1e61afdebbdaf65b9642851eab830e1a4f54428d
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file was derived from various remote-* modules. It is a collection
25 of generic support functions so GDB can talk directly to a ROM based
26 monitor. This saves use from having to hack an exception based handler
27 into existence, and makes for quick porting.
28
29 This module talks to a debug monitor called 'MONITOR', which
30 We communicate with MONITOR via either a direct serial line, or a TCP
31 (or possibly TELNET) stream to a terminal multiplexor,
32 which in turn talks to the target board. */
33
34 /* FIXME 32x64: This code assumes that registers and addresses are at
35 most 32 bits long. If they can be larger, you will need to declare
36 values as LONGEST and use %llx or some such to print values when
37 building commands to send to the monitor. Since we don't know of
38 any actual 64-bit targets with ROM monitors that use this code,
39 it's not an issue right now. -sts 4/18/96 */
40
41 #include "defs.h"
42 #include "gdbcore.h"
43 #include "target.h"
44 #include "exceptions.h"
45 #include <signal.h>
46 #include <ctype.h>
47 #include "gdb_string.h"
48 #include <sys/types.h>
49 #include "command.h"
50 #include "serial.h"
51 #include "monitor.h"
52 #include "gdbcmd.h"
53 #include "inferior.h"
54 #include "gdb_regex.h"
55 #include "srec.h"
56 #include "regcache.h"
57 #include "gdbthread.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_interrupt_query (void);
63 static void monitor_interrupt_twice (int);
64 static void monitor_stop (ptid_t);
65 static void monitor_dump_regs (struct regcache *regcache);
66
67 #if 0
68 static int from_hex (int a);
69 #endif
70
71 static struct monitor_ops *current_monitor;
72
73 static int hashmark; /* flag set by "set hash" */
74
75 static int timeout = 30;
76
77 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
78
79 static void (*ofunc) (); /* Old SIGINT signal handler */
80
81 static CORE_ADDR *breakaddr;
82
83 /* Descriptor for I/O to remote machine. Initialize it to NULL so
84 that monitor_open knows that we don't have a file open when the
85 program starts. */
86
87 static struct serial *monitor_desc = NULL;
88
89 /* Pointer to regexp pattern matching data */
90
91 static struct re_pattern_buffer register_pattern;
92 static char register_fastmap[256];
93
94 static struct re_pattern_buffer getmem_resp_delim_pattern;
95 static char getmem_resp_delim_fastmap[256];
96
97 static struct re_pattern_buffer setmem_resp_delim_pattern;
98 static char setmem_resp_delim_fastmap[256];
99
100 static struct re_pattern_buffer setreg_resp_delim_pattern;
101 static char setreg_resp_delim_fastmap[256];
102
103 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
104 monitor_wait wakes up. */
105
106 static int first_time = 0; /* is this the first time we're executing after
107 gaving created the child proccess? */
108
109
110 /* This is the ptid we use while we're connected to a monitor. Its
111 value is arbitrary, as monitor targets don't have a notion of
112 processes or threads, but we need something non-null to place in
113 inferior_ptid. */
114 static ptid_t monitor_ptid;
115
116 #define TARGET_BUF_SIZE 2048
117
118 /* Monitor specific debugging information. Typically only useful to
119 the developer of a new monitor interface. */
120
121 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
122
123 static int monitor_debug_p = 0;
124
125 /* NOTE: This file alternates between monitor_debug_p and remote_debug
126 when determining if debug information is printed. Perhaps this
127 could be simplified. */
128
129 static void
130 monitor_debug (const char *fmt, ...)
131 {
132 if (monitor_debug_p)
133 {
134 va_list args;
135 va_start (args, fmt);
136 vfprintf_filtered (gdb_stdlog, fmt, args);
137 va_end (args);
138 }
139 }
140
141
142 /* Convert a string into a printable representation, Return # byte in
143 the new string. When LEN is >0 it specifies the size of the
144 string. Otherwize strlen(oldstr) is used. */
145
146 static void
147 monitor_printable_string (char *newstr, char *oldstr, int len)
148 {
149 int ch;
150 int i;
151
152 if (len <= 0)
153 len = strlen (oldstr);
154
155 for (i = 0; i < len; i++)
156 {
157 ch = oldstr[i];
158 switch (ch)
159 {
160 default:
161 if (isprint (ch))
162 *newstr++ = ch;
163
164 else
165 {
166 sprintf (newstr, "\\x%02x", ch & 0xff);
167 newstr += 4;
168 }
169 break;
170
171 case '\\':
172 *newstr++ = '\\';
173 *newstr++ = '\\';
174 break;
175 case '\b':
176 *newstr++ = '\\';
177 *newstr++ = 'b';
178 break;
179 case '\f':
180 *newstr++ = '\\';
181 *newstr++ = 't';
182 break;
183 case '\n':
184 *newstr++ = '\\';
185 *newstr++ = 'n';
186 break;
187 case '\r':
188 *newstr++ = '\\';
189 *newstr++ = 'r';
190 break;
191 case '\t':
192 *newstr++ = '\\';
193 *newstr++ = 't';
194 break;
195 case '\v':
196 *newstr++ = '\\';
197 *newstr++ = 'v';
198 break;
199 }
200 }
201
202 *newstr++ = '\0';
203 }
204
205 /* Print monitor errors with a string, converting the string to printable
206 representation. */
207
208 static void
209 monitor_error (char *function, char *message,
210 CORE_ADDR memaddr, int len, char *string, int final_char)
211 {
212 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
213 char *safe_string = alloca ((real_len * 4) + 1);
214 monitor_printable_string (safe_string, string, real_len);
215
216 if (final_char)
217 error (_("%s (%s): %s: %s%c"),
218 function, paddress (target_gdbarch, memaddr),
219 message, safe_string, final_char);
220 else
221 error (_("%s (%s): %s: %s"),
222 function, paddress (target_gdbarch, memaddr),
223 message, safe_string);
224 }
225
226 /* Convert hex digit A to a number. */
227
228 static int
229 fromhex (int a)
230 {
231 if (a >= '0' && a <= '9')
232 return a - '0';
233 else if (a >= 'a' && a <= 'f')
234 return a - 'a' + 10;
235 else if (a >= 'A' && a <= 'F')
236 return a - 'A' + 10;
237 else
238 error (_("Invalid hex digit %d"), a);
239 }
240
241 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
242
243 This function exists to get around the problem that many host platforms
244 don't have a printf that can print 64-bit addresses. The %A format
245 specification is recognized as a special case, and causes the argument
246 to be printed as a 64-bit hexadecimal address.
247
248 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
249 If it is a '%s' format, the argument is a string; otherwise the
250 argument is assumed to be a long integer.
251
252 %% is also turned into a single %.
253 */
254
255 static void
256 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
257 {
258 int addr_bit = gdbarch_addr_bit (target_gdbarch);
259 char format[10];
260 char fmt;
261 char *p;
262 int i;
263 long arg_int;
264 CORE_ADDR arg_addr;
265 char *arg_string;
266
267 for (p = pattern; *p; p++)
268 {
269 if (*p == '%')
270 {
271 /* Copy the format specifier to a separate buffer. */
272 format[0] = *p++;
273 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
274 i++, p++)
275 format[i] = *p;
276 format[i] = fmt = *p;
277 format[i + 1] = '\0';
278
279 /* Fetch the next argument and print it. */
280 switch (fmt)
281 {
282 case '%':
283 strcpy (sndbuf, "%");
284 break;
285 case 'A':
286 arg_addr = va_arg (args, CORE_ADDR);
287 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
288 break;
289 case 's':
290 arg_string = va_arg (args, char *);
291 sprintf (sndbuf, format, arg_string);
292 break;
293 default:
294 arg_int = va_arg (args, long);
295 sprintf (sndbuf, format, arg_int);
296 break;
297 }
298 sndbuf += strlen (sndbuf);
299 }
300 else
301 *sndbuf++ = *p;
302 }
303 *sndbuf = '\0';
304 }
305
306
307 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
308 Works just like printf. */
309
310 void
311 monitor_printf_noecho (char *pattern,...)
312 {
313 va_list args;
314 char sndbuf[2000];
315 int len;
316
317 va_start (args, pattern);
318
319 monitor_vsprintf (sndbuf, pattern, args);
320
321 len = strlen (sndbuf);
322 if (len + 1 > sizeof sndbuf)
323 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
324
325 if (monitor_debug_p)
326 {
327 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
328 monitor_printable_string (safe_string, sndbuf, 0);
329 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
330 }
331
332 monitor_write (sndbuf, len);
333 }
334
335 /* monitor_printf -- Send data to monitor and check the echo. Works just like
336 printf. */
337
338 void
339 monitor_printf (char *pattern,...)
340 {
341 va_list args;
342 char sndbuf[2000];
343 int len;
344
345 va_start (args, pattern);
346
347 monitor_vsprintf (sndbuf, pattern, args);
348
349 len = strlen (sndbuf);
350 if (len + 1 > sizeof sndbuf)
351 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
352
353 if (monitor_debug_p)
354 {
355 char *safe_string = (char *) alloca ((len * 4) + 1);
356 monitor_printable_string (safe_string, sndbuf, 0);
357 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
358 }
359
360 monitor_write (sndbuf, len);
361
362 /* We used to expect that the next immediate output was the characters we
363 just output, but sometimes some extra junk appeared before the characters
364 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
365 So, just start searching for what we sent, and skip anything unknown. */
366 monitor_debug ("ExpectEcho\n");
367 monitor_expect (sndbuf, (char *) 0, 0);
368 }
369
370
371 /* Write characters to the remote system. */
372
373 void
374 monitor_write (char *buf, int buflen)
375 {
376 if (serial_write (monitor_desc, buf, buflen))
377 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
378 safe_strerror (errno));
379 }
380
381
382 /* Read a binary character from the remote system, doing all the fancy
383 timeout stuff, but without interpreting the character in any way,
384 and without printing remote debug information. */
385
386 int
387 monitor_readchar (void)
388 {
389 int c;
390 int looping;
391
392 do
393 {
394 looping = 0;
395 c = serial_readchar (monitor_desc, timeout);
396
397 if (c >= 0)
398 c &= 0xff; /* don't lose bit 7 */
399 }
400 while (looping);
401
402 if (c >= 0)
403 return c;
404
405 if (c == SERIAL_TIMEOUT)
406 error (_("Timeout reading from remote system."));
407
408 perror_with_name (_("remote-monitor"));
409 }
410
411
412 /* Read a character from the remote system, doing all the fancy
413 timeout stuff. */
414
415 static int
416 readchar (int timeout)
417 {
418 int c;
419 static enum
420 {
421 last_random, last_nl, last_cr, last_crnl
422 }
423 state = last_random;
424 int looping;
425
426 do
427 {
428 looping = 0;
429 c = serial_readchar (monitor_desc, timeout);
430
431 if (c >= 0)
432 {
433 c &= 0x7f;
434 /* This seems to interfere with proper function of the
435 input stream */
436 if (monitor_debug_p || remote_debug)
437 {
438 char buf[2];
439 buf[0] = c;
440 buf[1] = '\0';
441 puts_debug ("read -->", buf, "<--");
442 }
443
444 }
445
446 /* Canonicialize \n\r combinations into one \r */
447 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
448 {
449 if ((c == '\r' && state == last_nl)
450 || (c == '\n' && state == last_cr))
451 {
452 state = last_crnl;
453 looping = 1;
454 }
455 else if (c == '\r')
456 state = last_cr;
457 else if (c != '\n')
458 state = last_random;
459 else
460 {
461 state = last_nl;
462 c = '\r';
463 }
464 }
465 }
466 while (looping);
467
468 if (c >= 0)
469 return c;
470
471 if (c == SERIAL_TIMEOUT)
472 #if 0
473 /* I fail to see how detaching here can be useful */
474 if (in_monitor_wait) /* Watchdog went off */
475 {
476 target_mourn_inferior ();
477 error (_("GDB serial timeout has expired. Target detached."));
478 }
479 else
480 #endif
481 error (_("Timeout reading from remote system."));
482
483 perror_with_name (_("remote-monitor"));
484 }
485
486 /* Scan input from the remote system, until STRING is found. If BUF is non-
487 zero, then collect input until we have collected either STRING or BUFLEN-1
488 chars. In either case we terminate BUF with a 0. If input overflows BUF
489 because STRING can't be found, return -1, else return number of chars in BUF
490 (minus the terminating NUL). Note that in the non-overflow case, STRING
491 will be at the end of BUF. */
492
493 int
494 monitor_expect (char *string, char *buf, int buflen)
495 {
496 char *p = string;
497 int obuflen = buflen;
498 int c;
499
500 if (monitor_debug_p)
501 {
502 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
503 monitor_printable_string (safe_string, string, 0);
504 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
505 }
506
507 immediate_quit++;
508 while (1)
509 {
510 if (buf)
511 {
512 if (buflen < 2)
513 {
514 *buf = '\000';
515 immediate_quit--;
516 return -1;
517 }
518
519 c = readchar (timeout);
520 if (c == '\000')
521 continue;
522 *buf++ = c;
523 buflen--;
524 }
525 else
526 c = readchar (timeout);
527
528 /* Don't expect any ^C sent to be echoed */
529
530 if (*p == '\003' || c == *p)
531 {
532 p++;
533 if (*p == '\0')
534 {
535 immediate_quit--;
536
537 if (buf)
538 {
539 *buf++ = '\000';
540 return obuflen - buflen;
541 }
542 else
543 return 0;
544 }
545 }
546 else
547 {
548 /* We got a character that doesn't match the string. We need to
549 back up p, but how far? If we're looking for "..howdy" and the
550 monitor sends "...howdy"? There's certainly a match in there,
551 but when we receive the third ".", we won't find it if we just
552 restart the matching at the beginning of the string.
553
554 This is a Boyer-Moore kind of situation. We want to reset P to
555 the end of the longest prefix of STRING that is a suffix of
556 what we've read so far. In the example above, that would be
557 ".." --- the longest prefix of "..howdy" that is a suffix of
558 "...". This longest prefix could be the empty string, if C
559 is nowhere to be found in STRING.
560
561 If this longest prefix is not the empty string, it must contain
562 C, so let's search from the end of STRING for instances of C,
563 and see if the portion of STRING before that is a suffix of
564 what we read before C. Actually, we can search backwards from
565 p, since we know no prefix can be longer than that.
566
567 Note that we can use STRING itself, along with C, as a record
568 of what we've received so far. :) */
569 int i;
570
571 for (i = (p - string) - 1; i >= 0; i--)
572 if (string[i] == c)
573 {
574 /* Is this prefix a suffix of what we've read so far?
575 In other words, does
576 string[0 .. i-1] == string[p - i, p - 1]? */
577 if (! memcmp (string, p - i, i))
578 {
579 p = string + i + 1;
580 break;
581 }
582 }
583 if (i < 0)
584 p = string;
585 }
586 }
587 }
588
589 /* Search for a regexp. */
590
591 static int
592 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
593 {
594 char *mybuf;
595 char *p;
596 monitor_debug ("MON Expecting regexp\n");
597 if (buf)
598 mybuf = buf;
599 else
600 {
601 mybuf = alloca (TARGET_BUF_SIZE);
602 buflen = TARGET_BUF_SIZE;
603 }
604
605 p = mybuf;
606 while (1)
607 {
608 int retval;
609
610 if (p - mybuf >= buflen)
611 { /* Buffer about to overflow */
612
613 /* On overflow, we copy the upper half of the buffer to the lower half. Not
614 great, but it usually works... */
615
616 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
617 p = mybuf + buflen / 2;
618 }
619
620 *p++ = readchar (timeout);
621
622 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
623 if (retval >= 0)
624 return 1;
625 }
626 }
627
628 /* Keep discarding input until we see the MONITOR prompt.
629
630 The convention for dealing with the prompt is that you
631 o give your command
632 o *then* wait for the prompt.
633
634 Thus the last thing that a procedure does with the serial line will
635 be an monitor_expect_prompt(). Exception: monitor_resume does not
636 wait for the prompt, because the terminal is being handed over to
637 the inferior. However, the next thing which happens after that is
638 a monitor_wait which does wait for the prompt. Note that this
639 includes abnormal exit, e.g. error(). This is necessary to prevent
640 getting into states from which we can't recover. */
641
642 int
643 monitor_expect_prompt (char *buf, int buflen)
644 {
645 monitor_debug ("MON Expecting prompt\n");
646 return monitor_expect (current_monitor->prompt, buf, buflen);
647 }
648
649 /* Get N 32-bit words from remote, each preceded by a space, and put
650 them in registers starting at REGNO. */
651
652 #if 0
653 static unsigned long
654 get_hex_word (void)
655 {
656 unsigned long val;
657 int i;
658 int ch;
659
660 do
661 ch = readchar (timeout);
662 while (isspace (ch));
663
664 val = from_hex (ch);
665
666 for (i = 7; i >= 1; i--)
667 {
668 ch = readchar (timeout);
669 if (!isxdigit (ch))
670 break;
671 val = (val << 4) | from_hex (ch);
672 }
673
674 return val;
675 }
676 #endif
677
678 static void
679 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
680 char *fastmap)
681 {
682 int tmp;
683 const char *val;
684
685 compiled_pattern->fastmap = fastmap;
686
687 tmp = re_set_syntax (RE_SYNTAX_EMACS);
688 val = re_compile_pattern (pattern,
689 strlen (pattern),
690 compiled_pattern);
691 re_set_syntax (tmp);
692
693 if (val)
694 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
695
696 if (fastmap)
697 re_compile_fastmap (compiled_pattern);
698 }
699
700 /* Open a connection to a remote debugger. NAME is the filename used
701 for communication. */
702
703 void
704 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
705 {
706 char *name;
707 char **p;
708
709 if (mon_ops->magic != MONITOR_OPS_MAGIC)
710 error (_("Magic number of monitor_ops struct wrong."));
711
712 targ_ops = mon_ops->target;
713 name = targ_ops->to_shortname;
714
715 if (!args)
716 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
717 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
718
719 target_preopen (from_tty);
720
721 /* Setup pattern for register dump */
722
723 if (mon_ops->register_pattern)
724 compile_pattern (mon_ops->register_pattern, &register_pattern,
725 register_fastmap);
726
727 if (mon_ops->getmem.resp_delim)
728 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
729 getmem_resp_delim_fastmap);
730
731 if (mon_ops->setmem.resp_delim)
732 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
733 setmem_resp_delim_fastmap);
734
735 if (mon_ops->setreg.resp_delim)
736 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
737 setreg_resp_delim_fastmap);
738
739 unpush_target (targ_ops);
740
741 if (dev_name)
742 xfree (dev_name);
743 dev_name = xstrdup (args);
744
745 monitor_desc = serial_open (dev_name);
746
747 if (!monitor_desc)
748 perror_with_name (dev_name);
749
750 if (baud_rate != -1)
751 {
752 if (serial_setbaudrate (monitor_desc, baud_rate))
753 {
754 serial_close (monitor_desc);
755 perror_with_name (dev_name);
756 }
757 }
758
759 serial_raw (monitor_desc);
760
761 serial_flush_input (monitor_desc);
762
763 /* some systems only work with 2 stop bits */
764
765 serial_setstopbits (monitor_desc, mon_ops->stopbits);
766
767 current_monitor = mon_ops;
768
769 /* See if we can wake up the monitor. First, try sending a stop sequence,
770 then send the init strings. Last, remove all breakpoints. */
771
772 if (current_monitor->stop)
773 {
774 monitor_stop (inferior_ptid);
775 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
776 {
777 monitor_debug ("EXP Open echo\n");
778 monitor_expect_prompt (NULL, 0);
779 }
780 }
781
782 /* wake up the monitor and see if it's alive */
783 for (p = mon_ops->init; *p != NULL; p++)
784 {
785 /* Some of the characters we send may not be echoed,
786 but we hope to get a prompt at the end of it all. */
787
788 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
789 monitor_printf (*p);
790 else
791 monitor_printf_noecho (*p);
792 monitor_expect_prompt (NULL, 0);
793 }
794
795 serial_flush_input (monitor_desc);
796
797 /* Alloc breakpoints */
798 if (mon_ops->set_break != NULL)
799 {
800 if (mon_ops->num_breakpoints == 0)
801 mon_ops->num_breakpoints = 8;
802
803 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
804 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
805 }
806
807 /* Remove all breakpoints */
808
809 if (mon_ops->clr_all_break)
810 {
811 monitor_printf (mon_ops->clr_all_break);
812 monitor_expect_prompt (NULL, 0);
813 }
814
815 if (from_tty)
816 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
817
818 push_target (targ_ops);
819
820 /* Start afresh. */
821 init_thread_list ();
822
823 /* Make run command think we are busy... */
824 inferior_ptid = monitor_ptid;
825 add_inferior_silent (ptid_get_pid (inferior_ptid));
826 add_thread_silent (inferior_ptid);
827
828 /* Give monitor_wait something to read */
829
830 monitor_printf (current_monitor->line_term);
831
832 start_remote (from_tty);
833 }
834
835 /* Close out all files and local state before this target loses
836 control. */
837
838 void
839 monitor_close (int quitting)
840 {
841 if (monitor_desc)
842 serial_close (monitor_desc);
843
844 /* Free breakpoint memory */
845 if (breakaddr != NULL)
846 {
847 xfree (breakaddr);
848 breakaddr = NULL;
849 }
850
851 monitor_desc = NULL;
852
853 delete_thread_silent (monitor_ptid);
854 delete_inferior_silent (ptid_get_pid (monitor_ptid));
855 }
856
857 /* Terminate the open connection to the remote debugger. Use this
858 when you want to detach and do something else with your gdb. */
859
860 static void
861 monitor_detach (struct target_ops *ops, char *args, int from_tty)
862 {
863 pop_target (); /* calls monitor_close to do the real work */
864 if (from_tty)
865 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
866 }
867
868 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
869
870 char *
871 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
872 {
873 struct gdbarch *gdbarch = get_regcache_arch (regcache);
874 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
875 ULONGEST val;
876 unsigned char regbuf[MAX_REGISTER_SIZE];
877 char *p;
878
879 val = 0;
880 p = valstr;
881 while (p && *p != '\0')
882 {
883 if (*p == '\r' || *p == '\n')
884 {
885 while (*p != '\0')
886 p++;
887 break;
888 }
889 if (isspace (*p))
890 {
891 p++;
892 continue;
893 }
894 if (!isxdigit (*p) && *p != 'x')
895 {
896 break;
897 }
898
899 val <<= 4;
900 val += fromhex (*p++);
901 }
902 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
903
904 if (val == 0 && valstr == p)
905 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
906 regno, valstr);
907
908 /* supply register stores in target byte order, so swap here */
909
910 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
911 val);
912
913 regcache_raw_supply (regcache, regno, regbuf);
914
915 return p;
916 }
917
918 /* Tell the remote machine to resume. */
919
920 static void
921 monitor_resume (struct target_ops *ops,
922 ptid_t ptid, int step, enum target_signal sig)
923 {
924 /* Some monitors require a different command when starting a program */
925 monitor_debug ("MON resume\n");
926 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
927 {
928 first_time = 0;
929 monitor_printf ("run\r");
930 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
931 dump_reg_flag = 1;
932 return;
933 }
934 if (step)
935 monitor_printf (current_monitor->step);
936 else
937 {
938 if (current_monitor->continue_hook)
939 (*current_monitor->continue_hook) ();
940 else
941 monitor_printf (current_monitor->cont);
942 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
943 dump_reg_flag = 1;
944 }
945 }
946
947 /* Parse the output of a register dump command. A monitor specific
948 regexp is used to extract individual register descriptions of the
949 form REG=VAL. Each description is split up into a name and a value
950 string which are passed down to monitor specific code. */
951
952 static void
953 parse_register_dump (struct regcache *regcache, char *buf, int len)
954 {
955 monitor_debug ("MON Parsing register dump\n");
956 while (1)
957 {
958 int regnamelen, vallen;
959 char *regname, *val;
960 /* Element 0 points to start of register name, and element 1
961 points to the start of the register value. */
962 struct re_registers register_strings;
963
964 memset (&register_strings, 0, sizeof (struct re_registers));
965
966 if (re_search (&register_pattern, buf, len, 0, len,
967 &register_strings) == -1)
968 break;
969
970 regnamelen = register_strings.end[1] - register_strings.start[1];
971 regname = buf + register_strings.start[1];
972 vallen = register_strings.end[2] - register_strings.start[2];
973 val = buf + register_strings.start[2];
974
975 current_monitor->supply_register (regcache, regname, regnamelen,
976 val, vallen);
977
978 buf += register_strings.end[0];
979 len -= register_strings.end[0];
980 }
981 }
982
983 /* Send ^C to target to halt it. Target will respond, and send us a
984 packet. */
985
986 static void
987 monitor_interrupt (int signo)
988 {
989 /* If this doesn't work, try more severe steps. */
990 signal (signo, monitor_interrupt_twice);
991
992 if (monitor_debug_p || remote_debug)
993 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
994
995 target_stop (inferior_ptid);
996 }
997
998 /* The user typed ^C twice. */
999
1000 static void
1001 monitor_interrupt_twice (int signo)
1002 {
1003 signal (signo, ofunc);
1004
1005 monitor_interrupt_query ();
1006
1007 signal (signo, monitor_interrupt);
1008 }
1009
1010 /* Ask the user what to do when an interrupt is received. */
1011
1012 static void
1013 monitor_interrupt_query (void)
1014 {
1015 target_terminal_ours ();
1016
1017 if (query (_("Interrupted while waiting for the program.\n\
1018 Give up (and stop debugging it)? ")))
1019 {
1020 target_mourn_inferior ();
1021 deprecated_throw_reason (RETURN_QUIT);
1022 }
1023
1024 target_terminal_inferior ();
1025 }
1026
1027 static void
1028 monitor_wait_cleanup (void *old_timeout)
1029 {
1030 timeout = *(int *) old_timeout;
1031 signal (SIGINT, ofunc);
1032 in_monitor_wait = 0;
1033 }
1034
1035
1036
1037 static void
1038 monitor_wait_filter (char *buf,
1039 int bufmax,
1040 int *ext_resp_len,
1041 struct target_waitstatus *status)
1042 {
1043 int resp_len;
1044 do
1045 {
1046 resp_len = monitor_expect_prompt (buf, bufmax);
1047 *ext_resp_len = resp_len;
1048
1049 if (resp_len <= 0)
1050 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1051 }
1052 while (resp_len < 0);
1053
1054 /* Print any output characters that were preceded by ^O. */
1055 /* FIXME - This would be great as a user settabgle flag */
1056 if (monitor_debug_p || remote_debug
1057 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1058 {
1059 int i;
1060
1061 for (i = 0; i < resp_len - 1; i++)
1062 if (buf[i] == 0x0f)
1063 putchar_unfiltered (buf[++i]);
1064 }
1065 }
1066
1067
1068
1069 /* Wait until the remote machine stops, then return, storing status in
1070 status just as `wait' would. */
1071
1072 static ptid_t
1073 monitor_wait (struct target_ops *ops,
1074 ptid_t ptid, struct target_waitstatus *status, int options)
1075 {
1076 int old_timeout = timeout;
1077 char buf[TARGET_BUF_SIZE];
1078 int resp_len;
1079 struct cleanup *old_chain;
1080
1081 status->kind = TARGET_WAITKIND_EXITED;
1082 status->value.integer = 0;
1083
1084 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1085 monitor_debug ("MON wait\n");
1086
1087 #if 0
1088 /* This is somthing other than a maintenance command */
1089 in_monitor_wait = 1;
1090 timeout = watchdog > 0 ? watchdog : -1;
1091 #else
1092 timeout = -1; /* Don't time out -- user program is running. */
1093 #endif
1094
1095 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1096
1097 if (current_monitor->wait_filter)
1098 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1099 else
1100 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1101
1102 #if 0 /* Transferred to monitor wait filter */
1103 do
1104 {
1105 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1106
1107 if (resp_len <= 0)
1108 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1109 }
1110 while (resp_len < 0);
1111
1112 /* Print any output characters that were preceded by ^O. */
1113 /* FIXME - This would be great as a user settabgle flag */
1114 if (monitor_debug_p || remote_debug
1115 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1116 {
1117 int i;
1118
1119 for (i = 0; i < resp_len - 1; i++)
1120 if (buf[i] == 0x0f)
1121 putchar_unfiltered (buf[++i]);
1122 }
1123 #endif
1124
1125 signal (SIGINT, ofunc);
1126
1127 timeout = old_timeout;
1128 #if 0
1129 if (dump_reg_flag && current_monitor->dump_registers)
1130 {
1131 dump_reg_flag = 0;
1132 monitor_printf (current_monitor->dump_registers);
1133 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1134 }
1135
1136 if (current_monitor->register_pattern)
1137 parse_register_dump (get_current_regcache (), buf, resp_len);
1138 #else
1139 monitor_debug ("Wait fetching registers after stop\n");
1140 monitor_dump_regs (get_current_regcache ());
1141 #endif
1142
1143 status->kind = TARGET_WAITKIND_STOPPED;
1144 status->value.sig = TARGET_SIGNAL_TRAP;
1145
1146 discard_cleanups (old_chain);
1147
1148 in_monitor_wait = 0;
1149
1150 return inferior_ptid;
1151 }
1152
1153 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1154 errno value. */
1155
1156 static void
1157 monitor_fetch_register (struct regcache *regcache, int regno)
1158 {
1159 const char *name;
1160 char *zerobuf;
1161 char *regbuf;
1162 int i;
1163
1164 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1165 zerobuf = alloca (MAX_REGISTER_SIZE);
1166 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1167
1168 if (current_monitor->regname != NULL)
1169 name = current_monitor->regname (regno);
1170 else
1171 name = current_monitor->regnames[regno];
1172 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1173
1174 if (!name || (*name == '\0'))
1175 {
1176 monitor_debug ("No register known for %d\n", regno);
1177 regcache_raw_supply (regcache, regno, zerobuf);
1178 return;
1179 }
1180
1181 /* send the register examine command */
1182
1183 monitor_printf (current_monitor->getreg.cmd, name);
1184
1185 /* If RESP_DELIM is specified, we search for that as a leading
1186 delimiter for the register value. Otherwise, we just start
1187 searching from the start of the buf. */
1188
1189 if (current_monitor->getreg.resp_delim)
1190 {
1191 monitor_debug ("EXP getreg.resp_delim\n");
1192 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1193 /* Handle case of first 32 registers listed in pairs. */
1194 if (current_monitor->flags & MO_32_REGS_PAIRED
1195 && (regno & 1) != 0 && regno < 32)
1196 {
1197 monitor_debug ("EXP getreg.resp_delim\n");
1198 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1199 }
1200 }
1201
1202 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1203 if (current_monitor->flags & MO_HEX_PREFIX)
1204 {
1205 int c;
1206 c = readchar (timeout);
1207 while (c == ' ')
1208 c = readchar (timeout);
1209 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1210 ;
1211 else
1212 error (_("Bad value returned from monitor while fetching register %x."),
1213 regno);
1214 }
1215
1216 /* Read upto the maximum number of hex digits for this register, skipping
1217 spaces, but stop reading if something else is seen. Some monitors
1218 like to drop leading zeros. */
1219
1220 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1221 {
1222 int c;
1223 c = readchar (timeout);
1224 while (c == ' ')
1225 c = readchar (timeout);
1226
1227 if (!isxdigit (c))
1228 break;
1229
1230 regbuf[i] = c;
1231 }
1232
1233 regbuf[i] = '\000'; /* terminate the number */
1234 monitor_debug ("REGVAL '%s'\n", regbuf);
1235
1236 /* If TERM is present, we wait for that to show up. Also, (if TERM
1237 is present), we will send TERM_CMD if that is present. In any
1238 case, we collect all of the output into buf, and then wait for
1239 the normal prompt. */
1240
1241 if (current_monitor->getreg.term)
1242 {
1243 monitor_debug ("EXP getreg.term\n");
1244 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1245 }
1246
1247 if (current_monitor->getreg.term_cmd)
1248 {
1249 monitor_debug ("EMIT getreg.term.cmd\n");
1250 monitor_printf (current_monitor->getreg.term_cmd);
1251 }
1252 if (!current_monitor->getreg.term || /* Already expected or */
1253 current_monitor->getreg.term_cmd) /* ack expected */
1254 monitor_expect_prompt (NULL, 0); /* get response */
1255
1256 monitor_supply_register (regcache, regno, regbuf);
1257 }
1258
1259 /* Sometimes, it takes several commands to dump the registers */
1260 /* This is a primitive for use by variations of monitor interfaces in
1261 case they need to compose the operation.
1262 */
1263 int
1264 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1265 {
1266 char buf[TARGET_BUF_SIZE];
1267 int resp_len;
1268 monitor_printf (block_cmd);
1269 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1270 parse_register_dump (regcache, buf, resp_len);
1271 return 1;
1272 }
1273
1274
1275 /* Read the remote registers into the block regs. */
1276 /* Call the specific function if it has been provided */
1277
1278 static void
1279 monitor_dump_regs (struct regcache *regcache)
1280 {
1281 char buf[TARGET_BUF_SIZE];
1282 int resp_len;
1283 if (current_monitor->dumpregs)
1284 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1285 else if (current_monitor->dump_registers) /* default version */
1286 {
1287 monitor_printf (current_monitor->dump_registers);
1288 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1289 parse_register_dump (regcache, buf, resp_len);
1290 }
1291 else
1292 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1293 }
1294
1295 static void
1296 monitor_fetch_registers (struct target_ops *ops,
1297 struct regcache *regcache, int regno)
1298 {
1299 monitor_debug ("MON fetchregs\n");
1300 if (current_monitor->getreg.cmd)
1301 {
1302 if (regno >= 0)
1303 {
1304 monitor_fetch_register (regcache, regno);
1305 return;
1306 }
1307
1308 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1309 regno++)
1310 monitor_fetch_register (regcache, regno);
1311 }
1312 else
1313 {
1314 monitor_dump_regs (regcache);
1315 }
1316 }
1317
1318 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1319
1320 static void
1321 monitor_store_register (struct regcache *regcache, int regno)
1322 {
1323 int reg_size = register_size (get_regcache_arch (regcache), regno);
1324 const char *name;
1325 ULONGEST val;
1326
1327 if (current_monitor->regname != NULL)
1328 name = current_monitor->regname (regno);
1329 else
1330 name = current_monitor->regnames[regno];
1331
1332 if (!name || (*name == '\0'))
1333 {
1334 monitor_debug ("MON Cannot store unknown register\n");
1335 return;
1336 }
1337
1338 regcache_cooked_read_unsigned (regcache, regno, &val);
1339 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1340
1341 /* send the register deposit command */
1342
1343 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1344 monitor_printf (current_monitor->setreg.cmd, val, name);
1345 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1346 monitor_printf (current_monitor->setreg.cmd, name);
1347 else
1348 monitor_printf (current_monitor->setreg.cmd, name, val);
1349
1350 if (current_monitor->setreg.resp_delim)
1351 {
1352 monitor_debug ("EXP setreg.resp_delim\n");
1353 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1354 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1355 monitor_printf ("%s\r", phex_nz (val, reg_size));
1356 }
1357 if (current_monitor->setreg.term)
1358 {
1359 monitor_debug ("EXP setreg.term\n");
1360 monitor_expect (current_monitor->setreg.term, NULL, 0);
1361 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1362 monitor_printf ("%s\r", phex_nz (val, reg_size));
1363 monitor_expect_prompt (NULL, 0);
1364 }
1365 else
1366 monitor_expect_prompt (NULL, 0);
1367 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1368 {
1369 monitor_debug ("EXP setreg_termcmd\n");
1370 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1371 monitor_expect_prompt (NULL, 0);
1372 }
1373 } /* monitor_store_register */
1374
1375 /* Store the remote registers. */
1376
1377 static void
1378 monitor_store_registers (struct target_ops *ops,
1379 struct regcache *regcache, int regno)
1380 {
1381 if (regno >= 0)
1382 {
1383 monitor_store_register (regcache, regno);
1384 return;
1385 }
1386
1387 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1388 regno++)
1389 monitor_store_register (regcache, regno);
1390 }
1391
1392 /* Get ready to modify the registers array. On machines which store
1393 individual registers, this doesn't need to do anything. On machines
1394 which store all the registers in one fell swoop, this makes sure
1395 that registers contains all the registers from the program being
1396 debugged. */
1397
1398 static void
1399 monitor_prepare_to_store (struct regcache *regcache)
1400 {
1401 /* Do nothing, since we can store individual regs */
1402 }
1403
1404 static void
1405 monitor_files_info (struct target_ops *ops)
1406 {
1407 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1408 }
1409
1410 static int
1411 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1412 {
1413 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1414 unsigned int val, hostval;
1415 char *cmd;
1416 int i;
1417
1418 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1419
1420 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1421 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1422
1423 /* Use memory fill command for leading 0 bytes. */
1424
1425 if (current_monitor->fill)
1426 {
1427 for (i = 0; i < len; i++)
1428 if (myaddr[i] != 0)
1429 break;
1430
1431 if (i > 4) /* More than 4 zeros is worth doing */
1432 {
1433 monitor_debug ("MON FILL %d\n", i);
1434 if (current_monitor->flags & MO_FILL_USES_ADDR)
1435 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1436 else
1437 monitor_printf (current_monitor->fill, memaddr, i, 0);
1438
1439 monitor_expect_prompt (NULL, 0);
1440
1441 return i;
1442 }
1443 }
1444
1445 #if 0
1446 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1447 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1448 {
1449 len = 8;
1450 cmd = current_monitor->setmem.cmdll;
1451 }
1452 else
1453 #endif
1454 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1455 {
1456 len = 4;
1457 cmd = current_monitor->setmem.cmdl;
1458 }
1459 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1460 {
1461 len = 2;
1462 cmd = current_monitor->setmem.cmdw;
1463 }
1464 else
1465 {
1466 len = 1;
1467 cmd = current_monitor->setmem.cmdb;
1468 }
1469
1470 val = extract_unsigned_integer (myaddr, len, byte_order);
1471
1472 if (len == 4)
1473 {
1474 hostval = *(unsigned int *) myaddr;
1475 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1476 }
1477
1478
1479 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1480 monitor_printf_noecho (cmd, memaddr, val);
1481 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1482 {
1483
1484 monitor_printf_noecho (cmd, memaddr);
1485
1486 if (current_monitor->setmem.resp_delim)
1487 {
1488 monitor_debug ("EXP setmem.resp_delim");
1489 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1490 monitor_printf ("%x\r", val);
1491 }
1492 if (current_monitor->setmem.term)
1493 {
1494 monitor_debug ("EXP setmem.term");
1495 monitor_expect (current_monitor->setmem.term, NULL, 0);
1496 monitor_printf ("%x\r", val);
1497 }
1498 if (current_monitor->setmem.term_cmd)
1499 { /* Emit this to get out of the memory editing state */
1500 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1501 /* Drop through to expecting a prompt */
1502 }
1503 }
1504 else
1505 monitor_printf (cmd, memaddr, val);
1506
1507 monitor_expect_prompt (NULL, 0);
1508
1509 return len;
1510 }
1511
1512
1513 static int
1514 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1515 {
1516 unsigned char val;
1517 int written = 0;
1518 if (len == 0)
1519 return 0;
1520 /* Enter the sub mode */
1521 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1522 monitor_expect_prompt (NULL, 0);
1523 while (len)
1524 {
1525 val = *myaddr;
1526 monitor_printf ("%x\r", val);
1527 myaddr++;
1528 memaddr++;
1529 written++;
1530 /* If we wanted to, here we could validate the address */
1531 monitor_expect_prompt (NULL, 0);
1532 len--;
1533 }
1534 /* Now exit the sub mode */
1535 monitor_printf (current_monitor->getreg.term_cmd);
1536 monitor_expect_prompt (NULL, 0);
1537 return written;
1538 }
1539
1540
1541 static void
1542 longlongendswap (unsigned char *a)
1543 {
1544 int i, j;
1545 unsigned char x;
1546 i = 0;
1547 j = 7;
1548 while (i < 4)
1549 {
1550 x = *(a + i);
1551 *(a + i) = *(a + j);
1552 *(a + j) = x;
1553 i++, j--;
1554 }
1555 }
1556 /* Format 32 chars of long long value, advance the pointer */
1557 static char *hexlate = "0123456789abcdef";
1558 static char *
1559 longlong_hexchars (unsigned long long value,
1560 char *outbuff)
1561 {
1562 if (value == 0)
1563 {
1564 *outbuff++ = '0';
1565 return outbuff;
1566 }
1567 else
1568 {
1569 static unsigned char disbuf[8]; /* disassembly buffer */
1570 unsigned char *scan, *limit; /* loop controls */
1571 unsigned char c, nib;
1572 int leadzero = 1;
1573 scan = disbuf;
1574 limit = scan + 8;
1575 {
1576 unsigned long long *dp;
1577 dp = (unsigned long long *) scan;
1578 *dp = value;
1579 }
1580 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1581 while (scan < limit)
1582 {
1583 c = *scan++; /* a byte of our long long value */
1584 if (leadzero)
1585 {
1586 if (c == 0)
1587 continue;
1588 else
1589 leadzero = 0; /* henceforth we print even zeroes */
1590 }
1591 nib = c >> 4; /* high nibble bits */
1592 *outbuff++ = hexlate[nib];
1593 nib = c & 0x0f; /* low nibble bits */
1594 *outbuff++ = hexlate[nib];
1595 }
1596 return outbuff;
1597 }
1598 } /* longlong_hexchars */
1599
1600
1601
1602 /* I am only going to call this when writing virtual byte streams.
1603 Which possably entails endian conversions
1604 */
1605 static int
1606 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1607 {
1608 static char hexstage[20]; /* At least 16 digits required, plus null */
1609 char *endstring;
1610 long long *llptr;
1611 long long value;
1612 int written = 0;
1613 llptr = (unsigned long long *) myaddr;
1614 if (len == 0)
1615 return 0;
1616 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1617 monitor_expect_prompt (NULL, 0);
1618 while (len >= 8)
1619 {
1620 value = *llptr;
1621 endstring = longlong_hexchars (*llptr, hexstage);
1622 *endstring = '\0'; /* NUll terminate for printf */
1623 monitor_printf ("%s\r", hexstage);
1624 llptr++;
1625 memaddr += 8;
1626 written += 8;
1627 /* If we wanted to, here we could validate the address */
1628 monitor_expect_prompt (NULL, 0);
1629 len -= 8;
1630 }
1631 /* Now exit the sub mode */
1632 monitor_printf (current_monitor->getreg.term_cmd);
1633 monitor_expect_prompt (NULL, 0);
1634 return written;
1635 } /* */
1636
1637
1638
1639 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1640 /* This is for the large blocks of memory which may occur in downloading.
1641 And for monitors which use interactive entry,
1642 And for monitors which do not have other downloading methods.
1643 Without this, we will end up calling monitor_write_memory many times
1644 and do the entry and exit of the sub mode many times
1645 This currently assumes...
1646 MO_SETMEM_INTERACTIVE
1647 ! MO_NO_ECHO_ON_SETMEM
1648 To use this, the you have to patch the monitor_cmds block with
1649 this function. Otherwise, its not tuned up for use by all
1650 monitor variations.
1651 */
1652
1653 static int
1654 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1655 {
1656 int written;
1657 written = 0;
1658 /* FIXME: This would be a good place to put the zero test */
1659 #if 1
1660 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1661 {
1662 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1663 }
1664 #endif
1665 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1666 return written;
1667 }
1668
1669 /* This is an alternate form of monitor_read_memory which is used for monitors
1670 which can only read a single byte/word/etc. at a time. */
1671
1672 static int
1673 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1674 {
1675 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1676 unsigned int val;
1677 char membuf[sizeof (int) * 2 + 1];
1678 char *p;
1679 char *cmd;
1680
1681 monitor_debug ("MON read single\n");
1682 #if 0
1683 /* Can't actually use long longs (nice idea, though). In fact, the
1684 call to strtoul below will fail if it tries to convert a value
1685 that's too big to fit in a long. */
1686 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1687 {
1688 len = 8;
1689 cmd = current_monitor->getmem.cmdll;
1690 }
1691 else
1692 #endif
1693 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1694 {
1695 len = 4;
1696 cmd = current_monitor->getmem.cmdl;
1697 }
1698 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1699 {
1700 len = 2;
1701 cmd = current_monitor->getmem.cmdw;
1702 }
1703 else
1704 {
1705 len = 1;
1706 cmd = current_monitor->getmem.cmdb;
1707 }
1708
1709 /* Send the examine command. */
1710
1711 monitor_printf (cmd, memaddr);
1712
1713 /* If RESP_DELIM is specified, we search for that as a leading
1714 delimiter for the memory value. Otherwise, we just start
1715 searching from the start of the buf. */
1716
1717 if (current_monitor->getmem.resp_delim)
1718 {
1719 monitor_debug ("EXP getmem.resp_delim\n");
1720 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1721 }
1722
1723 /* Now, read the appropriate number of hex digits for this loc,
1724 skipping spaces. */
1725
1726 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1727 if (current_monitor->flags & MO_HEX_PREFIX)
1728 {
1729 int c;
1730
1731 c = readchar (timeout);
1732 while (c == ' ')
1733 c = readchar (timeout);
1734 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1735 ;
1736 else
1737 monitor_error ("monitor_read_memory_single",
1738 "bad response from monitor",
1739 memaddr, 0, NULL, 0);
1740 }
1741
1742 {
1743 int i;
1744 for (i = 0; i < len * 2; i++)
1745 {
1746 int c;
1747
1748 while (1)
1749 {
1750 c = readchar (timeout);
1751 if (isxdigit (c))
1752 break;
1753 if (c == ' ')
1754 continue;
1755
1756 monitor_error ("monitor_read_memory_single",
1757 "bad response from monitor",
1758 memaddr, i, membuf, 0);
1759 }
1760 membuf[i] = c;
1761 }
1762 membuf[i] = '\000'; /* terminate the number */
1763 }
1764
1765 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1766 present), we will send TERM_CMD if that is present. In any case, we collect
1767 all of the output into buf, and then wait for the normal prompt. */
1768
1769 if (current_monitor->getmem.term)
1770 {
1771 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1772
1773 if (current_monitor->getmem.term_cmd)
1774 {
1775 monitor_printf (current_monitor->getmem.term_cmd);
1776 monitor_expect_prompt (NULL, 0);
1777 }
1778 }
1779 else
1780 monitor_expect_prompt (NULL, 0); /* get response */
1781
1782 p = membuf;
1783 val = strtoul (membuf, &p, 16);
1784
1785 if (val == 0 && membuf == p)
1786 monitor_error ("monitor_read_memory_single",
1787 "bad value from monitor",
1788 memaddr, 0, membuf, 0);
1789
1790 /* supply register stores in target byte order, so swap here */
1791
1792 store_unsigned_integer (myaddr, len, byte_order, val);
1793
1794 return len;
1795 }
1796
1797 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1798 memory at MEMADDR. Returns length moved. Currently, we do no more
1799 than 16 bytes at a time. */
1800
1801 static int
1802 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1803 {
1804 unsigned int val;
1805 char buf[512];
1806 char *p, *p1;
1807 int resp_len;
1808 int i;
1809 CORE_ADDR dumpaddr;
1810
1811 if (len <= 0)
1812 {
1813 monitor_debug ("Zero length call to monitor_read_memory\n");
1814 return 0;
1815 }
1816
1817 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1818 paddress (target_gdbarch, memaddr), (long) myaddr, len);
1819
1820 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1821 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1822
1823 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1824 return monitor_read_memory_single (memaddr, myaddr, len);
1825
1826 len = min (len, 16);
1827
1828 /* Some dumpers align the first data with the preceeding 16
1829 byte boundary. Some print blanks and start at the
1830 requested boundary. EXACT_DUMPADDR
1831 */
1832
1833 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1834 ? memaddr : memaddr & ~0x0f;
1835
1836 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1837 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1838 len = ((memaddr + len) & ~0xf) - memaddr;
1839
1840 /* send the memory examine command */
1841
1842 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1843 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1844 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1845 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1846 else
1847 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1848
1849 /* If TERM is present, we wait for that to show up. Also, (if TERM
1850 is present), we will send TERM_CMD if that is present. In any
1851 case, we collect all of the output into buf, and then wait for
1852 the normal prompt. */
1853
1854 if (current_monitor->getmem.term)
1855 {
1856 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1857
1858 if (resp_len <= 0)
1859 monitor_error ("monitor_read_memory",
1860 "excessive response from monitor",
1861 memaddr, resp_len, buf, 0);
1862
1863 if (current_monitor->getmem.term_cmd)
1864 {
1865 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1866 strlen (current_monitor->getmem.term_cmd));
1867 monitor_expect_prompt (NULL, 0);
1868 }
1869 }
1870 else
1871 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1872
1873 p = buf;
1874
1875 /* If RESP_DELIM is specified, we search for that as a leading
1876 delimiter for the values. Otherwise, we just start searching
1877 from the start of the buf. */
1878
1879 if (current_monitor->getmem.resp_delim)
1880 {
1881 int retval, tmp;
1882 struct re_registers resp_strings;
1883 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1884
1885 memset (&resp_strings, 0, sizeof (struct re_registers));
1886 tmp = strlen (p);
1887 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1888 &resp_strings);
1889
1890 if (retval < 0)
1891 monitor_error ("monitor_read_memory",
1892 "bad response from monitor",
1893 memaddr, resp_len, buf, 0);
1894
1895 p += resp_strings.end[0];
1896 #if 0
1897 p = strstr (p, current_monitor->getmem.resp_delim);
1898 if (!p)
1899 monitor_error ("monitor_read_memory",
1900 "bad response from monitor",
1901 memaddr, resp_len, buf, 0);
1902 p += strlen (current_monitor->getmem.resp_delim);
1903 #endif
1904 }
1905 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1906 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1907 {
1908 char c;
1909 int fetched = 0;
1910 i = len;
1911 c = *p;
1912
1913
1914 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1915 {
1916 if (isxdigit (c))
1917 {
1918 if ((dumpaddr >= memaddr) && (i > 0))
1919 {
1920 val = fromhex (c) * 16 + fromhex (*(p + 1));
1921 *myaddr++ = val;
1922 if (monitor_debug_p || remote_debug)
1923 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1924 --i;
1925 fetched++;
1926 }
1927 ++dumpaddr;
1928 ++p;
1929 }
1930 ++p; /* skip a blank or other non hex char */
1931 c = *p;
1932 }
1933 if (fetched == 0)
1934 error (_("Failed to read via monitor"));
1935 if (monitor_debug_p || remote_debug)
1936 fprintf_unfiltered (gdb_stdlog, "\n");
1937 return fetched; /* Return the number of bytes actually read */
1938 }
1939 monitor_debug ("MON scanning bytes\n");
1940
1941 for (i = len; i > 0; i--)
1942 {
1943 /* Skip non-hex chars, but bomb on end of string and newlines */
1944
1945 while (1)
1946 {
1947 if (isxdigit (*p))
1948 break;
1949
1950 if (*p == '\000' || *p == '\n' || *p == '\r')
1951 monitor_error ("monitor_read_memory",
1952 "badly terminated response from monitor",
1953 memaddr, resp_len, buf, 0);
1954 p++;
1955 }
1956
1957 val = strtoul (p, &p1, 16);
1958
1959 if (val == 0 && p == p1)
1960 monitor_error ("monitor_read_memory",
1961 "bad value from monitor",
1962 memaddr, resp_len, buf, 0);
1963
1964 *myaddr++ = val;
1965
1966 if (i == 1)
1967 break;
1968
1969 p = p1;
1970 }
1971
1972 return len;
1973 }
1974
1975 /* Transfer LEN bytes between target address MEMADDR and GDB address
1976 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1977 unused. */
1978
1979 static int
1980 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1981 struct mem_attrib *attrib, struct target_ops *target)
1982 {
1983 int res;
1984
1985 if (write)
1986 {
1987 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1988 res = monitor_write_memory_block(memaddr, myaddr, len);
1989 else
1990 res = monitor_write_memory(memaddr, myaddr, len);
1991 }
1992 else
1993 {
1994 res = monitor_read_memory(memaddr, myaddr, len);
1995 }
1996
1997 return res;
1998 }
1999
2000 static void
2001 monitor_kill (struct target_ops *ops)
2002 {
2003 return; /* ignore attempts to kill target system */
2004 }
2005
2006 /* All we actually do is set the PC to the start address of exec_bfd. */
2007
2008 static void
2009 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2010 char *args, char **env, int from_tty)
2011 {
2012 if (args && (*args != '\000'))
2013 error (_("Args are not supported by the monitor."));
2014
2015 first_time = 1;
2016 clear_proceed_status ();
2017 regcache_write_pc (get_current_regcache (),
2018 bfd_get_start_address (exec_bfd));
2019 }
2020
2021 /* Clean up when a program exits.
2022 The program actually lives on in the remote processor's RAM, and may be
2023 run again without a download. Don't leave it full of breakpoint
2024 instructions. */
2025
2026 static void
2027 monitor_mourn_inferior (struct target_ops *ops)
2028 {
2029 unpush_target (targ_ops);
2030 generic_mourn_inferior (); /* Do all the proper things now */
2031 delete_thread_silent (monitor_ptid);
2032 }
2033
2034 /* Tell the monitor to add a breakpoint. */
2035
2036 static int
2037 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2038 struct bp_target_info *bp_tgt)
2039 {
2040 CORE_ADDR addr = bp_tgt->placed_address;
2041 int i;
2042 int bplen;
2043
2044 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2045 if (current_monitor->set_break == NULL)
2046 error (_("No set_break defined for this monitor"));
2047
2048 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2049 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2050
2051 /* Determine appropriate breakpoint size for this address. */
2052 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2053 bp_tgt->placed_address = addr;
2054 bp_tgt->placed_size = bplen;
2055
2056 for (i = 0; i < current_monitor->num_breakpoints; i++)
2057 {
2058 if (breakaddr[i] == 0)
2059 {
2060 breakaddr[i] = addr;
2061 monitor_printf (current_monitor->set_break, addr);
2062 monitor_expect_prompt (NULL, 0);
2063 return 0;
2064 }
2065 }
2066
2067 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2068 }
2069
2070 /* Tell the monitor to remove a breakpoint. */
2071
2072 static int
2073 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2074 struct bp_target_info *bp_tgt)
2075 {
2076 CORE_ADDR addr = bp_tgt->placed_address;
2077 int i;
2078
2079 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2080 if (current_monitor->clr_break == NULL)
2081 error (_("No clr_break defined for this monitor"));
2082
2083 for (i = 0; i < current_monitor->num_breakpoints; i++)
2084 {
2085 if (breakaddr[i] == addr)
2086 {
2087 breakaddr[i] = 0;
2088 /* some monitors remove breakpoints based on the address */
2089 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2090 monitor_printf (current_monitor->clr_break, addr);
2091 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2092 monitor_printf (current_monitor->clr_break, i + 1);
2093 else
2094 monitor_printf (current_monitor->clr_break, i);
2095 monitor_expect_prompt (NULL, 0);
2096 return 0;
2097 }
2098 }
2099 fprintf_unfiltered (gdb_stderr,
2100 "Can't find breakpoint associated with %s\n",
2101 paddress (gdbarch, addr));
2102 return 1;
2103 }
2104
2105 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2106 an S-record. Return non-zero if the ACK is received properly. */
2107
2108 static int
2109 monitor_wait_srec_ack (void)
2110 {
2111 int ch;
2112
2113 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2114 {
2115 return (readchar (timeout) == '+');
2116 }
2117 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2118 {
2119 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2120 if ((ch = readchar (1)) < 0)
2121 return 0;
2122 if ((ch = readchar (1)) < 0)
2123 return 0;
2124 if ((ch = readchar (1)) < 0)
2125 return 0;
2126 if ((ch = readchar (1)) < 0)
2127 return 0;
2128 }
2129 return 1;
2130 }
2131
2132 /* monitor_load -- download a file. */
2133
2134 static void
2135 monitor_load (char *file, int from_tty)
2136 {
2137 monitor_debug ("MON load\n");
2138
2139 if (current_monitor->load_routine)
2140 current_monitor->load_routine (monitor_desc, file, hashmark);
2141 else
2142 { /* The default is ascii S-records */
2143 int n;
2144 unsigned long load_offset;
2145 char buf[128];
2146
2147 /* enable user to specify address for downloading as 2nd arg to load */
2148 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2149 if (n > 1)
2150 file = buf;
2151 else
2152 load_offset = 0;
2153
2154 monitor_printf (current_monitor->load);
2155 if (current_monitor->loadresp)
2156 monitor_expect (current_monitor->loadresp, NULL, 0);
2157
2158 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2159 32, SREC_ALL, hashmark,
2160 current_monitor->flags & MO_SREC_ACK ?
2161 monitor_wait_srec_ack : NULL);
2162
2163 monitor_expect_prompt (NULL, 0);
2164 }
2165
2166 /* Finally, make the PC point at the start address */
2167 if (exec_bfd)
2168 regcache_write_pc (get_current_regcache (),
2169 bfd_get_start_address (exec_bfd));
2170
2171 /* There used to be code here which would clear inferior_ptid and
2172 call clear_symtab_users. None of that should be necessary:
2173 monitor targets should behave like remote protocol targets, and
2174 since generic_load does none of those things, this function
2175 shouldn't either.
2176
2177 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2178 a load, we still have a valid connection to the monitor, with a
2179 live processor state to fiddle with. The user can type
2180 `continue' or `jump *start' and make the program run. If they do
2181 these things, however, GDB will be talking to a running program
2182 while inferior_ptid is null_ptid; this makes things like
2183 reinit_frame_cache very confused. */
2184 }
2185
2186 static void
2187 monitor_stop (ptid_t ptid)
2188 {
2189 monitor_debug ("MON stop\n");
2190 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2191 serial_send_break (monitor_desc);
2192 if (current_monitor->stop)
2193 monitor_printf_noecho (current_monitor->stop);
2194 }
2195
2196 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2197 in OUTPUT until the prompt is seen. FIXME: We read the characters
2198 ourseleves here cause of a nasty echo. */
2199
2200 static void
2201 monitor_rcmd (char *command,
2202 struct ui_file *outbuf)
2203 {
2204 char *p;
2205 int resp_len;
2206 char buf[1000];
2207
2208 if (monitor_desc == NULL)
2209 error (_("monitor target not open."));
2210
2211 p = current_monitor->prompt;
2212
2213 /* Send the command. Note that if no args were supplied, then we're
2214 just sending the monitor a newline, which is sometimes useful. */
2215
2216 monitor_printf ("%s\r", (command ? command : ""));
2217
2218 resp_len = monitor_expect_prompt (buf, sizeof buf);
2219
2220 fputs_unfiltered (buf, outbuf); /* Output the response */
2221 }
2222
2223 /* Convert hex digit A to a number. */
2224
2225 #if 0
2226 static int
2227 from_hex (int a)
2228 {
2229 if (a >= '0' && a <= '9')
2230 return a - '0';
2231 if (a >= 'a' && a <= 'f')
2232 return a - 'a' + 10;
2233 if (a >= 'A' && a <= 'F')
2234 return a - 'A' + 10;
2235
2236 error (_("Reply contains invalid hex digit 0x%x"), a);
2237 }
2238 #endif
2239
2240 char *
2241 monitor_get_dev_name (void)
2242 {
2243 return dev_name;
2244 }
2245
2246 /* Check to see if a thread is still alive. */
2247
2248 static int
2249 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2250 {
2251 if (ptid_equal (ptid, monitor_ptid))
2252 /* The monitor's task is always alive. */
2253 return 1;
2254
2255 return 0;
2256 }
2257
2258 /* Convert a thread ID to a string. Returns the string in a static
2259 buffer. */
2260
2261 static char *
2262 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2263 {
2264 static char buf[64];
2265
2266 if (ptid_equal (monitor_ptid, ptid))
2267 {
2268 xsnprintf (buf, sizeof buf, "Thread <main>");
2269 return buf;
2270 }
2271
2272 return normal_pid_to_str (ptid);
2273 }
2274
2275 static struct target_ops monitor_ops;
2276
2277 static void
2278 init_base_monitor_ops (void)
2279 {
2280 monitor_ops.to_close = monitor_close;
2281 monitor_ops.to_detach = monitor_detach;
2282 monitor_ops.to_resume = monitor_resume;
2283 monitor_ops.to_wait = monitor_wait;
2284 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2285 monitor_ops.to_store_registers = monitor_store_registers;
2286 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2287 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2288 monitor_ops.to_files_info = monitor_files_info;
2289 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2290 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2291 monitor_ops.to_kill = monitor_kill;
2292 monitor_ops.to_load = monitor_load;
2293 monitor_ops.to_create_inferior = monitor_create_inferior;
2294 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2295 monitor_ops.to_stop = monitor_stop;
2296 monitor_ops.to_rcmd = monitor_rcmd;
2297 monitor_ops.to_log_command = serial_log_command;
2298 monitor_ops.to_thread_alive = monitor_thread_alive;
2299 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2300 monitor_ops.to_stratum = process_stratum;
2301 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2302 monitor_ops.to_has_memory = default_child_has_memory;
2303 monitor_ops.to_has_stack = default_child_has_stack;
2304 monitor_ops.to_has_registers = default_child_has_registers;
2305 monitor_ops.to_has_execution = default_child_has_execution;
2306 monitor_ops.to_magic = OPS_MAGIC;
2307 } /* init_base_monitor_ops */
2308
2309 /* Init the target_ops structure pointed at by OPS */
2310
2311 void
2312 init_monitor_ops (struct target_ops *ops)
2313 {
2314 if (monitor_ops.to_magic != OPS_MAGIC)
2315 init_base_monitor_ops ();
2316
2317 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2318 }
2319
2320 /* Define additional commands that are usually only used by monitors. */
2321
2322 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2323
2324 void
2325 _initialize_remote_monitors (void)
2326 {
2327 init_base_monitor_ops ();
2328 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2329 Set display of activity while downloading a file."), _("\
2330 Show display of activity while downloading a file."), _("\
2331 When enabled, a hashmark \'#\' is displayed."),
2332 NULL,
2333 NULL, /* FIXME: i18n: */
2334 &setlist, &showlist);
2335
2336 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2337 Set debugging of remote monitor communication."), _("\
2338 Show debugging of remote monitor communication."), _("\
2339 When enabled, communication between GDB and the remote monitor\n\
2340 is displayed."),
2341 NULL,
2342 NULL, /* FIXME: i18n: */
2343 &setdebuglist, &showdebuglist);
2344
2345 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2346 isn't 0. */
2347 monitor_ptid = ptid_build (42000, 0, 42000);
2348 }
This page took 0.076085 seconds and 3 git commands to generate.