULL)
484 {
485 int i;
486 fprintf_unfiltered (gdb_stdlog, "out ");
487 for (i = 0; i < length; i++)
488 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
489 }
490 if (in != NULL)
491 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
492 in + buf_offset);
493 if (out != NULL)
494 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
495 out + buf_offset);
496 if (mips_debug && in != NULL)
497 {
498 int i;
499 fprintf_unfiltered (gdb_stdlog, "in ");
500 for (i = 0; i < length; i++)
501 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
502 }
503 if (mips_debug)
504 fprintf_unfiltered (gdb_stdlog, "\n");
505 }
506
507 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
508 compatiblity mode. A return value of 1 means that we have
509 physical 64-bit registers, but should treat them as 32-bit registers. */
510
511 static int
512 mips2_fp_compat (struct frame_info *frame)
513 {
514 struct gdbarch *gdbarch = get_frame_arch (frame);
515 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
516 meaningful. */
517 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
518 return 0;
519
520 #if 0
521 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
522 in all the places we deal with FP registers. PR gdb/413. */
523 /* Otherwise check the FR bit in the status register - it controls
524 the FP compatiblity mode. If it is clear we are in compatibility
525 mode. */
526 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
527 return 1;
528 #endif
529
530 return 0;
531 }
532
533 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
534
535 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
536
537 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
538
539 /* The list of available "set mips " and "show mips " commands. */
540
541 static struct cmd_list_element *setmipscmdlist = NULL;
542 static struct cmd_list_element *showmipscmdlist = NULL;
543
544 /* Integer registers 0 thru 31 are handled explicitly by
545 mips_register_name(). Processor specific registers 32 and above
546 are listed in the following tables. */
547
548 enum
549 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
550
551 /* Generic MIPS. */
552
553 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
554 "sr", "lo", "hi", "bad", "cause", "pc",
555 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
556 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
557 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
558 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
559 "fsr", "fir",
560 };
561
562 /* Names of IDT R3041 registers. */
563
564 static const char *mips_r3041_reg_names[] = {
565 "sr", "lo", "hi", "bad", "cause", "pc",
566 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
567 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
568 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
569 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
570 "fsr", "fir", "", /*"fp" */ "",
571 "", "", "bus", "ccfg", "", "", "", "",
572 "", "", "port", "cmp", "", "", "epc", "prid",
573 };
574
575 /* Names of tx39 registers. */
576
577 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
578 "sr", "lo", "hi", "bad", "cause", "pc",
579 "", "", "", "", "", "", "", "",
580 "", "", "", "", "", "", "", "",
581 "", "", "", "", "", "", "", "",
582 "", "", "", "", "", "", "", "",
583 "", "", "", "",
584 "", "", "", "", "", "", "", "",
585 "", "", "config", "cache", "debug", "depc", "epc",
586 };
587
588 /* Names of IRIX registers. */
589 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
590 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
591 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
592 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
593 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
594 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
595 };
596
597 /* Names of registers with Linux kernels. */
598 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
599 "sr", "lo", "hi", "bad", "cause", "pc",
600 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
601 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
602 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
603 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
604 "fsr", "fir"
605 };
606
607
608 /* Return the name of the register corresponding to REGNO. */
609 static const char *
610 mips_register_name (struct gdbarch *gdbarch, int regno)
611 {
612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
613 /* GPR names for all ABIs other than n32/n64. */
614 static char *mips_gpr_names[] = {
615 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
616 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
617 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
618 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
619 };
620
621 /* GPR names for n32 and n64 ABIs. */
622 static char *mips_n32_n64_gpr_names[] = {
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
627 };
628
629 enum mips_abi abi = mips_abi (gdbarch);
630
631 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
632 but then don't make the raw register names visible. This (upper)
633 range of user visible register numbers are the pseudo-registers.
634
635 This approach was adopted accommodate the following scenario:
636 It is possible to debug a 64-bit device using a 32-bit
637 programming model. In such instances, the raw registers are
638 configured to be 64-bits wide, while the pseudo registers are
639 configured to be 32-bits wide. The registers that the user
640 sees - the pseudo registers - match the users expectations
641 given the programming model being used. */
642 int rawnum = regno % gdbarch_num_regs (gdbarch);
643 if (regno < gdbarch_num_regs (gdbarch))
644 return "";
645
646 /* The MIPS integer registers are always mapped from 0 to 31. The
647 names of the registers (which reflects the conventions regarding
648 register use) vary depending on the ABI. */
649 if (0 <= rawnum && rawnum < 32)
650 {
651 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
652 return mips_n32_n64_gpr_names[rawnum];
653 else
654 return mips_gpr_names[rawnum];
655 }
656 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
657 return tdesc_register_name (gdbarch, rawnum);
658 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
659 {
660 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
661 if (tdep->mips_processor_reg_names[rawnum - 32])
662 return tdep->mips_processor_reg_names[rawnum - 32];
663 return "";
664 }
665 else
666 internal_error (__FILE__, __LINE__,
667 _("mips_register_name: bad register number %d"), rawnum);
668 }
669
670 /* Return the groups that a MIPS register can be categorised into. */
671
672 static int
673 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
674 struct reggroup *reggroup)
675 {
676 int vector_p;
677 int float_p;
678 int raw_p;
679 int rawnum = regnum % gdbarch_num_regs (gdbarch);
680 int pseudo = regnum / gdbarch_num_regs (gdbarch);
681 if (reggroup == all_reggroup)
682 return pseudo;
683 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
684 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
685 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
686 (gdbarch), as not all architectures are multi-arch. */
687 raw_p = rawnum < gdbarch_num_regs (gdbarch);
688 if (gdbarch_register_name (gdbarch, regnum) == NULL
689 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
690 return 0;
691 if (reggroup == float_reggroup)
692 return float_p && pseudo;
693 if (reggroup == vector_reggroup)
694 return vector_p && pseudo;
695 if (reggroup == general_reggroup)
696 return (!vector_p && !float_p) && pseudo;
697 /* Save the pseudo registers. Need to make certain that any code
698 extracting register values from a saved register cache also uses
699 pseudo registers. */
700 if (reggroup == save_reggroup)
701 return raw_p && pseudo;
702 /* Restore the same pseudo register. */
703 if (reggroup == restore_reggroup)
704 return raw_p && pseudo;
705 return 0;
706 }
707
708 /* Return the groups that a MIPS register can be categorised into.
709 This version is only used if we have a target description which
710 describes real registers (and their groups). */
711
712 static int
713 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
714 struct reggroup *reggroup)
715 {
716 int rawnum = regnum % gdbarch_num_regs (gdbarch);
717 int pseudo = regnum / gdbarch_num_regs (gdbarch);
718 int ret;
719
720 /* Only save, restore, and display the pseudo registers. Need to
721 make certain that any code extracting register values from a
722 saved register cache also uses pseudo registers.
723
724 Note: saving and restoring the pseudo registers is slightly
725 strange; if we have 64 bits, we should save and restore all
726 64 bits. But this is hard and has little benefit. */
727 if (!pseudo)
728 return 0;
729
730 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
731 if (ret != -1)
732 return ret;
733
734 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
735 }
736
737 /* Map the symbol table registers which live in the range [1 *
738 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
739 registers. Take care of alignment and size problems. */
740
741 static enum register_status
742 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
743 int cookednum, gdb_byte *buf)
744 {
745 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
746 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
747 && cookednum < 2 * gdbarch_num_regs (gdbarch));
748 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
749 return regcache_raw_read (regcache, rawnum, buf);
750 else if (register_size (gdbarch, rawnum) >
751 register_size (gdbarch, cookednum))
752 {
753 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
754 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
755 else
756 {
757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
758 LONGEST regval;
759 enum register_status status;
760
761 status = regcache_raw_read_signed (regcache, rawnum, &regval);
762 if (status == REG_VALID)
763 store_signed_integer (buf, 4, byte_order, regval);
764 return status;
765 }
766 }
767 else
768 internal_error (__FILE__, __LINE__, _("bad register size"));
769 }
770
771 static void
772 mips_pseudo_register_write (struct gdbarch *gdbarch,
773 struct regcache *regcache, int cookednum,
774 const gdb_byte *buf)
775 {
776 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
777 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
778 && cookednum < 2 * gdbarch_num_regs (gdbarch));
779 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
780 regcache_raw_write (regcache, rawnum, buf);
781 else if (register_size (gdbarch, rawnum) >
782 register_size (gdbarch, cookednum))
783 {
784 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
785 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
786 else
787 {
788 /* Sign extend the shortened version of the register prior
789 to placing it in the raw register. This is required for
790 some mips64 parts in order to avoid unpredictable behavior. */
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
793 regcache_raw_write_signed (regcache, rawnum, regval);
794 }
795 }
796 else
797 internal_error (__FILE__, __LINE__, _("bad register size"));
798 }
799
800 static int
801 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
802 struct agent_expr *ax, int reg)
803 {
804 int rawnum = reg % gdbarch_num_regs (gdbarch);
805 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
806 && reg < 2 * gdbarch_num_regs (gdbarch));
807
808 ax_reg_mask (ax, rawnum);
809
810 return 0;
811 }
812
813 static int
814 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
815 struct agent_expr *ax, int reg)
816 {
817 int rawnum = reg % gdbarch_num_regs (gdbarch);
818 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
819 && reg < 2 * gdbarch_num_regs (gdbarch));
820 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
821 {
822 ax_reg (ax, rawnum);
823
824 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
825 {
826 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
827 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
828 {
829 ax_const_l (ax, 32);
830 ax_simple (ax, aop_lsh);
831 }
832 ax_const_l (ax, 32);
833 ax_simple (ax, aop_rsh_signed);
834 }
835 }
836 else
837 internal_error (__FILE__, __LINE__, _("bad register size"));
838
839 return 0;
840 }
841
842 /* Table to translate 3-bit register field to actual register number. */
843 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
844
845 /* Heuristic_proc_start may hunt through the text section for a long
846 time across a 2400 baud serial line. Allows the user to limit this
847 search. */
848
849 static int heuristic_fence_post = 0;
850
851 /* Number of bytes of storage in the actual machine representation for
852 register N. NOTE: This defines the pseudo register type so need to
853 rebuild the architecture vector. */
854
855 static int mips64_transfers_32bit_regs_p = 0;
856
857 static void
858 set_mips64_transfers_32bit_regs (char *args, int from_tty,
859 struct cmd_list_element *c)
860 {
861 struct gdbarch_info info;
862 gdbarch_info_init (&info);
863 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
864 instead of relying on globals. Doing that would let generic code
865 handle the search for this specific architecture. */
866 if (!gdbarch_update_p (info))
867 {
868 mips64_transfers_32bit_regs_p = 0;
869 error (_("32-bit compatibility mode not supported"));
870 }
871 }
872
873 /* Convert to/from a register and the corresponding memory value. */
874
875 /* This predicate tests for the case of an 8 byte floating point
876 value that is being transferred to or from a pair of floating point
877 registers each of which are (or are considered to be) only 4 bytes
878 wide. */
879 static int
880 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
881 struct type *type)
882 {
883 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
884 && register_size (gdbarch, regnum) == 4
885 && mips_float_register_p (gdbarch, regnum)
886 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
887 }
888
889 /* This predicate tests for the case of a value of less than 8
890 bytes in width that is being transfered to or from an 8 byte
891 general purpose register. */
892 static int
893 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
894 struct type *type)
895 {
896 int num_regs = gdbarch_num_regs (gdbarch);
897
898 return (register_size (gdbarch, regnum) == 8
899 && regnum % num_regs > 0 && regnum % num_regs < 32
900 && TYPE_LENGTH (type) < 8);
901 }
902
903 static int
904 mips_convert_register_p (struct gdbarch *gdbarch,
905 int regnum, struct type *type)
906 {
907 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
908 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
909 }
910
911 static int
912 mips_register_to_value (struct frame_info *frame, int regnum,
913 struct type *type, gdb_byte *to,
914 int *optimizedp, int *unavailablep)
915 {
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917
918 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
919 {
920 get_frame_register (frame, regnum + 0, to + 4);
921 get_frame_register (frame, regnum + 1, to + 0);
922
923 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
924 optimizedp, unavailablep))
925 return 0;
926
927 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
928 optimizedp, unavailablep))
929 return 0;
930 *optimizedp = *unavailablep = 0;
931 return 1;
932 }
933 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
934 {
935 int len = TYPE_LENGTH (type);
936 CORE_ADDR offset;
937
938 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
939 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
940 optimizedp, unavailablep))
941 return 0;
942
943 *optimizedp = *unavailablep = 0;
944 return 1;
945 }
946 else
947 {
948 internal_error (__FILE__, __LINE__,
949 _("mips_register_to_value: unrecognized case"));
950 }
951 }
952
953 static void
954 mips_value_to_register (struct frame_info *frame, int regnum,
955 struct type *type, const gdb_byte *from)
956 {
957 struct gdbarch *gdbarch = get_frame_arch (frame);
958
959 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
960 {
961 put_frame_register (frame, regnum + 0, from + 4);
962 put_frame_register (frame, regnum + 1, from + 0);
963 }
964 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
965 {
966 gdb_byte fill[8];
967 int len = TYPE_LENGTH (type);
968
969 /* Sign extend values, irrespective of type, that are stored to
970 a 64-bit general purpose register. (32-bit unsigned values
971 are stored as signed quantities within a 64-bit register.
972 When performing an operation, in compiled code, that combines
973 a 32-bit unsigned value with a signed 64-bit value, a type
974 conversion is first performed that zeroes out the high 32 bits.) */
975 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
976 {
977 if (from[0] & 0x80)
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
979 else
980 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
981 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
982 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
983 }
984 else
985 {
986 if (from[len-1] & 0x80)
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
988 else
989 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
990 put_frame_register_bytes (frame, regnum, 0, len, from);
991 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
992 }
993 }
994 else
995 {
996 internal_error (__FILE__, __LINE__,
997 _("mips_value_to_register: unrecognized case"));
998 }
999 }
1000
1001 /* Return the GDB type object for the "standard" data type of data in
1002 register REG. */
1003
1004 static struct type *
1005 mips_register_type (struct gdbarch *gdbarch, int regnum)
1006 {
1007 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1008 if (mips_float_register_p (gdbarch, regnum))
1009 {
1010 /* The floating-point registers raw, or cooked, always match
1011 mips_isa_regsize(), and also map 1:1, byte for byte. */
1012 if (mips_isa_regsize (gdbarch) == 4)
1013 return builtin_type (gdbarch)->builtin_float;
1014 else
1015 return builtin_type (gdbarch)->builtin_double;
1016 }
1017 else if (regnum < gdbarch_num_regs (gdbarch))
1018 {
1019 /* The raw or ISA registers. These are all sized according to
1020 the ISA regsize. */
1021 if (mips_isa_regsize (gdbarch) == 4)
1022 return builtin_type (gdbarch)->builtin_int32;
1023 else
1024 return builtin_type (gdbarch)->builtin_int64;
1025 }
1026 else
1027 {
1028 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1029
1030 /* The cooked or ABI registers. These are sized according to
1031 the ABI (with a few complications). */
1032 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1033 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1034 return builtin_type (gdbarch)->builtin_int32;
1035 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1036 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1037 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1038 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1039 /* The pseudo/cooked view of the embedded registers is always
1040 32-bit. The raw view is handled below. */
1041 return builtin_type (gdbarch)->builtin_int32;
1042 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1043 /* The target, while possibly using a 64-bit register buffer,
1044 is only transfering 32-bits of each integer register.
1045 Reflect this in the cooked/pseudo (ABI) register value. */
1046 return builtin_type (gdbarch)->builtin_int32;
1047 else if (mips_abi_regsize (gdbarch) == 4)
1048 /* The ABI is restricted to 32-bit registers (the ISA could be
1049 32- or 64-bit). */
1050 return builtin_type (gdbarch)->builtin_int32;
1051 else
1052 /* 64-bit ABI. */
1053 return builtin_type (gdbarch)->builtin_int64;
1054 }
1055 }
1056
1057 /* Return the GDB type for the pseudo register REGNUM, which is the
1058 ABI-level view. This function is only called if there is a target
1059 description which includes registers, so we know precisely the
1060 types of hardware registers. */
1061
1062 static struct type *
1063 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1064 {
1065 const int num_regs = gdbarch_num_regs (gdbarch);
1066 int rawnum = regnum % num_regs;
1067 struct type *rawtype;
1068
1069 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1070
1071 /* Absent registers are still absent. */
1072 rawtype = gdbarch_register_type (gdbarch, rawnum);
1073 if (TYPE_LENGTH (rawtype) == 0)
1074 return rawtype;
1075
1076 if (mips_float_register_p (gdbarch, rawnum))
1077 /* Present the floating point registers however the hardware did;
1078 do not try to convert between FPU layouts. */
1079 return rawtype;
1080
1081 /* Use pointer types for registers if we can. For n32 we can not,
1082 since we do not have a 64-bit pointer type. */
1083 if (mips_abi_regsize (gdbarch)
1084 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1085 {
1086 if (rawnum == MIPS_SP_REGNUM
1087 || rawnum == mips_regnum (gdbarch)->badvaddr)
1088 return builtin_type (gdbarch)->builtin_data_ptr;
1089 else if (rawnum == mips_regnum (gdbarch)->pc)
1090 return builtin_type (gdbarch)->builtin_func_ptr;
1091 }
1092
1093 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1094 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1095 || rawnum == mips_regnum (gdbarch)->lo
1096 || rawnum == mips_regnum (gdbarch)->hi
1097 || rawnum == mips_regnum (gdbarch)->badvaddr
1098 || rawnum == mips_regnum (gdbarch)->cause
1099 || rawnum == mips_regnum (gdbarch)->pc
1100 || (mips_regnum (gdbarch)->dspacc != -1
1101 && rawnum >= mips_regnum (gdbarch)->dspacc
1102 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1103 return builtin_type (gdbarch)->builtin_int32;
1104
1105 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1106 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1107 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1108 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1109 {
1110 /* The pseudo/cooked view of embedded registers is always
1111 32-bit, even if the target transfers 64-bit values for them.
1112 New targets relying on XML descriptions should only transfer
1113 the necessary 32 bits, but older versions of GDB expected 64,
1114 so allow the target to provide 64 bits without interfering
1115 with the displayed type. */
1116 return builtin_type (gdbarch)->builtin_int32;
1117 }
1118
1119 /* For all other registers, pass through the hardware type. */
1120 return rawtype;
1121 }
1122
1123 /* Should the upper word of 64-bit addresses be zeroed? */
1124 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1125
1126 static int
1127 mips_mask_address_p (struct gdbarch_tdep *tdep)
1128 {
1129 switch (mask_address_var)
1130 {
1131 case AUTO_BOOLEAN_TRUE:
1132 return 1;
1133 case AUTO_BOOLEAN_FALSE:
1134 return 0;
1135 break;
1136 case AUTO_BOOLEAN_AUTO:
1137 return tdep->default_mask_address_p;
1138 default:
1139 internal_error (__FILE__, __LINE__,
1140 _("mips_mask_address_p: bad switch"));
1141 return -1;
1142 }
1143 }
1144
1145 static void
1146 show_mask_address (struct ui_file *file, int from_tty,
1147 struct cmd_list_element *c, const char *value)
1148 {
1149 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1150
1151 deprecated_show_value_hack (file, from_tty, c, value);
1152 switch (mask_address_var)
1153 {
1154 case AUTO_BOOLEAN_TRUE:
1155 printf_filtered ("The 32 bit mips address mask is enabled\n");
1156 break;
1157 case AUTO_BOOLEAN_FALSE:
1158 printf_filtered ("The 32 bit mips address mask is disabled\n");
1159 break;
1160 case AUTO_BOOLEAN_AUTO:
1161 printf_filtered
1162 ("The 32 bit address mask is set automatically. Currently %s\n",
1163 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1164 break;
1165 default:
1166 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1167 break;
1168 }
1169 }
1170
1171 /* Tell if the program counter value in MEMADDR is in a standard ISA
1172 function. */
1173
1174 int
1175 mips_pc_is_mips (CORE_ADDR memaddr)
1176 {
1177 struct bound_minimal_symbol sym;
1178
1179 /* Flags indicating that this is a MIPS16 or microMIPS function is
1180 stored by elfread.c in the high bit of the info field. Use this
1181 to decide if the function is standard MIPS. Otherwise if bit 0
1182 of the address is clear, then this is a standard MIPS function. */
1183 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1184 if (sym.minsym)
1185 return msymbol_is_mips (sym.minsym);
1186 else
1187 return is_mips_addr (memaddr);
1188 }
1189
1190 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1191
1192 int
1193 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1194 {
1195 struct bound_minimal_symbol sym;
1196
1197 /* A flag indicating that this is a MIPS16 function is stored by
1198 elfread.c in the high bit of the info field. Use this to decide
1199 if the function is MIPS16. Otherwise if bit 0 of the address is
1200 set, then ELF file flags will tell if this is a MIPS16 function. */
1201 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1202 if (sym.minsym)
1203 return msymbol_is_mips16 (sym.minsym);
1204 else
1205 return is_mips16_addr (gdbarch, memaddr);
1206 }
1207
1208 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1209
1210 int
1211 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1212 {
1213 struct bound_minimal_symbol sym;
1214
1215 /* A flag indicating that this is a microMIPS function is stored by
1216 elfread.c in the high bit of the info field. Use this to decide
1217 if the function is microMIPS. Otherwise if bit 0 of the address
1218 is set, then ELF file flags will tell if this is a microMIPS
1219 function. */
1220 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1221 if (sym.minsym)
1222 return msymbol_is_micromips (sym.minsym);
1223 else
1224 return is_micromips_addr (gdbarch, memaddr);
1225 }
1226
1227 /* Tell the ISA type of the function the program counter value in MEMADDR
1228 is in. */
1229
1230 static enum mips_isa
1231 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1232 {
1233 struct bound_minimal_symbol sym;
1234
1235 /* A flag indicating that this is a MIPS16 or a microMIPS function
1236 is stored by elfread.c in the high bit of the info field. Use
1237 this to decide if the function is MIPS16 or microMIPS or normal
1238 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1239 flags will tell if this is a MIPS16 or a microMIPS function. */
1240 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1241 if (sym.minsym)
1242 {
1243 if (msymbol_is_micromips (sym.minsym))
1244 return ISA_MICROMIPS;
1245 else if (msymbol_is_mips16 (sym.minsym))
1246 return ISA_MIPS16;
1247 else
1248 return ISA_MIPS;
1249 }
1250 else
1251 {
1252 if (is_mips_addr (memaddr))
1253 return ISA_MIPS;
1254 else if (is_micromips_addr (gdbarch, memaddr))
1255 return ISA_MICROMIPS;
1256 else
1257 return ISA_MIPS16;
1258 }
1259 }
1260
1261 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1262 The need for comes from the ISA bit having been cleared, making
1263 addresses in FDE, range records, etc. referring to compressed code
1264 different to those in line information, the symbol table and finally
1265 the PC register. That in turn confuses many operations. */
1266
1267 static CORE_ADDR
1268 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1269 {
1270 pc = unmake_compact_addr (pc);
1271 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1272 }
1273
1274 /* Recalculate the line record requested so that the resulting PC has
1275 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1276 this adjustment comes from some records associated with compressed
1277 code having the ISA bit cleared, most notably at function prologue
1278 ends. The ISA bit is in this context retrieved from the minimal
1279 symbol covering the address requested, which in turn has been
1280 constructed from the binary's symbol table rather than DWARF-2
1281 information. The correct setting of the ISA bit is required for
1282 breakpoint addresses to correctly match against the stop PC.
1283
1284 As line entries can specify relative address adjustments we need to
1285 keep track of the absolute value of the last line address recorded
1286 in line information, so that we can calculate the actual address to
1287 apply the ISA bit adjustment to. We use PC for this tracking and
1288 keep the original address there.
1289
1290 As such relative address adjustments can be odd within compressed
1291 code we need to keep track of the last line address with the ISA
1292 bit adjustment applied too, as the original address may or may not
1293 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1294 the adjusted address there.
1295
1296 For relative address adjustments we then use these variables to
1297 calculate the address intended by line information, which will be
1298 PC-relative, and return an updated adjustment carrying ISA bit
1299 information, which will be ADJ_PC-relative. For absolute address
1300 adjustments we just return the same address that we store in ADJ_PC
1301 too.
1302
1303 As the first line entry can be relative to an implied address value
1304 of 0 we need to have the initial address set up that we store in PC
1305 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1306 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1307
1308 static CORE_ADDR
1309 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1310 {
1311 static CORE_ADDR adj_pc;
1312 static CORE_ADDR pc;
1313 CORE_ADDR isa_pc;
1314
1315 pc = rel ? pc + addr : addr;
1316 isa_pc = mips_adjust_dwarf2_addr (pc);
1317 addr = rel ? isa_pc - adj_pc : isa_pc;
1318 adj_pc = isa_pc;
1319 return addr;
1320 }
1321
1322 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1323
1324 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1325 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1326 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1327 static const char mips_str_call_stub[] = "__call_stub_";
1328 static const char mips_str_fn_stub[] = "__fn_stub_";
1329
1330 /* This is used as a PIC thunk prefix. */
1331
1332 static const char mips_str_pic[] = ".pic.";
1333
1334 /* Return non-zero if the PC is inside a call thunk (aka stub or
1335 trampoline) that should be treated as a temporary frame. */
1336
1337 static int
1338 mips_in_frame_stub (CORE_ADDR pc)
1339 {
1340 CORE_ADDR start_addr;
1341 const char *name;
1342
1343 /* Find the starting address of the function containing the PC. */
1344 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1345 return 0;
1346
1347 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1348 if (startswith (name, mips_str_mips16_call_stub))
1349 return 1;
1350 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1351 if (startswith (name, mips_str_call_stub))
1352 return 1;
1353 /* If the PC is in __fn_stub_*, this is a call stub. */
1354 if (startswith (name, mips_str_fn_stub))
1355 return 1;
1356
1357 return 0; /* Not a stub. */
1358 }
1359
1360 /* MIPS believes that the PC has a sign extended value. Perhaps the
1361 all registers should be sign extended for simplicity? */
1362
1363 static CORE_ADDR
1364 mips_read_pc (struct regcache *regcache)
1365 {
1366 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1367 LONGEST pc;
1368
1369 regcache_cooked_read_signed (regcache, regnum, &pc);
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1375 {
1376 CORE_ADDR pc;
1377
1378 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1379 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1380 intermediate frames. In this case we can get the caller's address
1381 from $ra, or if $ra contains an address within a thunk as well, then
1382 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1383 and thus the caller's address is in $s2. */
1384 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1385 {
1386 pc = frame_unwind_register_signed
1387 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1388 if (mips_in_frame_stub (pc))
1389 pc = frame_unwind_register_signed
1390 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1391 }
1392 return pc;
1393 }
1394
1395 static CORE_ADDR
1396 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1397 {
1398 return frame_unwind_register_signed
1399 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1400 }
1401
1402 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1403 dummy frame. The frame ID's base needs to match the TOS value
1404 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1405 breakpoint. */
1406
1407 static struct frame_id
1408 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1409 {
1410 return frame_id_build
1411 (get_frame_register_signed (this_frame,
1412 gdbarch_num_regs (gdbarch)
1413 + MIPS_SP_REGNUM),
1414 get_frame_pc (this_frame));
1415 }
1416
1417 /* Implement the "write_pc" gdbarch method. */
1418
1419 void
1420 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1421 {
1422 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1423
1424 regcache_cooked_write_unsigned (regcache, regnum, pc);
1425 }
1426
1427 /* Fetch and return instruction from the specified location. Handle
1428 MIPS16/microMIPS as appropriate. */
1429
1430 static ULONGEST
1431 mips_fetch_instruction (struct gdbarch *gdbarch,
1432 enum mips_isa isa, CORE_ADDR addr, int *errp)
1433 {
1434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1435 gdb_byte buf[MIPS_INSN32_SIZE];
1436 int instlen;
1437 int err;
1438
1439 switch (isa)
1440 {
1441 case ISA_MICROMIPS:
1442 case ISA_MIPS16:
1443 instlen = MIPS_INSN16_SIZE;
1444 addr = unmake_compact_addr (addr);
1445 break;
1446 case ISA_MIPS:
1447 instlen = MIPS_INSN32_SIZE;
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1451 break;
1452 }
1453 err = target_read_memory (addr, buf, instlen);
1454 if (errp != NULL)
1455 *errp = err;
1456 if (err != 0)
1457 {
1458 if (errp == NULL)
1459 memory_error (TARGET_XFER_E_IO, addr);
1460 return 0;
1461 }
1462 return extract_unsigned_integer (buf, instlen, byte_order);
1463 }
1464
1465 /* These are the fields of 32 bit mips instructions. */
1466 #define mips32_op(x) (x >> 26)
1467 #define itype_op(x) (x >> 26)
1468 #define itype_rs(x) ((x >> 21) & 0x1f)
1469 #define itype_rt(x) ((x >> 16) & 0x1f)
1470 #define itype_immediate(x) (x & 0xffff)
1471
1472 #define jtype_op(x) (x >> 26)
1473 #define jtype_target(x) (x & 0x03ffffff)
1474
1475 #define rtype_op(x) (x >> 26)
1476 #define rtype_rs(x) ((x >> 21) & 0x1f)
1477 #define rtype_rt(x) ((x >> 16) & 0x1f)
1478 #define rtype_rd(x) ((x >> 11) & 0x1f)
1479 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1480 #define rtype_funct(x) (x & 0x3f)
1481
1482 /* MicroMIPS instruction fields. */
1483 #define micromips_op(x) ((x) >> 10)
1484
1485 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1486 bit and the size respectively of the field extracted. */
1487 #define b0s4_imm(x) ((x) & 0xf)
1488 #define b0s5_imm(x) ((x) & 0x1f)
1489 #define b0s5_reg(x) ((x) & 0x1f)
1490 #define b0s7_imm(x) ((x) & 0x7f)
1491 #define b0s10_imm(x) ((x) & 0x3ff)
1492 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1493 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1494 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1495 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1496 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1497 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1498 #define b6s4_op(x) (((x) >> 6) & 0xf)
1499 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1500
1501 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1502 respectively of the field extracted. */
1503 #define b0s6_op(x) ((x) & 0x3f)
1504 #define b0s11_op(x) ((x) & 0x7ff)
1505 #define b0s12_imm(x) ((x) & 0xfff)
1506 #define b0s16_imm(x) ((x) & 0xffff)
1507 #define b0s26_imm(x) ((x) & 0x3ffffff)
1508 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1509 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1510 #define b12s4_op(x) (((x) >> 12) & 0xf)
1511
1512 /* Return the size in bytes of the instruction INSN encoded in the ISA
1513 instruction set. */
1514
1515 static int
1516 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1517 {
1518 switch (isa)
1519 {
1520 case ISA_MICROMIPS:
1521 if (micromips_op (insn) == 0x1f)
1522 return 3 * MIPS_INSN16_SIZE;
1523 else if (((micromips_op (insn) & 0x4) == 0x4)
1524 || ((micromips_op (insn) & 0x7) == 0x0))
1525 return 2 * MIPS_INSN16_SIZE;
1526 else
1527 return MIPS_INSN16_SIZE;
1528 case ISA_MIPS16:
1529 if ((insn & 0xf800) == 0xf000)
1530 return 2 * MIPS_INSN16_SIZE;
1531 else
1532 return MIPS_INSN16_SIZE;
1533 case ISA_MIPS:
1534 return MIPS_INSN32_SIZE;
1535 }
1536 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1537 }
1538
1539 static LONGEST
1540 mips32_relative_offset (ULONGEST inst)
1541 {
1542 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1543 }
1544
1545 /* Determine the address of the next instruction executed after the INST
1546 floating condition branch instruction at PC. COUNT specifies the
1547 number of the floating condition bits tested by the branch. */
1548
1549 static CORE_ADDR
1550 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1551 ULONGEST inst, CORE_ADDR pc, int count)
1552 {
1553 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1554 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1555 int tf = itype_rt (inst) & 1;
1556 int mask = (1 << count) - 1;
1557 ULONGEST fcs;
1558 int cond;
1559
1560 if (fcsr == -1)
1561 /* No way to handle; it'll most likely trap anyway. */
1562 return pc;
1563
1564 fcs = get_frame_register_unsigned (frame, fcsr);
1565 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1566
1567 if (((cond >> cnum) & mask) != mask * !tf)
1568 pc += mips32_relative_offset (inst);
1569 else
1570 pc += 4;
1571
1572 return pc;
1573 }
1574
1575 /* Return nonzero if the gdbarch is an Octeon series. */
1576
1577 static int
1578 is_octeon (struct gdbarch *gdbarch)
1579 {
1580 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1581
1582 return (info->mach == bfd_mach_mips_octeon
1583 || info->mach == bfd_mach_mips_octeonp
1584 || info->mach == bfd_mach_mips_octeon2);
1585 }
1586
1587 /* Return true if the OP represents the Octeon's BBIT instruction. */
1588
1589 static int
1590 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1591 {
1592 if (!is_octeon (gdbarch))
1593 return 0;
1594 /* BBIT0 is encoded as LWC2: 110 010. */
1595 /* BBIT032 is encoded as LDC2: 110 110. */
1596 /* BBIT1 is encoded as SWC2: 111 010. */
1597 /* BBIT132 is encoded as SDC2: 111 110. */
1598 if (op == 50 || op == 54 || op == 58 || op == 62)
1599 return 1;
1600 return 0;
1601 }
1602
1603
1604 /* Determine where to set a single step breakpoint while considering
1605 branch prediction. */
1606
1607 static CORE_ADDR
1608 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1609 {
1610 struct gdbarch *gdbarch = get_frame_arch (frame);
1611 unsigned long inst;
1612 int op;
1613 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1614 op = itype_op (inst);
1615 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1616 instruction. */
1617 {
1618 if (op >> 2 == 5)
1619 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1620 {
1621 switch (op & 0x03)
1622 {
1623 case 0: /* BEQL */
1624 goto equal_branch;
1625 case 1: /* BNEL */
1626 goto neq_branch;
1627 case 2: /* BLEZL */
1628 goto less_branch;
1629 case 3: /* BGTZL */
1630 goto greater_branch;
1631 default:
1632 pc += 4;
1633 }
1634 }
1635 else if (op == 17 && itype_rs (inst) == 8)
1636 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1637 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1638 else if (op == 17 && itype_rs (inst) == 9
1639 && (itype_rt (inst) & 2) == 0)
1640 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1641 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1642 else if (op == 17 && itype_rs (inst) == 10
1643 && (itype_rt (inst) & 2) == 0)
1644 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1645 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1646 else if (op == 29)
1647 /* JALX: 011101 */
1648 /* The new PC will be alternate mode. */
1649 {
1650 unsigned long reg;
1651
1652 reg = jtype_target (inst) << 2;
1653 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1654 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1655 }
1656 else if (is_octeon_bbit_op (op, gdbarch))
1657 {
1658 int bit, branch_if;
1659
1660 branch_if = op == 58 || op == 62;
1661 bit = itype_rt (inst);
1662
1663 /* Take into account the *32 instructions. */
1664 if (op == 54 || op == 62)
1665 bit += 32;
1666
1667 if (((get_frame_register_signed (frame,
1668 itype_rs (inst)) >> bit) & 1)
1669 == branch_if)
1670 pc += mips32_relative_offset (inst) + 4;
1671 else
1672 pc += 8; /* After the delay slot. */
1673 }
1674
1675 else
1676 pc += 4; /* Not a branch, next instruction is easy. */
1677 }
1678 else
1679 { /* This gets way messy. */
1680
1681 /* Further subdivide into SPECIAL, REGIMM and other. */
1682 switch (op & 0x07) /* Extract bits 28,27,26. */
1683 {
1684 case 0: /* SPECIAL */
1685 op = rtype_funct (inst);
1686 switch (op)
1687 {
1688 case 8: /* JR */
1689 case 9: /* JALR */
1690 /* Set PC to that address. */
1691 pc = get_frame_register_signed (frame, rtype_rs (inst));
1692 break;
1693 case 12: /* SYSCALL */
1694 {
1695 struct gdbarch_tdep *tdep;
1696
1697 tdep = gdbarch_tdep (get_frame_arch (frame));
1698 if (tdep->syscall_next_pc != NULL)
1699 pc = tdep->syscall_next_pc (frame);
1700 else
1701 pc += 4;
1702 }
1703 break;
1704 default:
1705 pc += 4;
1706 }
1707
1708 break; /* end SPECIAL */
1709 case 1: /* REGIMM */
1710 {
1711 op = itype_rt (inst); /* branch condition */
1712 switch (op)
1713 {
1714 case 0: /* BLTZ */
1715 case 2: /* BLTZL */
1716 case 16: /* BLTZAL */
1717 case 18: /* BLTZALL */
1718 less_branch:
1719 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1720 pc += mips32_relative_offset (inst) + 4;
1721 else
1722 pc += 8; /* after the delay slot */
1723 break;
1724 case 1: /* BGEZ */
1725 case 3: /* BGEZL */
1726 case 17: /* BGEZAL */
1727 case 19: /* BGEZALL */
1728 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
1733 case 0x1c: /* BPOSGE32 */
1734 case 0x1e: /* BPOSGE64 */
1735 pc += 4;
1736 if (itype_rs (inst) == 0)
1737 {
1738 unsigned int pos = (op & 2) ? 64 : 32;
1739 int dspctl = mips_regnum (gdbarch)->dspctl;
1740
1741 if (dspctl == -1)
1742 /* No way to handle; it'll most likely trap anyway. */
1743 break;
1744
1745 if ((get_frame_register_unsigned (frame,
1746 dspctl) & 0x7f) >= pos)
1747 pc += mips32_relative_offset (inst);
1748 else
1749 pc += 4;
1750 }
1751 break;
1752 /* All of the other instructions in the REGIMM category */
1753 default:
1754 pc += 4;
1755 }
1756 }
1757 break; /* end REGIMM */
1758 case 2: /* J */
1759 case 3: /* JAL */
1760 {
1761 unsigned long reg;
1762 reg = jtype_target (inst) << 2;
1763 /* Upper four bits get never changed... */
1764 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1765 }
1766 break;
1767 case 4: /* BEQ, BEQL */
1768 equal_branch:
1769 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1770 get_frame_register_signed (frame, itype_rt (inst)))
1771 pc += mips32_relative_offset (inst) + 4;
1772 else
1773 pc += 8;
1774 break;
1775 case 5: /* BNE, BNEL */
1776 neq_branch:
1777 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1778 get_frame_register_signed (frame, itype_rt (inst)))
1779 pc += mips32_relative_offset (inst) + 4;
1780 else
1781 pc += 8;
1782 break;
1783 case 6: /* BLEZ, BLEZL */
1784 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1785 pc += mips32_relative_offset (inst) + 4;
1786 else
1787 pc += 8;
1788 break;
1789 case 7:
1790 default:
1791 greater_branch: /* BGTZ, BGTZL */
1792 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1793 pc += mips32_relative_offset (inst) + 4;
1794 else
1795 pc += 8;
1796 break;
1797 } /* switch */
1798 } /* else */
1799 return pc;
1800 } /* mips32_next_pc */
1801
1802 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1803 INSN. */
1804
1805 static LONGEST
1806 micromips_relative_offset7 (ULONGEST insn)
1807 {
1808 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1809 }
1810
1811 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814 static LONGEST
1815 micromips_relative_offset10 (ULONGEST insn)
1816 {
1817 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1818 }
1819
1820 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823 static LONGEST
1824 micromips_relative_offset16 (ULONGEST insn)
1825 {
1826 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1827 }
1828
1829 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1830
1831 static int
1832 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1833 {
1834 ULONGEST insn;
1835
1836 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1837 return mips_insn_size (ISA_MICROMIPS, insn);
1838 }
1839
1840 /* Calculate the address of the next microMIPS instruction to execute
1841 after the INSN coprocessor 1 conditional branch instruction at the
1842 address PC. COUNT denotes the number of coprocessor condition bits
1843 examined by the branch. */
1844
1845 static CORE_ADDR
1846 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1847 ULONGEST insn, CORE_ADDR pc, int count)
1848 {
1849 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1850 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1851 int tf = b5s5_op (insn >> 16) & 1;
1852 int mask = (1 << count) - 1;
1853 ULONGEST fcs;
1854 int cond;
1855
1856 if (fcsr == -1)
1857 /* No way to handle; it'll most likely trap anyway. */
1858 return pc;
1859
1860 fcs = get_frame_register_unsigned (frame, fcsr);
1861 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1862
1863 if (((cond >> cnum) & mask) != mask * !tf)
1864 pc += micromips_relative_offset16 (insn);
1865 else
1866 pc += micromips_pc_insn_size (gdbarch, pc);
1867
1868 return pc;
1869 }
1870
1871 /* Calculate the address of the next microMIPS instruction to execute
1872 after the instruction at the address PC. */
1873
1874 static CORE_ADDR
1875 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1876 {
1877 struct gdbarch *gdbarch = get_frame_arch (frame);
1878 ULONGEST insn;
1879
1880 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1881 pc += MIPS_INSN16_SIZE;
1882 switch (mips_insn_size (ISA_MICROMIPS, insn))
1883 {
1884 /* 48-bit instructions. */
1885 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1886 /* No branch or jump instructions in this category. */
1887 pc += 2 * MIPS_INSN16_SIZE;
1888 break;
1889
1890 /* 32-bit instructions. */
1891 case 2 * MIPS_INSN16_SIZE:
1892 insn <<= 16;
1893 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1894 pc += MIPS_INSN16_SIZE;
1895 switch (micromips_op (insn >> 16))
1896 {
1897 case 0x00: /* POOL32A: bits 000000 */
1898 if (b0s6_op (insn) == 0x3c
1899 /* POOL32Axf: bits 000000 ... 111100 */
1900 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1901 /* JALR, JALR.HB: 000000 000x111100 111100 */
1902 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1903 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1904 break;
1905
1906 case 0x10: /* POOL32I: bits 010000 */
1907 switch (b5s5_op (insn >> 16))
1908 {
1909 case 0x00: /* BLTZ: bits 010000 00000 */
1910 case 0x01: /* BLTZAL: bits 010000 00001 */
1911 case 0x11: /* BLTZALS: bits 010000 10001 */
1912 if (get_frame_register_signed (frame,
1913 b0s5_reg (insn >> 16)) < 0)
1914 pc += micromips_relative_offset16 (insn);
1915 else
1916 pc += micromips_pc_insn_size (gdbarch, pc);
1917 break;
1918
1919 case 0x02: /* BGEZ: bits 010000 00010 */
1920 case 0x03: /* BGEZAL: bits 010000 00011 */
1921 case 0x13: /* BGEZALS: bits 010000 10011 */
1922 if (get_frame_register_signed (frame,
1923 b0s5_reg (insn >> 16)) >= 0)
1924 pc += micromips_relative_offset16 (insn);
1925 else
1926 pc += micromips_pc_insn_size (gdbarch, pc);
1927 break;
1928
1929 case 0x04: /* BLEZ: bits 010000 00100 */
1930 if (get_frame_register_signed (frame,
1931 b0s5_reg (insn >> 16)) <= 0)
1932 pc += micromips_relative_offset16 (insn);
1933 else
1934 pc += micromips_pc_insn_size (gdbarch, pc);
1935 break;
1936
1937 case 0x05: /* BNEZC: bits 010000 00101 */
1938 if (get_frame_register_signed (frame,
1939 b0s5_reg (insn >> 16)) != 0)
1940 pc += micromips_relative_offset16 (insn);
1941 break;
1942
1943 case 0x06: /* BGTZ: bits 010000 00110 */
1944 if (get_frame_register_signed (frame,
1945 b0s5_reg (insn >> 16)) > 0)
1946 pc += micromips_relative_offset16 (insn);
1947 else
1948 pc += micromips_pc_insn_size (gdbarch, pc);
1949 break;
1950
1951 case 0x07: /* BEQZC: bits 010000 00111 */
1952 if (get_frame_register_signed (frame,
1953 b0s5_reg (insn >> 16)) == 0)
1954 pc += micromips_relative_offset16 (insn);
1955 break;
1956
1957 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1958 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1959 if (((insn >> 16) & 0x3) == 0x0)
1960 /* BC2F, BC2T: don't know how to handle these. */
1961 break;
1962 break;
1963
1964 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1965 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1966 {
1967 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1968 int dspctl = mips_regnum (gdbarch)->dspctl;
1969
1970 if (dspctl == -1)
1971 /* No way to handle; it'll most likely trap anyway. */
1972 break;
1973
1974 if ((get_frame_register_unsigned (frame,
1975 dspctl) & 0x7f) >= pos)
1976 pc += micromips_relative_offset16 (insn);
1977 else
1978 pc += micromips_pc_insn_size (gdbarch, pc);
1979 }
1980 break;
1981
1982 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1983 /* BC1ANY2F: bits 010000 11100 xxx01 */
1984 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1985 /* BC1ANY2T: bits 010000 11101 xxx01 */
1986 if (((insn >> 16) & 0x2) == 0x0)
1987 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1988 ((insn >> 16) & 0x1) + 1);
1989 break;
1990
1991 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1992 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1993 if (((insn >> 16) & 0x3) == 0x1)
1994 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1995 break;
1996 }
1997 break;
1998
1999 case 0x1d: /* JALS: bits 011101 */
2000 case 0x35: /* J: bits 110101 */
2001 case 0x3d: /* JAL: bits 111101 */
2002 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
2003 break;
2004
2005 case 0x25: /* BEQ: bits 100101 */
2006 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2007 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2008 pc += micromips_relative_offset16 (insn);
2009 else
2010 pc += micromips_pc_insn_size (gdbarch, pc);
2011 break;
2012
2013 case 0x2d: /* BNE: bits 101101 */
2014 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2015 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2016 pc += micromips_relative_offset16 (insn);
2017 else
2018 pc += micromips_pc_insn_size (gdbarch, pc);
2019 break;
2020
2021 case 0x3c: /* JALX: bits 111100 */
2022 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2023 break;
2024 }
2025 break;
2026
2027 /* 16-bit instructions. */
2028 case MIPS_INSN16_SIZE:
2029 switch (micromips_op (insn))
2030 {
2031 case 0x11: /* POOL16C: bits 010001 */
2032 if ((b5s5_op (insn) & 0x1c) == 0xc)
2033 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2034 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2035 else if (b5s5_op (insn) == 0x18)
2036 /* JRADDIUSP: bits 010001 11000 */
2037 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2038 break;
2039
2040 case 0x23: /* BEQZ16: bits 100011 */
2041 {
2042 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2043
2044 if (get_frame_register_signed (frame, rs) == 0)
2045 pc += micromips_relative_offset7 (insn);
2046 else
2047 pc += micromips_pc_insn_size (gdbarch, pc);
2048 }
2049 break;
2050
2051 case 0x2b: /* BNEZ16: bits 101011 */
2052 {
2053 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2054
2055 if (get_frame_register_signed (frame, rs) != 0)
2056 pc += micromips_relative_offset7 (insn);
2057 else
2058 pc += micromips_pc_insn_size (gdbarch, pc);
2059 }
2060 break;
2061
2062 case 0x33: /* B16: bits 110011 */
2063 pc += micromips_relative_offset10 (insn);
2064 break;
2065 }
2066 break;
2067 }
2068
2069 return pc;
2070 }
2071
2072 /* Decoding the next place to set a breakpoint is irregular for the
2073 mips 16 variant, but fortunately, there fewer instructions. We have
2074 to cope ith extensions for 16 bit instructions and a pair of actual
2075 32 bit instructions. We dont want to set a single step instruction
2076 on the extend instruction either. */
2077
2078 /* Lots of mips16 instruction formats */
2079 /* Predicting jumps requires itype,ritype,i8type
2080 and their extensions extItype,extritype,extI8type. */
2081 enum mips16_inst_fmts
2082 {
2083 itype, /* 0 immediate 5,10 */
2084 ritype, /* 1 5,3,8 */
2085 rrtype, /* 2 5,3,3,5 */
2086 rritype, /* 3 5,3,3,5 */
2087 rrrtype, /* 4 5,3,3,3,2 */
2088 rriatype, /* 5 5,3,3,1,4 */
2089 shifttype, /* 6 5,3,3,3,2 */
2090 i8type, /* 7 5,3,8 */
2091 i8movtype, /* 8 5,3,3,5 */
2092 i8mov32rtype, /* 9 5,3,5,3 */
2093 i64type, /* 10 5,3,8 */
2094 ri64type, /* 11 5,3,3,5 */
2095 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2096 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2097 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2098 extRRItype, /* 15 5,5,5,5,3,3,5 */
2099 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2100 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2101 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2102 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2103 extRi64type, /* 20 5,6,5,5,3,3,5 */
2104 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2105 };
2106 /* I am heaping all the fields of the formats into one structure and
2107 then, only the fields which are involved in instruction extension. */
2108 struct upk_mips16
2109 {
2110 CORE_ADDR offset;
2111 unsigned int regx; /* Function in i8 type. */
2112 unsigned int regy;
2113 };
2114
2115
2116 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2117 for the bits which make up the immediate extension. */
2118
2119 static CORE_ADDR
2120 extended_offset (unsigned int extension)
2121 {
2122 CORE_ADDR value;
2123
2124 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2125 value = value << 6;
2126 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2127 value = value << 5;
2128 value |= extension & 0x1f; /* Extract 4:0. */
2129
2130 return value;
2131 }
2132
2133 /* Only call this function if you know that this is an extendable
2134 instruction. It won't malfunction, but why make excess remote memory
2135 references? If the immediate operands get sign extended or something,
2136 do it after the extension is performed. */
2137 /* FIXME: Every one of these cases needs to worry about sign extension
2138 when the offset is to be used in relative addressing. */
2139
2140 static unsigned int
2141 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2142 {
2143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2144 gdb_byte buf[8];
2145
2146 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2147 target_read_memory (pc, buf, 2);
2148 return extract_unsigned_integer (buf, 2, byte_order);
2149 }
2150
2151 static void
2152 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2153 unsigned int extension,
2154 unsigned int inst,
2155 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2156 {
2157 CORE_ADDR offset;
2158 int regx;
2159 int regy;
2160 switch (insn_format)
2161 {
2162 case itype:
2163 {
2164 CORE_ADDR value;
2165 if (extension)
2166 {
2167 value = extended_offset ((extension << 16) | inst);
2168 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2169 }
2170 else
2171 {
2172 value = inst & 0x7ff;
2173 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2174 }
2175 offset = value;
2176 regx = -1;
2177 regy = -1;
2178 }
2179 break;
2180 case ritype:
2181 case i8type:
2182 { /* A register identifier and an offset. */
2183 /* Most of the fields are the same as I type but the
2184 immediate value is of a different length. */
2185 CORE_ADDR value;
2186 if (extension)
2187 {
2188 value = extended_offset ((extension << 16) | inst);
2189 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2190 }
2191 else
2192 {
2193 value = inst & 0xff; /* 8 bits */
2194 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2195 }
2196 offset = value;
2197 regx = (inst >> 8) & 0x07; /* i8 funct */
2198 regy = -1;
2199 break;
2200 }
2201 case jalxtype:
2202 {
2203 unsigned long value;
2204 unsigned int nexthalf;
2205 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2206 value = value << 16;
2207 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2208 /* Low bit still set. */
2209 value |= nexthalf;
2210 offset = value;
2211 regx = -1;
2212 regy = -1;
2213 break;
2214 }
2215 default:
2216 internal_error (__FILE__, __LINE__, _("bad switch"));
2217 }
2218 upk->offset = offset;
2219 upk->regx = regx;
2220 upk->regy = regy;
2221 }
2222
2223
2224 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2225 and having a signed 16-bit OFFSET. */
2226
2227 static CORE_ADDR
2228 add_offset_16 (CORE_ADDR pc, int offset)
2229 {
2230 return pc + (offset << 1) + 2;
2231 }
2232
2233 static CORE_ADDR
2234 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2235 unsigned int extension, unsigned int insn)
2236 {
2237 struct gdbarch *gdbarch = get_frame_arch (frame);
2238 int op = (insn >> 11);
2239 switch (op)
2240 {
2241 case 2: /* Branch */
2242 {
2243 struct upk_mips16 upk;
2244 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2245 pc = add_offset_16 (pc, upk.offset);
2246 break;
2247 }
2248 case 3: /* JAL , JALX - Watch out, these are 32 bit
2249 instructions. */
2250 {
2251 struct upk_mips16 upk;
2252 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2253 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2254 if ((insn >> 10) & 0x01) /* Exchange mode */
2255 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2256 else
2257 pc |= 0x01;
2258 break;
2259 }
2260 case 4: /* beqz */
2261 {
2262 struct upk_mips16 upk;
2263 int reg;
2264 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2265 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2266 if (reg == 0)
2267 pc = add_offset_16 (pc, upk.offset);
2268 else
2269 pc += 2;
2270 break;
2271 }
2272 case 5: /* bnez */
2273 {
2274 struct upk_mips16 upk;
2275 int reg;
2276 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2277 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2278 if (reg != 0)
2279 pc = add_offset_16 (pc, upk.offset);
2280 else
2281 pc += 2;
2282 break;
2283 }
2284 case 12: /* I8 Formats btez btnez */
2285 {
2286 struct upk_mips16 upk;
2287 int reg;
2288 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2289 /* upk.regx contains the opcode */
2290 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2291 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2292 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2293 pc = add_offset_16 (pc, upk.offset);
2294 else
2295 pc += 2;
2296 break;
2297 }
2298 case 29: /* RR Formats JR, JALR, JALR-RA */
2299 {
2300 struct upk_mips16 upk;
2301 /* upk.fmt = rrtype; */
2302 op = insn & 0x1f;
2303 if (op == 0)
2304 {
2305 int reg;
2306 upk.regx = (insn >> 8) & 0x07;
2307 upk.regy = (insn >> 5) & 0x07;
2308 if ((upk.regy & 1) == 0)
2309 reg = mips_reg3_to_reg[upk.regx];
2310 else
2311 reg = 31; /* Function return instruction. */
2312 pc = get_frame_register_signed (frame, reg);
2313 }
2314 else
2315 pc += 2;
2316 break;
2317 }
2318 case 30:
2319 /* This is an instruction extension. Fetch the real instruction
2320 (which follows the extension) and decode things based on
2321 that. */
2322 {
2323 pc += 2;
2324 pc = extended_mips16_next_pc (frame, pc, insn,
2325 fetch_mips_16 (gdbarch, pc));
2326 break;
2327 }
2328 default:
2329 {
2330 pc += 2;
2331 break;
2332 }
2333 }
2334 return pc;
2335 }
2336
2337 static CORE_ADDR
2338 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2339 {
2340 struct gdbarch *gdbarch = get_frame_arch (frame);
2341 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2342 return extended_mips16_next_pc (frame, pc, 0, insn);
2343 }
2344
2345 /* The mips_next_pc function supports single_step when the remote
2346 target monitor or stub is not developed enough to do a single_step.
2347 It works by decoding the current instruction and predicting where a
2348 branch will go. This isn't hard because all the data is available.
2349 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2350 static CORE_ADDR
2351 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2352 {
2353 struct gdbarch *gdbarch = get_frame_arch (frame);
2354
2355 if (mips_pc_is_mips16 (gdbarch, pc))
2356 return mips16_next_pc (frame, pc);
2357 else if (mips_pc_is_micromips (gdbarch, pc))
2358 return micromips_next_pc (frame, pc);
2359 else
2360 return mips32_next_pc (frame, pc);
2361 }
2362
2363 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2364 or jump. */
2365
2366 static int
2367 mips16_instruction_is_compact_branch (unsigned short insn)
2368 {
2369 switch (insn & 0xf800)
2370 {
2371 case 0xe800:
2372 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2373 case 0x6000:
2374 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2375 case 0x2800: /* BNEZ */
2376 case 0x2000: /* BEQZ */
2377 case 0x1000: /* B */
2378 return 1;
2379 default:
2380 return 0;
2381 }
2382 }
2383
2384 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2385 or jump. */
2386
2387 static int
2388 micromips_instruction_is_compact_branch (unsigned short insn)
2389 {
2390 switch (micromips_op (insn))
2391 {
2392 case 0x11: /* POOL16C: bits 010001 */
2393 return (b5s5_op (insn) == 0x18
2394 /* JRADDIUSP: bits 010001 11000 */
2395 || b5s5_op (insn) == 0xd);
2396 /* JRC: bits 010011 01101 */
2397 case 0x10: /* POOL32I: bits 010000 */
2398 return (b5s5_op (insn) & 0x1d) == 0x5;
2399 /* BEQZC/BNEZC: bits 010000 001x1 */
2400 default:
2401 return 0;
2402 }
2403 }
2404
2405 struct mips_frame_cache
2406 {
2407 CORE_ADDR base;
2408 struct trad_frame_saved_reg *saved_regs;
2409 };
2410
2411 /* Set a register's saved stack address in temp_saved_regs. If an
2412 address has already been set for this register, do nothing; this
2413 way we will only recognize the first save of a given register in a
2414 function prologue.
2415
2416 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2417 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2418 Strictly speaking, only the second range is used as it is only second
2419 range (the ABI instead of ISA registers) that comes into play when finding
2420 saved registers in a frame. */
2421
2422 static void
2423 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2424 int regnum, CORE_ADDR offset)
2425 {
2426 if (this_cache != NULL
2427 && this_cache->saved_regs[regnum].addr == -1)
2428 {
2429 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2430 = offset;
2431 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2432 = offset;
2433 }
2434 }
2435
2436
2437 /* Fetch the immediate value from a MIPS16 instruction.
2438 If the previous instruction was an EXTEND, use it to extend
2439 the upper bits of the immediate value. This is a helper function
2440 for mips16_scan_prologue. */
2441
2442 static int
2443 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2444 unsigned short inst, /* current instruction */
2445 int nbits, /* number of bits in imm field */
2446 int scale, /* scale factor to be applied to imm */
2447 int is_signed) /* is the imm field signed? */
2448 {
2449 int offset;
2450
2451 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2452 {
2453 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2454 if (offset & 0x8000) /* check for negative extend */
2455 offset = 0 - (0x10000 - (offset & 0xffff));
2456 return offset | (inst & 0x1f);
2457 }
2458 else
2459 {
2460 int max_imm = 1 << nbits;
2461 int mask = max_imm - 1;
2462 int sign_bit = max_imm >> 1;
2463
2464 offset = inst & mask;
2465 if (is_signed && (offset & sign_bit))
2466 offset = 0 - (max_imm - offset);
2467 return offset * scale;
2468 }
2469 }
2470
2471
2472 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2473 the associated FRAME_CACHE if not null.
2474 Return the address of the first instruction past the prologue. */
2475
2476 static CORE_ADDR
2477 mips16_scan_prologue (struct gdbarch *gdbarch,
2478 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2479 struct frame_info *this_frame,
2480 struct mips_frame_cache *this_cache)
2481 {
2482 int prev_non_prologue_insn = 0;
2483 int this_non_prologue_insn;
2484 int non_prologue_insns = 0;
2485 CORE_ADDR prev_pc;
2486 CORE_ADDR cur_pc;
2487 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2488 CORE_ADDR sp;
2489 long frame_offset = 0; /* Size of stack frame. */
2490 long frame_adjust = 0; /* Offset of FP from SP. */
2491 int frame_reg = MIPS_SP_REGNUM;
2492 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2493 unsigned inst = 0; /* current instruction */
2494 unsigned entry_inst = 0; /* the entry instruction */
2495 unsigned save_inst = 0; /* the save instruction */
2496 int prev_delay_slot = 0;
2497 int in_delay_slot;
2498 int reg, offset;
2499
2500 int extend_bytes = 0;
2501 int prev_extend_bytes = 0;
2502 CORE_ADDR end_prologue_addr;
2503
2504 /* Can be called when there's no process, and hence when there's no
2505 THIS_FRAME. */
2506 if (this_frame != NULL)
2507 sp = get_frame_register_signed (this_frame,
2508 gdbarch_num_regs (gdbarch)
2509 + MIPS_SP_REGNUM);
2510 else
2511 sp = 0;
2512
2513 if (limit_pc > start_pc + 200)
2514 limit_pc = start_pc + 200;
2515 prev_pc = start_pc;
2516
2517 /* Permit at most one non-prologue non-control-transfer instruction
2518 in the middle which may have been reordered by the compiler for
2519 optimisation. */
2520 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2521 {
2522 this_non_prologue_insn = 0;
2523 in_delay_slot = 0;
2524
2525 /* Save the previous instruction. If it's an EXTEND, we'll extract
2526 the immediate offset extension from it in mips16_get_imm. */
2527 prev_inst = inst;
2528
2529 /* Fetch and decode the instruction. */
2530 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2531 cur_pc, NULL);
2532
2533 /* Normally we ignore extend instructions. However, if it is
2534 not followed by a valid prologue instruction, then this
2535 instruction is not part of the prologue either. We must
2536 remember in this case to adjust the end_prologue_addr back
2537 over the extend. */
2538 if ((inst & 0xf800) == 0xf000) /* extend */
2539 {
2540 extend_bytes = MIPS_INSN16_SIZE;
2541 continue;
2542 }
2543
2544 prev_extend_bytes = extend_bytes;
2545 extend_bytes = 0;
2546
2547 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2548 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2549 {
2550 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2551 if (offset < 0) /* Negative stack adjustment? */
2552 frame_offset -= offset;
2553 else
2554 /* Exit loop if a positive stack adjustment is found, which
2555 usually means that the stack cleanup code in the function
2556 epilogue is reached. */
2557 break;
2558 }
2559 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2560 {
2561 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2562 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2563 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2564 }
2565 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2566 {
2567 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2568 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2569 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2570 }
2571 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2572 {
2573 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2574 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2575 }
2576 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2577 {
2578 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2579 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2580 }
2581 else if (inst == 0x673d) /* move $s1, $sp */
2582 {
2583 frame_addr = sp;
2584 frame_reg = 17;
2585 }
2586 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2587 {
2588 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2589 frame_addr = sp + offset;
2590 frame_reg = 17;
2591 frame_adjust = offset;
2592 }
2593 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2596 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2597 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2598 }
2599 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2600 {
2601 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2602 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2603 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2604 }
2605 else if ((inst & 0xf81f) == 0xe809
2606 && (inst & 0x700) != 0x700) /* entry */
2607 entry_inst = inst; /* Save for later processing. */
2608 else if ((inst & 0xff80) == 0x6480) /* save */
2609 {
2610 save_inst = inst; /* Save for later processing. */
2611 if (prev_extend_bytes) /* extend */
2612 save_inst |= prev_inst << 16;
2613 }
2614 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2615 {
2616 /* This instruction is part of the prologue, but we don't
2617 need to do anything special to handle it. */
2618 }
2619 else if (mips16_instruction_has_delay_slot (inst, 0))
2620 /* JAL/JALR/JALX/JR */
2621 {
2622 /* The instruction in the delay slot can be a part
2623 of the prologue, so move forward once more. */
2624 in_delay_slot = 1;
2625 if (mips16_instruction_has_delay_slot (inst, 1))
2626 /* JAL/JALX */
2627 {
2628 prev_extend_bytes = MIPS_INSN16_SIZE;
2629 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2630 }
2631 }
2632 else
2633 {
2634 this_non_prologue_insn = 1;
2635 }
2636
2637 non_prologue_insns += this_non_prologue_insn;
2638
2639 /* A jump or branch, or enough non-prologue insns seen? If so,
2640 then we must have reached the end of the prologue by now. */
2641 if (prev_delay_slot || non_prologue_insns > 1
2642 || mips16_instruction_is_compact_branch (inst))
2643 break;
2644
2645 prev_non_prologue_insn = this_non_prologue_insn;
2646 prev_delay_slot = in_delay_slot;
2647 prev_pc = cur_pc - prev_extend_bytes;
2648 }
2649
2650 /* The entry instruction is typically the first instruction in a function,
2651 and it stores registers at offsets relative to the value of the old SP
2652 (before the prologue). But the value of the sp parameter to this
2653 function is the new SP (after the prologue has been executed). So we
2654 can't calculate those offsets until we've seen the entire prologue,
2655 and can calculate what the old SP must have been. */
2656 if (entry_inst != 0)
2657 {
2658 int areg_count = (entry_inst >> 8) & 7;
2659 int sreg_count = (entry_inst >> 6) & 3;
2660
2661 /* The entry instruction always subtracts 32 from the SP. */
2662 frame_offset += 32;
2663
2664 /* Now we can calculate what the SP must have been at the
2665 start of the function prologue. */
2666 sp += frame_offset;
2667
2668 /* Check if a0-a3 were saved in the caller's argument save area. */
2669 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2670 {
2671 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2672 offset += mips_abi_regsize (gdbarch);
2673 }
2674
2675 /* Check if the ra register was pushed on the stack. */
2676 offset = -4;
2677 if (entry_inst & 0x20)
2678 {
2679 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2680 offset -= mips_abi_regsize (gdbarch);
2681 }
2682
2683 /* Check if the s0 and s1 registers were pushed on the stack. */
2684 for (reg = 16; reg < sreg_count + 16; reg++)
2685 {
2686 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2687 offset -= mips_abi_regsize (gdbarch);
2688 }
2689 }
2690
2691 /* The SAVE instruction is similar to ENTRY, except that defined by the
2692 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2693 size of the frame is specified as an immediate field of instruction
2694 and an extended variation exists which lets additional registers and
2695 frame space to be specified. The instruction always treats registers
2696 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2697 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2698 {
2699 static int args_table[16] = {
2700 0, 0, 0, 0, 1, 1, 1, 1,
2701 2, 2, 2, 0, 3, 3, 4, -1,
2702 };
2703 static int astatic_table[16] = {
2704 0, 1, 2, 3, 0, 1, 2, 3,
2705 0, 1, 2, 4, 0, 1, 0, -1,
2706 };
2707 int aregs = (save_inst >> 16) & 0xf;
2708 int xsregs = (save_inst >> 24) & 0x7;
2709 int args = args_table[aregs];
2710 int astatic = astatic_table[aregs];
2711 long frame_size;
2712
2713 if (args < 0)
2714 {
2715 warning (_("Invalid number of argument registers encoded in SAVE."));
2716 args = 0;
2717 }
2718 if (astatic < 0)
2719 {
2720 warning (_("Invalid number of static registers encoded in SAVE."));
2721 astatic = 0;
2722 }
2723
2724 /* For standard SAVE the frame size of 0 means 128. */
2725 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2726 if (frame_size == 0 && (save_inst >> 16) == 0)
2727 frame_size = 16;
2728 frame_size *= 8;
2729 frame_offset += frame_size;
2730
2731 /* Now we can calculate what the SP must have been at the
2732 start of the function prologue. */
2733 sp += frame_offset;
2734
2735 /* Check if A0-A3 were saved in the caller's argument save area. */
2736 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2737 {
2738 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2739 offset += mips_abi_regsize (gdbarch);
2740 }
2741
2742 offset = -4;
2743
2744 /* Check if the RA register was pushed on the stack. */
2745 if (save_inst & 0x40)
2746 {
2747 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2748 offset -= mips_abi_regsize (gdbarch);
2749 }
2750
2751 /* Check if the S8 register was pushed on the stack. */
2752 if (xsregs > 6)
2753 {
2754 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2755 offset -= mips_abi_regsize (gdbarch);
2756 xsregs--;
2757 }
2758 /* Check if S2-S7 were pushed on the stack. */
2759 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2760 {
2761 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2762 offset -= mips_abi_regsize (gdbarch);
2763 }
2764
2765 /* Check if the S1 register was pushed on the stack. */
2766 if (save_inst & 0x10)
2767 {
2768 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2769 offset -= mips_abi_regsize (gdbarch);
2770 }
2771 /* Check if the S0 register was pushed on the stack. */
2772 if (save_inst & 0x20)
2773 {
2774 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2775 offset -= mips_abi_regsize (gdbarch);
2776 }
2777
2778 /* Check if A0-A3 were pushed on the stack. */
2779 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2780 {
2781 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2782 offset -= mips_abi_regsize (gdbarch);
2783 }
2784 }
2785
2786 if (this_cache != NULL)
2787 {
2788 this_cache->base =
2789 (get_frame_register_signed (this_frame,
2790 gdbarch_num_regs (gdbarch) + frame_reg)
2791 + frame_offset - frame_adjust);
2792 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2793 be able to get rid of the assignment below, evetually. But it's
2794 still needed for now. */
2795 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2796 + mips_regnum (gdbarch)->pc]
2797 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2798 }
2799
2800 /* Set end_prologue_addr to the address of the instruction immediately
2801 after the last one we scanned. Unless the last one looked like a
2802 non-prologue instruction (and we looked ahead), in which case use
2803 its address instead. */
2804 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2805 ? prev_pc : cur_pc - prev_extend_bytes);
2806
2807 return end_prologue_addr;
2808 }
2809
2810 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2811 Procedures that use the 32-bit instruction set are handled by the
2812 mips_insn32 unwinder. */
2813
2814 static struct mips_frame_cache *
2815 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2816 {
2817 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2818 struct mips_frame_cache *cache;
2819
2820 if ((*this_cache) != NULL)
2821 return (struct mips_frame_cache *) (*this_cache);
2822 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2823 (*this_cache) = cache;
2824 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2825
2826 /* Analyze the function prologue. */
2827 {
2828 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2829 CORE_ADDR start_addr;
2830
2831 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2832 if (start_addr == 0)
2833 start_addr = heuristic_proc_start (gdbarch, pc);
2834 /* We can't analyze the prologue if we couldn't find the begining
2835 of the function. */
2836 if (start_addr == 0)
2837 return cache;
2838
2839 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2840 (struct mips_frame_cache *) *this_cache);
2841 }
2842
2843 /* gdbarch_sp_regnum contains the value and not the address. */
2844 trad_frame_set_value (cache->saved_regs,
2845 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2846 cache->base);
2847
2848 return (struct mips_frame_cache *) (*this_cache);
2849 }
2850
2851 static void
2852 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2853 struct frame_id *this_id)
2854 {
2855 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2856 this_cache);
2857 /* This marks the outermost frame. */
2858 if (info->base == 0)
2859 return;
2860 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2861 }
2862
2863 static struct value *
2864 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2865 void **this_cache, int regnum)
2866 {
2867 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2868 this_cache);
2869 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2870 }
2871
2872 static int
2873 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2874 struct frame_info *this_frame, void **this_cache)
2875 {
2876 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2877 CORE_ADDR pc = get_frame_pc (this_frame);
2878 if (mips_pc_is_mips16 (gdbarch, pc))
2879 return 1;
2880 return 0;
2881 }
2882
2883 static const struct frame_unwind mips_insn16_frame_unwind =
2884 {
2885 NORMAL_FRAME,
2886 default_frame_unwind_stop_reason,
2887 mips_insn16_frame_this_id,
2888 mips_insn16_frame_prev_register,
2889 NULL,
2890 mips_insn16_frame_sniffer
2891 };
2892
2893 static CORE_ADDR
2894 mips_insn16_frame_base_address (struct frame_info *this_frame,
2895 void **this_cache)
2896 {
2897 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2898 this_cache);
2899 return info->base;
2900 }
2901
2902 static const struct frame_base mips_insn16_frame_base =
2903 {
2904 &mips_insn16_frame_unwind,
2905 mips_insn16_frame_base_address,
2906 mips_insn16_frame_base_address,
2907 mips_insn16_frame_base_address
2908 };
2909
2910 static const struct frame_base *
2911 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2912 {
2913 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2914 CORE_ADDR pc = get_frame_pc (this_frame);
2915 if (mips_pc_is_mips16 (gdbarch, pc))
2916 return &mips_insn16_frame_base;
2917 else
2918 return NULL;
2919 }
2920
2921 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2922 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2923 interpreted directly, and then multiplied by 4. */
2924
2925 static int
2926 micromips_decode_imm9 (int imm)
2927 {
2928 imm = (imm ^ 0x100) - 0x100;
2929 if (imm > -3 && imm < 2)
2930 imm ^= 0x100;
2931 return imm << 2;
2932 }
2933
2934 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2935 the address of the first instruction past the prologue. */
2936
2937 static CORE_ADDR
2938 micromips_scan_prologue (struct gdbarch *gdbarch,
2939 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2940 struct frame_info *this_frame,
2941 struct mips_frame_cache *this_cache)
2942 {
2943 CORE_ADDR end_prologue_addr;
2944 int prev_non_prologue_insn = 0;
2945 int frame_reg = MIPS_SP_REGNUM;
2946 int this_non_prologue_insn;
2947 int non_prologue_insns = 0;
2948 long frame_offset = 0; /* Size of stack frame. */
2949 long frame_adjust = 0; /* Offset of FP from SP. */
2950 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2951 int prev_delay_slot = 0;
2952 int in_delay_slot;
2953 CORE_ADDR prev_pc;
2954 CORE_ADDR cur_pc;
2955 ULONGEST insn; /* current instruction */
2956 CORE_ADDR sp;
2957 long offset;
2958 long sp_adj;
2959 long v1_off = 0; /* The assumption is LUI will replace it. */
2960 int reglist;
2961 int breg;
2962 int dreg;
2963 int sreg;
2964 int treg;
2965 int loc;
2966 int op;
2967 int s;
2968 int i;
2969
2970 /* Can be called when there's no process, and hence when there's no
2971 THIS_FRAME. */
2972 if (this_frame != NULL)
2973 sp = get_frame_register_signed (this_frame,
2974 gdbarch_num_regs (gdbarch)
2975 + MIPS_SP_REGNUM);
2976 else
2977 sp = 0;
2978
2979 if (limit_pc > start_pc + 200)
2980 limit_pc = start_pc + 200;
2981 prev_pc = start_pc;
2982
2983 /* Permit at most one non-prologue non-control-transfer instruction
2984 in the middle which may have been reordered by the compiler for
2985 optimisation. */
2986 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2987 {
2988 this_non_prologue_insn = 0;
2989 in_delay_slot = 0;
2990 sp_adj = 0;
2991 loc = 0;
2992 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2993 loc += MIPS_INSN16_SIZE;
2994 switch (mips_insn_size (ISA_MICROMIPS, insn))
2995 {
2996 /* 48-bit instructions. */
2997 case 3 * MIPS_INSN16_SIZE:
2998 /* No prologue instructions in this category. */
2999 this_non_prologue_insn = 1;
3000 loc += 2 * MIPS_INSN16_SIZE;
3001 break;
3002
3003 /* 32-bit instructions. */
3004 case 2 * MIPS_INSN16_SIZE:
3005 insn <<= 16;
3006 insn |= mips_fetch_instruction (gdbarch,
3007 ISA_MICROMIPS, cur_pc + loc, NULL);
3008 loc += MIPS_INSN16_SIZE;
3009 switch (micromips_op (insn >> 16))
3010 {
3011 /* Record $sp/$fp adjustment. */
3012 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3013 case 0x0: /* POOL32A: bits 000000 */
3014 case 0x16: /* POOL32S: bits 010110 */
3015 op = b0s11_op (insn);
3016 sreg = b0s5_reg (insn >> 16);
3017 treg = b5s5_reg (insn >> 16);
3018 dreg = b11s5_reg (insn);
3019 if (op == 0x1d0
3020 /* SUBU: bits 000000 00111010000 */
3021 /* DSUBU: bits 010110 00111010000 */
3022 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3023 && treg == 3)
3024 /* (D)SUBU $sp, $v1 */
3025 sp_adj = v1_off;
3026 else if (op != 0x150
3027 /* ADDU: bits 000000 00101010000 */
3028 /* DADDU: bits 010110 00101010000 */
3029 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3030 this_non_prologue_insn = 1;
3031 break;
3032
3033 case 0x8: /* POOL32B: bits 001000 */
3034 op = b12s4_op (insn);
3035 breg = b0s5_reg (insn >> 16);
3036 reglist = sreg = b5s5_reg (insn >> 16);
3037 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3038 if ((op == 0x9 || op == 0xc)
3039 /* SWP: bits 001000 1001 */
3040 /* SDP: bits 001000 1100 */
3041 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3042 /* S[DW]P reg,offset($sp) */
3043 {
3044 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3045 set_reg_offset (gdbarch, this_cache,
3046 sreg, sp + offset);
3047 set_reg_offset (gdbarch, this_cache,
3048 sreg + 1, sp + offset + s);
3049 }
3050 else if ((op == 0xd || op == 0xf)
3051 /* SWM: bits 001000 1101 */
3052 /* SDM: bits 001000 1111 */
3053 && breg == MIPS_SP_REGNUM
3054 /* SWM reglist,offset($sp) */
3055 && ((reglist >= 1 && reglist <= 9)
3056 || (reglist >= 16 && reglist <= 25)))
3057 {
3058 int sreglist = min(reglist & 0xf, 8);
3059
3060 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3061 for (i = 0; i < sreglist; i++)
3062 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3063 if ((reglist & 0xf) > 8)
3064 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3065 if ((reglist & 0x10) == 0x10)
3066 set_reg_offset (gdbarch, this_cache,
3067 MIPS_RA_REGNUM, sp + s * i++);
3068 }
3069 else
3070 this_non_prologue_insn = 1;
3071 break;
3072
3073 /* Record $sp/$fp adjustment. */
3074 /* Discard (D)ADDIU $gp used for PIC code. */
3075 case 0xc: /* ADDIU: bits 001100 */
3076 case 0x17: /* DADDIU: bits 010111 */
3077 sreg = b0s5_reg (insn >> 16);
3078 dreg = b5s5_reg (insn >> 16);
3079 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3080 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3081 /* (D)ADDIU $sp, imm */
3082 sp_adj = offset;
3083 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3084 /* (D)ADDIU $fp, $sp, imm */
3085 {
3086 frame_addr = sp + offset;
3087 frame_adjust = offset;
3088 frame_reg = 30;
3089 }
3090 else if (sreg != 28 || dreg != 28)
3091 /* (D)ADDIU $gp, imm */
3092 this_non_prologue_insn = 1;
3093 break;
3094
3095 /* LUI $v1 is used for larger $sp adjustments. */
3096 /* Discard LUI $gp used for PIC code. */
3097 case 0x10: /* POOL32I: bits 010000 */
3098 if (b5s5_op (insn >> 16) == 0xd
3099 /* LUI: bits 010000 001101 */
3100 && b0s5_reg (insn >> 16) == 3)
3101 /* LUI $v1, imm */
3102 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3103 else if (b5s5_op (insn >> 16) != 0xd
3104 /* LUI: bits 010000 001101 */
3105 || b0s5_reg (insn >> 16) != 28)
3106 /* LUI $gp, imm */
3107 this_non_prologue_insn = 1;
3108 break;
3109
3110 /* ORI $v1 is used for larger $sp adjustments. */
3111 case 0x14: /* ORI: bits 010100 */
3112 sreg = b0s5_reg (insn >> 16);
3113 dreg = b5s5_reg (insn >> 16);
3114 if (sreg == 3 && dreg == 3)
3115 /* ORI $v1, imm */
3116 v1_off |= b0s16_imm (insn);
3117 else
3118 this_non_prologue_insn = 1;
3119 break;
3120
3121 case 0x26: /* SWC1: bits 100110 */
3122 case 0x2e: /* SDC1: bits 101110 */
3123 breg = b0s5_reg (insn >> 16);
3124 if (breg != MIPS_SP_REGNUM)
3125 /* S[DW]C1 reg,offset($sp) */
3126 this_non_prologue_insn = 1;
3127 break;
3128
3129 case 0x36: /* SD: bits 110110 */
3130 case 0x3e: /* SW: bits 111110 */
3131 breg = b0s5_reg (insn >> 16);
3132 sreg = b5s5_reg (insn >> 16);
3133 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3134 if (breg == MIPS_SP_REGNUM)
3135 /* S[DW] reg,offset($sp) */
3136 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3137 else
3138 this_non_prologue_insn = 1;
3139 break;
3140
3141 default:
3142 /* The instruction in the delay slot can be a part
3143 of the prologue, so move forward once more. */
3144 if (micromips_instruction_has_delay_slot (insn, 0))
3145 in_delay_slot = 1;
3146 else
3147 this_non_prologue_insn = 1;
3148 break;
3149 }
3150 insn >>= 16;
3151 break;
3152
3153 /* 16-bit instructions. */
3154 case MIPS_INSN16_SIZE:
3155 switch (micromips_op (insn))
3156 {
3157 case 0x3: /* MOVE: bits 000011 */
3158 sreg = b0s5_reg (insn);
3159 dreg = b5s5_reg (insn);
3160 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3161 /* MOVE $fp, $sp */
3162 {
3163 frame_addr = sp;
3164 frame_reg = 30;
3165 }
3166 else if ((sreg & 0x1c) != 0x4)
3167 /* MOVE reg, $a0-$a3 */
3168 this_non_prologue_insn = 1;
3169 break;
3170
3171 case 0x11: /* POOL16C: bits 010001 */
3172 if (b6s4_op (insn) == 0x5)
3173 /* SWM: bits 010001 0101 */
3174 {
3175 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3176 reglist = b4s2_regl (insn);
3177 for (i = 0; i <= reglist; i++)
3178 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3179 set_reg_offset (gdbarch, this_cache,
3180 MIPS_RA_REGNUM, sp + 4 * i++);
3181 }
3182 else
3183 this_non_prologue_insn = 1;
3184 break;
3185
3186 case 0x13: /* POOL16D: bits 010011 */
3187 if ((insn & 0x1) == 0x1)
3188 /* ADDIUSP: bits 010011 1 */
3189 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3190 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3191 /* ADDIUS5: bits 010011 0 */
3192 /* ADDIUS5 $sp, imm */
3193 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3194 else
3195 this_non_prologue_insn = 1;
3196 break;
3197
3198 case 0x32: /* SWSP: bits 110010 */
3199 offset = b0s5_imm (insn) << 2;
3200 sreg = b5s5_reg (insn);
3201 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3202 break;
3203
3204 default:
3205 /* The instruction in the delay slot can be a part
3206 of the prologue, so move forward once more. */
3207 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3208 in_delay_slot = 1;
3209 else
3210 this_non_prologue_insn = 1;
3211 break;
3212 }
3213 break;
3214 }
3215 if (sp_adj < 0)
3216 frame_offset -= sp_adj;
3217
3218 non_prologue_insns += this_non_prologue_insn;
3219
3220 /* A jump or branch, enough non-prologue insns seen or positive
3221 stack adjustment? If so, then we must have reached the end
3222 of the prologue by now. */
3223 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3224 || micromips_instruction_is_compact_branch (insn))
3225 break;
3226
3227 prev_non_prologue_insn = this_non_prologue_insn;
3228 prev_delay_slot = in_delay_slot;
3229 prev_pc = cur_pc;
3230 }
3231
3232 if (this_cache != NULL)
3233 {
3234 this_cache->base =
3235 (get_frame_register_signed (this_frame,
3236 gdbarch_num_regs (gdbarch) + frame_reg)
3237 + frame_offset - frame_adjust);
3238 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3239 be able to get rid of the assignment below, evetually. But it's
3240 still needed for now. */
3241 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3242 + mips_regnum (gdbarch)->pc]
3243 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3244 }
3245
3246 /* Set end_prologue_addr to the address of the instruction immediately
3247 after the last one we scanned. Unless the last one looked like a
3248 non-prologue instruction (and we looked ahead), in which case use
3249 its address instead. */
3250 end_prologue_addr
3251 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3252
3253 return end_prologue_addr;
3254 }
3255
3256 /* Heuristic unwinder for procedures using microMIPS instructions.
3257 Procedures that use the 32-bit instruction set are handled by the
3258 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3259
3260 static struct mips_frame_cache *
3261 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3262 {
3263 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3264 struct mips_frame_cache *cache;
3265
3266 if ((*this_cache) != NULL)
3267 return (struct mips_frame_cache *) (*this_cache);
3268
3269 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3270 (*this_cache) = cache;
3271 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3272
3273 /* Analyze the function prologue. */
3274 {
3275 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3276 CORE_ADDR start_addr;
3277
3278 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3279 if (start_addr == 0)
3280 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3281 /* We can't analyze the prologue if we couldn't find the begining
3282 of the function. */
3283 if (start_addr == 0)
3284 return cache;
3285
3286 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3287 (struct mips_frame_cache *) *this_cache);
3288 }
3289
3290 /* gdbarch_sp_regnum contains the value and not the address. */
3291 trad_frame_set_value (cache->saved_regs,
3292 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3293 cache->base);
3294
3295 return (struct mips_frame_cache *) (*this_cache);
3296 }
3297
3298 static void
3299 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3300 struct frame_id *this_id)
3301 {
3302 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3303 this_cache);
3304 /* This marks the outermost frame. */
3305 if (info->base == 0)
3306 return;
3307 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3308 }
3309
3310 static struct value *
3311 mips_micro_frame_prev_register (struct frame_info *this_frame,
3312 void **this_cache, int regnum)
3313 {
3314 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3315 this_cache);
3316 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3317 }
3318
3319 static int
3320 mips_micro_frame_sniffer (const struct frame_unwind *self,
3321 struct frame_info *this_frame, void **this_cache)
3322 {
3323 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3324 CORE_ADDR pc = get_frame_pc (this_frame);
3325
3326 if (mips_pc_is_micromips (gdbarch, pc))
3327 return 1;
3328 return 0;
3329 }
3330
3331 static const struct frame_unwind mips_micro_frame_unwind =
3332 {
3333 NORMAL_FRAME,
3334 default_frame_unwind_stop_reason,
3335 mips_micro_frame_this_id,
3336 mips_micro_frame_prev_register,
3337 NULL,
3338 mips_micro_frame_sniffer
3339 };
3340
3341 static CORE_ADDR
3342 mips_micro_frame_base_address (struct frame_info *this_frame,
3343 void **this_cache)
3344 {
3345 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3346 this_cache);
3347 return info->base;
3348 }
3349
3350 static const struct frame_base mips_micro_frame_base =
3351 {
3352 &mips_micro_frame_unwind,
3353 mips_micro_frame_base_address,
3354 mips_micro_frame_base_address,
3355 mips_micro_frame_base_address
3356 };
3357
3358 static const struct frame_base *
3359 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3360 {
3361 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3362 CORE_ADDR pc = get_frame_pc (this_frame);
3363
3364 if (mips_pc_is_micromips (gdbarch, pc))
3365 return &mips_micro_frame_base;
3366 else
3367 return NULL;
3368 }
3369
3370 /* Mark all the registers as unset in the saved_regs array
3371 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3372
3373 static void
3374 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3375 {
3376 if (this_cache == NULL || this_cache->saved_regs == NULL)
3377 return;
3378
3379 {
3380 const int num_regs = gdbarch_num_regs (gdbarch);
3381 int i;
3382
3383 for (i = 0; i < num_regs; i++)
3384 {
3385 this_cache->saved_regs[i].addr = -1;
3386 }
3387 }
3388 }
3389
3390 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3391 the associated FRAME_CACHE if not null.
3392 Return the address of the first instruction past the prologue. */
3393
3394 static CORE_ADDR
3395 mips32_scan_prologue (struct gdbarch *gdbarch,
3396 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3397 struct frame_info *this_frame,
3398 struct mips_frame_cache *this_cache)
3399 {
3400 int prev_non_prologue_insn;
3401 int this_non_prologue_insn;
3402 int non_prologue_insns;
3403 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3404 frame-pointer. */
3405 int prev_delay_slot;
3406 CORE_ADDR prev_pc;
3407 CORE_ADDR cur_pc;
3408 CORE_ADDR sp;
3409 long frame_offset;
3410 int frame_reg = MIPS_SP_REGNUM;
3411
3412 CORE_ADDR end_prologue_addr;
3413 int seen_sp_adjust = 0;
3414 int load_immediate_bytes = 0;
3415 int in_delay_slot;
3416 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3417
3418 /* Can be called when there's no process, and hence when there's no
3419 THIS_FRAME. */
3420 if (this_frame != NULL)
3421 sp = get_frame_register_signed (this_frame,
3422 gdbarch_num_regs (gdbarch)
3423 + MIPS_SP_REGNUM);
3424 else
3425 sp = 0;
3426
3427 if (limit_pc > start_pc + 200)
3428 limit_pc = start_pc + 200;
3429
3430 restart:
3431 prev_non_prologue_insn = 0;
3432 non_prologue_insns = 0;
3433 prev_delay_slot = 0;
3434 prev_pc = start_pc;
3435
3436 /* Permit at most one non-prologue non-control-transfer instruction
3437 in the middle which may have been reordered by the compiler for
3438 optimisation. */
3439 frame_offset = 0;
3440 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3441 {
3442 unsigned long inst, high_word;
3443 long offset;
3444 int reg;
3445
3446 this_non_prologue_insn = 0;
3447 in_delay_slot = 0;
3448
3449 /* Fetch the instruction. */
3450 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3451 cur_pc, NULL);
3452
3453 /* Save some code by pre-extracting some useful fields. */
3454 high_word = (inst >> 16) & 0xffff;
3455 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3456 reg = high_word & 0x1f;
3457
3458 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3459 || high_word == 0x23bd /* addi $sp,$sp,-i */
3460 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3461 {
3462 if (offset < 0) /* Negative stack adjustment? */
3463 frame_offset -= offset;
3464 else
3465 /* Exit loop if a positive stack adjustment is found, which
3466 usually means that the stack cleanup code in the function
3467 epilogue is reached. */
3468 break;
3469 seen_sp_adjust = 1;
3470 }
3471 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3472 && !regsize_is_64_bits)
3473 {
3474 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3475 }
3476 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3477 && regsize_is_64_bits)
3478 {
3479 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3480 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3481 }
3482 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3483 {
3484 /* Old gcc frame, r30 is virtual frame pointer. */
3485 if (offset != frame_offset)
3486 frame_addr = sp + offset;
3487 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3488 {
3489 unsigned alloca_adjust;
3490
3491 frame_reg = 30;
3492 frame_addr = get_frame_register_signed
3493 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3494 frame_offset = 0;
3495
3496 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3497 if (alloca_adjust > 0)
3498 {
3499 /* FP > SP + frame_size. This may be because of
3500 an alloca or somethings similar. Fix sp to
3501 "pre-alloca" value, and try again. */
3502 sp += alloca_adjust;
3503 /* Need to reset the status of all registers. Otherwise,
3504 we will hit a guard that prevents the new address
3505 for each register to be recomputed during the second
3506 pass. */
3507 reset_saved_regs (gdbarch, this_cache);
3508 goto restart;
3509 }
3510 }
3511 }
3512 /* move $30,$sp. With different versions of gas this will be either
3513 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3514 Accept any one of these. */
3515 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3516 {
3517 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3518 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3519 {
3520 unsigned alloca_adjust;
3521
3522 frame_reg = 30;
3523 frame_addr = get_frame_register_signed
3524 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3525
3526 alloca_adjust = (unsigned) (frame_addr - sp);
3527 if (alloca_adjust > 0)
3528 {
3529 /* FP > SP + frame_size. This may be because of
3530 an alloca or somethings similar. Fix sp to
3531 "pre-alloca" value, and try again. */
3532 sp = frame_addr;
3533 /* Need to reset the status of all registers. Otherwise,
3534 we will hit a guard that prevents the new address
3535 for each register to be recomputed during the second
3536 pass. */
3537 reset_saved_regs (gdbarch, this_cache);
3538 goto restart;
3539 }
3540 }
3541 }
3542 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3543 && !regsize_is_64_bits)
3544 {
3545 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3546 }
3547 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3548 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3549 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3550 || high_word == 0x3c1c /* lui $gp,n */
3551 || high_word == 0x279c /* addiu $gp,$gp,n */
3552 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3553 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3554 )
3555 {
3556 /* These instructions are part of the prologue, but we don't
3557 need to do anything special to handle them. */
3558 }
3559 /* The instructions below load $at or $t0 with an immediate
3560 value in preparation for a stack adjustment via
3561 subu $sp,$sp,[$at,$t0]. These instructions could also
3562 initialize a local variable, so we accept them only before
3563 a stack adjustment instruction was seen. */
3564 else if (!seen_sp_adjust
3565 && !prev_delay_slot
3566 && (high_word == 0x3c01 /* lui $at,n */
3567 || high_word == 0x3c08 /* lui $t0,n */
3568 || high_word == 0x3421 /* ori $at,$at,n */
3569 || high_word == 0x3508 /* ori $t0,$t0,n */
3570 || high_word == 0x3401 /* ori $at,$zero,n */
3571 || high_word == 0x3408 /* ori $t0,$zero,n */
3572 ))
3573 {
3574 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3575 }
3576 /* Check for branches and jumps. The instruction in the delay
3577 slot can be a part of the prologue, so move forward once more. */
3578 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3579 {
3580 in_delay_slot = 1;
3581 }
3582 /* This instruction is not an instruction typically found
3583 in a prologue, so we must have reached the end of the
3584 prologue. */
3585 else
3586 {
3587 this_non_prologue_insn = 1;
3588 }
3589
3590 non_prologue_insns += this_non_prologue_insn;
3591
3592 /* A jump or branch, or enough non-prologue insns seen? If so,
3593 then we must have reached the end of the prologue by now. */
3594 if (prev_delay_slot || non_prologue_insns > 1)
3595 break;
3596
3597 prev_non_prologue_insn = this_non_prologue_insn;
3598 prev_delay_slot = in_delay_slot;
3599 prev_pc = cur_pc;
3600 }
3601
3602 if (this_cache != NULL)
3603 {
3604 this_cache->base =
3605 (get_frame_register_signed (this_frame,
3606 gdbarch_num_regs (gdbarch) + frame_reg)
3607 + frame_offset);
3608 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3609 this assignment below, eventually. But it's still needed
3610 for now. */
3611 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3612 + mips_regnum (gdbarch)->pc]
3613 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3614 + MIPS_RA_REGNUM];
3615 }
3616
3617 /* Set end_prologue_addr to the address of the instruction immediately
3618 after the last one we scanned. Unless the last one looked like a
3619 non-prologue instruction (and we looked ahead), in which case use
3620 its address instead. */
3621 end_prologue_addr
3622 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3623
3624 /* In a frameless function, we might have incorrectly
3625 skipped some load immediate instructions. Undo the skipping
3626 if the load immediate was not followed by a stack adjustment. */
3627 if (load_immediate_bytes && !seen_sp_adjust)
3628 end_prologue_addr -= load_immediate_bytes;
3629
3630 return end_prologue_addr;
3631 }
3632
3633 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3634 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3635 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3636 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3637
3638 static struct mips_frame_cache *
3639 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3640 {
3641 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3642 struct mips_frame_cache *cache;
3643
3644 if ((*this_cache) != NULL)
3645 return (struct mips_frame_cache *) (*this_cache);
3646
3647 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3648 (*this_cache) = cache;
3649 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3650
3651 /* Analyze the function prologue. */
3652 {
3653 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3654 CORE_ADDR start_addr;
3655
3656 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3657 if (start_addr == 0)
3658 start_addr = heuristic_proc_start (gdbarch, pc);
3659 /* We can't analyze the prologue if we couldn't find the begining
3660 of the function. */
3661 if (start_addr == 0)
3662 return cache;
3663
3664 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3665 (struct mips_frame_cache *) *this_cache);
3666 }
3667
3668 /* gdbarch_sp_regnum contains the value and not the address. */
3669 trad_frame_set_value (cache->saved_regs,
3670 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3671 cache->base);
3672
3673 return (struct mips_frame_cache *) (*this_cache);
3674 }
3675
3676 static void
3677 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3678 struct frame_id *this_id)
3679 {
3680 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3681 this_cache);
3682 /* This marks the outermost frame. */
3683 if (info->base == 0)
3684 return;
3685 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3686 }
3687
3688 static struct value *
3689 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3690 void **this_cache, int regnum)
3691 {
3692 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3693 this_cache);
3694 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3695 }
3696
3697 static int
3698 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3699 struct frame_info *this_frame, void **this_cache)
3700 {
3701 CORE_ADDR pc = get_frame_pc (this_frame);
3702 if (mips_pc_is_mips (pc))
3703 return 1;
3704 return 0;
3705 }
3706
3707 static const struct frame_unwind mips_insn32_frame_unwind =
3708 {
3709 NORMAL_FRAME,
3710 default_frame_unwind_stop_reason,
3711 mips_insn32_frame_this_id,
3712 mips_insn32_frame_prev_register,
3713 NULL,
3714 mips_insn32_frame_sniffer
3715 };
3716
3717 static CORE_ADDR
3718 mips_insn32_frame_base_address (struct frame_info *this_frame,
3719 void **this_cache)
3720 {
3721 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3722 this_cache);
3723 return info->base;
3724 }
3725
3726 static const struct frame_base mips_insn32_frame_base =
3727 {
3728 &mips_insn32_frame_unwind,
3729 mips_insn32_frame_base_address,
3730 mips_insn32_frame_base_address,
3731 mips_insn32_frame_base_address
3732 };
3733
3734 static const struct frame_base *
3735 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3736 {
3737 CORE_ADDR pc = get_frame_pc (this_frame);
3738 if (mips_pc_is_mips (pc))
3739 return &mips_insn32_frame_base;
3740 else
3741 return NULL;
3742 }
3743
3744 static struct trad_frame_cache *
3745 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3746 {
3747 CORE_ADDR pc;
3748 CORE_ADDR start_addr;
3749 CORE_ADDR stack_addr;
3750 struct trad_frame_cache *this_trad_cache;
3751 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3752 int num_regs = gdbarch_num_regs (gdbarch);
3753
3754 if ((*this_cache) != NULL)
3755 return (struct trad_frame_cache *) (*this_cache);
3756 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3757 (*this_cache) = this_trad_cache;
3758
3759 /* The return address is in the link register. */
3760 trad_frame_set_reg_realreg (this_trad_cache,
3761 gdbarch_pc_regnum (gdbarch),
3762 num_regs + MIPS_RA_REGNUM);
3763
3764 /* Frame ID, since it's a frameless / stackless function, no stack
3765 space is allocated and SP on entry is the current SP. */
3766 pc = get_frame_pc (this_frame);
3767 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3768 stack_addr = get_frame_register_signed (this_frame,
3769 num_regs + MIPS_SP_REGNUM);
3770 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3771
3772 /* Assume that the frame's base is the same as the
3773 stack-pointer. */
3774 trad_frame_set_this_base (this_trad_cache, stack_addr);
3775
3776 return this_trad_cache;
3777 }
3778
3779 static void
3780 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3781 struct frame_id *this_id)
3782 {
3783 struct trad_frame_cache *this_trad_cache
3784 = mips_stub_frame_cache (this_frame, this_cache);
3785 trad_frame_get_id (this_trad_cache, this_id);
3786 }
3787
3788 static struct value *
3789 mips_stub_frame_prev_register (struct frame_info *this_frame,
3790 void **this_cache, int regnum)
3791 {
3792 struct trad_frame_cache *this_trad_cache
3793 = mips_stub_frame_cache (this_frame, this_cache);
3794 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3795 }
3796
3797 static int
3798 mips_stub_frame_sniffer (const struct frame_unwind *self,
3799 struct frame_info *this_frame, void **this_cache)
3800 {
3801 gdb_byte dummy[4];
3802 struct obj_section *s;
3803 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3804 struct bound_minimal_symbol msym;
3805
3806 /* Use the stub unwinder for unreadable code. */
3807 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3808 return 1;
3809
3810 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3811 return 1;
3812
3813 /* Calling a PIC function from a non-PIC function passes through a
3814 stub. The stub for foo is named ".pic.foo". */
3815 msym = lookup_minimal_symbol_by_pc (pc);
3816 if (msym.minsym != NULL
3817 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3818 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3819 return 1;
3820
3821 return 0;
3822 }
3823
3824 static const struct frame_unwind mips_stub_frame_unwind =
3825 {
3826 NORMAL_FRAME,
3827 default_frame_unwind_stop_reason,
3828 mips_stub_frame_this_id,
3829 mips_stub_frame_prev_register,
3830 NULL,
3831 mips_stub_frame_sniffer
3832 };
3833
3834 static CORE_ADDR
3835 mips_stub_frame_base_address (struct frame_info *this_frame,
3836 void **this_cache)
3837 {
3838 struct trad_frame_cache *this_trad_cache
3839 = mips_stub_frame_cache (this_frame, this_cache);
3840 return trad_frame_get_this_base (this_trad_cache);
3841 }
3842
3843 static const struct frame_base mips_stub_frame_base =
3844 {
3845 &mips_stub_frame_unwind,
3846 mips_stub_frame_base_address,
3847 mips_stub_frame_base_address,
3848 mips_stub_frame_base_address
3849 };
3850
3851 static const struct frame_base *
3852 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3853 {
3854 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3855 return &mips_stub_frame_base;
3856 else
3857 return NULL;
3858 }
3859
3860 /* mips_addr_bits_remove - remove useless address bits */
3861
3862 static CORE_ADDR
3863 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3864 {
3865 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3866
3867 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3868 /* This hack is a work-around for existing boards using PMON, the
3869 simulator, and any other 64-bit targets that doesn't have true
3870 64-bit addressing. On these targets, the upper 32 bits of
3871 addresses are ignored by the hardware. Thus, the PC or SP are
3872 likely to have been sign extended to all 1s by instruction
3873 sequences that load 32-bit addresses. For example, a typical
3874 piece of code that loads an address is this:
3875
3876 lui $r2, <upper 16 bits>
3877 ori $r2, <lower 16 bits>
3878
3879 But the lui sign-extends the value such that the upper 32 bits
3880 may be all 1s. The workaround is simply to mask off these
3881 bits. In the future, gcc may be changed to support true 64-bit
3882 addressing, and this masking will have to be disabled. */
3883 return addr &= 0xffffffffUL;
3884 else
3885 return addr;
3886 }
3887
3888
3889 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3890 instruction and ending with a SC/SCD instruction. If such a sequence
3891 is found, attempt to step through it. A breakpoint is placed at the end of
3892 the sequence. */
3893
3894 /* Instructions used during single-stepping of atomic sequences, standard
3895 ISA version. */
3896 #define LL_OPCODE 0x30
3897 #define LLD_OPCODE 0x34
3898 #define SC_OPCODE 0x38
3899 #define SCD_OPCODE 0x3c
3900
3901 static int
3902 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3903 struct address_space *aspace, CORE_ADDR pc)
3904 {
3905 CORE_ADDR breaks[2] = {-1, -1};
3906 CORE_ADDR loc = pc;
3907 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3908 ULONGEST insn;
3909 int insn_count;
3910 int index;
3911 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3912 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3913
3914 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3915 /* Assume all atomic sequences start with a ll/lld instruction. */
3916 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3917 return 0;
3918
3919 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3920 instructions. */
3921 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3922 {
3923 int is_branch = 0;
3924 loc += MIPS_INSN32_SIZE;
3925 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3926
3927 /* Assume that there is at most one branch in the atomic
3928 sequence. If a branch is found, put a breakpoint in its
3929 destination address. */
3930 switch (itype_op (insn))
3931 {
3932 case 0: /* SPECIAL */
3933 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3934 return 0; /* fallback to the standard single-step code. */
3935 break;
3936 case 1: /* REGIMM */
3937 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3938 || ((itype_rt (insn) & 0x1e) == 0
3939 && itype_rs (insn) == 0)); /* BPOSGE* */
3940 break;
3941 case 2: /* J */
3942 case 3: /* JAL */
3943 return 0; /* fallback to the standard single-step code. */
3944 case 4: /* BEQ */
3945 case 5: /* BNE */
3946 case 6: /* BLEZ */
3947 case 7: /* BGTZ */
3948 case 20: /* BEQL */
3949 case 21: /* BNEL */
3950 case 22: /* BLEZL */
3951 case 23: /* BGTTL */
3952 is_branch = 1;
3953 break;
3954 case 17: /* COP1 */
3955 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3956 && (itype_rt (insn) & 0x2) == 0);
3957 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3958 break;
3959 /* Fall through. */
3960 case 18: /* COP2 */
3961 case 19: /* COP3 */
3962 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3963 break;
3964 }
3965 if (is_branch)
3966 {
3967 branch_bp = loc + mips32_relative_offset (insn) + 4;
3968 if (last_breakpoint >= 1)
3969 return 0; /* More than one branch found, fallback to the
3970 standard single-step code. */
3971 breaks[1] = branch_bp;
3972 last_breakpoint++;
3973 }
3974
3975 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3976 break;
3977 }
3978
3979 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3980 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3981 return 0;
3982
3983 loc += MIPS_INSN32_SIZE;
3984
3985 /* Insert a breakpoint right after the end of the atomic sequence. */
3986 breaks[0] = loc;
3987
3988 /* Check for duplicated breakpoints. Check also for a breakpoint
3989 placed (branch instruction's destination) in the atomic sequence. */
3990 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3991 last_breakpoint = 0;
3992
3993 /* Effectively inserts the breakpoints. */
3994 for (index = 0; index <= last_breakpoint; index++)
3995 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3996
3997 return 1;
3998 }
3999
4000 static int
4001 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4002 struct address_space *aspace,
4003 CORE_ADDR pc)
4004 {
4005 const int atomic_sequence_length = 16; /* Instruction sequence length. */
4006 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
4007 CORE_ADDR breaks[2] = {-1, -1};
4008 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
4009 destination. */
4010 CORE_ADDR loc = pc;
4011 int sc_found = 0;
4012 ULONGEST insn;
4013 int insn_count;
4014 int index;
4015
4016 /* Assume all atomic sequences start with a ll/lld instruction. */
4017 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4018 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4019 return 0;
4020 loc += MIPS_INSN16_SIZE;
4021 insn <<= 16;
4022 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4023 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4024 return 0;
4025 loc += MIPS_INSN16_SIZE;
4026
4027 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4028 that no atomic sequence is longer than "atomic_sequence_length"
4029 instructions. */
4030 for (insn_count = 0;
4031 !sc_found && insn_count < atomic_sequence_length;
4032 ++insn_count)
4033 {
4034 int is_branch = 0;
4035
4036 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4037 loc += MIPS_INSN16_SIZE;
4038
4039 /* Assume that there is at most one conditional branch in the
4040 atomic sequence. If a branch is found, put a breakpoint in
4041 its destination address. */
4042 switch (mips_insn_size (ISA_MICROMIPS, insn))
4043 {
4044 /* 48-bit instructions. */
4045 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
4046 loc += 2 * MIPS_INSN16_SIZE;
4047 break;
4048
4049 /* 32-bit instructions. */
4050 case 2 * MIPS_INSN16_SIZE:
4051 switch (micromips_op (insn))
4052 {
4053 case 0x10: /* POOL32I: bits 010000 */
4054 if ((b5s5_op (insn) & 0x18) != 0x0
4055 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4056 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4057 && (b5s5_op (insn) & 0x1d) != 0x11
4058 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4059 && ((b5s5_op (insn) & 0x1e) != 0x14
4060 || (insn & 0x3) != 0x0)
4061 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4062 && (b5s5_op (insn) & 0x1e) != 0x1a
4063 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4064 && ((b5s5_op (insn) & 0x1e) != 0x1c
4065 || (insn & 0x3) != 0x0)
4066 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4067 && ((b5s5_op (insn) & 0x1c) != 0x1c
4068 || (insn & 0x3) != 0x1))
4069 /* BC1ANY*: bits 010000 111xx xxx01 */
4070 break;
4071 /* Fall through. */
4072
4073 case 0x25: /* BEQ: bits 100101 */
4074 case 0x2d: /* BNE: bits 101101 */
4075 insn <<= 16;
4076 insn |= mips_fetch_instruction (gdbarch,
4077 ISA_MICROMIPS, loc, NULL);
4078 branch_bp = (loc + MIPS_INSN16_SIZE
4079 + micromips_relative_offset16 (insn));
4080 is_branch = 1;
4081 break;
4082
4083 case 0x00: /* POOL32A: bits 000000 */
4084 insn <<= 16;
4085 insn |= mips_fetch_instruction (gdbarch,
4086 ISA_MICROMIPS, loc, NULL);
4087 if (b0s6_op (insn) != 0x3c
4088 /* POOL32Axf: bits 000000 ... 111100 */
4089 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4090 /* JALR, JALR.HB: 000000 000x111100 111100 */
4091 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4092 break;
4093 /* Fall through. */
4094
4095 case 0x1d: /* JALS: bits 011101 */
4096 case 0x35: /* J: bits 110101 */
4097 case 0x3d: /* JAL: bits 111101 */
4098 case 0x3c: /* JALX: bits 111100 */
4099 return 0; /* Fall back to the standard single-step code. */
4100
4101 case 0x18: /* POOL32C: bits 011000 */
4102 if ((b12s4_op (insn) & 0xb) == 0xb)
4103 /* SC, SCD: bits 011000 1x11 */
4104 sc_found = 1;
4105 break;
4106 }
4107 loc += MIPS_INSN16_SIZE;
4108 break;
4109
4110 /* 16-bit instructions. */
4111 case MIPS_INSN16_SIZE:
4112 switch (micromips_op (insn))
4113 {
4114 case 0x23: /* BEQZ16: bits 100011 */
4115 case 0x2b: /* BNEZ16: bits 101011 */
4116 branch_bp = loc + micromips_relative_offset7 (insn);
4117 is_branch = 1;
4118 break;
4119
4120 case 0x11: /* POOL16C: bits 010001 */
4121 if ((b5s5_op (insn) & 0x1c) != 0xc
4122 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4123 && b5s5_op (insn) != 0x18)
4124 /* JRADDIUSP: bits 010001 11000 */
4125 break;
4126 return 0; /* Fall back to the standard single-step code. */
4127
4128 case 0x33: /* B16: bits 110011 */
4129 return 0; /* Fall back to the standard single-step code. */
4130 }
4131 break;
4132 }
4133 if (is_branch)
4134 {
4135 if (last_breakpoint >= 1)
4136 return 0; /* More than one branch found, fallback to the
4137 standard single-step code. */
4138 breaks[1] = branch_bp;
4139 last_breakpoint++;
4140 }
4141 }
4142 if (!sc_found)
4143 return 0;
4144
4145 /* Insert a breakpoint right after the end of the atomic sequence. */
4146 breaks[0] = loc;
4147
4148 /* Check for duplicated breakpoints. Check also for a breakpoint
4149 placed (branch instruction's destination) in the atomic sequence */
4150 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4151 last_breakpoint = 0;
4152
4153 /* Effectively inserts the breakpoints. */
4154 for (index = 0; index <= last_breakpoint; index++)
4155 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
4156
4157 return 1;
4158 }
4159
4160 static int
4161 deal_with_atomic_sequence (struct gdbarch *gdbarch,
4162 struct address_space *aspace, CORE_ADDR pc)
4163 {
4164 if (mips_pc_is_mips (pc))
4165 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4166 else if (mips_pc_is_micromips (gdbarch, pc))
4167 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4168 else
4169 return 0;
4170 }
4171
4172 /* mips_software_single_step() is called just before we want to resume
4173 the inferior, if we want to single-step it but there is no hardware
4174 or kernel single-step support (MIPS on GNU/Linux for example). We find
4175 the target of the coming instruction and breakpoint it. */
4176
4177 int
4178 mips_software_single_step (struct frame_info *frame)
4179 {
4180 struct gdbarch *gdbarch = get_frame_arch (frame);
4181 struct address_space *aspace = get_frame_address_space (frame);
4182 CORE_ADDR pc, next_pc;
4183
4184 pc = get_frame_pc (frame);
4185 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
4186 return 1;
4187
4188 next_pc = mips_next_pc (frame, pc);
4189
4190 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
4191 return 1;
4192 }
4193
4194 /* Test whether the PC points to the return instruction at the
4195 end of a function. */
4196
4197 static int
4198 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4199 {
4200 ULONGEST insn;
4201 ULONGEST hint;
4202
4203 /* This used to check for MIPS16, but this piece of code is never
4204 called for MIPS16 functions. And likewise microMIPS ones. */
4205 gdb_assert (mips_pc_is_mips (pc));
4206
4207 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4208 hint = 0x7c0;
4209 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4210 }
4211
4212
4213 /* This fencepost looks highly suspicious to me. Removing it also
4214 seems suspicious as it could affect remote debugging across serial
4215 lines. */
4216
4217 static CORE_ADDR
4218 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4219 {
4220 CORE_ADDR start_pc;
4221 CORE_ADDR fence;
4222 int instlen;
4223 int seen_adjsp = 0;
4224 struct inferior *inf;
4225
4226 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4227 start_pc = pc;
4228 fence = start_pc - heuristic_fence_post;
4229 if (start_pc == 0)
4230 return 0;
4231
4232 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4233 fence = VM_MIN_ADDRESS;
4234
4235 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4236
4237 inf = current_inferior ();
4238
4239 /* Search back for previous return. */
4240 for (start_pc -= instlen;; start_pc -= instlen)
4241 if (start_pc < fence)
4242 {
4243 /* It's not clear to me why we reach this point when
4244 stop_soon, but with this test, at least we
4245 don't print out warnings for every child forked (eg, on
4246 decstation). 22apr93 rich@cygnus.com. */
4247 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4248 {
4249 static int blurb_printed = 0;
4250
4251 warning (_("GDB can't find the start of the function at %s."),
4252 paddress (gdbarch, pc));
4253
4254 if (!blurb_printed)
4255 {
4256 /* This actually happens frequently in embedded
4257 development, when you first connect to a board
4258 and your stack pointer and pc are nowhere in
4259 particular. This message needs to give people
4260 in that situation enough information to
4261 determine that it's no big deal. */
4262 printf_filtered ("\n\
4263 GDB is unable to find the start of the function at %s\n\
4264 and thus can't determine the size of that function's stack frame.\n\
4265 This means that GDB may be unable to access that stack frame, or\n\
4266 the frames below it.\n\
4267 This problem is most likely caused by an invalid program counter or\n\
4268 stack pointer.\n\
4269 However, if you think GDB should simply search farther back\n\
4270 from %s for code which looks like the beginning of a\n\
4271 function, you can increase the range of the search using the `set\n\
4272 heuristic-fence-post' command.\n",
4273 paddress (gdbarch, pc), paddress (gdbarch, pc));
4274 blurb_printed = 1;
4275 }
4276 }
4277
4278 return 0;
4279 }
4280 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4281 {
4282 unsigned short inst;
4283
4284 /* On MIPS16, any one of the following is likely to be the
4285 start of a function:
4286 extend save
4287 save
4288 entry
4289 addiu sp,-n
4290 daddiu sp,-n
4291 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4292 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4293 if ((inst & 0xff80) == 0x6480) /* save */
4294 {
4295 if (start_pc - instlen >= fence)
4296 {
4297 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4298 start_pc - instlen, NULL);
4299 if ((inst & 0xf800) == 0xf000) /* extend */
4300 start_pc -= instlen;
4301 }
4302 break;
4303 }
4304 else if (((inst & 0xf81f) == 0xe809
4305 && (inst & 0x700) != 0x700) /* entry */
4306 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4307 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4308 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4309 break;
4310 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4311 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4312 seen_adjsp = 1;
4313 else
4314 seen_adjsp = 0;
4315 }
4316 else if (mips_pc_is_micromips (gdbarch, start_pc))
4317 {
4318 ULONGEST insn;
4319 int stop = 0;
4320 long offset;
4321 int dreg;
4322 int sreg;
4323
4324 /* On microMIPS, any one of the following is likely to be the
4325 start of a function:
4326 ADDIUSP -imm
4327 (D)ADDIU $sp, -imm
4328 LUI $gp, imm */
4329 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4330 switch (micromips_op (insn))
4331 {
4332 case 0xc: /* ADDIU: bits 001100 */
4333 case 0x17: /* DADDIU: bits 010111 */
4334 sreg = b0s5_reg (insn);
4335 dreg = b5s5_reg (insn);
4336 insn <<= 16;
4337 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4338 pc + MIPS_INSN16_SIZE, NULL);
4339 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4340 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4341 /* (D)ADDIU $sp, imm */
4342 && offset < 0)
4343 stop = 1;
4344 break;
4345
4346 case 0x10: /* POOL32I: bits 010000 */
4347 if (b5s5_op (insn) == 0xd
4348 /* LUI: bits 010000 001101 */
4349 && b0s5_reg (insn >> 16) == 28)
4350 /* LUI $gp, imm */
4351 stop = 1;
4352 break;
4353
4354 case 0x13: /* POOL16D: bits 010011 */
4355 if ((insn & 0x1) == 0x1)
4356 /* ADDIUSP: bits 010011 1 */
4357 {
4358 offset = micromips_decode_imm9 (b1s9_imm (insn));
4359 if (offset < 0)
4360 /* ADDIUSP -imm */
4361 stop = 1;
4362 }
4363 else
4364 /* ADDIUS5: bits 010011 0 */
4365 {
4366 dreg = b5s5_reg (insn);
4367 offset = (b1s4_imm (insn) ^ 8) - 8;
4368 if (dreg == MIPS_SP_REGNUM && offset < 0)
4369 /* ADDIUS5 $sp, -imm */
4370 stop = 1;
4371 }
4372 break;
4373 }
4374 if (stop)
4375 break;
4376 }
4377 else if (mips_about_to_return (gdbarch, start_pc))
4378 {
4379 /* Skip return and its delay slot. */
4380 start_pc += 2 * MIPS_INSN32_SIZE;
4381 break;
4382 }
4383
4384 return start_pc;
4385 }
4386
4387 struct mips_objfile_private
4388 {
4389 bfd_size_type size;
4390 char *contents;
4391 };
4392
4393 /* According to the current ABI, should the type be passed in a
4394 floating-point register (assuming that there is space)? When there
4395 is no FPU, FP are not even considered as possible candidates for
4396 FP registers and, consequently this returns false - forces FP
4397 arguments into integer registers. */
4398
4399 static int
4400 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4401 struct type *arg_type)
4402 {
4403 return ((typecode == TYPE_CODE_FLT
4404 || (MIPS_EABI (gdbarch)
4405 && (typecode == TYPE_CODE_STRUCT
4406 || typecode == TYPE_CODE_UNION)
4407 && TYPE_NFIELDS (arg_type) == 1
4408 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4409 == TYPE_CODE_FLT))
4410 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4411 }
4412
4413 /* On o32, argument passing in GPRs depends on the alignment of the type being
4414 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4415
4416 static int
4417 mips_type_needs_double_align (struct type *type)
4418 {
4419 enum type_code typecode = TYPE_CODE (type);
4420
4421 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4422 return 1;
4423 else if (typecode == TYPE_CODE_STRUCT)
4424 {
4425 if (TYPE_NFIELDS (type) < 1)
4426 return 0;
4427 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4428 }
4429 else if (typecode == TYPE_CODE_UNION)
4430 {
4431 int i, n;
4432
4433 n = TYPE_NFIELDS (type);
4434 for (i = 0; i < n; i++)
4435 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4436 return 1;
4437 return 0;
4438 }
4439 return 0;
4440 }
4441
4442 /* Adjust the address downward (direction of stack growth) so that it
4443 is correctly aligned for a new stack frame. */
4444 static CORE_ADDR
4445 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4446 {
4447 return align_down (addr, 16);
4448 }
4449
4450 /* Implement the "push_dummy_code" gdbarch method. */
4451
4452 static CORE_ADDR
4453 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4454 CORE_ADDR funaddr, struct value **args,
4455 int nargs, struct type *value_type,
4456 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4457 struct regcache *regcache)
4458 {
4459 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4460 CORE_ADDR nop_addr;
4461 CORE_ADDR bp_slot;
4462
4463 /* Reserve enough room on the stack for our breakpoint instruction. */
4464 bp_slot = sp - sizeof (nop_insn);
4465
4466 /* Return to microMIPS mode if calling microMIPS code to avoid
4467 triggering an address error exception on processors that only
4468 support microMIPS execution. */
4469 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4470 ? make_compact_addr (bp_slot) : bp_slot);
4471
4472 /* The breakpoint layer automatically adjusts the address of
4473 breakpoints inserted in a branch delay slot. With enough
4474 bad luck, the 4 bytes located just before our breakpoint
4475 instruction could look like a branch instruction, and thus
4476 trigger the adjustement, and break the function call entirely.
4477 So, we reserve those 4 bytes and write a nop instruction
4478 to prevent that from happening. */
4479 nop_addr = bp_slot - sizeof (nop_insn);
4480 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4481 sp = mips_frame_align (gdbarch, nop_addr);
4482
4483 /* Inferior resumes at the function entry point. */
4484 *real_pc = funaddr;
4485
4486 return sp;
4487 }
4488
4489 static CORE_ADDR
4490 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4491 struct regcache *regcache, CORE_ADDR bp_addr,
4492 int nargs, struct value **args, CORE_ADDR sp,
4493 int struct_return, CORE_ADDR struct_addr)
4494 {
4495 int argreg;
4496 int float_argreg;
4497 int argnum;
4498 int len = 0;
4499 int stack_offset = 0;
4500 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4501 CORE_ADDR func_addr = find_function_addr (function, NULL);
4502 int regsize = mips_abi_regsize (gdbarch);
4503
4504 /* For shared libraries, "t9" needs to point at the function
4505 address. */
4506 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4507
4508 /* Set the return address register to point to the entry point of
4509 the program, where a breakpoint lies in wait. */
4510 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4511
4512 /* First ensure that the stack and structure return address (if any)
4513 are properly aligned. The stack has to be at least 64-bit
4514 aligned even on 32-bit machines, because doubles must be 64-bit
4515 aligned. For n32 and n64, stack frames need to be 128-bit
4516 aligned, so we round to this widest known alignment. */
4517
4518 sp = align_down (sp, 16);
4519 struct_addr = align_down (struct_addr, 16);
4520
4521 /* Now make space on the stack for the args. We allocate more
4522 than necessary for EABI, because the first few arguments are
4523 passed in registers, but that's OK. */
4524 for (argnum = 0; argnum < nargs; argnum++)
4525 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4526 sp -= align_up (len, 16);
4527
4528 if (mips_debug)
4529 fprintf_unfiltered (gdb_stdlog,
4530 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4531 paddress (gdbarch, sp), (long) align_up (len, 16));
4532
4533 /* Initialize the integer and float register pointers. */
4534 argreg = MIPS_A0_REGNUM;
4535 float_argreg = mips_fpa0_regnum (gdbarch);
4536
4537 /* The struct_return pointer occupies the first parameter-passing reg. */
4538 if (struct_return)
4539 {
4540 if (mips_debug)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "mips_eabi_push_dummy_call: "
4543 "struct_return reg=%d %s\n",
4544 argreg, paddress (gdbarch, struct_addr));
4545 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4546 }
4547
4548 /* Now load as many as possible of the first arguments into
4549 registers, and push the rest onto the stack. Loop thru args
4550 from first to last. */
4551 for (argnum = 0; argnum < nargs; argnum++)
4552 {
4553 const gdb_byte *val;
4554 gdb_byte valbuf[MAX_REGISTER_SIZE];
4555 struct value *arg = args[argnum];
4556 struct type *arg_type = check_typedef (value_type (arg));
4557 int len = TYPE_LENGTH (arg_type);
4558 enum type_code typecode = TYPE_CODE (arg_type);
4559
4560 if (mips_debug)
4561 fprintf_unfiltered (gdb_stdlog,
4562 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4563 argnum + 1, len, (int) typecode);
4564
4565 /* The EABI passes structures that do not fit in a register by
4566 reference. */
4567 if (len > regsize
4568 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4569 {
4570 store_unsigned_integer (valbuf, regsize, byte_order,
4571 value_address (arg));
4572 typecode = TYPE_CODE_PTR;
4573 len = regsize;
4574 val = valbuf;
4575 if (mips_debug)
4576 fprintf_unfiltered (gdb_stdlog, " push");
4577 }
4578 else
4579 val = value_contents (arg);
4580
4581 /* 32-bit ABIs always start floating point arguments in an
4582 even-numbered floating point register. Round the FP register
4583 up before the check to see if there are any FP registers
4584 left. Non MIPS_EABI targets also pass the FP in the integer
4585 registers so also round up normal registers. */
4586 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4587 {
4588 if ((float_argreg & 1))
4589 float_argreg++;
4590 }
4591
4592 /* Floating point arguments passed in registers have to be
4593 treated specially. On 32-bit architectures, doubles
4594 are passed in register pairs; the even register gets
4595 the low word, and the odd register gets the high word.
4596 On non-EABI processors, the first two floating point arguments are
4597 also copied to general registers, because MIPS16 functions
4598 don't use float registers for arguments. This duplication of
4599 arguments in general registers can't hurt non-MIPS16 functions
4600 because those registers are normally skipped. */
4601 /* MIPS_EABI squeezes a struct that contains a single floating
4602 point value into an FP register instead of pushing it onto the
4603 stack. */
4604 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4605 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4606 {
4607 /* EABI32 will pass doubles in consecutive registers, even on
4608 64-bit cores. At one time, we used to check the size of
4609 `float_argreg' to determine whether or not to pass doubles
4610 in consecutive registers, but this is not sufficient for
4611 making the ABI determination. */
4612 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4613 {
4614 int low_offset = gdbarch_byte_order (gdbarch)
4615 == BFD_ENDIAN_BIG ? 4 : 0;
4616 long regval;
4617
4618 /* Write the low word of the double to the even register(s). */
4619 regval = extract_signed_integer (val + low_offset,
4620 4, byte_order);
4621 if (mips_debug)
4622 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4623 float_argreg, phex (regval, 4));
4624 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4625
4626 /* Write the high word of the double to the odd register(s). */
4627 regval = extract_signed_integer (val + 4 - low_offset,
4628 4, byte_order);
4629 if (mips_debug)
4630 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4631 float_argreg, phex (regval, 4));
4632 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4633 }
4634 else
4635 {
4636 /* This is a floating point value that fits entirely
4637 in a single register. */
4638 /* On 32 bit ABI's the float_argreg is further adjusted
4639 above to ensure that it is even register aligned. */
4640 LONGEST regval = extract_signed_integer (val, len, byte_order);
4641 if (mips_debug)
4642 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4643 float_argreg, phex (regval, len));
4644 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4645 }
4646 }
4647 else
4648 {
4649 /* Copy the argument to general registers or the stack in
4650 register-sized pieces. Large arguments are split between
4651 registers and stack. */
4652 /* Note: structs whose size is not a multiple of regsize
4653 are treated specially: Irix cc passes
4654 them in registers where gcc sometimes puts them on the
4655 stack. For maximum compatibility, we will put them in
4656 both places. */
4657 int odd_sized_struct = (len > regsize && len % regsize != 0);
4658
4659 /* Note: Floating-point values that didn't fit into an FP
4660 register are only written to memory. */
4661 while (len > 0)
4662 {
4663 /* Remember if the argument was written to the stack. */
4664 int stack_used_p = 0;
4665 int partial_len = (len < regsize ? len : regsize);
4666
4667 if (mips_debug)
4668 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4669 partial_len);
4670
4671 /* Write this portion of the argument to the stack. */
4672 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4673 || odd_sized_struct
4674 || fp_register_arg_p (gdbarch, typecode, arg_type))
4675 {
4676 /* Should shorter than int integer values be
4677 promoted to int before being stored? */
4678 int longword_offset = 0;
4679 CORE_ADDR addr;
4680 stack_used_p = 1;
4681 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4682 {
4683 if (regsize == 8
4684 && (typecode == TYPE_CODE_INT
4685 || typecode == TYPE_CODE_PTR
4686 || typecode == TYPE_CODE_FLT) && len <= 4)
4687 longword_offset = regsize - len;
4688 else if ((typecode == TYPE_CODE_STRUCT
4689 || typecode == TYPE_CODE_UNION)
4690 && TYPE_LENGTH (arg_type) < regsize)
4691 longword_offset = regsize - len;
4692 }
4693
4694 if (mips_debug)
4695 {
4696 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4697 paddress (gdbarch, stack_offset));
4698 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4699 paddress (gdbarch, longword_offset));
4700 }
4701
4702 addr = sp + stack_offset + longword_offset;
4703
4704 if (mips_debug)
4705 {
4706 int i;
4707 fprintf_unfiltered (gdb_stdlog, " @%s ",
4708 paddress (gdbarch, addr));
4709 for (i = 0; i < partial_len; i++)
4710 {
4711 fprintf_unfiltered (gdb_stdlog, "%02x",
4712 val[i] & 0xff);
4713 }
4714 }
4715 write_memory (addr, val, partial_len);
4716 }
4717
4718 /* Note!!! This is NOT an else clause. Odd sized
4719 structs may go thru BOTH paths. Floating point
4720 arguments will not. */
4721 /* Write this portion of the argument to a general
4722 purpose register. */
4723 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4724 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4725 {
4726 LONGEST regval =
4727 extract_signed_integer (val, partial_len, byte_order);
4728
4729 if (mips_debug)
4730 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4731 argreg,
4732 phex (regval, regsize));
4733 regcache_cooked_write_signed (regcache, argreg, regval);
4734 argreg++;
4735 }
4736
4737 len -= partial_len;
4738 val += partial_len;
4739
4740 /* Compute the offset into the stack at which we will
4741 copy the next parameter.
4742
4743 In the new EABI (and the NABI32), the stack_offset
4744 only needs to be adjusted when it has been used. */
4745
4746 if (stack_used_p)
4747 stack_offset += align_up (partial_len, regsize);
4748 }
4749 }
4750 if (mips_debug)
4751 fprintf_unfiltered (gdb_stdlog, "\n");
4752 }
4753
4754 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4755
4756 /* Return adjusted stack pointer. */
4757 return sp;
4758 }
4759
4760 /* Determine the return value convention being used. */
4761
4762 static enum return_value_convention
4763 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4764 struct type *type, struct regcache *regcache,
4765 gdb_byte *readbuf, const gdb_byte *writebuf)
4766 {
4767 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4768 int fp_return_type = 0;
4769 int offset, regnum, xfer;
4770
4771 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4772 return RETURN_VALUE_STRUCT_CONVENTION;
4773
4774 /* Floating point type? */
4775 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4776 {
4777 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4778 fp_return_type = 1;
4779 /* Structs with a single field of float type
4780 are returned in a floating point register. */
4781 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4782 || TYPE_CODE (type) == TYPE_CODE_UNION)
4783 && TYPE_NFIELDS (type) == 1)
4784 {
4785 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4786
4787 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4788 fp_return_type = 1;
4789 }
4790 }
4791
4792 if (fp_return_type)
4793 {
4794 /* A floating-point value belongs in the least significant part
4795 of FP0/FP1. */
4796 if (mips_debug)
4797 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4798 regnum = mips_regnum (gdbarch)->fp0;
4799 }
4800 else
4801 {
4802 /* An integer value goes in V0/V1. */
4803 if (mips_debug)
4804 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4805 regnum = MIPS_V0_REGNUM;
4806 }
4807 for (offset = 0;
4808 offset < TYPE_LENGTH (type);
4809 offset += mips_abi_regsize (gdbarch), regnum++)
4810 {
4811 xfer = mips_abi_regsize (gdbarch);
4812 if (offset + xfer > TYPE_LENGTH (type))
4813 xfer = TYPE_LENGTH (type) - offset;
4814 mips_xfer_register (gdbarch, regcache,
4815 gdbarch_num_regs (gdbarch) + regnum, xfer,
4816 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4817 offset);
4818 }
4819
4820 return RETURN_VALUE_REGISTER_CONVENTION;
4821 }
4822
4823
4824 /* N32/N64 ABI stuff. */
4825
4826 /* Search for a naturally aligned double at OFFSET inside a struct
4827 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4828 registers. */
4829
4830 static int
4831 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4832 int offset)
4833 {
4834 int i;
4835
4836 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4837 return 0;
4838
4839 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4840 return 0;
4841
4842 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4843 return 0;
4844
4845 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4846 {
4847 int pos;
4848 struct type *field_type;
4849
4850 /* We're only looking at normal fields. */
4851 if (field_is_static (&TYPE_FIELD (arg_type, i))
4852 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4853 continue;
4854
4855 /* If we have gone past the offset, there is no double to pass. */
4856 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4857 if (pos > offset)
4858 return 0;
4859
4860 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4861
4862 /* If this field is entirely before the requested offset, go
4863 on to the next one. */
4864 if (pos + TYPE_LENGTH (field_type) <= offset)
4865 continue;
4866
4867 /* If this is our special aligned double, we can stop. */
4868 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4869 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4870 return 1;
4871
4872 /* This field starts at or before the requested offset, and
4873 overlaps it. If it is a structure, recurse inwards. */
4874 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4875 }
4876
4877 return 0;
4878 }
4879
4880 static CORE_ADDR
4881 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4882 struct regcache *regcache, CORE_ADDR bp_addr,
4883 int nargs, struct value **args, CORE_ADDR sp,
4884 int struct_return, CORE_ADDR struct_addr)
4885 {
4886 int argreg;
4887 int float_argreg;
4888 int argnum;
4889 int len = 0;
4890 int stack_offset = 0;
4891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4892 CORE_ADDR func_addr = find_function_addr (function, NULL);
4893
4894 /* For shared libraries, "t9" needs to point at the function
4895 address. */
4896 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4897
4898 /* Set the return address register to point to the entry point of
4899 the program, where a breakpoint lies in wait. */
4900 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4901
4902 /* First ensure that the stack and structure return address (if any)
4903 are properly aligned. The stack has to be at least 64-bit
4904 aligned even on 32-bit machines, because doubles must be 64-bit
4905 aligned. For n32 and n64, stack frames need to be 128-bit
4906 aligned, so we round to this widest known alignment. */
4907
4908 sp = align_down (sp, 16);
4909 struct_addr = align_down (struct_addr, 16);
4910
4911 /* Now make space on the stack for the args. */
4912 for (argnum = 0; argnum < nargs; argnum++)
4913 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4914 sp -= align_up (len, 16);
4915
4916 if (mips_debug)
4917 fprintf_unfiltered (gdb_stdlog,
4918 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4919 paddress (gdbarch, sp), (long) align_up (len, 16));
4920
4921 /* Initialize the integer and float register pointers. */
4922 argreg = MIPS_A0_REGNUM;
4923 float_argreg = mips_fpa0_regnum (gdbarch);
4924
4925 /* The struct_return pointer occupies the first parameter-passing reg. */
4926 if (struct_return)
4927 {
4928 if (mips_debug)
4929 fprintf_unfiltered (gdb_stdlog,
4930 "mips_n32n64_push_dummy_call: "
4931 "struct_return reg=%d %s\n",
4932 argreg, paddress (gdbarch, struct_addr));
4933 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4934 }
4935
4936 /* Now load as many as possible of the first arguments into
4937 registers, and push the rest onto the stack. Loop thru args
4938 from first to last. */
4939 for (argnum = 0; argnum < nargs; argnum++)
4940 {
4941 const gdb_byte *val;
4942 struct value *arg = args[argnum];
4943 struct type *arg_type = check_typedef (value_type (arg));
4944 int len = TYPE_LENGTH (arg_type);
4945 enum type_code typecode = TYPE_CODE (arg_type);
4946
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stdlog,
4949 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4950 argnum + 1, len, (int) typecode);
4951
4952 val = value_contents (arg);
4953
4954 /* A 128-bit long double value requires an even-odd pair of
4955 floating-point registers. */
4956 if (len == 16
4957 && fp_register_arg_p (gdbarch, typecode, arg_type)
4958 && (float_argreg & 1))
4959 {
4960 float_argreg++;
4961 argreg++;
4962 }
4963
4964 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4965 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4966 {
4967 /* This is a floating point value that fits entirely
4968 in a single register or a pair of registers. */
4969 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4970 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4971 if (mips_debug)
4972 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4973 float_argreg, phex (regval, reglen));
4974 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4975
4976 if (mips_debug)
4977 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4978 argreg, phex (regval, reglen));
4979 regcache_cooked_write_unsigned (regcache, argreg, regval);
4980 float_argreg++;
4981 argreg++;
4982 if (len == 16)
4983 {
4984 regval = extract_unsigned_integer (val + reglen,
4985 reglen, byte_order);
4986 if (mips_debug)
4987 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4988 float_argreg, phex (regval, reglen));
4989 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4990
4991 if (mips_debug)
4992 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4993 argreg, phex (regval, reglen));
4994 regcache_cooked_write_unsigned (regcache, argreg, regval);
4995 float_argreg++;
4996 argreg++;
4997 }
4998 }
4999 else
5000 {
5001 /* Copy the argument to general registers or the stack in
5002 register-sized pieces. Large arguments are split between
5003 registers and stack. */
5004 /* For N32/N64, structs, unions, or other composite types are
5005 treated as a sequence of doublewords, and are passed in integer
5006 or floating point registers as though they were simple scalar
5007 parameters to the extent that they fit, with any excess on the
5008 stack packed according to the normal memory layout of the
5009 object.
5010 The caller does not reserve space for the register arguments;
5011 the callee is responsible for reserving it if required. */
5012 /* Note: Floating-point values that didn't fit into an FP
5013 register are only written to memory. */
5014 while (len > 0)
5015 {
5016 /* Remember if the argument was written to the stack. */
5017 int stack_used_p = 0;
5018 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5019
5020 if (mips_debug)
5021 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5022 partial_len);
5023
5024 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5025 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5026
5027 /* Write this portion of the argument to the stack. */
5028 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5029 {
5030 /* Should shorter than int integer values be
5031 promoted to int before being stored? */
5032 int longword_offset = 0;
5033 CORE_ADDR addr;
5034 stack_used_p = 1;
5035 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5036 {
5037 if ((typecode == TYPE_CODE_INT
5038 || typecode == TYPE_CODE_PTR)
5039 && len <= 4)
5040 longword_offset = MIPS64_REGSIZE - len;
5041 }
5042
5043 if (mips_debug)
5044 {
5045 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5046 paddress (gdbarch, stack_offset));
5047 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5048 paddress (gdbarch, longword_offset));
5049 }
5050
5051 addr = sp + stack_offset + longword_offset;
5052
5053 if (mips_debug)
5054 {
5055 int i;
5056 fprintf_unfiltered (gdb_stdlog, " @%s ",
5057 paddress (gdbarch, addr));
5058 for (i = 0; i < partial_len; i++)
5059 {
5060 fprintf_unfiltered (gdb_stdlog, "%02x",
5061 val[i] & 0xff);
5062 }
5063 }
5064 write_memory (addr, val, partial_len);
5065 }
5066
5067 /* Note!!! This is NOT an else clause. Odd sized
5068 structs may go thru BOTH paths. */
5069 /* Write this portion of the argument to a general
5070 purpose register. */
5071 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5072 {
5073 LONGEST regval;
5074
5075 /* Sign extend pointers, 32-bit integers and signed
5076 16-bit and 8-bit integers; everything else is taken
5077 as is. */
5078
5079 if ((partial_len == 4
5080 && (typecode == TYPE_CODE_PTR
5081 || typecode == TYPE_CODE_INT))
5082 || (partial_len < 4
5083 && typecode == TYPE_CODE_INT
5084 && !TYPE_UNSIGNED (arg_type)))
5085 regval = extract_signed_integer (val, partial_len,
5086 byte_order);
5087 else
5088 regval = extract_unsigned_integer (val, partial_len,
5089 byte_order);
5090
5091 /* A non-floating-point argument being passed in a
5092 general register. If a struct or union, and if
5093 the remaining length is smaller than the register
5094 size, we have to adjust the register value on
5095 big endian targets.
5096
5097 It does not seem to be necessary to do the
5098 same for integral types. */
5099
5100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5101 && partial_len < MIPS64_REGSIZE
5102 && (typecode == TYPE_CODE_STRUCT
5103 || typecode == TYPE_CODE_UNION))
5104 regval <<= ((MIPS64_REGSIZE - partial_len)
5105 * TARGET_CHAR_BIT);
5106
5107 if (mips_debug)
5108 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5109 argreg,
5110 phex (regval, MIPS64_REGSIZE));
5111 regcache_cooked_write_unsigned (regcache, argreg, regval);
5112
5113 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5114 TYPE_LENGTH (arg_type) - len))
5115 {
5116 if (mips_debug)
5117 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5118 float_argreg,
5119 phex (regval, MIPS64_REGSIZE));
5120 regcache_cooked_write_unsigned (regcache, float_argreg,
5121 regval);
5122 }
5123
5124 float_argreg++;
5125 argreg++;
5126 }
5127
5128 len -= partial_len;
5129 val += partial_len;
5130
5131 /* Compute the offset into the stack at which we will
5132 copy the next parameter.
5133
5134 In N32 (N64?), the stack_offset only needs to be
5135 adjusted when it has been used. */
5136
5137 if (stack_used_p)
5138 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5139 }
5140 }
5141 if (mips_debug)
5142 fprintf_unfiltered (gdb_stdlog, "\n");
5143 }
5144
5145 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5146
5147 /* Return adjusted stack pointer. */
5148 return sp;
5149 }
5150
5151 static enum return_value_convention
5152 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5153 struct type *type, struct regcache *regcache,
5154 gdb_byte *readbuf, const gdb_byte *writebuf)
5155 {
5156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5157
5158 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5159
5160 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5161 if needed), as appropriate for the type. Composite results (struct,
5162 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5163 following rules:
5164
5165 * A struct with only one or two floating point fields is returned in $f0
5166 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5167 case.
5168
5169 * Any other composite results of at most 128 bits are returned in
5170 $2 (first 64 bits) and $3 (remainder, if necessary).
5171
5172 * Larger composite results are handled by converting the function to a
5173 procedure with an implicit first parameter, which is a pointer to an area
5174 reserved by the caller to receive the result. [The o32-bit ABI requires
5175 that all composite results be handled by conversion to implicit first
5176 parameters. The MIPS/SGI Fortran implementation has always made a
5177 specific exception to return COMPLEX results in the floating point
5178 registers.] */
5179
5180 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5181 return RETURN_VALUE_STRUCT_CONVENTION;
5182 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5183 && TYPE_LENGTH (type) == 16
5184 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5185 {
5186 /* A 128-bit floating-point value fills both $f0 and $f2. The
5187 two registers are used in the same as memory order, so the
5188 eight bytes with the lower memory address are in $f0. */
5189 if (mips_debug)
5190 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5191 mips_xfer_register (gdbarch, regcache,
5192 (gdbarch_num_regs (gdbarch)
5193 + mips_regnum (gdbarch)->fp0),
5194 8, gdbarch_byte_order (gdbarch),
5195 readbuf, writebuf, 0);
5196 mips_xfer_register (gdbarch, regcache,
5197 (gdbarch_num_regs (gdbarch)
5198 + mips_regnum (gdbarch)->fp0 + 2),
5199 8, gdbarch_byte_order (gdbarch),
5200 readbuf ? readbuf + 8 : readbuf,
5201 writebuf ? writebuf + 8 : writebuf, 0);
5202 return RETURN_VALUE_REGISTER_CONVENTION;
5203 }
5204 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5205 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5206 {
5207 /* A single or double floating-point value that fits in FP0. */
5208 if (mips_debug)
5209 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5210 mips_xfer_register (gdbarch, regcache,
5211 (gdbarch_num_regs (gdbarch)
5212 + mips_regnum (gdbarch)->fp0),
5213 TYPE_LENGTH (type),
5214 gdbarch_byte_order (gdbarch),
5215 readbuf, writebuf, 0);
5216 return RETURN_VALUE_REGISTER_CONVENTION;
5217 }
5218 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5219 && TYPE_NFIELDS (type) <= 2
5220 && TYPE_NFIELDS (type) >= 1
5221 && ((TYPE_NFIELDS (type) == 1
5222 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5223 == TYPE_CODE_FLT))
5224 || (TYPE_NFIELDS (type) == 2
5225 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5226 == TYPE_CODE_FLT)
5227 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5228 == TYPE_CODE_FLT))))
5229 {
5230 /* A struct that contains one or two floats. Each value is part
5231 in the least significant part of their floating point
5232 register (or GPR, for soft float). */
5233 int regnum;
5234 int field;
5235 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5236 ? mips_regnum (gdbarch)->fp0
5237 : MIPS_V0_REGNUM);
5238 field < TYPE_NFIELDS (type); field++, regnum += 2)
5239 {
5240 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5241 / TARGET_CHAR_BIT);
5242 if (mips_debug)
5243 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5244 offset);
5245 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5246 {
5247 /* A 16-byte long double field goes in two consecutive
5248 registers. */
5249 mips_xfer_register (gdbarch, regcache,
5250 gdbarch_num_regs (gdbarch) + regnum,
5251 8,
5252 gdbarch_byte_order (gdbarch),
5253 readbuf, writebuf, offset);
5254 mips_xfer_register (gdbarch, regcache,
5255 gdbarch_num_regs (gdbarch) + regnum + 1,
5256 8,
5257 gdbarch_byte_order (gdbarch),
5258 readbuf, writebuf, offset + 8);
5259 }
5260 else
5261 mips_xfer_register (gdbarch, regcache,
5262 gdbarch_num_regs (gdbarch) + regnum,
5263 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5264 gdbarch_byte_order (gdbarch),
5265 readbuf, writebuf, offset);
5266 }
5267 return RETURN_VALUE_REGISTER_CONVENTION;
5268 }
5269 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5270 || TYPE_CODE (type) == TYPE_CODE_UNION
5271 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5272 {
5273 /* A composite type. Extract the left justified value,
5274 regardless of the byte order. I.e. DO NOT USE
5275 mips_xfer_lower. */
5276 int offset;
5277 int regnum;
5278 for (offset = 0, regnum = MIPS_V0_REGNUM;
5279 offset < TYPE_LENGTH (type);
5280 offset += register_size (gdbarch, regnum), regnum++)
5281 {
5282 int xfer = register_size (gdbarch, regnum);
5283 if (offset + xfer > TYPE_LENGTH (type))
5284 xfer = TYPE_LENGTH (type) - offset;
5285 if (mips_debug)
5286 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5287 offset, xfer, regnum);
5288 mips_xfer_register (gdbarch, regcache,
5289 gdbarch_num_regs (gdbarch) + regnum,
5290 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5291 offset);
5292 }
5293 return RETURN_VALUE_REGISTER_CONVENTION;
5294 }
5295 else
5296 {
5297 /* A scalar extract each part but least-significant-byte
5298 justified. */
5299 int offset;
5300 int regnum;
5301 for (offset = 0, regnum = MIPS_V0_REGNUM;
5302 offset < TYPE_LENGTH (type);
5303 offset += register_size (gdbarch, regnum), regnum++)
5304 {
5305 int xfer = register_size (gdbarch, regnum);
5306 if (offset + xfer > TYPE_LENGTH (type))
5307 xfer = TYPE_LENGTH (type) - offset;
5308 if (mips_debug)
5309 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5310 offset, xfer, regnum);
5311 mips_xfer_register (gdbarch, regcache,
5312 gdbarch_num_regs (gdbarch) + regnum,
5313 xfer, gdbarch_byte_order (gdbarch),
5314 readbuf, writebuf, offset);
5315 }
5316 return RETURN_VALUE_REGISTER_CONVENTION;
5317 }
5318 }
5319
5320 /* Which registers to use for passing floating-point values between
5321 function calls, one of floating-point, general and both kinds of
5322 registers. O32 and O64 use different register kinds for standard
5323 MIPS and MIPS16 code; to make the handling of cases where we may
5324 not know what kind of code is being used (e.g. no debug information)
5325 easier we sometimes use both kinds. */
5326
5327 enum mips_fval_reg
5328 {
5329 mips_fval_fpr,
5330 mips_fval_gpr,
5331 mips_fval_both
5332 };
5333
5334 /* O32 ABI stuff. */
5335
5336 static CORE_ADDR
5337 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5338 struct regcache *regcache, CORE_ADDR bp_addr,
5339 int nargs, struct value **args, CORE_ADDR sp,
5340 int struct_return, CORE_ADDR struct_addr)
5341 {
5342 int argreg;
5343 int float_argreg;
5344 int argnum;
5345 int len = 0;
5346 int stack_offset = 0;
5347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5348 CORE_ADDR func_addr = find_function_addr (function, NULL);
5349
5350 /* For shared libraries, "t9" needs to point at the function
5351 address. */
5352 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5353
5354 /* Set the return address register to point to the entry point of
5355 the program, where a breakpoint lies in wait. */
5356 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5357
5358 /* First ensure that the stack and structure return address (if any)
5359 are properly aligned. The stack has to be at least 64-bit
5360 aligned even on 32-bit machines, because doubles must be 64-bit
5361 aligned. For n32 and n64, stack frames need to be 128-bit
5362 aligned, so we round to this widest known alignment. */
5363
5364 sp = align_down (sp, 16);
5365 struct_addr = align_down (struct_addr, 16);
5366
5367 /* Now make space on the stack for the args. */
5368 for (argnum = 0; argnum < nargs; argnum++)
5369 {
5370 struct type *arg_type = check_typedef (value_type (args[argnum]));
5371
5372 /* Align to double-word if necessary. */
5373 if (mips_type_needs_double_align (arg_type))
5374 len = align_up (len, MIPS32_REGSIZE * 2);
5375 /* Allocate space on the stack. */
5376 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5377 }
5378 sp -= align_up (len, 16);
5379
5380 if (mips_debug)
5381 fprintf_unfiltered (gdb_stdlog,
5382 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5383 paddress (gdbarch, sp), (long) align_up (len, 16));
5384
5385 /* Initialize the integer and float register pointers. */
5386 argreg = MIPS_A0_REGNUM;
5387 float_argreg = mips_fpa0_regnum (gdbarch);
5388
5389 /* The struct_return pointer occupies the first parameter-passing reg. */
5390 if (struct_return)
5391 {
5392 if (mips_debug)
5393 fprintf_unfiltered (gdb_stdlog,
5394 "mips_o32_push_dummy_call: "
5395 "struct_return reg=%d %s\n",
5396 argreg, paddress (gdbarch, struct_addr));
5397 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5398 stack_offset += MIPS32_REGSIZE;
5399 }
5400
5401 /* Now load as many as possible of the first arguments into
5402 registers, and push the rest onto the stack. Loop thru args
5403 from first to last. */
5404 for (argnum = 0; argnum < nargs; argnum++)
5405 {
5406 const gdb_byte *val;
5407 struct value *arg = args[argnum];
5408 struct type *arg_type = check_typedef (value_type (arg));
5409 int len = TYPE_LENGTH (arg_type);
5410 enum type_code typecode = TYPE_CODE (arg_type);
5411
5412 if (mips_debug)
5413 fprintf_unfiltered (gdb_stdlog,
5414 "mips_o32_push_dummy_call: %d len=%d type=%d",
5415 argnum + 1, len, (int) typecode);
5416
5417 val = value_contents (arg);
5418
5419 /* 32-bit ABIs always start floating point arguments in an
5420 even-numbered floating point register. Round the FP register
5421 up before the check to see if there are any FP registers
5422 left. O32 targets also pass the FP in the integer registers
5423 so also round up normal registers. */
5424 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5425 {
5426 if ((float_argreg & 1))
5427 float_argreg++;
5428 }
5429
5430 /* Floating point arguments passed in registers have to be
5431 treated specially. On 32-bit architectures, doubles are
5432 passed in register pairs; the even FP register gets the
5433 low word, and the odd FP register gets the high word.
5434 On O32, the first two floating point arguments are also
5435 copied to general registers, following their memory order,
5436 because MIPS16 functions don't use float registers for
5437 arguments. This duplication of arguments in general
5438 registers can't hurt non-MIPS16 functions, because those
5439 registers are normally skipped. */
5440
5441 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5442 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5443 {
5444 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5445 {
5446 int freg_offset = gdbarch_byte_order (gdbarch)
5447 == BFD_ENDIAN_BIG ? 1 : 0;
5448 unsigned long regval;
5449
5450 /* First word. */
5451 regval = extract_unsigned_integer (val, 4, byte_order);
5452 if (mips_debug)
5453 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5454 float_argreg + freg_offset,
5455 phex (regval, 4));
5456 regcache_cooked_write_unsigned (regcache,
5457 float_argreg++ + freg_offset,
5458 regval);
5459 if (mips_debug)
5460 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5461 argreg, phex (regval, 4));
5462 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5463
5464 /* Second word. */
5465 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5466 if (mips_debug)
5467 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5468 float_argreg - freg_offset,
5469 phex (regval, 4));
5470 regcache_cooked_write_unsigned (regcache,
5471 float_argreg++ - freg_offset,
5472 regval);
5473 if (mips_debug)
5474 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5475 argreg, phex (regval, 4));
5476 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5477 }
5478 else
5479 {
5480 /* This is a floating point value that fits entirely
5481 in a single register. */
5482 /* On 32 bit ABI's the float_argreg is further adjusted
5483 above to ensure that it is even register aligned. */
5484 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5485 if (mips_debug)
5486 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5487 float_argreg, phex (regval, len));
5488 regcache_cooked_write_unsigned (regcache,
5489 float_argreg++, regval);
5490 /* Although two FP registers are reserved for each
5491 argument, only one corresponding integer register is
5492 reserved. */
5493 if (mips_debug)
5494 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5495 argreg, phex (regval, len));
5496 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5497 }
5498 /* Reserve space for the FP register. */
5499 stack_offset += align_up (len, MIPS32_REGSIZE);
5500 }
5501 else
5502 {
5503 /* Copy the argument to general registers or the stack in
5504 register-sized pieces. Large arguments are split between
5505 registers and stack. */
5506 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5507 are treated specially: Irix cc passes
5508 them in registers where gcc sometimes puts them on the
5509 stack. For maximum compatibility, we will put them in
5510 both places. */
5511 int odd_sized_struct = (len > MIPS32_REGSIZE
5512 && len % MIPS32_REGSIZE != 0);
5513 /* Structures should be aligned to eight bytes (even arg registers)
5514 on MIPS_ABI_O32, if their first member has double precision. */
5515 if (mips_type_needs_double_align (arg_type))
5516 {
5517 if ((argreg & 1))
5518 {
5519 argreg++;
5520 stack_offset += MIPS32_REGSIZE;
5521 }
5522 }
5523 while (len > 0)
5524 {
5525 /* Remember if the argument was written to the stack. */
5526 int stack_used_p = 0;
5527 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5528
5529 if (mips_debug)
5530 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5531 partial_len);
5532
5533 /* Write this portion of the argument to the stack. */
5534 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5535 || odd_sized_struct)
5536 {
5537 /* Should shorter than int integer values be
5538 promoted to int before being stored? */
5539 int longword_offset = 0;
5540 CORE_ADDR addr;
5541 stack_used_p = 1;
5542
5543 if (mips_debug)
5544 {
5545 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5546 paddress (gdbarch, stack_offset));
5547 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5548 paddress (gdbarch, longword_offset));
5549 }
5550
5551 addr = sp + stack_offset + longword_offset;
5552
5553 if (mips_debug)
5554 {
5555 int i;
5556 fprintf_unfiltered (gdb_stdlog, " @%s ",
5557 paddress (gdbarch, addr));
5558 for (i = 0; i < partial_len; i++)
5559 {
5560 fprintf_unfiltered (gdb_stdlog, "%02x",
5561 val[i] & 0xff);
5562 }
5563 }
5564 write_memory (addr, val, partial_len);
5565 }
5566
5567 /* Note!!! This is NOT an else clause. Odd sized
5568 structs may go thru BOTH paths. */
5569 /* Write this portion of the argument to a general
5570 purpose register. */
5571 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5572 {
5573 LONGEST regval = extract_signed_integer (val, partial_len,
5574 byte_order);
5575 /* Value may need to be sign extended, because
5576 mips_isa_regsize() != mips_abi_regsize(). */
5577
5578 /* A non-floating-point argument being passed in a
5579 general register. If a struct or union, and if
5580 the remaining length is smaller than the register
5581 size, we have to adjust the register value on
5582 big endian targets.
5583
5584 It does not seem to be necessary to do the
5585 same for integral types.
5586
5587 Also don't do this adjustment on O64 binaries.
5588
5589 cagney/2001-07-23: gdb/179: Also, GCC, when
5590 outputting LE O32 with sizeof (struct) <
5591 mips_abi_regsize(), generates a left shift
5592 as part of storing the argument in a register
5593 (the left shift isn't generated when
5594 sizeof (struct) >= mips_abi_regsize()). Since
5595 it is quite possible that this is GCC
5596 contradicting the LE/O32 ABI, GDB has not been
5597 adjusted to accommodate this. Either someone
5598 needs to demonstrate that the LE/O32 ABI
5599 specifies such a left shift OR this new ABI gets
5600 identified as such and GDB gets tweaked
5601 accordingly. */
5602
5603 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5604 && partial_len < MIPS32_REGSIZE
5605 && (typecode == TYPE_CODE_STRUCT
5606 || typecode == TYPE_CODE_UNION))
5607 regval <<= ((MIPS32_REGSIZE - partial_len)
5608 * TARGET_CHAR_BIT);
5609
5610 if (mips_debug)
5611 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5612 argreg,
5613 phex (regval, MIPS32_REGSIZE));
5614 regcache_cooked_write_unsigned (regcache, argreg, regval);
5615 argreg++;
5616
5617 /* Prevent subsequent floating point arguments from
5618 being passed in floating point registers. */
5619 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5620 }
5621
5622 len -= partial_len;
5623 val += partial_len;
5624
5625 /* Compute the offset into the stack at which we will
5626 copy the next parameter.
5627
5628 In older ABIs, the caller reserved space for
5629 registers that contained arguments. This was loosely
5630 refered to as their "home". Consequently, space is
5631 always allocated. */
5632
5633 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5634 }
5635 }
5636 if (mips_debug)
5637 fprintf_unfiltered (gdb_stdlog, "\n");
5638 }
5639
5640 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5641
5642 /* Return adjusted stack pointer. */
5643 return sp;
5644 }
5645
5646 static enum return_value_convention
5647 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5648 struct type *type, struct regcache *regcache,
5649 gdb_byte *readbuf, const gdb_byte *writebuf)
5650 {
5651 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5652 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5654 enum mips_fval_reg fval_reg;
5655
5656 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5657 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5658 || TYPE_CODE (type) == TYPE_CODE_UNION
5659 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5660 return RETURN_VALUE_STRUCT_CONVENTION;
5661 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5662 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5663 {
5664 /* A single-precision floating-point value. If reading in or copying,
5665 then we get it from/put it to FP0 for standard MIPS code or GPR2
5666 for MIPS16 code. If writing out only, then we put it to both FP0
5667 and GPR2. We do not support reading in with no function known, if
5668 this safety check ever triggers, then we'll have to try harder. */
5669 gdb_assert (function || !readbuf);
5670 if (mips_debug)
5671 switch (fval_reg)
5672 {
5673 case mips_fval_fpr:
5674 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5675 break;
5676 case mips_fval_gpr:
5677 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5678 break;
5679 case mips_fval_both:
5680 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5681 break;
5682 }
5683 if (fval_reg != mips_fval_gpr)
5684 mips_xfer_register (gdbarch, regcache,
5685 (gdbarch_num_regs (gdbarch)
5686 + mips_regnum (gdbarch)->fp0),
5687 TYPE_LENGTH (type),
5688 gdbarch_byte_order (gdbarch),
5689 readbuf, writebuf, 0);
5690 if (fval_reg != mips_fval_fpr)
5691 mips_xfer_register (gdbarch, regcache,
5692 gdbarch_num_regs (gdbarch) + 2,
5693 TYPE_LENGTH (type),
5694 gdbarch_byte_order (gdbarch),
5695 readbuf, writebuf, 0);
5696 return RETURN_VALUE_REGISTER_CONVENTION;
5697 }
5698 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5699 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5700 {
5701 /* A double-precision floating-point value. If reading in or copying,
5702 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5703 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5704 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5705 no function known, if this safety check ever triggers, then we'll
5706 have to try harder. */
5707 gdb_assert (function || !readbuf);
5708 if (mips_debug)
5709 switch (fval_reg)
5710 {
5711 case mips_fval_fpr:
5712 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5713 break;
5714 case mips_fval_gpr:
5715 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5716 break;
5717 case mips_fval_both:
5718 fprintf_unfiltered (gdb_stderr,
5719 "Return float in $fp1/$fp0 and $2/$3\n");
5720 break;
5721 }
5722 if (fval_reg != mips_fval_gpr)
5723 {
5724 /* The most significant part goes in FP1, and the least significant
5725 in FP0. */
5726 switch (gdbarch_byte_order (gdbarch))
5727 {
5728 case BFD_ENDIAN_LITTLE:
5729 mips_xfer_register (gdbarch, regcache,
5730 (gdbarch_num_regs (gdbarch)
5731 + mips_regnum (gdbarch)->fp0 + 0),
5732 4, gdbarch_byte_order (gdbarch),
5733 readbuf, writebuf, 0);
5734 mips_xfer_register (gdbarch, regcache,
5735 (gdbarch_num_regs (gdbarch)
5736 + mips_regnum (gdbarch)->fp0 + 1),
5737 4, gdbarch_byte_order (gdbarch),
5738 readbuf, writebuf, 4);
5739 break;
5740 case BFD_ENDIAN_BIG:
5741 mips_xfer_register (gdbarch, regcache,
5742 (gdbarch_num_regs (gdbarch)
5743 + mips_regnum (gdbarch)->fp0 + 1),
5744 4, gdbarch_byte_order (gdbarch),
5745 readbuf, writebuf, 0);
5746 mips_xfer_register (gdbarch, regcache,
5747 (gdbarch_num_regs (gdbarch)
5748 + mips_regnum (gdbarch)->fp0 + 0),
5749 4, gdbarch_byte_order (gdbarch),
5750 readbuf, writebuf, 4);
5751 break;
5752 default:
5753 internal_error (__FILE__, __LINE__, _("bad switch"));
5754 }
5755 }
5756 if (fval_reg != mips_fval_fpr)
5757 {
5758 /* The two 32-bit parts are always placed in GPR2 and GPR3
5759 following these registers' memory order. */
5760 mips_xfer_register (gdbarch, regcache,
5761 gdbarch_num_regs (gdbarch) + 2,
5762 4, gdbarch_byte_order (gdbarch),
5763 readbuf, writebuf, 0);
5764 mips_xfer_register (gdbarch, regcache,
5765 gdbarch_num_regs (gdbarch) + 3,
5766 4, gdbarch_byte_order (gdbarch),
5767 readbuf, writebuf, 4);
5768 }
5769 return RETURN_VALUE_REGISTER_CONVENTION;
5770 }
5771 #if 0
5772 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5773 && TYPE_NFIELDS (type) <= 2
5774 && TYPE_NFIELDS (type) >= 1
5775 && ((TYPE_NFIELDS (type) == 1
5776 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5777 == TYPE_CODE_FLT))
5778 || (TYPE_NFIELDS (type) == 2
5779 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5780 == TYPE_CODE_FLT)
5781 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5782 == TYPE_CODE_FLT)))
5783 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5784 {
5785 /* A struct that contains one or two floats. Each value is part
5786 in the least significant part of their floating point
5787 register.. */
5788 gdb_byte reg[MAX_REGISTER_SIZE];
5789 int regnum;
5790 int field;
5791 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5792 field < TYPE_NFIELDS (type); field++, regnum += 2)
5793 {
5794 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5795 / TARGET_CHAR_BIT);
5796 if (mips_debug)
5797 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5798 offset);
5799 mips_xfer_register (gdbarch, regcache,
5800 gdbarch_num_regs (gdbarch) + regnum,
5801 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5802 gdbarch_byte_order (gdbarch),
5803 readbuf, writebuf, offset);
5804 }
5805 return RETURN_VALUE_REGISTER_CONVENTION;
5806 }
5807 #endif
5808 #if 0
5809 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5810 || TYPE_CODE (type) == TYPE_CODE_UNION)
5811 {
5812 /* A structure or union. Extract the left justified value,
5813 regardless of the byte order. I.e. DO NOT USE
5814 mips_xfer_lower. */
5815 int offset;
5816 int regnum;
5817 for (offset = 0, regnum = MIPS_V0_REGNUM;
5818 offset < TYPE_LENGTH (type);
5819 offset += register_size (gdbarch, regnum), regnum++)
5820 {
5821 int xfer = register_size (gdbarch, regnum);
5822 if (offset + xfer > TYPE_LENGTH (type))
5823 xfer = TYPE_LENGTH (type) - offset;
5824 if (mips_debug)
5825 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5826 offset, xfer, regnum);
5827 mips_xfer_register (gdbarch, regcache,
5828 gdbarch_num_regs (gdbarch) + regnum, xfer,
5829 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5830 }
5831 return RETURN_VALUE_REGISTER_CONVENTION;
5832 }
5833 #endif
5834 else
5835 {
5836 /* A scalar extract each part but least-significant-byte
5837 justified. o32 thinks registers are 4 byte, regardless of
5838 the ISA. */
5839 int offset;
5840 int regnum;
5841 for (offset = 0, regnum = MIPS_V0_REGNUM;
5842 offset < TYPE_LENGTH (type);
5843 offset += MIPS32_REGSIZE, regnum++)
5844 {
5845 int xfer = MIPS32_REGSIZE;
5846 if (offset + xfer > TYPE_LENGTH (type))
5847 xfer = TYPE_LENGTH (type) - offset;
5848 if (mips_debug)
5849 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5850 offset, xfer, regnum);
5851 mips_xfer_register (gdbarch, regcache,
5852 gdbarch_num_regs (gdbarch) + regnum, xfer,
5853 gdbarch_byte_order (gdbarch),
5854 readbuf, writebuf, offset);
5855 }
5856 return RETURN_VALUE_REGISTER_CONVENTION;
5857 }
5858 }
5859
5860 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5861 ABI. */
5862
5863 static CORE_ADDR
5864 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5865 struct regcache *regcache, CORE_ADDR bp_addr,
5866 int nargs,
5867 struct value **args, CORE_ADDR sp,
5868 int struct_return, CORE_ADDR struct_addr)
5869 {
5870 int argreg;
5871 int float_argreg;
5872 int argnum;
5873 int len = 0;
5874 int stack_offset = 0;
5875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5876 CORE_ADDR func_addr = find_function_addr (function, NULL);
5877
5878 /* For shared libraries, "t9" needs to point at the function
5879 address. */
5880 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5881
5882 /* Set the return address register to point to the entry point of
5883 the program, where a breakpoint lies in wait. */
5884 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5885
5886 /* First ensure that the stack and structure return address (if any)
5887 are properly aligned. The stack has to be at least 64-bit
5888 aligned even on 32-bit machines, because doubles must be 64-bit
5889 aligned. For n32 and n64, stack frames need to be 128-bit
5890 aligned, so we round to this widest known alignment. */
5891
5892 sp = align_down (sp, 16);
5893 struct_addr = align_down (struct_addr, 16);
5894
5895 /* Now make space on the stack for the args. */
5896 for (argnum = 0; argnum < nargs; argnum++)
5897 {
5898 struct type *arg_type = check_typedef (value_type (args[argnum]));
5899
5900 /* Allocate space on the stack. */
5901 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5902 }
5903 sp -= align_up (len, 16);
5904
5905 if (mips_debug)
5906 fprintf_unfiltered (gdb_stdlog,
5907 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5908 paddress (gdbarch, sp), (long) align_up (len, 16));
5909
5910 /* Initialize the integer and float register pointers. */
5911 argreg = MIPS_A0_REGNUM;
5912 float_argreg = mips_fpa0_regnum (gdbarch);
5913
5914 /* The struct_return pointer occupies the first parameter-passing reg. */
5915 if (struct_return)
5916 {
5917 if (mips_debug)
5918 fprintf_unfiltered (gdb_stdlog,
5919 "mips_o64_push_dummy_call: "
5920 "struct_return reg=%d %s\n",
5921 argreg, paddress (gdbarch, struct_addr));
5922 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5923 stack_offset += MIPS64_REGSIZE;
5924 }
5925
5926 /* Now load as many as possible of the first arguments into
5927 registers, and push the rest onto the stack. Loop thru args
5928 from first to last. */
5929 for (argnum = 0; argnum < nargs; argnum++)
5930 {
5931 const gdb_byte *val;
5932 struct value *arg = args[argnum];
5933 struct type *arg_type = check_typedef (value_type (arg));
5934 int len = TYPE_LENGTH (arg_type);
5935 enum type_code typecode = TYPE_CODE (arg_type);
5936
5937 if (mips_debug)
5938 fprintf_unfiltered (gdb_stdlog,
5939 "mips_o64_push_dummy_call: %d len=%d type=%d",
5940 argnum + 1, len, (int) typecode);
5941
5942 val = value_contents (arg);
5943
5944 /* Floating point arguments passed in registers have to be
5945 treated specially. On 32-bit architectures, doubles are
5946 passed in register pairs; the even FP register gets the
5947 low word, and the odd FP register gets the high word.
5948 On O64, the first two floating point arguments are also
5949 copied to general registers, because MIPS16 functions
5950 don't use float registers for arguments. This duplication
5951 of arguments in general registers can't hurt non-MIPS16
5952 functions because those registers are normally skipped. */
5953
5954 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5955 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5956 {
5957 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5958 if (mips_debug)
5959 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5960 float_argreg, phex (regval, len));
5961 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5962 if (mips_debug)
5963 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5964 argreg, phex (regval, len));
5965 regcache_cooked_write_unsigned (regcache, argreg, regval);
5966 argreg++;
5967 /* Reserve space for the FP register. */
5968 stack_offset += align_up (len, MIPS64_REGSIZE);
5969 }
5970 else
5971 {
5972 /* Copy the argument to general registers or the stack in
5973 register-sized pieces. Large arguments are split between
5974 registers and stack. */
5975 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5976 are treated specially: Irix cc passes them in registers
5977 where gcc sometimes puts them on the stack. For maximum
5978 compatibility, we will put them in both places. */
5979 int odd_sized_struct = (len > MIPS64_REGSIZE
5980 && len % MIPS64_REGSIZE != 0);
5981 while (len > 0)
5982 {
5983 /* Remember if the argument was written to the stack. */
5984 int stack_used_p = 0;
5985 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5986
5987 if (mips_debug)
5988 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5989 partial_len);
5990
5991 /* Write this portion of the argument to the stack. */
5992 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5993 || odd_sized_struct)
5994 {
5995 /* Should shorter than int integer values be
5996 promoted to int before being stored? */
5997 int longword_offset = 0;
5998 CORE_ADDR addr;
5999 stack_used_p = 1;
6000 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6001 {
6002 if ((typecode == TYPE_CODE_INT
6003 || typecode == TYPE_CODE_PTR
6004 || typecode == TYPE_CODE_FLT)
6005 && len <= 4)
6006 longword_offset = MIPS64_REGSIZE - len;
6007 }
6008
6009 if (mips_debug)
6010 {
6011 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
6012 paddress (gdbarch, stack_offset));
6013 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
6014 paddress (gdbarch, longword_offset));
6015 }
6016
6017 addr = sp + stack_offset + longword_offset;
6018
6019 if (mips_debug)
6020 {
6021 int i;
6022 fprintf_unfiltered (gdb_stdlog, " @%s ",
6023 paddress (gdbarch, addr));
6024 for (i = 0; i < partial_len; i++)
6025 {
6026 fprintf_unfiltered (gdb_stdlog, "%02x",
6027 val[i] & 0xff);
6028 }
6029 }
6030 write_memory (addr, val, partial_len);
6031 }
6032
6033 /* Note!!! This is NOT an else clause. Odd sized
6034 structs may go thru BOTH paths. */
6035 /* Write this portion of the argument to a general
6036 purpose register. */
6037 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6038 {
6039 LONGEST regval = extract_signed_integer (val, partial_len,
6040 byte_order);
6041 /* Value may need to be sign extended, because
6042 mips_isa_regsize() != mips_abi_regsize(). */
6043
6044 /* A non-floating-point argument being passed in a
6045 general register. If a struct or union, and if
6046 the remaining length is smaller than the register
6047 size, we have to adjust the register value on
6048 big endian targets.
6049
6050 It does not seem to be necessary to do the
6051 same for integral types. */
6052
6053 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6054 && partial_len < MIPS64_REGSIZE
6055 && (typecode == TYPE_CODE_STRUCT
6056 || typecode == TYPE_CODE_UNION))
6057 regval <<= ((MIPS64_REGSIZE - partial_len)
6058 * TARGET_CHAR_BIT);
6059
6060 if (mips_debug)
6061 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6062 argreg,
6063 phex (regval, MIPS64_REGSIZE));
6064 regcache_cooked_write_unsigned (regcache, argreg, regval);
6065 argreg++;
6066
6067 /* Prevent subsequent floating point arguments from
6068 being passed in floating point registers. */
6069 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6070 }
6071
6072 len -= partial_len;
6073 val += partial_len;
6074
6075 /* Compute the offset into the stack at which we will
6076 copy the next parameter.
6077
6078 In older ABIs, the caller reserved space for
6079 registers that contained arguments. This was loosely
6080 refered to as their "home". Consequently, space is
6081 always allocated. */
6082
6083 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6084 }
6085 }
6086 if (mips_debug)
6087 fprintf_unfiltered (gdb_stdlog, "\n");
6088 }
6089
6090 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6091
6092 /* Return adjusted stack pointer. */
6093 return sp;
6094 }
6095
6096 static enum return_value_convention
6097 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6098 struct type *type, struct regcache *regcache,
6099 gdb_byte *readbuf, const gdb_byte *writebuf)
6100 {
6101 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6102 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6104 enum mips_fval_reg fval_reg;
6105
6106 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6107 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6108 || TYPE_CODE (type) == TYPE_CODE_UNION
6109 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6110 return RETURN_VALUE_STRUCT_CONVENTION;
6111 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6112 {
6113 /* A floating-point value. If reading in or copying, then we get it
6114 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6115 If writing out only, then we put it to both FP0 and GPR2. We do
6116 not support reading in with no function known, if this safety
6117 check ever triggers, then we'll have to try harder. */
6118 gdb_assert (function || !readbuf);
6119 if (mips_debug)
6120 switch (fval_reg)
6121 {
6122 case mips_fval_fpr:
6123 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6124 break;
6125 case mips_fval_gpr:
6126 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6127 break;
6128 case mips_fval_both:
6129 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6130 break;
6131 }
6132 if (fval_reg != mips_fval_gpr)
6133 mips_xfer_register (gdbarch, regcache,
6134 (gdbarch_num_regs (gdbarch)
6135 + mips_regnum (gdbarch)->fp0),
6136 TYPE_LENGTH (type),
6137 gdbarch_byte_order (gdbarch),
6138 readbuf, writebuf, 0);
6139 if (fval_reg != mips_fval_fpr)
6140 mips_xfer_register (gdbarch, regcache,
6141 gdbarch_num_regs (gdbarch) + 2,
6142 TYPE_LENGTH (type),
6143 gdbarch_byte_order (gdbarch),
6144 readbuf, writebuf, 0);
6145 return RETURN_VALUE_REGISTER_CONVENTION;
6146 }
6147 else
6148 {
6149 /* A scalar extract each part but least-significant-byte
6150 justified. */
6151 int offset;
6152 int regnum;
6153 for (offset = 0, regnum = MIPS_V0_REGNUM;
6154 offset < TYPE_LENGTH (type);
6155 offset += MIPS64_REGSIZE, regnum++)
6156 {
6157 int xfer = MIPS64_REGSIZE;
6158 if (offset + xfer > TYPE_LENGTH (type))
6159 xfer = TYPE_LENGTH (type) - offset;
6160 if (mips_debug)
6161 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6162 offset, xfer, regnum);
6163 mips_xfer_register (gdbarch, regcache,
6164 gdbarch_num_regs (gdbarch) + regnum,
6165 xfer, gdbarch_byte_order (gdbarch),
6166 readbuf, writebuf, offset);
6167 }
6168 return RETURN_VALUE_REGISTER_CONVENTION;
6169 }
6170 }
6171
6172 /* Floating point register management.
6173
6174 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6175 64bit operations, these early MIPS cpus treat fp register pairs
6176 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6177 registers and offer a compatibility mode that emulates the MIPS2 fp
6178 model. When operating in MIPS2 fp compat mode, later cpu's split
6179 double precision floats into two 32-bit chunks and store them in
6180 consecutive fp regs. To display 64-bit floats stored in this
6181 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6182 Throw in user-configurable endianness and you have a real mess.
6183
6184 The way this works is:
6185 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6186 double-precision value will be split across two logical registers.
6187 The lower-numbered logical register will hold the low-order bits,
6188 regardless of the processor's endianness.
6189 - If we are on a 64-bit processor, and we are looking for a
6190 single-precision value, it will be in the low ordered bits
6191 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6192 save slot in memory.
6193 - If we are in 64-bit mode, everything is straightforward.
6194
6195 Note that this code only deals with "live" registers at the top of the
6196 stack. We will attempt to deal with saved registers later, when
6197 the raw/cooked register interface is in place. (We need a general
6198 interface that can deal with dynamic saved register sizes -- fp
6199 regs could be 32 bits wide in one frame and 64 on the frame above
6200 and below). */
6201
6202 /* Copy a 32-bit single-precision value from the current frame
6203 into rare_buffer. */
6204
6205 static void
6206 mips_read_fp_register_single (struct frame_info *frame, int regno,
6207 gdb_byte *rare_buffer)
6208 {
6209 struct gdbarch *gdbarch = get_frame_arch (frame);
6210 int raw_size = register_size (gdbarch, regno);
6211 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6212
6213 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6214 error (_("can't read register %d (%s)"),
6215 regno, gdbarch_register_name (gdbarch, regno));
6216 if (raw_size == 8)
6217 {
6218 /* We have a 64-bit value for this register. Find the low-order
6219 32 bits. */
6220 int offset;
6221
6222 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6223 offset = 4;
6224 else
6225 offset = 0;
6226
6227 memcpy (rare_buffer, raw_buffer + offset, 4);
6228 }
6229 else
6230 {
6231 memcpy (rare_buffer, raw_buffer, 4);
6232 }
6233 }
6234
6235 /* Copy a 64-bit double-precision value from the current frame into
6236 rare_buffer. This may include getting half of it from the next
6237 register. */
6238
6239 static void
6240 mips_read_fp_register_double (struct frame_info *frame, int regno,
6241 gdb_byte *rare_buffer)
6242 {
6243 struct gdbarch *gdbarch = get_frame_arch (frame);
6244 int raw_size = register_size (gdbarch, regno);
6245
6246 if (raw_size == 8 && !mips2_fp_compat (frame))
6247 {
6248 /* We have a 64-bit value for this register, and we should use
6249 all 64 bits. */
6250 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6251 error (_("can't read register %d (%s)"),
6252 regno, gdbarch_register_name (gdbarch, regno));
6253 }
6254 else
6255 {
6256 int rawnum = regno % gdbarch_num_regs (gdbarch);
6257
6258 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6259 internal_error (__FILE__, __LINE__,
6260 _("mips_read_fp_register_double: bad access to "
6261 "odd-numbered FP register"));
6262
6263 /* mips_read_fp_register_single will find the correct 32 bits from
6264 each register. */
6265 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6266 {
6267 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6268 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6269 }
6270 else
6271 {
6272 mips_read_fp_register_single (frame, regno, rare_buffer);
6273 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6274 }
6275 }
6276 }
6277
6278 static void
6279 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6280 int regnum)
6281 { /* Do values for FP (float) regs. */
6282 struct gdbarch *gdbarch = get_frame_arch (frame);
6283 gdb_byte *raw_buffer;
6284 double doub, flt1; /* Doubles extracted from raw hex data. */
6285 int inv1, inv2;
6286
6287 raw_buffer
6288 = ((gdb_byte *)
6289 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6290
6291 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6292 fprintf_filtered (file, "%*s",
6293 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6294 "");
6295
6296 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6297 {
6298 struct value_print_options opts;
6299
6300 /* 4-byte registers: Print hex and floating. Also print even
6301 numbered registers as doubles. */
6302 mips_read_fp_register_single (frame, regnum, raw_buffer);
6303 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6304 raw_buffer, &inv1);
6305
6306 get_formatted_print_options (&opts, 'x');
6307 print_scalar_formatted (raw_buffer,
6308 builtin_type (gdbarch)->builtin_uint32,
6309 &opts, 'w', file);
6310
6311 fprintf_filtered (file, " flt: ");
6312 if (inv1)
6313 fprintf_filtered (file, " <invalid float> ");
6314 else
6315 fprintf_filtered (file, "%-17.9g", flt1);
6316
6317 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6318 {
6319 mips_read_fp_register_double (frame, regnum, raw_buffer);
6320 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6321 raw_buffer, &inv2);
6322
6323 fprintf_filtered (file, " dbl: ");
6324 if (inv2)
6325 fprintf_filtered (file, "<invalid double>");
6326 else
6327 fprintf_filtered (file, "%-24.17g", doub);
6328 }
6329 }
6330 else
6331 {
6332 struct value_print_options opts;
6333
6334 /* Eight byte registers: print each one as hex, float and double. */
6335 mips_read_fp_register_single (frame, regnum, raw_buffer);
6336 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6337 raw_buffer, &inv1);
6338
6339 mips_read_fp_register_double (frame, regnum, raw_buffer);
6340 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6341 raw_buffer, &inv2);
6342
6343 get_formatted_print_options (&opts, 'x');
6344 print_scalar_formatted (raw_buffer,
6345 builtin_type (gdbarch)->builtin_uint64,
6346 &opts, 'g', file);
6347
6348 fprintf_filtered (file, " flt: ");
6349 if (inv1)
6350 fprintf_filtered (file, "<invalid float>");
6351 else
6352 fprintf_filtered (file, "%-17.9g", flt1);
6353
6354 fprintf_filtered (file, " dbl: ");
6355 if (inv2)
6356 fprintf_filtered (file, "<invalid double>");
6357 else
6358 fprintf_filtered (file, "%-24.17g", doub);
6359 }
6360 }
6361
6362 static void
6363 mips_print_register (struct ui_file *file, struct frame_info *frame,
6364 int regnum)
6365 {
6366 struct gdbarch *gdbarch = get_frame_arch (frame);
6367 struct value_print_options opts;
6368 struct value *val;
6369
6370 if (mips_float_register_p (gdbarch, regnum))
6371 {
6372 mips_print_fp_register (file, frame, regnum);
6373 return;
6374 }
6375
6376 val = get_frame_register_value (frame, regnum);
6377
6378 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6379
6380 /* The problem with printing numeric register names (r26, etc.) is that
6381 the user can't use them on input. Probably the best solution is to
6382 fix it so that either the numeric or the funky (a2, etc.) names
6383 are accepted on input. */
6384 if (regnum < MIPS_NUMREGS)
6385 fprintf_filtered (file, "(r%d): ", regnum);
6386 else
6387 fprintf_filtered (file, ": ");
6388
6389 get_formatted_print_options (&opts, 'x');
6390 val_print_scalar_formatted (value_type (val),
6391 value_contents_for_printing (val),
6392 value_embedded_offset (val),
6393 val,
6394 &opts, 0, file);
6395 }
6396
6397 /* Print IEEE exception condition bits in FLAGS. */
6398
6399 static void
6400 print_fpu_flags (struct ui_file *file, int flags)
6401 {
6402 if (flags & (1 << 0))
6403 fputs_filtered (" inexact", file);
6404 if (flags & (1 << 1))
6405 fputs_filtered (" uflow", file);
6406 if (flags & (1 << 2))
6407 fputs_filtered (" oflow", file);
6408 if (flags & (1 << 3))
6409 fputs_filtered (" div0", file);
6410 if (flags & (1 << 4))
6411 fputs_filtered (" inval", file);
6412 if (flags & (1 << 5))
6413 fputs_filtered (" unimp", file);
6414 fputc_filtered ('\n', file);
6415 }
6416
6417 /* Print interesting information about the floating point processor
6418 (if present) or emulator. */
6419
6420 static void
6421 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6422 struct frame_info *frame, const char *args)
6423 {
6424 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6425 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6426 ULONGEST fcs = 0;
6427 int i;
6428
6429 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6430 type = MIPS_FPU_NONE;
6431
6432 fprintf_filtered (file, "fpu type: %s\n",
6433 type == MIPS_FPU_DOUBLE ? "double-precision"
6434 : type == MIPS_FPU_SINGLE ? "single-precision"
6435 : "none / unused");
6436
6437 if (type == MIPS_FPU_NONE)
6438 return;
6439
6440 fprintf_filtered (file, "reg size: %d bits\n",
6441 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6442
6443 fputs_filtered ("cond :", file);
6444 if (fcs & (1 << 23))
6445 fputs_filtered (" 0", file);
6446 for (i = 1; i <= 7; i++)
6447 if (fcs & (1 << (24 + i)))
6448 fprintf_filtered (file, " %d", i);
6449 fputc_filtered ('\n', file);
6450
6451 fputs_filtered ("cause :", file);
6452 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6453 fputs ("mask :", stdout);
6454 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6455 fputs ("flags :", stdout);
6456 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6457
6458 fputs_filtered ("rounding: ", file);
6459 switch (fcs & 3)
6460 {
6461 case 0: fputs_filtered ("nearest\n", file); break;
6462 case 1: fputs_filtered ("zero\n", file); break;
6463 case 2: fputs_filtered ("+inf\n", file); break;
6464 case 3: fputs_filtered ("-inf\n", file); break;
6465 }
6466
6467 fputs_filtered ("flush :", file);
6468 if (fcs & (1 << 21))
6469 fputs_filtered (" nearest", file);
6470 if (fcs & (1 << 22))
6471 fputs_filtered (" override", file);
6472 if (fcs & (1 << 24))
6473 fputs_filtered (" zero", file);
6474 if ((fcs & (0xb << 21)) == 0)
6475 fputs_filtered (" no", file);
6476 fputc_filtered ('\n', file);
6477
6478 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6479 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6480 fputc_filtered ('\n', file);
6481
6482 default_print_float_info (gdbarch, file, frame, args);
6483 }
6484
6485 /* Replacement for generic do_registers_info.
6486 Print regs in pretty columns. */
6487
6488 static int
6489 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6490 int regnum)
6491 {
6492 fprintf_filtered (file, " ");
6493 mips_print_fp_register (file, frame, regnum);
6494 fprintf_filtered (file, "\n");
6495 return regnum + 1;
6496 }
6497
6498
6499 /* Print a row's worth of GP (int) registers, with name labels above. */
6500
6501 static int
6502 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6503 int start_regnum)
6504 {
6505 struct gdbarch *gdbarch = get_frame_arch (frame);
6506 /* Do values for GP (int) regs. */
6507 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6508 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6509 per row. */
6510 int col, byte;
6511 int regnum;
6512
6513 /* For GP registers, we print a separate row of names above the vals. */
6514 for (col = 0, regnum = start_regnum;
6515 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6516 + gdbarch_num_pseudo_regs (gdbarch);
6517 regnum++)
6518 {
6519 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6520 continue; /* unused register */
6521 if (mips_float_register_p (gdbarch, regnum))
6522 break; /* End the row: reached FP register. */
6523 /* Large registers are handled separately. */
6524 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6525 {
6526 if (col > 0)
6527 break; /* End the row before this register. */
6528
6529 /* Print this register on a row by itself. */
6530 mips_print_register (file, frame, regnum);
6531 fprintf_filtered (file, "\n");
6532 return regnum + 1;
6533 }
6534 if (col == 0)
6535 fprintf_filtered (file, " ");
6536 fprintf_filtered (file,
6537 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6538 gdbarch_register_name (gdbarch, regnum));
6539 col++;
6540 }
6541
6542 if (col == 0)
6543 return regnum;
6544
6545 /* Print the R0 to R31 names. */
6546 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6547 fprintf_filtered (file, "\n R%-4d",
6548 start_regnum % gdbarch_num_regs (gdbarch));
6549 else
6550 fprintf_filtered (file, "\n ");
6551
6552 /* Now print the values in hex, 4 or 8 to the row. */
6553 for (col = 0, regnum = start_regnum;
6554 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6555 + gdbarch_num_pseudo_regs (gdbarch);
6556 regnum++)
6557 {
6558 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6559 continue; /* unused register */
6560 if (mips_float_register_p (gdbarch, regnum))
6561 break; /* End row: reached FP register. */
6562 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6563 break; /* End row: large register. */
6564
6565 /* OK: get the data in raw format. */
6566 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6567 error (_("can't read register %d (%s)"),
6568 regnum, gdbarch_register_name (gdbarch, regnum));
6569 /* pad small registers */
6570 for (byte = 0;
6571 byte < (mips_abi_regsize (gdbarch)
6572 - register_size (gdbarch, regnum)); byte++)
6573 printf_filtered (" ");
6574 /* Now print the register value in hex, endian order. */
6575 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6576 for (byte =
6577 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6578 byte < register_size (gdbarch, regnum); byte++)
6579 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6580 else
6581 for (byte = register_size (gdbarch, regnum) - 1;
6582 byte >= 0; byte--)
6583 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6584 fprintf_filtered (file, " ");
6585 col++;
6586 }
6587 if (col > 0) /* ie. if we actually printed anything... */
6588 fprintf_filtered (file, "\n");
6589
6590 return regnum;
6591 }
6592
6593 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6594
6595 static void
6596 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6597 struct frame_info *frame, int regnum, int all)
6598 {
6599 if (regnum != -1) /* Do one specified register. */
6600 {
6601 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6602 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6603 error (_("Not a valid register for the current processor type"));
6604
6605 mips_print_register (file, frame, regnum);
6606 fprintf_filtered (file, "\n");
6607 }
6608 else
6609 /* Do all (or most) registers. */
6610 {
6611 regnum = gdbarch_num_regs (gdbarch);
6612 while (regnum < gdbarch_num_regs (gdbarch)
6613 + gdbarch_num_pseudo_regs (gdbarch))
6614 {
6615 if (mips_float_register_p (gdbarch, regnum))
6616 {
6617 if (all) /* True for "INFO ALL-REGISTERS" command. */
6618 regnum = print_fp_register_row (file, frame, regnum);
6619 else
6620 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6621 }
6622 else
6623 regnum = print_gp_register_row (file, frame, regnum);
6624 }
6625 }
6626 }
6627
6628 static int
6629 mips_single_step_through_delay (struct gdbarch *gdbarch,
6630 struct frame_info *frame)
6631 {
6632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6633 CORE_ADDR pc = get_frame_pc (frame);
6634 struct address_space *aspace;
6635 enum mips_isa isa;
6636 ULONGEST insn;
6637 int status;
6638 int size;
6639
6640 if ((mips_pc_is_mips (pc)
6641 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6642 || (mips_pc_is_micromips (gdbarch, pc)
6643 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6644 || (mips_pc_is_mips16 (gdbarch, pc)
6645 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6646 return 0;
6647
6648 isa = mips_pc_isa (gdbarch, pc);
6649 /* _has_delay_slot above will have validated the read. */
6650 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6651 size = mips_insn_size (isa, insn);
6652 aspace = get_frame_address_space (frame);
6653 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6654 }
6655
6656 /* To skip prologues, I use this predicate. Returns either PC itself
6657 if the code at PC does not look like a function prologue; otherwise
6658 returns an address that (if we're lucky) follows the prologue. If
6659 LENIENT, then we must skip everything which is involved in setting
6660 up the frame (it's OK to skip more, just so long as we don't skip
6661 anything which might clobber the registers which are being saved.
6662 We must skip more in the case where part of the prologue is in the
6663 delay slot of a non-prologue instruction). */
6664
6665 static CORE_ADDR
6666 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6667 {
6668 CORE_ADDR limit_pc;
6669 CORE_ADDR func_addr;
6670
6671 /* See if we can determine the end of the prologue via the symbol table.
6672 If so, then return either PC, or the PC after the prologue, whichever
6673 is greater. */
6674 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6675 {
6676 CORE_ADDR post_prologue_pc
6677 = skip_prologue_using_sal (gdbarch, func_addr);
6678 if (post_prologue_pc != 0)
6679 return max (pc, post_prologue_pc);
6680 }
6681
6682 /* Can't determine prologue from the symbol table, need to examine
6683 instructions. */
6684
6685 /* Find an upper limit on the function prologue using the debug
6686 information. If the debug information could not be used to provide
6687 that bound, then use an arbitrary large number as the upper bound. */
6688 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6689 if (limit_pc == 0)
6690 limit_pc = pc + 100; /* Magic. */
6691
6692 if (mips_pc_is_mips16 (gdbarch, pc))
6693 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6694 else if (mips_pc_is_micromips (gdbarch, pc))
6695 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6696 else
6697 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6698 }
6699
6700 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6701 This is a helper function for mips_stack_frame_destroyed_p. */
6702
6703 static int
6704 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6705 {
6706 CORE_ADDR func_addr = 0, func_end = 0;
6707
6708 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6709 {
6710 /* The MIPS epilogue is max. 12 bytes long. */
6711 CORE_ADDR addr = func_end - 12;
6712
6713 if (addr < func_addr + 4)
6714 addr = func_addr + 4;
6715 if (pc < addr)
6716 return 0;
6717
6718 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6719 {
6720 unsigned long high_word;
6721 unsigned long inst;
6722
6723 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6724 high_word = (inst >> 16) & 0xffff;
6725
6726 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6727 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6728 && inst != 0x03e00008 /* jr $ra */
6729 && inst != 0x00000000) /* nop */
6730 return 0;
6731 }
6732
6733 return 1;
6734 }
6735
6736 return 0;
6737 }
6738
6739 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6740 This is a helper function for mips_stack_frame_destroyed_p. */
6741
6742 static int
6743 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6744 {
6745 CORE_ADDR func_addr = 0;
6746 CORE_ADDR func_end = 0;
6747 CORE_ADDR addr;
6748 ULONGEST insn;
6749 long offset;
6750 int dreg;
6751 int sreg;
6752 int loc;
6753
6754 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6755 return 0;
6756
6757 /* The microMIPS epilogue is max. 12 bytes long. */
6758 addr = func_end - 12;
6759
6760 if (addr < func_addr + 2)
6761 addr = func_addr + 2;
6762 if (pc < addr)
6763 return 0;
6764
6765 for (; pc < func_end; pc += loc)
6766 {
6767 loc = 0;
6768 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6769 loc += MIPS_INSN16_SIZE;
6770 switch (mips_insn_size (ISA_MICROMIPS, insn))
6771 {
6772 /* 48-bit instructions. */
6773 case 3 * MIPS_INSN16_SIZE:
6774 /* No epilogue instructions in this category. */
6775 return 0;
6776
6777 /* 32-bit instructions. */
6778 case 2 * MIPS_INSN16_SIZE:
6779 insn <<= 16;
6780 insn |= mips_fetch_instruction (gdbarch,
6781 ISA_MICROMIPS, pc + loc, NULL);
6782 loc += MIPS_INSN16_SIZE;
6783 switch (micromips_op (insn >> 16))
6784 {
6785 case 0xc: /* ADDIU: bits 001100 */
6786 case 0x17: /* DADDIU: bits 010111 */
6787 sreg = b0s5_reg (insn >> 16);
6788 dreg = b5s5_reg (insn >> 16);
6789 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6790 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6791 /* (D)ADDIU $sp, imm */
6792 && offset >= 0)
6793 break;
6794 return 0;
6795
6796 default:
6797 return 0;
6798 }
6799 break;
6800
6801 /* 16-bit instructions. */
6802 case MIPS_INSN16_SIZE:
6803 switch (micromips_op (insn))
6804 {
6805 case 0x3: /* MOVE: bits 000011 */
6806 sreg = b0s5_reg (insn);
6807 dreg = b5s5_reg (insn);
6808 if (sreg == 0 && dreg == 0)
6809 /* MOVE $zero, $zero aka NOP */
6810 break;
6811 return 0;
6812
6813 case 0x11: /* POOL16C: bits 010001 */
6814 if (b5s5_op (insn) == 0x18
6815 /* JRADDIUSP: bits 010011 11000 */
6816 || (b5s5_op (insn) == 0xd
6817 /* JRC: bits 010011 01101 */
6818 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6819 /* JRC $ra */
6820 break;
6821 return 0;
6822
6823 case 0x13: /* POOL16D: bits 010011 */
6824 offset = micromips_decode_imm9 (b1s9_imm (insn));
6825 if ((insn & 0x1) == 0x1
6826 /* ADDIUSP: bits 010011 1 */
6827 && offset > 0)
6828 break;
6829 return 0;
6830
6831 default:
6832 return 0;
6833 }
6834 }
6835 }
6836
6837 return 1;
6838 }
6839
6840 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6841 This is a helper function for mips_stack_frame_destroyed_p. */
6842
6843 static int
6844 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6845 {
6846 CORE_ADDR func_addr = 0, func_end = 0;
6847
6848 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6849 {
6850 /* The MIPS epilogue is max. 12 bytes long. */
6851 CORE_ADDR addr = func_end - 12;
6852
6853 if (addr < func_addr + 4)
6854 addr = func_addr + 4;
6855 if (pc < addr)
6856 return 0;
6857
6858 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6859 {
6860 unsigned short inst;
6861
6862 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6863
6864 if ((inst & 0xf800) == 0xf000) /* extend */
6865 continue;
6866
6867 if (inst != 0x6300 /* addiu $sp,offset */
6868 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6869 && inst != 0xe820 /* jr $ra */
6870 && inst != 0xe8a0 /* jrc $ra */
6871 && inst != 0x6500) /* nop */
6872 return 0;
6873 }
6874
6875 return 1;
6876 }
6877
6878 return 0;
6879 }
6880
6881 /* Implement the stack_frame_destroyed_p gdbarch method.
6882
6883 The epilogue is defined here as the area at the end of a function,
6884 after an instruction which destroys the function's stack frame. */
6885
6886 static int
6887 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6888 {
6889 if (mips_pc_is_mips16 (gdbarch, pc))
6890 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6891 else if (mips_pc_is_micromips (gdbarch, pc))
6892 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6893 else
6894 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6895 }
6896
6897 /* Root of all "set mips "/"show mips " commands. This will eventually be
6898 used for all MIPS-specific commands. */
6899
6900 static void
6901 show_mips_command (char *args, int from_tty)
6902 {
6903 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6904 }
6905
6906 static void
6907 set_mips_command (char *args, int from_tty)
6908 {
6909 printf_unfiltered
6910 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6911 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6912 }
6913
6914 /* Commands to show/set the MIPS FPU type. */
6915
6916 static void
6917 show_mipsfpu_command (char *args, int from_tty)
6918 {
6919 char *fpu;
6920
6921 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6922 {
6923 printf_unfiltered
6924 ("The MIPS floating-point coprocessor is unknown "
6925 "because the current architecture is not MIPS.\n");
6926 return;
6927 }
6928
6929 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6930 {
6931 case MIPS_FPU_SINGLE:
6932 fpu = "single-precision";
6933 break;
6934 case MIPS_FPU_DOUBLE:
6935 fpu = "double-precision";
6936 break;
6937 case MIPS_FPU_NONE:
6938 fpu = "absent (none)";
6939 break;
6940 default:
6941 internal_error (__FILE__, __LINE__, _("bad switch"));
6942 }
6943 if (mips_fpu_type_auto)
6944 printf_unfiltered ("The MIPS floating-point coprocessor "
6945 "is set automatically (currently %s)\n",
6946 fpu);
6947 else
6948 printf_unfiltered
6949 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6950 }
6951
6952
6953 static void
6954 set_mipsfpu_command (char *args, int from_tty)
6955 {
6956 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6957 "\"single\",\"none\" or \"auto\".\n");
6958 show_mipsfpu_command (args, from_tty);
6959 }
6960
6961 static void
6962 set_mipsfpu_single_command (char *args, int from_tty)
6963 {
6964 struct gdbarch_info info;
6965 gdbarch_info_init (&info);
6966 mips_fpu_type = MIPS_FPU_SINGLE;
6967 mips_fpu_type_auto = 0;
6968 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6969 instead of relying on globals. Doing that would let generic code
6970 handle the search for this specific architecture. */
6971 if (!gdbarch_update_p (info))
6972 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6973 }
6974
6975 static void
6976 set_mipsfpu_double_command (char *args, int from_tty)
6977 {
6978 struct gdbarch_info info;
6979 gdbarch_info_init (&info);
6980 mips_fpu_type = MIPS_FPU_DOUBLE;
6981 mips_fpu_type_auto = 0;
6982 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6983 instead of relying on globals. Doing that would let generic code
6984 handle the search for this specific architecture. */
6985 if (!gdbarch_update_p (info))
6986 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6987 }
6988
6989 static void
6990 set_mipsfpu_none_command (char *args, int from_tty)
6991 {
6992 struct gdbarch_info info;
6993 gdbarch_info_init (&info);
6994 mips_fpu_type = MIPS_FPU_NONE;
6995 mips_fpu_type_auto = 0;
6996 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6997 instead of relying on globals. Doing that would let generic code
6998 handle the search for this specific architecture. */
6999 if (!gdbarch_update_p (info))
7000 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
7001 }
7002
7003 static void
7004 set_mipsfpu_auto_command (char *args, int from_tty)
7005 {
7006 mips_fpu_type_auto = 1;
7007 }
7008
7009 /* Attempt to identify the particular processor model by reading the
7010 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
7011 the relevant processor still exists (it dates back to '94) and
7012 secondly this is not the way to do this. The processor type should
7013 be set by forcing an architecture change. */
7014
7015 void
7016 deprecated_mips_set_processor_regs_hack (void)
7017 {
7018 struct regcache *regcache = get_current_regcache ();
7019 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7021 ULONGEST prid;
7022
7023 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
7024 if ((prid & ~0xf) == 0x700)
7025 tdep->mips_processor_reg_names = mips_r3041_reg_names;
7026 }
7027
7028 /* Just like reinit_frame_cache, but with the right arguments to be
7029 callable as an sfunc. */
7030
7031 static void
7032 reinit_frame_cache_sfunc (char *args, int from_tty,
7033 struct cmd_list_element *c)
7034 {
7035 reinit_frame_cache ();
7036 }
7037
7038 static int
7039 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
7040 {
7041 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
7042
7043 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7044 disassembler needs to be able to locally determine the ISA, and
7045 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7046 work. */
7047 if (mips_pc_is_mips16 (gdbarch, memaddr))
7048 info->mach = bfd_mach_mips16;
7049 else if (mips_pc_is_micromips (gdbarch, memaddr))
7050 info->mach = bfd_mach_mips_micromips;
7051
7052 /* Round down the instruction address to the appropriate boundary. */
7053 memaddr &= (info->mach == bfd_mach_mips16
7054 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7055
7056 /* Set the disassembler options. */
7057 if (!info->disassembler_options)
7058 /* This string is not recognized explicitly by the disassembler,
7059 but it tells the disassembler to not try to guess the ABI from
7060 the bfd elf headers, such that, if the user overrides the ABI
7061 of a program linked as NewABI, the disassembly will follow the
7062 register naming conventions specified by the user. */
7063 info->disassembler_options = "gpr-names=32";
7064
7065 /* Call the appropriate disassembler based on the target endian-ness. */
7066 if (info->endian == BFD_ENDIAN_BIG)
7067 return print_insn_big_mips (memaddr, info);
7068 else
7069 return print_insn_little_mips (memaddr, info);
7070 }
7071
7072 static int
7073 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7074 {
7075 /* Set up the disassembler info, so that we get the right
7076 register names from libopcodes. */
7077 info->disassembler_options = "gpr-names=n32";
7078 info->flavour = bfd_target_elf_flavour;
7079
7080 return gdb_print_insn_mips (memaddr, info);
7081 }
7082
7083 static int
7084 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7085 {
7086 /* Set up the disassembler info, so that we get the right
7087 register names from libopcodes. */
7088 info->disassembler_options = "gpr-names=64";
7089 info->flavour = bfd_target_elf_flavour;
7090
7091 return gdb_print_insn_mips (memaddr, info);
7092 }
7093
7094 /* This function implements gdbarch_breakpoint_from_pc. It uses the
7095 program counter value to determine whether a 16- or 32-bit breakpoint
7096 should be used. It returns a pointer to a string of bytes that encode a
7097 breakpoint instruction, stores the length of the string to *lenptr, and
7098 adjusts pc (if necessary) to point to the actual memory location where
7099 the breakpoint should be inserted. */
7100
7101 static const gdb_byte *
7102 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
7103 CORE_ADDR *pcptr, int *lenptr)
7104 {
7105 CORE_ADDR pc = *pcptr;
7106
7107 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7108 {
7109 if (mips_pc_is_mips16 (gdbarch, pc))
7110 {
7111 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7112 *pcptr = unmake_compact_addr (pc);
7113 *lenptr = sizeof (mips16_big_breakpoint);
7114 return mips16_big_breakpoint;
7115 }
7116 else if (mips_pc_is_micromips (gdbarch, pc))
7117 {
7118 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7119 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7120 ULONGEST insn;
7121 int err;
7122 int size;
7123
7124 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7125 size = (err != 0
7126 ? 2 : (mips_insn_size (ISA_MICROMIPS, insn) == 2
7127 ? 2 : 4));
7128 *pcptr = unmake_compact_addr (pc);
7129 *lenptr = size;
7130 return (size == 2) ? micromips16_big_breakpoint
7131 : micromips32_big_breakpoint;
7132 }
7133 else
7134 {
7135 /* The IDT board uses an unusual breakpoint value, and
7136 sometimes gets confused when it sees the usual MIPS
7137 breakpoint instruction. */
7138 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7139 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
7140 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
7141 /* Likewise, IRIX appears to expect a different breakpoint,
7142 although this is not apparent until you try to use pthreads. */
7143 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
7144
7145 *lenptr = sizeof (big_breakpoint);
7146
7147 if (strcmp (target_shortname, "mips") == 0)
7148 return idt_big_breakpoint;
7149 else if (strcmp (target_shortname, "ddb") == 0
7150 || strcmp (target_shortname, "pmon") == 0
7151 || strcmp (target_shortname, "lsi") == 0)
7152 return pmon_big_breakpoint;
7153 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
7154 return irix_big_breakpoint;
7155 else
7156 return big_breakpoint;
7157 }
7158 }
7159 else
7160 {
7161 if (mips_pc_is_mips16 (gdbarch, pc))
7162 {
7163 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7164 *pcptr = unmake_compact_addr (pc);
7165 *lenptr = sizeof (mips16_little_breakpoint);
7166 return mips16_little_breakpoint;
7167 }
7168 else if (mips_pc_is_micromips (gdbarch, pc))
7169 {
7170 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7171 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7172 ULONGEST insn;
7173 int status;
7174 int size;
7175
7176 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7177 size = status ? 2
7178 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7179 *pcptr = unmake_compact_addr (pc);
7180 *lenptr = size;
7181 return (size == 2) ? micromips16_little_breakpoint
7182 : micromips32_little_breakpoint;
7183 }
7184 else
7185 {
7186 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7187 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
7188 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
7189
7190 *lenptr = sizeof (little_breakpoint);
7191
7192 if (strcmp (target_shortname, "mips") == 0)
7193 return idt_little_breakpoint;
7194 else if (strcmp (target_shortname, "ddb") == 0
7195 || strcmp (target_shortname, "pmon") == 0
7196 || strcmp (target_shortname, "lsi") == 0)
7197 return pmon_little_breakpoint;
7198 else
7199 return little_breakpoint;
7200 }
7201 }
7202 }
7203
7204 /* Determine the remote breakpoint kind suitable for the PC. The following
7205 kinds are used:
7206
7207 * 2 -- 16-bit MIPS16 mode breakpoint,
7208
7209 * 3 -- 16-bit microMIPS mode breakpoint,
7210
7211 * 4 -- 32-bit standard MIPS mode breakpoint,
7212
7213 * 5 -- 32-bit microMIPS mode breakpoint. */
7214
7215 static void
7216 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7217 int *kindptr)
7218 {
7219 CORE_ADDR pc = *pcptr;
7220
7221 if (mips_pc_is_mips16 (gdbarch, pc))
7222 {
7223 *pcptr = unmake_compact_addr (pc);
7224 *kindptr = 2;
7225 }
7226 else if (mips_pc_is_micromips (gdbarch, pc))
7227 {
7228 ULONGEST insn;
7229 int status;
7230 int size;
7231
7232 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7233 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7234 *pcptr = unmake_compact_addr (pc);
7235 *kindptr = size | 1;
7236 }
7237 else
7238 *kindptr = 4;
7239 }
7240
7241 /* Return non-zero if the standard MIPS instruction INST has a branch
7242 delay slot (i.e. it is a jump or branch instruction). This function
7243 is based on mips32_next_pc. */
7244
7245 static int
7246 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7247 {
7248 int op;
7249 int rs;
7250 int rt;
7251
7252 op = itype_op (inst);
7253 if ((inst & 0xe0000000) != 0)
7254 {
7255 rs = itype_rs (inst);
7256 rt = itype_rt (inst);
7257 return (is_octeon_bbit_op (op, gdbarch)
7258 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7259 || op == 29 /* JALX: bits 011101 */
7260 || (op == 17
7261 && (rs == 8
7262 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7263 || (rs == 9 && (rt & 0x2) == 0)
7264 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7265 || (rs == 10 && (rt & 0x2) == 0))));
7266 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7267 }
7268 else
7269 switch (op & 0x07) /* extract bits 28,27,26 */
7270 {
7271 case 0: /* SPECIAL */
7272 op = rtype_funct (inst);
7273 return (op == 8 /* JR */
7274 || op == 9); /* JALR */
7275 break; /* end SPECIAL */
7276 case 1: /* REGIMM */
7277 rs = itype_rs (inst);
7278 rt = itype_rt (inst); /* branch condition */
7279 return ((rt & 0xc) == 0
7280 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7281 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7282 || ((rt & 0x1e) == 0x1c && rs == 0));
7283 /* BPOSGE32, BPOSGE64: bits 1110x */
7284 break; /* end REGIMM */
7285 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7286 return 1;
7287 break;
7288 }
7289 }
7290
7291 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7292 delay slot (i.e. it is a jump or branch instruction). */
7293
7294 static int
7295 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7296 {
7297 ULONGEST insn;
7298 int status;
7299
7300 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7301 if (status)
7302 return 0;
7303
7304 return mips32_instruction_has_delay_slot (gdbarch, insn);
7305 }
7306
7307 /* Return non-zero if the microMIPS instruction INSN, comprising the
7308 16-bit major opcode word in the high 16 bits and any second word
7309 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7310 jump or branch instruction). The instruction must be 32-bit if
7311 MUSTBE32 is set or can be any instruction otherwise. */
7312
7313 static int
7314 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7315 {
7316 ULONGEST major = insn >> 16;
7317
7318 switch (micromips_op (major))
7319 {
7320 /* 16-bit instructions. */
7321 case 0x33: /* B16: bits 110011 */
7322 case 0x2b: /* BNEZ16: bits 101011 */
7323 case 0x23: /* BEQZ16: bits 100011 */
7324 return !mustbe32;
7325 case 0x11: /* POOL16C: bits 010001 */
7326 return (!mustbe32
7327 && ((b5s5_op (major) == 0xc
7328 /* JR16: bits 010001 01100 */
7329 || (b5s5_op (major) & 0x1e) == 0xe)));
7330 /* JALR16, JALRS16: bits 010001 0111x */
7331 /* 32-bit instructions. */
7332 case 0x3d: /* JAL: bits 111101 */
7333 case 0x3c: /* JALX: bits 111100 */
7334 case 0x35: /* J: bits 110101 */
7335 case 0x2d: /* BNE: bits 101101 */
7336 case 0x25: /* BEQ: bits 100101 */
7337 case 0x1d: /* JALS: bits 011101 */
7338 return 1;
7339 case 0x10: /* POOL32I: bits 010000 */
7340 return ((b5s5_op (major) & 0x1c) == 0x0
7341 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7342 || (b5s5_op (major) & 0x1d) == 0x4
7343 /* BLEZ, BGTZ: bits 010000 001x0 */
7344 || (b5s5_op (major) & 0x1d) == 0x11
7345 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7346 || ((b5s5_op (major) & 0x1e) == 0x14
7347 && (major & 0x3) == 0x0)
7348 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7349 || (b5s5_op (major) & 0x1e) == 0x1a
7350 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7351 || ((b5s5_op (major) & 0x1e) == 0x1c
7352 && (major & 0x3) == 0x0)
7353 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7354 || ((b5s5_op (major) & 0x1c) == 0x1c
7355 && (major & 0x3) == 0x1));
7356 /* BC1ANY*: bits 010000 111xx xxx01 */
7357 case 0x0: /* POOL32A: bits 000000 */
7358 return (b0s6_op (insn) == 0x3c
7359 /* POOL32Axf: bits 000000 ... 111100 */
7360 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7361 /* JALR, JALR.HB: 000000 000x111100 111100 */
7362 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7363 default:
7364 return 0;
7365 }
7366 }
7367
7368 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7369 slot (i.e. it is a non-compact jump instruction). The instruction
7370 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7371
7372 static int
7373 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7374 CORE_ADDR addr, int mustbe32)
7375 {
7376 ULONGEST insn;
7377 int status;
7378
7379 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7380 if (status)
7381 return 0;
7382 insn <<= 16;
7383 if (mips_insn_size (ISA_MICROMIPS, insn) == 2 * MIPS_INSN16_SIZE)
7384 {
7385 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7386 if (status)
7387 return 0;
7388 }
7389
7390 return micromips_instruction_has_delay_slot (insn, mustbe32);
7391 }
7392
7393 /* Return non-zero if the MIPS16 instruction INST, which must be
7394 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7395 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7396 instruction). This function is based on mips16_next_pc. */
7397
7398 static int
7399 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7400 {
7401 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7402 return !mustbe32;
7403 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7404 }
7405
7406 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7407 slot (i.e. it is a non-compact jump instruction). The instruction
7408 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7409
7410 static int
7411 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7412 CORE_ADDR addr, int mustbe32)
7413 {
7414 unsigned short insn;
7415 int status;
7416
7417 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7418 if (status)
7419 return 0;
7420
7421 return mips16_instruction_has_delay_slot (insn, mustbe32);
7422 }
7423
7424 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7425 This assumes KSSEG exists. */
7426
7427 static CORE_ADDR
7428 mips_segment_boundary (CORE_ADDR bpaddr)
7429 {
7430 CORE_ADDR mask = CORE_ADDR_MAX;
7431 int segsize;
7432
7433 if (sizeof (CORE_ADDR) == 8)
7434 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7435 a compiler warning produced where CORE_ADDR is a 32-bit type even
7436 though in that case this is dead code). */
7437 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7438 {
7439 case 3:
7440 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7441 segsize = 29; /* 32-bit compatibility segment */
7442 else
7443 segsize = 62; /* xkseg */
7444 break;
7445 case 2: /* xkphys */
7446 segsize = 59;
7447 break;
7448 default: /* xksseg (1), xkuseg/kuseg (0) */
7449 segsize = 62;
7450 break;
7451 }
7452 else if (bpaddr & 0x80000000) /* kernel segment */
7453 segsize = 29;
7454 else
7455 segsize = 31; /* user segment */
7456 mask <<= segsize;
7457 return bpaddr & mask;
7458 }
7459
7460 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7461 it backwards if necessary. Return the address of the new location. */
7462
7463 static CORE_ADDR
7464 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7465 {
7466 CORE_ADDR prev_addr;
7467 CORE_ADDR boundary;
7468 CORE_ADDR func_addr;
7469
7470 /* If a breakpoint is set on the instruction in a branch delay slot,
7471 GDB gets confused. When the breakpoint is hit, the PC isn't on
7472 the instruction in the branch delay slot, the PC will point to
7473 the branch instruction. Since the PC doesn't match any known
7474 breakpoints, GDB reports a trap exception.
7475
7476 There are two possible fixes for this problem.
7477
7478 1) When the breakpoint gets hit, see if the BD bit is set in the
7479 Cause register (which indicates the last exception occurred in a
7480 branch delay slot). If the BD bit is set, fix the PC to point to
7481 the instruction in the branch delay slot.
7482
7483 2) When the user sets the breakpoint, don't allow him to set the
7484 breakpoint on the instruction in the branch delay slot. Instead
7485 move the breakpoint to the branch instruction (which will have
7486 the same result).
7487
7488 The problem with the first solution is that if the user then
7489 single-steps the processor, the branch instruction will get
7490 skipped (since GDB thinks the PC is on the instruction in the
7491 branch delay slot).
7492
7493 So, we'll use the second solution. To do this we need to know if
7494 the instruction we're trying to set the breakpoint on is in the
7495 branch delay slot. */
7496
7497 boundary = mips_segment_boundary (bpaddr);
7498
7499 /* Make sure we don't scan back before the beginning of the current
7500 function, since we may fetch constant data or insns that look like
7501 a jump. Of course we might do that anyway if the compiler has
7502 moved constants inline. :-( */
7503 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7504 && func_addr > boundary && func_addr <= bpaddr)
7505 boundary = func_addr;
7506
7507 if (mips_pc_is_mips (bpaddr))
7508 {
7509 if (bpaddr == boundary)
7510 return bpaddr;
7511
7512 /* If the previous instruction has a branch delay slot, we have
7513 to move the breakpoint to the branch instruction. */
7514 prev_addr = bpaddr - 4;
7515 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7516 bpaddr = prev_addr;
7517 }
7518 else
7519 {
7520 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7521 CORE_ADDR addr, jmpaddr;
7522 int i;
7523
7524 boundary = unmake_compact_addr (boundary);
7525
7526 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7527 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7528 so try for that first, then try the 2 byte JALR/JR.
7529 The microMIPS ASE has a whole range of jumps and branches
7530 with delay slots, some of which take 4 bytes and some take
7531 2 bytes, so the idea is the same.
7532 FIXME: We have to assume that bpaddr is not the second half
7533 of an extended instruction. */
7534 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7535 ? micromips_insn_at_pc_has_delay_slot
7536 : mips16_insn_at_pc_has_delay_slot);
7537
7538 jmpaddr = 0;
7539 addr = bpaddr;
7540 for (i = 1; i < 4; i++)
7541 {
7542 if (unmake_compact_addr (addr) == boundary)
7543 break;
7544 addr -= MIPS_INSN16_SIZE;
7545 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7546 /* Looks like a JR/JALR at [target-1], but it could be
7547 the second word of a previous JAL/JALX, so record it
7548 and check back one more. */
7549 jmpaddr = addr;
7550 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7551 {
7552 if (i == 2)
7553 /* Looks like a JAL/JALX at [target-2], but it could also
7554 be the second word of a previous JAL/JALX, record it,
7555 and check back one more. */
7556 jmpaddr = addr;
7557 else
7558 /* Looks like a JAL/JALX at [target-3], so any previously
7559 recorded JAL/JALX or JR/JALR must be wrong, because:
7560
7561 >-3: JAL
7562 -2: JAL-ext (can't be JAL/JALX)
7563 -1: bdslot (can't be JR/JALR)
7564 0: target insn
7565
7566 Of course it could be another JAL-ext which looks
7567 like a JAL, but in that case we'd have broken out
7568 of this loop at [target-2]:
7569
7570 -4: JAL
7571 >-3: JAL-ext
7572 -2: bdslot (can't be jmp)
7573 -1: JR/JALR
7574 0: target insn */
7575 jmpaddr = 0;
7576 }
7577 else
7578 {
7579 /* Not a jump instruction: if we're at [target-1] this
7580 could be the second word of a JAL/JALX, so continue;
7581 otherwise we're done. */
7582 if (i > 1)
7583 break;
7584 }
7585 }
7586
7587 if (jmpaddr)
7588 bpaddr = jmpaddr;
7589 }
7590
7591 return bpaddr;
7592 }
7593
7594 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7595 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7596
7597 static int
7598 mips_is_stub_suffix (const char *suffix, int zero)
7599 {
7600 switch (suffix[0])
7601 {
7602 case '0':
7603 return zero && suffix[1] == '\0';
7604 case '1':
7605 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7606 case '2':
7607 case '5':
7608 case '6':
7609 case '9':
7610 return suffix[1] == '\0';
7611 default:
7612 return 0;
7613 }
7614 }
7615
7616 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7617 call stubs, one of sf, df, sc, or dc. */
7618
7619 static int
7620 mips_is_stub_mode (const char *mode)
7621 {
7622 return ((mode[0] == 's' || mode[0] == 'd')
7623 && (mode[1] == 'f' || mode[1] == 'c'));
7624 }
7625
7626 /* Code at PC is a compiler-generated stub. Such a stub for a function
7627 bar might have a name like __fn_stub_bar, and might look like this:
7628
7629 mfc1 $4, $f13
7630 mfc1 $5, $f12
7631 mfc1 $6, $f15
7632 mfc1 $7, $f14
7633
7634 followed by (or interspersed with):
7635
7636 j bar
7637
7638 or:
7639
7640 lui $25, %hi(bar)
7641 addiu $25, $25, %lo(bar)
7642 jr $25
7643
7644 ($1 may be used in old code; for robustness we accept any register)
7645 or, in PIC code:
7646
7647 lui $28, %hi(_gp_disp)
7648 addiu $28, $28, %lo(_gp_disp)
7649 addu $28, $28, $25
7650 lw $25, %got(bar)
7651 addiu $25, $25, %lo(bar)
7652 jr $25
7653
7654 In the case of a __call_stub_bar stub, the sequence to set up
7655 arguments might look like this:
7656
7657 mtc1 $4, $f13
7658 mtc1 $5, $f12
7659 mtc1 $6, $f15
7660 mtc1 $7, $f14
7661
7662 followed by (or interspersed with) one of the jump sequences above.
7663
7664 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7665 of J or JR, respectively, followed by:
7666
7667 mfc1 $2, $f0
7668 mfc1 $3, $f1
7669 jr $18
7670
7671 We are at the beginning of the stub here, and scan down and extract
7672 the target address from the jump immediate instruction or, if a jump
7673 register instruction is used, from the register referred. Return
7674 the value of PC calculated or 0 if inconclusive.
7675
7676 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7677
7678 static CORE_ADDR
7679 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7680 {
7681 struct gdbarch *gdbarch = get_frame_arch (frame);
7682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7683 int addrreg = MIPS_ZERO_REGNUM;
7684 CORE_ADDR start_pc = pc;
7685 CORE_ADDR target_pc = 0;
7686 CORE_ADDR addr = 0;
7687 CORE_ADDR gp = 0;
7688 int status = 0;
7689 int i;
7690
7691 for (i = 0;
7692 status == 0 && target_pc == 0 && i < 20;
7693 i++, pc += MIPS_INSN32_SIZE)
7694 {
7695 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7696 CORE_ADDR imm;
7697 int rt;
7698 int rs;
7699 int rd;
7700
7701 switch (itype_op (inst))
7702 {
7703 case 0: /* SPECIAL */
7704 switch (rtype_funct (inst))
7705 {
7706 case 8: /* JR */
7707 case 9: /* JALR */
7708 rs = rtype_rs (inst);
7709 if (rs == MIPS_GP_REGNUM)
7710 target_pc = gp; /* Hmm... */
7711 else if (rs == addrreg)
7712 target_pc = addr;
7713 break;
7714
7715 case 0x21: /* ADDU */
7716 rt = rtype_rt (inst);
7717 rs = rtype_rs (inst);
7718 rd = rtype_rd (inst);
7719 if (rd == MIPS_GP_REGNUM
7720 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7721 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7722 gp += start_pc;
7723 break;
7724 }
7725 break;
7726
7727 case 2: /* J */
7728 case 3: /* JAL */
7729 target_pc = jtype_target (inst) << 2;
7730 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7731 break;
7732
7733 case 9: /* ADDIU */
7734 rt = itype_rt (inst);
7735 rs = itype_rs (inst);
7736 if (rt == rs)
7737 {
7738 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7739 if (rt == MIPS_GP_REGNUM)
7740 gp += imm;
7741 else if (rt == addrreg)
7742 addr += imm;
7743 }
7744 break;
7745
7746 case 0xf: /* LUI */
7747 rt = itype_rt (inst);
7748 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7749 if (rt == MIPS_GP_REGNUM)
7750 gp = imm;
7751 else if (rt != MIPS_ZERO_REGNUM)
7752 {
7753 addrreg = rt;
7754 addr = imm;
7755 }
7756 break;
7757
7758 case 0x23: /* LW */
7759 rt = itype_rt (inst);
7760 rs = itype_rs (inst);
7761 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7762 if (gp != 0 && rs == MIPS_GP_REGNUM)
7763 {
7764 gdb_byte buf[4];
7765
7766 memset (buf, 0, sizeof (buf));
7767 status = target_read_memory (gp + imm, buf, sizeof (buf));
7768 addrreg = rt;
7769 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7770 }
7771 break;
7772 }
7773 }
7774
7775 return target_pc;
7776 }
7777
7778 /* If PC is in a MIPS16 call or return stub, return the address of the
7779 target PC, which is either the callee or the caller. There are several
7780 cases which must be handled:
7781
7782 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7783 and the target PC is in $31 ($ra).
7784 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7785 and the target PC is in $2.
7786 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7787 i.e. before the JALR instruction, this is effectively a call stub
7788 and the target PC is in $2. Otherwise this is effectively
7789 a return stub and the target PC is in $18.
7790 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7791 JAL or JALR instruction, this is effectively a call stub and the
7792 target PC is buried in the instruction stream. Otherwise this
7793 is effectively a return stub and the target PC is in $18.
7794 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7795 stub and the target PC is buried in the instruction stream.
7796
7797 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7798 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7799 gory details. */
7800
7801 static CORE_ADDR
7802 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7803 {
7804 struct gdbarch *gdbarch = get_frame_arch (frame);
7805 CORE_ADDR start_addr;
7806 const char *name;
7807 size_t prefixlen;
7808
7809 /* Find the starting address and name of the function containing the PC. */
7810 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7811 return 0;
7812
7813 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7814 and the target PC is in $31 ($ra). */
7815 prefixlen = strlen (mips_str_mips16_ret_stub);
7816 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7817 && mips_is_stub_mode (name + prefixlen)
7818 && name[prefixlen + 2] == '\0')
7819 return get_frame_register_signed
7820 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7821
7822 /* If the PC is in __mips16_call_stub_*, this is one of the call
7823 call/return stubs. */
7824 prefixlen = strlen (mips_str_mips16_call_stub);
7825 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7826 {
7827 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7828 and the target PC is in $2. */
7829 if (mips_is_stub_suffix (name + prefixlen, 0))
7830 return get_frame_register_signed
7831 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7832
7833 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7834 i.e. before the JALR instruction, this is effectively a call stub
7835 and the target PC is in $2. Otherwise this is effectively
7836 a return stub and the target PC is in $18. */
7837 else if (mips_is_stub_mode (name + prefixlen)
7838 && name[prefixlen + 2] == '_'
7839 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7840 {
7841 if (pc == start_addr)
7842 /* This is the 'call' part of a call stub. The return
7843 address is in $2. */
7844 return get_frame_register_signed
7845 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7846 else
7847 /* This is the 'return' part of a call stub. The return
7848 address is in $18. */
7849 return get_frame_register_signed
7850 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7851 }
7852 else
7853 return 0; /* Not a stub. */
7854 }
7855
7856 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7857 compiler-generated call or call/return stubs. */
7858 if (startswith (name, mips_str_fn_stub)
7859 || startswith (name, mips_str_call_stub))
7860 {
7861 if (pc == start_addr)
7862 /* This is the 'call' part of a call stub. Call this helper
7863 to scan through this code for interesting instructions
7864 and determine the final PC. */
7865 return mips_get_mips16_fn_stub_pc (frame, pc);
7866 else
7867 /* This is the 'return' part of a call stub. The return address
7868 is in $18. */
7869 return get_frame_register_signed
7870 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7871 }
7872
7873 return 0; /* Not a stub. */
7874 }
7875
7876 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7877 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7878
7879 static int
7880 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7881 {
7882 CORE_ADDR start_addr;
7883 size_t prefixlen;
7884
7885 /* Find the starting address of the function containing the PC. */
7886 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7887 return 0;
7888
7889 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7890 the start, i.e. after the JALR instruction, this is effectively
7891 a return stub. */
7892 prefixlen = strlen (mips_str_mips16_call_stub);
7893 if (pc != start_addr
7894 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7895 && mips_is_stub_mode (name + prefixlen)
7896 && name[prefixlen + 2] == '_'
7897 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7898 return 1;
7899
7900 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7901 the JAL or JALR instruction, this is effectively a return stub. */
7902 prefixlen = strlen (mips_str_call_fp_stub);
7903 if (pc != start_addr
7904 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7905 return 1;
7906
7907 /* Consume the .pic. prefix of any PIC stub, this function must return
7908 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7909 or the call stub path will trigger in handle_inferior_event causing
7910 it to go astray. */
7911 prefixlen = strlen (mips_str_pic);
7912 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7913 name += prefixlen;
7914
7915 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7916 prefixlen = strlen (mips_str_mips16_ret_stub);
7917 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7918 && mips_is_stub_mode (name + prefixlen)
7919 && name[prefixlen + 2] == '\0')
7920 return 1;
7921
7922 return 0; /* Not a stub. */
7923 }
7924
7925 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7926 PC of the stub target. The stub just loads $t9 and jumps to it,
7927 so that $t9 has the correct value at function entry. */
7928
7929 static CORE_ADDR
7930 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7931 {
7932 struct gdbarch *gdbarch = get_frame_arch (frame);
7933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7934 struct bound_minimal_symbol msym;
7935 int i;
7936 gdb_byte stub_code[16];
7937 int32_t stub_words[4];
7938
7939 /* The stub for foo is named ".pic.foo", and is either two
7940 instructions inserted before foo or a three instruction sequence
7941 which jumps to foo. */
7942 msym = lookup_minimal_symbol_by_pc (pc);
7943 if (msym.minsym == NULL
7944 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7945 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7946 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7947 return 0;
7948
7949 /* A two-instruction header. */
7950 if (MSYMBOL_SIZE (msym.minsym) == 8)
7951 return pc + 8;
7952
7953 /* A three-instruction (plus delay slot) trampoline. */
7954 if (MSYMBOL_SIZE (msym.minsym) == 16)
7955 {
7956 if (target_read_memory (pc, stub_code, 16) != 0)
7957 return 0;
7958 for (i = 0; i < 4; i++)
7959 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7960 4, byte_order);
7961
7962 /* A stub contains these instructions:
7963 lui t9, %hi(target)
7964 j target
7965 addiu t9, t9, %lo(target)
7966 nop
7967
7968 This works even for N64, since stubs are only generated with
7969 -msym32. */
7970 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7971 && (stub_words[1] & 0xfc000000U) == 0x08000000
7972 && (stub_words[2] & 0xffff0000U) == 0x27390000
7973 && stub_words[3] == 0x00000000)
7974 return ((((stub_words[0] & 0x0000ffff) << 16)
7975 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7976 }
7977
7978 /* Not a recognized stub. */
7979 return 0;
7980 }
7981
7982 static CORE_ADDR
7983 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7984 {
7985 CORE_ADDR requested_pc = pc;
7986 CORE_ADDR target_pc;
7987 CORE_ADDR new_pc;
7988
7989 do
7990 {
7991 target_pc = pc;
7992
7993 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7994 if (new_pc)
7995 pc = new_pc;
7996
7997 new_pc = find_solib_trampoline_target (frame, pc);
7998 if (new_pc)
7999 pc = new_pc;
8000
8001 new_pc = mips_skip_pic_trampoline_code (frame, pc);
8002 if (new_pc)
8003 pc = new_pc;
8004 }
8005 while (pc != target_pc);
8006
8007 return pc != requested_pc ? pc : 0;
8008 }
8009
8010 /* Convert a dbx stab register number (from `r' declaration) to a GDB
8011 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
8012
8013 static int
8014 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
8015 {
8016 int regnum;
8017 if (num >= 0 && num < 32)
8018 regnum = num;
8019 else if (num >= 38 && num < 70)
8020 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
8021 else if (num == 70)
8022 regnum = mips_regnum (gdbarch)->hi;
8023 else if (num == 71)
8024 regnum = mips_regnum (gdbarch)->lo;
8025 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
8026 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
8027 else
8028 return -1;
8029 return gdbarch_num_regs (gdbarch) + regnum;
8030 }
8031
8032
8033 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
8034 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
8035
8036 static int
8037 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
8038 {
8039 int regnum;
8040 if (num >= 0 && num < 32)
8041 regnum = num;
8042 else if (num >= 32 && num < 64)
8043 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
8044 else if (num == 64)
8045 regnum = mips_regnum (gdbarch)->hi;
8046 else if (num == 65)
8047 regnum = mips_regnum (gdbarch)->lo;
8048 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
8049 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
8050 else
8051 return -1;
8052 return gdbarch_num_regs (gdbarch) + regnum;
8053 }
8054
8055 static int
8056 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
8057 {
8058 /* Only makes sense to supply raw registers. */
8059 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
8060 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
8061 decide if it is valid. Should instead define a standard sim/gdb
8062 register numbering scheme. */
8063 if (gdbarch_register_name (gdbarch,
8064 gdbarch_num_regs (gdbarch) + regnum) != NULL
8065 && gdbarch_register_name (gdbarch,
8066 gdbarch_num_regs (gdbarch)
8067 + regnum)[0] != '\0')
8068 return regnum;
8069 else
8070 return LEGACY_SIM_REGNO_IGNORE;
8071 }
8072
8073
8074 /* Convert an integer into an address. Extracting the value signed
8075 guarantees a correctly sign extended address. */
8076
8077 static CORE_ADDR
8078 mips_integer_to_address (struct gdbarch *gdbarch,
8079 struct type *type, const gdb_byte *buf)
8080 {
8081 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8082 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
8083 }
8084
8085 /* Dummy virtual frame pointer method. This is no more or less accurate
8086 than most other architectures; we just need to be explicit about it,
8087 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
8088 an assertion failure. */
8089
8090 static void
8091 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
8092 CORE_ADDR pc, int *reg, LONGEST *offset)
8093 {
8094 *reg = MIPS_SP_REGNUM;
8095 *offset = 0;
8096 }
8097
8098 static void
8099 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
8100 {
8101 enum mips_abi *abip = (enum mips_abi *) obj;
8102 const char *name = bfd_get_section_name (abfd, sect);
8103
8104 if (*abip != MIPS_ABI_UNKNOWN)
8105 return;
8106
8107 if (!startswith (name, ".mdebug."))
8108 return;
8109
8110 if (strcmp (name, ".mdebug.abi32") == 0)
8111 *abip = MIPS_ABI_O32;
8112 else if (strcmp (name, ".mdebug.abiN32") == 0)
8113 *abip = MIPS_ABI_N32;
8114 else if (strcmp (name, ".mdebug.abi64") == 0)
8115 *abip = MIPS_ABI_N64;
8116 else if (strcmp (name, ".mdebug.abiO64") == 0)
8117 *abip = MIPS_ABI_O64;
8118 else if (strcmp (name, ".mdebug.eabi32") == 0)
8119 *abip = MIPS_ABI_EABI32;
8120 else if (strcmp (name, ".mdebug.eabi64") == 0)
8121 *abip = MIPS_ABI_EABI64;
8122 else
8123 warning (_("unsupported ABI %s."), name + 8);
8124 }
8125
8126 static void
8127 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8128 {
8129 int *lbp = (int *) obj;
8130 const char *name = bfd_get_section_name (abfd, sect);
8131
8132 if (startswith (name, ".gcc_compiled_long32"))
8133 *lbp = 32;
8134 else if (startswith (name, ".gcc_compiled_long64"))
8135 *lbp = 64;
8136 else if (startswith (name, ".gcc_compiled_long"))
8137 warning (_("unrecognized .gcc_compiled_longXX"));
8138 }
8139
8140 static enum mips_abi
8141 global_mips_abi (void)
8142 {
8143 int i;
8144
8145 for (i = 0; mips_abi_strings[i] != NULL; i++)
8146 if (mips_abi_strings[i] == mips_abi_string)
8147 return (enum mips_abi) i;
8148
8149 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8150 }
8151
8152 /* Return the default compressed instruction set, either of MIPS16
8153 or microMIPS, selected when none could have been determined from
8154 the ELF header of the binary being executed (or no binary has been
8155 selected. */
8156
8157 static enum mips_isa
8158 global_mips_compression (void)
8159 {
8160 int i;
8161
8162 for (i = 0; mips_compression_strings[i] != NULL; i++)
8163 if (mips_compression_strings[i] == mips_compression_string)
8164 return (enum mips_isa) i;
8165
8166 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8167 }
8168
8169 static void
8170 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8171 {
8172 /* If the size matches the set of 32-bit or 64-bit integer registers,
8173 assume that's what we've got. */
8174 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8175 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8176
8177 /* If the size matches the full set of registers GDB traditionally
8178 knows about, including floating point, for either 32-bit or
8179 64-bit, assume that's what we've got. */
8180 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8181 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8182
8183 /* Otherwise we don't have a useful guess. */
8184 }
8185
8186 static struct value *
8187 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8188 {
8189 const int *reg_p = (const int *) baton;
8190 return value_of_register (*reg_p, frame);
8191 }
8192
8193 static struct gdbarch *
8194 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8195 {
8196 struct gdbarch *gdbarch;
8197 struct gdbarch_tdep *tdep;
8198 int elf_flags;
8199 enum mips_abi mips_abi, found_abi, wanted_abi;
8200 int i, num_regs;
8201 enum mips_fpu_type fpu_type;
8202 struct tdesc_arch_data *tdesc_data = NULL;
8203 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8204 const char **reg_names;
8205 struct mips_regnum mips_regnum, *regnum;
8206 enum mips_isa mips_isa;
8207 int dspacc;
8208 int dspctl;
8209
8210 /* Fill in the OS dependent register numbers and names. */
8211 if (info.osabi == GDB_OSABI_IRIX)
8212 {
8213 mips_regnum.fp0 = 32;
8214 mips_regnum.pc = 64;
8215 mips_regnum.cause = 65;
8216 mips_regnum.badvaddr = 66;
8217 mips_regnum.hi = 67;
8218 mips_regnum.lo = 68;
8219 mips_regnum.fp_control_status = 69;
8220 mips_regnum.fp_implementation_revision = 70;
8221 mips_regnum.dspacc = dspacc = -1;
8222 mips_regnum.dspctl = dspctl = -1;
8223 num_regs = 71;
8224 reg_names = mips_irix_reg_names;
8225 }
8226 else if (info.osabi == GDB_OSABI_LINUX)
8227 {
8228 mips_regnum.fp0 = 38;
8229 mips_regnum.pc = 37;
8230 mips_regnum.cause = 36;
8231 mips_regnum.badvaddr = 35;
8232 mips_regnum.hi = 34;
8233 mips_regnum.lo = 33;
8234 mips_regnum.fp_control_status = 70;
8235 mips_regnum.fp_implementation_revision = 71;
8236 mips_regnum.dspacc = -1;
8237 mips_regnum.dspctl = -1;
8238 dspacc = 72;
8239 dspctl = 78;
8240 num_regs = 79;
8241 reg_names = mips_linux_reg_names;
8242 }
8243 else
8244 {
8245 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8246 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8247 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8248 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8249 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8250 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8251 mips_regnum.fp_control_status = 70;
8252 mips_regnum.fp_implementation_revision = 71;
8253 mips_regnum.dspacc = dspacc = -1;
8254 mips_regnum.dspctl = dspctl = -1;
8255 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8256 if (info.bfd_arch_info != NULL
8257 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8258 reg_names = mips_tx39_reg_names;
8259 else
8260 reg_names = mips_generic_reg_names;
8261 }
8262
8263 /* Check any target description for validity. */
8264 if (tdesc_has_registers (info.target_desc))
8265 {
8266 static const char *const mips_gprs[] = {
8267 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8268 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8269 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8270 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8271 };
8272 static const char *const mips_fprs[] = {
8273 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8274 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8275 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8276 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8277 };
8278
8279 const struct tdesc_feature *feature;
8280 int valid_p;
8281
8282 feature = tdesc_find_feature (info.target_desc,
8283 "org.gnu.gdb.mips.cpu");
8284 if (feature == NULL)
8285 return NULL;
8286
8287 tdesc_data = tdesc_data_alloc ();
8288
8289 valid_p = 1;
8290 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8291 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8292 mips_gprs[i]);
8293
8294
8295 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8296 mips_regnum.lo, "lo");
8297 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8298 mips_regnum.hi, "hi");
8299 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8300 mips_regnum.pc, "pc");
8301
8302 if (!valid_p)
8303 {
8304 tdesc_data_cleanup (tdesc_data);
8305 return NULL;
8306 }
8307
8308 feature = tdesc_find_feature (info.target_desc,
8309 "org.gnu.gdb.mips.cp0");
8310 if (feature == NULL)
8311 {
8312 tdesc_data_cleanup (tdesc_data);
8313 return NULL;
8314 }
8315
8316 valid_p = 1;
8317 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8318 mips_regnum.badvaddr, "badvaddr");
8319 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8320 MIPS_PS_REGNUM, "status");
8321 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8322 mips_regnum.cause, "cause");
8323
8324 if (!valid_p)
8325 {
8326 tdesc_data_cleanup (tdesc_data);
8327 return NULL;
8328 }
8329
8330 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8331 backend is not prepared for that, though. */
8332 feature = tdesc_find_feature (info.target_desc,
8333 "org.gnu.gdb.mips.fpu");
8334 if (feature == NULL)
8335 {
8336 tdesc_data_cleanup (tdesc_data);
8337 return NULL;
8338 }
8339
8340 valid_p = 1;
8341 for (i = 0; i < 32; i++)
8342 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8343 i + mips_regnum.fp0, mips_fprs[i]);
8344
8345 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8346 mips_regnum.fp_control_status,
8347 "fcsr");
8348 valid_p
8349 &= tdesc_numbered_register (feature, tdesc_data,
8350 mips_regnum.fp_implementation_revision,
8351 "fir");
8352
8353 if (!valid_p)
8354 {
8355 tdesc_data_cleanup (tdesc_data);
8356 return NULL;
8357 }
8358
8359 if (dspacc >= 0)
8360 {
8361 feature = tdesc_find_feature (info.target_desc,
8362 "org.gnu.gdb.mips.dsp");
8363 /* The DSP registers are optional; it's OK if they are absent. */
8364 if (feature != NULL)
8365 {
8366 i = 0;
8367 valid_p = 1;
8368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8369 dspacc + i++, "hi1");
8370 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8371 dspacc + i++, "lo1");
8372 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8373 dspacc + i++, "hi2");
8374 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8375 dspacc + i++, "lo2");
8376 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8377 dspacc + i++, "hi3");
8378 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8379 dspacc + i++, "lo3");
8380
8381 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8382 dspctl, "dspctl");
8383
8384 if (!valid_p)
8385 {
8386 tdesc_data_cleanup (tdesc_data);
8387 return NULL;
8388 }
8389
8390 mips_regnum.dspacc = dspacc;
8391 mips_regnum.dspctl = dspctl;
8392 }
8393 }
8394
8395 /* It would be nice to detect an attempt to use a 64-bit ABI
8396 when only 32-bit registers are provided. */
8397 reg_names = NULL;
8398 }
8399
8400 /* First of all, extract the elf_flags, if available. */
8401 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8402 elf_flags = elf_elfheader (info.abfd)->e_flags;
8403 else if (arches != NULL)
8404 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8405 else
8406 elf_flags = 0;
8407 if (gdbarch_debug)
8408 fprintf_unfiltered (gdb_stdlog,
8409 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8410
8411 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8412 switch ((elf_flags & EF_MIPS_ABI))
8413 {
8414 case E_MIPS_ABI_O32:
8415 found_abi = MIPS_ABI_O32;
8416 break;
8417 case E_MIPS_ABI_O64:
8418 found_abi = MIPS_ABI_O64;
8419 break;
8420 case E_MIPS_ABI_EABI32:
8421 found_abi = MIPS_ABI_EABI32;
8422 break;
8423 case E_MIPS_ABI_EABI64:
8424 found_abi = MIPS_ABI_EABI64;
8425 break;
8426 default:
8427 if ((elf_flags & EF_MIPS_ABI2))
8428 found_abi = MIPS_ABI_N32;
8429 else
8430 found_abi = MIPS_ABI_UNKNOWN;
8431 break;
8432 }
8433
8434 /* GCC creates a pseudo-section whose name describes the ABI. */
8435 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8436 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8437
8438 /* If we have no useful BFD information, use the ABI from the last
8439 MIPS architecture (if there is one). */
8440 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8441 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8442
8443 /* Try the architecture for any hint of the correct ABI. */
8444 if (found_abi == MIPS_ABI_UNKNOWN
8445 && info.bfd_arch_info != NULL
8446 && info.bfd_arch_info->arch == bfd_arch_mips)
8447 {
8448 switch (info.bfd_arch_info->mach)
8449 {
8450 case bfd_mach_mips3900:
8451 found_abi = MIPS_ABI_EABI32;
8452 break;
8453 case bfd_mach_mips4100:
8454 case bfd_mach_mips5000:
8455 found_abi = MIPS_ABI_EABI64;
8456 break;
8457 case bfd_mach_mips8000:
8458 case bfd_mach_mips10000:
8459 /* On Irix, ELF64 executables use the N64 ABI. The
8460 pseudo-sections which describe the ABI aren't present
8461 on IRIX. (Even for executables created by gcc.) */
8462 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8463 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8464 found_abi = MIPS_ABI_N64;
8465 else
8466 found_abi = MIPS_ABI_N32;
8467 break;
8468 }
8469 }
8470
8471 /* Default 64-bit objects to N64 instead of O32. */
8472 if (found_abi == MIPS_ABI_UNKNOWN
8473 && info.abfd != NULL
8474 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8475 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8476 found_abi = MIPS_ABI_N64;
8477
8478 if (gdbarch_debug)
8479 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8480 found_abi);
8481
8482 /* What has the user specified from the command line? */
8483 wanted_abi = global_mips_abi ();
8484 if (gdbarch_debug)
8485 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8486 wanted_abi);
8487
8488 /* Now that we have found what the ABI for this binary would be,
8489 check whether the user is overriding it. */
8490 if (wanted_abi != MIPS_ABI_UNKNOWN)
8491 mips_abi = wanted_abi;
8492 else if (found_abi != MIPS_ABI_UNKNOWN)
8493 mips_abi = found_abi;
8494 else
8495 mips_abi = MIPS_ABI_O32;
8496 if (gdbarch_debug)
8497 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8498 mips_abi);
8499
8500 /* Determine the default compressed ISA. */
8501 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8502 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8503 mips_isa = ISA_MICROMIPS;
8504 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8505 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8506 mips_isa = ISA_MIPS16;
8507 else
8508 mips_isa = global_mips_compression ();
8509 mips_compression_string = mips_compression_strings[mips_isa];
8510
8511 /* Also used when doing an architecture lookup. */
8512 if (gdbarch_debug)
8513 fprintf_unfiltered (gdb_stdlog,
8514 "mips_gdbarch_init: "
8515 "mips64_transfers_32bit_regs_p = %d\n",
8516 mips64_transfers_32bit_regs_p);
8517
8518 /* Determine the MIPS FPU type. */
8519 #ifdef HAVE_ELF
8520 if (info.abfd
8521 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8522 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8523 Tag_GNU_MIPS_ABI_FP);
8524 #endif /* HAVE_ELF */
8525
8526 if (!mips_fpu_type_auto)
8527 fpu_type = mips_fpu_type;
8528 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8529 {
8530 switch (elf_fpu_type)
8531 {
8532 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8533 fpu_type = MIPS_FPU_DOUBLE;
8534 break;
8535 case Val_GNU_MIPS_ABI_FP_SINGLE:
8536 fpu_type = MIPS_FPU_SINGLE;
8537 break;
8538 case Val_GNU_MIPS_ABI_FP_SOFT:
8539 default:
8540 /* Soft float or unknown. */
8541 fpu_type = MIPS_FPU_NONE;
8542 break;
8543 }
8544 }
8545 else if (info.bfd_arch_info != NULL
8546 && info.bfd_arch_info->arch == bfd_arch_mips)
8547 switch (info.bfd_arch_info->mach)
8548 {
8549 case bfd_mach_mips3900:
8550 case bfd_mach_mips4100:
8551 case bfd_mach_mips4111:
8552 case bfd_mach_mips4120:
8553 fpu_type = MIPS_FPU_NONE;
8554 break;
8555 case bfd_mach_mips4650:
8556 fpu_type = MIPS_FPU_SINGLE;
8557 break;
8558 default:
8559 fpu_type = MIPS_FPU_DOUBLE;
8560 break;
8561 }
8562 else if (arches != NULL)
8563 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8564 else
8565 fpu_type = MIPS_FPU_DOUBLE;
8566 if (gdbarch_debug)
8567 fprintf_unfiltered (gdb_stdlog,
8568 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8569
8570 /* Check for blatant incompatibilities. */
8571
8572 /* If we have only 32-bit registers, then we can't debug a 64-bit
8573 ABI. */
8574 if (info.target_desc
8575 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8576 && mips_abi != MIPS_ABI_EABI32
8577 && mips_abi != MIPS_ABI_O32)
8578 {
8579 if (tdesc_data != NULL)
8580 tdesc_data_cleanup (tdesc_data);
8581 return NULL;
8582 }
8583
8584 /* Try to find a pre-existing architecture. */
8585 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8586 arches != NULL;
8587 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8588 {
8589 /* MIPS needs to be pedantic about which ABI and the compressed
8590 ISA variation the object is using. */
8591 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8592 continue;
8593 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8594 continue;
8595 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8596 continue;
8597 /* Need to be pedantic about which register virtual size is
8598 used. */
8599 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8600 != mips64_transfers_32bit_regs_p)
8601 continue;
8602 /* Be pedantic about which FPU is selected. */
8603 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8604 continue;
8605
8606 if (tdesc_data != NULL)
8607 tdesc_data_cleanup (tdesc_data);
8608 return arches->gdbarch;
8609 }
8610
8611 /* Need a new architecture. Fill in a target specific vector. */
8612 tdep = XNEW (struct gdbarch_tdep);
8613 gdbarch = gdbarch_alloc (&info, tdep);
8614 tdep->elf_flags = elf_flags;
8615 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8616 tdep->found_abi = found_abi;
8617 tdep->mips_abi = mips_abi;
8618 tdep->mips_isa = mips_isa;
8619 tdep->mips_fpu_type = fpu_type;
8620 tdep->register_size_valid_p = 0;
8621 tdep->register_size = 0;
8622
8623 if (info.target_desc)
8624 {
8625 /* Some useful properties can be inferred from the target. */
8626 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8627 {
8628 tdep->register_size_valid_p = 1;
8629 tdep->register_size = 4;
8630 }
8631 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8632 {
8633 tdep->register_size_valid_p = 1;
8634 tdep->register_size = 8;
8635 }
8636 }
8637
8638 /* Initially set everything according to the default ABI/ISA. */
8639 set_gdbarch_short_bit (gdbarch, 16);
8640 set_gdbarch_int_bit (gdbarch, 32);
8641 set_gdbarch_float_bit (gdbarch, 32);
8642 set_gdbarch_double_bit (gdbarch, 64);
8643 set_gdbarch_long_double_bit (gdbarch, 64);
8644 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8645 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8646 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8647
8648 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8649 mips_ax_pseudo_register_collect);
8650 set_gdbarch_ax_pseudo_register_push_stack
8651 (gdbarch, mips_ax_pseudo_register_push_stack);
8652
8653 set_gdbarch_elf_make_msymbol_special (gdbarch,
8654 mips_elf_make_msymbol_special);
8655 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8656 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8657 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8658
8659 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8660 *regnum = mips_regnum;
8661 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8662 set_gdbarch_num_regs (gdbarch, num_regs);
8663 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8664 set_gdbarch_register_name (gdbarch, mips_register_name);
8665 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8666 tdep->mips_processor_reg_names = reg_names;
8667 tdep->regnum = regnum;
8668
8669 switch (mips_abi)
8670 {
8671 case MIPS_ABI_O32:
8672 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8673 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8674 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8675 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8676 tdep->default_mask_address_p = 0;
8677 set_gdbarch_long_bit (gdbarch, 32);
8678 set_gdbarch_ptr_bit (gdbarch, 32);
8679 set_gdbarch_long_long_bit (gdbarch, 64);
8680 break;
8681 case MIPS_ABI_O64:
8682 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8683 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8684 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8685 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8686 tdep->default_mask_address_p = 0;
8687 set_gdbarch_long_bit (gdbarch, 32);
8688 set_gdbarch_ptr_bit (gdbarch, 32);
8689 set_gdbarch_long_long_bit (gdbarch, 64);
8690 break;
8691 case MIPS_ABI_EABI32:
8692 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8693 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8694 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8695 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8696 tdep->default_mask_address_p = 0;
8697 set_gdbarch_long_bit (gdbarch, 32);
8698 set_gdbarch_ptr_bit (gdbarch, 32);
8699 set_gdbarch_long_long_bit (gdbarch, 64);
8700 break;
8701 case MIPS_ABI_EABI64:
8702 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8703 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8704 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8705 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8706 tdep->default_mask_address_p = 0;
8707 set_gdbarch_long_bit (gdbarch, 64);
8708 set_gdbarch_ptr_bit (gdbarch, 64);
8709 set_gdbarch_long_long_bit (gdbarch, 64);
8710 break;
8711 case MIPS_ABI_N32:
8712 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8713 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8714 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8715 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8716 tdep->default_mask_address_p = 0;
8717 set_gdbarch_long_bit (gdbarch, 32);
8718 set_gdbarch_ptr_bit (gdbarch, 32);
8719 set_gdbarch_long_long_bit (gdbarch, 64);
8720 set_gdbarch_long_double_bit (gdbarch, 128);
8721 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8722 break;
8723 case MIPS_ABI_N64:
8724 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8725 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8726 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8727 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8728 tdep->default_mask_address_p = 0;
8729 set_gdbarch_long_bit (gdbarch, 64);
8730 set_gdbarch_ptr_bit (gdbarch, 64);
8731 set_gdbarch_long_long_bit (gdbarch, 64);
8732 set_gdbarch_long_double_bit (gdbarch, 128);
8733 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8734 break;
8735 default:
8736 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8737 }
8738
8739 /* GCC creates a pseudo-section whose name specifies the size of
8740 longs, since -mlong32 or -mlong64 may be used independent of
8741 other options. How those options affect pointer sizes is ABI and
8742 architecture dependent, so use them to override the default sizes
8743 set by the ABI. This table shows the relationship between ABI,
8744 -mlongXX, and size of pointers:
8745
8746 ABI -mlongXX ptr bits
8747 --- -------- --------
8748 o32 32 32
8749 o32 64 32
8750 n32 32 32
8751 n32 64 64
8752 o64 32 32
8753 o64 64 64
8754 n64 32 32
8755 n64 64 64
8756 eabi32 32 32
8757 eabi32 64 32
8758 eabi64 32 32
8759 eabi64 64 64
8760
8761 Note that for o32 and eabi32, pointers are always 32 bits
8762 regardless of any -mlongXX option. For all others, pointers and
8763 longs are the same, as set by -mlongXX or set by defaults. */
8764
8765 if (info.abfd != NULL)
8766 {
8767 int long_bit = 0;
8768
8769 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8770 if (long_bit)
8771 {
8772 set_gdbarch_long_bit (gdbarch, long_bit);
8773 switch (mips_abi)
8774 {
8775 case MIPS_ABI_O32:
8776 case MIPS_ABI_EABI32:
8777 break;
8778 case MIPS_ABI_N32:
8779 case MIPS_ABI_O64:
8780 case MIPS_ABI_N64:
8781 case MIPS_ABI_EABI64:
8782 set_gdbarch_ptr_bit (gdbarch, long_bit);
8783 break;
8784 default:
8785 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8786 }
8787 }
8788 }
8789
8790 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8791 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8792 comment:
8793
8794 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8795 flag in object files because to do so would make it impossible to
8796 link with libraries compiled without "-gp32". This is
8797 unnecessarily restrictive.
8798
8799 We could solve this problem by adding "-gp32" multilibs to gcc,
8800 but to set this flag before gcc is built with such multilibs will
8801 break too many systems.''
8802
8803 But even more unhelpfully, the default linker output target for
8804 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8805 for 64-bit programs - you need to change the ABI to change this,
8806 and not all gcc targets support that currently. Therefore using
8807 this flag to detect 32-bit mode would do the wrong thing given
8808 the current gcc - it would make GDB treat these 64-bit programs
8809 as 32-bit programs by default. */
8810
8811 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8812 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8813
8814 /* Add/remove bits from an address. The MIPS needs be careful to
8815 ensure that all 32 bit addresses are sign extended to 64 bits. */
8816 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8817
8818 /* Unwind the frame. */
8819 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8820 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8821 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8822
8823 /* Map debug register numbers onto internal register numbers. */
8824 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8825 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8826 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8827 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8828 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8829 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8830
8831 /* MIPS version of CALL_DUMMY. */
8832
8833 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8834 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8835 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8836
8837 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8838
8839 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8840 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8841 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8842
8843 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8844 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8845 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8846 mips_remote_breakpoint_from_pc);
8847 set_gdbarch_adjust_breakpoint_address (gdbarch,
8848 mips_adjust_breakpoint_address);
8849
8850 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8851
8852 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8853
8854 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8855 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8856 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8857
8858 set_gdbarch_register_type (gdbarch, mips_register_type);
8859
8860 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8861
8862 if (mips_abi == MIPS_ABI_N32)
8863 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8864 else if (mips_abi == MIPS_ABI_N64)
8865 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8866 else
8867 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8868
8869 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8870 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8871 need to all be folded into the target vector. Since they are
8872 being used as guards for target_stopped_by_watchpoint, why not have
8873 target_stopped_by_watchpoint return the type of watchpoint that the code
8874 is sitting on? */
8875 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8876
8877 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8878
8879 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8880 to support MIPS16. This is a bad thing. Make sure not to do it
8881 if we have an OS ABI that actually supports shared libraries, since
8882 shared library support is more important. If we have an OS someday
8883 that supports both shared libraries and MIPS16, we'll have to find
8884 a better place for these.
8885 macro/2012-04-25: But that applies to return trampolines only and
8886 currently no MIPS OS ABI uses shared libraries that have them. */
8887 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8888
8889 set_gdbarch_single_step_through_delay (gdbarch,
8890 mips_single_step_through_delay);
8891
8892 /* Virtual tables. */
8893 set_gdbarch_vbit_in_delta (gdbarch, 1);
8894
8895 mips_register_g_packet_guesses (gdbarch);
8896
8897 /* Hook in OS ABI-specific overrides, if they have been registered. */
8898 info.tdep_info = tdesc_data;
8899 gdbarch_init_osabi (info, gdbarch);
8900
8901 /* The hook may have adjusted num_regs, fetch the final value and
8902 set pc_regnum and sp_regnum now that it has been fixed. */
8903 num_regs = gdbarch_num_regs (gdbarch);
8904 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8905 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8906
8907 /* Unwind the frame. */
8908 dwarf2_append_unwinders (gdbarch);
8909 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8910 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8911 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8912 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8913 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8914 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8915 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8916 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8917 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8918
8919 if (tdesc_data)
8920 {
8921 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8922 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8923
8924 /* Override the normal target description methods to handle our
8925 dual real and pseudo registers. */
8926 set_gdbarch_register_name (gdbarch, mips_register_name);
8927 set_gdbarch_register_reggroup_p (gdbarch,
8928 mips_tdesc_register_reggroup_p);
8929
8930 num_regs = gdbarch_num_regs (gdbarch);
8931 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8932 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8933 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8934 }
8935
8936 /* Add ABI-specific aliases for the registers. */
8937 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8938 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8939 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8940 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8941 else
8942 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8943 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8944 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8945
8946 /* Add some other standard aliases. */
8947 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8948 user_reg_add (gdbarch, mips_register_aliases[i].name,
8949 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8950
8951 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8952 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8953 value_of_mips_user_reg,
8954 &mips_numeric_register_aliases[i].regnum);
8955
8956 return gdbarch;
8957 }
8958
8959 static void
8960 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8961 {
8962 struct gdbarch_info info;
8963
8964 /* Force the architecture to update, and (if it's a MIPS architecture)
8965 mips_gdbarch_init will take care of the rest. */
8966 gdbarch_info_init (&info);
8967 gdbarch_update_p (info);
8968 }
8969
8970 /* Print out which MIPS ABI is in use. */
8971
8972 static void
8973 show_mips_abi (struct ui_file *file,
8974 int from_tty,
8975 struct cmd_list_element *ignored_cmd,
8976 const char *ignored_value)
8977 {
8978 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8979 fprintf_filtered
8980 (file,
8981 "The MIPS ABI is unknown because the current architecture "
8982 "is not MIPS.\n");
8983 else
8984 {
8985 enum mips_abi global_abi = global_mips_abi ();
8986 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8987 const char *actual_abi_str = mips_abi_strings[actual_abi];
8988
8989 if (global_abi == MIPS_ABI_UNKNOWN)
8990 fprintf_filtered
8991 (file,
8992 "The MIPS ABI is set automatically (currently \"%s\").\n",
8993 actual_abi_str);
8994 else if (global_abi == actual_abi)
8995 fprintf_filtered
8996 (file,
8997 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8998 actual_abi_str);
8999 else
9000 {
9001 /* Probably shouldn't happen... */
9002 fprintf_filtered (file,
9003 "The (auto detected) MIPS ABI \"%s\" is in use "
9004 "even though the user setting was \"%s\".\n",
9005 actual_abi_str, mips_abi_strings[global_abi]);
9006 }
9007 }
9008 }
9009
9010 /* Print out which MIPS compressed ISA encoding is used. */
9011
9012 static void
9013 show_mips_compression (struct ui_file *file, int from_tty,
9014 struct cmd_list_element *c, const char *value)
9015 {
9016 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
9017 value);
9018 }
9019
9020 static void
9021 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9022 {
9023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9024 if (tdep != NULL)
9025 {
9026 int ef_mips_arch;
9027 int ef_mips_32bitmode;
9028 /* Determine the ISA. */
9029 switch (tdep->elf_flags & EF_MIPS_ARCH)
9030 {
9031 case E_MIPS_ARCH_1:
9032 ef_mips_arch = 1;
9033 break;
9034 case E_MIPS_ARCH_2:
9035 ef_mips_arch = 2;
9036 break;
9037 case E_MIPS_ARCH_3:
9038 ef_mips_arch = 3;
9039 break;
9040 case E_MIPS_ARCH_4:
9041 ef_mips_arch = 4;
9042 break;
9043 default:
9044 ef_mips_arch = 0;
9045 break;
9046 }
9047 /* Determine the size of a pointer. */
9048 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
9049 fprintf_unfiltered (file,
9050 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
9051 tdep->elf_flags);
9052 fprintf_unfiltered (file,
9053 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
9054 ef_mips_32bitmode);
9055 fprintf_unfiltered (file,
9056 "mips_dump_tdep: ef_mips_arch = %d\n",
9057 ef_mips_arch);
9058 fprintf_unfiltered (file,
9059 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
9060 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
9061 fprintf_unfiltered (file,
9062 "mips_dump_tdep: "
9063 "mips_mask_address_p() %d (default %d)\n",
9064 mips_mask_address_p (tdep),
9065 tdep->default_mask_address_p);
9066 }
9067 fprintf_unfiltered (file,
9068 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
9069 MIPS_DEFAULT_FPU_TYPE,
9070 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
9071 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
9072 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
9073 : "???"));
9074 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
9075 MIPS_EABI (gdbarch));
9076 fprintf_unfiltered (file,
9077 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
9078 MIPS_FPU_TYPE (gdbarch),
9079 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
9080 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
9081 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
9082 : "???"));
9083 }
9084
9085 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
9086
9087 void
9088 _initialize_mips_tdep (void)
9089 {
9090 static struct cmd_list_element *mipsfpulist = NULL;
9091 struct cmd_list_element *c;
9092
9093 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
9094 if (MIPS_ABI_LAST + 1
9095 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
9096 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
9097
9098 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
9099
9100 mips_pdr_data = register_objfile_data ();
9101
9102 /* Create feature sets with the appropriate properties. The values
9103 are not important. */
9104 mips_tdesc_gp32 = allocate_target_description ();
9105 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
9106
9107 mips_tdesc_gp64 = allocate_target_description ();
9108 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
9109
9110 /* Add root prefix command for all "set mips"/"show mips" commands. */
9111 add_prefix_cmd ("mips", no_class, set_mips_command,
9112 _("Various MIPS specific commands."),
9113 &setmipscmdlist, "set mips ", 0, &setlist);
9114
9115 add_prefix_cmd ("mips", no_class, show_mips_command,
9116 _("Various MIPS specific commands."),
9117 &showmipscmdlist, "show mips ", 0, &showlist);
9118
9119 /* Allow the user to override the ABI. */
9120 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9121 &mips_abi_string, _("\
9122 Set the MIPS ABI used by this program."), _("\
9123 Show the MIPS ABI used by this program."), _("\
9124 This option can be set to one of:\n\
9125 auto - the default ABI associated with the current binary\n\
9126 o32\n\
9127 o64\n\
9128 n32\n\
9129 n64\n\
9130 eabi32\n\
9131 eabi64"),
9132 mips_abi_update,
9133 show_mips_abi,
9134 &setmipscmdlist, &showmipscmdlist);
9135
9136 /* Allow the user to set the ISA to assume for compressed code if ELF
9137 file flags don't tell or there is no program file selected. This
9138 setting is updated whenever unambiguous ELF file flags are interpreted,
9139 and carried over to subsequent sessions. */
9140 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9141 &mips_compression_string, _("\
9142 Set the compressed ISA encoding used by MIPS code."), _("\
9143 Show the compressed ISA encoding used by MIPS code."), _("\
9144 Select the compressed ISA encoding used in functions that have no symbol\n\
9145 information available. The encoding can be set to either of:\n\
9146 mips16\n\
9147 micromips\n\
9148 and is updated automatically from ELF file flags if available."),
9149 mips_abi_update,
9150 show_mips_compression,
9151 &setmipscmdlist, &showmipscmdlist);
9152
9153 /* Let the user turn off floating point and set the fence post for
9154 heuristic_proc_start. */
9155
9156 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9157 _("Set use of MIPS floating-point coprocessor."),
9158 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9159 add_cmd ("single", class_support, set_mipsfpu_single_command,
9160 _("Select single-precision MIPS floating-point coprocessor."),
9161 &mipsfpulist);
9162 add_cmd ("double", class_support, set_mipsfpu_double_command,
9163 _("Select double-precision MIPS floating-point coprocessor."),
9164 &mipsfpulist);
9165 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9166 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9167 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9168 add_cmd ("none", class_support, set_mipsfpu_none_command,
9169 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9170 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9171 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9172 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9173 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9174 _("Select MIPS floating-point coprocessor automatically."),
9175 &mipsfpulist);
9176 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9177 _("Show current use of MIPS floating-point coprocessor target."),
9178 &showlist);
9179
9180 /* We really would like to have both "0" and "unlimited" work, but
9181 command.c doesn't deal with that. So make it a var_zinteger
9182 because the user can always use "999999" or some such for unlimited. */
9183 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9184 &heuristic_fence_post, _("\
9185 Set the distance searched for the start of a function."), _("\
9186 Show the distance searched for the start of a function."), _("\
9187 If you are debugging a stripped executable, GDB needs to search through the\n\
9188 program for the start of a function. This command sets the distance of the\n\
9189 search. The only need to set it is when debugging a stripped executable."),
9190 reinit_frame_cache_sfunc,
9191 NULL, /* FIXME: i18n: The distance searched for
9192 the start of a function is %s. */
9193 &setlist, &showlist);
9194
9195 /* Allow the user to control whether the upper bits of 64-bit
9196 addresses should be zeroed. */
9197 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9198 &mask_address_var, _("\
9199 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9200 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9201 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9202 allow GDB to determine the correct value."),
9203 NULL, show_mask_address,
9204 &setmipscmdlist, &showmipscmdlist);
9205
9206 /* Allow the user to control the size of 32 bit registers within the
9207 raw remote packet. */
9208 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9209 &mips64_transfers_32bit_regs_p, _("\
9210 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9211 _("\
9212 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9213 _("\
9214 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9215 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9216 64 bits for others. Use \"off\" to disable compatibility mode"),
9217 set_mips64_transfers_32bit_regs,
9218 NULL, /* FIXME: i18n: Compatibility with 64-bit
9219 MIPS target that transfers 32-bit
9220 quantities is %s. */
9221 &setlist, &showlist);
9222
9223 /* Debug this files internals. */
9224 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9225 &mips_debug, _("\
9226 Set mips debugging."), _("\
9227 Show mips debugging."), _("\
9228 When non-zero, mips specific debugging is enabled."),
9229 NULL,
9230 NULL, /* FIXME: i18n: Mips debugging is
9231 currently %s. */
9232 &setdebuglist, &showdebuglist);
9233 }
This page took 0.295502 seconds and 5 git commands to generate.