Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
5 Resurrected from the ashes by Stu Grossman.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* This file was derived from various remote-* modules. It is a collection
25 of generic support functions so GDB can talk directly to a ROM based
26 monitor. This saves use from having to hack an exception based handler
27 into existence, and makes for quick porting.
28
29 This module talks to a debug monitor called 'MONITOR', which
30 We communicate with MONITOR via either a direct serial line, or a TCP
31 (or possibly TELNET) stream to a terminal multiplexor,
32 which in turn talks to the target board. */
33
34 /* FIXME 32x64: This code assumes that registers and addresses are at
35 most 32 bits long. If they can be larger, you will need to declare
36 values as LONGEST and use %llx or some such to print values when
37 building commands to send to the monitor. Since we don't know of
38 any actual 64-bit targets with ROM monitors that use this code,
39 it's not an issue right now. -sts 4/18/96 */
40
41 #include "defs.h"
42 #include "gdbcore.h"
43 #include "target.h"
44 #include <signal.h>
45 #include <ctype.h>
46 #include "gdb_string.h"
47 #include <sys/types.h>
48 #include "command.h"
49 #include "serial.h"
50 #include "monitor.h"
51 #include "gdbcmd.h"
52 #include "inferior.h"
53 #include "gdb_regex.h"
54 #include "srec.h"
55 #include "regcache.h"
56
57 static char *dev_name;
58 static struct target_ops *targ_ops;
59
60 static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
61
62 static int readchar (int timeout);
63
64 static void monitor_fetch_register (int regno);
65 static void monitor_store_register (int regno);
66
67 static void monitor_printable_string (char *newstr, char *oldstr, int len);
68 static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
69 static void monitor_detach (char *args, int from_tty);
70 static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
71 static void monitor_interrupt (int signo);
72 static void monitor_interrupt_twice (int signo);
73 static void monitor_interrupt_query (void);
74 static void monitor_wait_cleanup (void *old_timeout);
75
76 static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
77 static void monitor_fetch_registers (int regno);
78 static void monitor_store_registers (int regno);
79 static void monitor_prepare_to_store (void);
80 static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
81 int write,
82 struct mem_attrib *attrib,
83 struct target_ops *target);
84 static void monitor_files_info (struct target_ops *ops);
85 static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
86 static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
87 static void monitor_kill (void);
88 static void monitor_load (char *file, int from_tty);
89 static void monitor_mourn_inferior (void);
90 static void monitor_stop (void);
91
92 static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
93 static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
94 static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
95 static int monitor_write_memory_block (CORE_ADDR memaddr,
96 char *myaddr, int len);
97 static int monitor_expect_regexp (struct re_pattern_buffer *pat,
98 char *buf, int buflen);
99 static void monitor_dump_regs (void);
100 #if 0
101 static int from_hex (int a);
102 static unsigned long get_hex_word (void);
103 #endif
104 static void parse_register_dump (char *, int);
105
106 static struct monitor_ops *current_monitor;
107
108 static int hashmark; /* flag set by "set hash" */
109
110 static int timeout = 30;
111
112 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
113
114 static void (*ofunc) (); /* Old SIGINT signal handler */
115
116 static CORE_ADDR *breakaddr;
117
118 /* Descriptor for I/O to remote machine. Initialize it to NULL so
119 that monitor_open knows that we don't have a file open when the
120 program starts. */
121
122 static serial_t monitor_desc = NULL;
123
124 /* Pointer to regexp pattern matching data */
125
126 static struct re_pattern_buffer register_pattern;
127 static char register_fastmap[256];
128
129 static struct re_pattern_buffer getmem_resp_delim_pattern;
130 static char getmem_resp_delim_fastmap[256];
131
132 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
133 monitor_wait wakes up. */
134
135 static int first_time = 0; /* is this the first time we're executing after
136 gaving created the child proccess? */
137
138 #define TARGET_BUF_SIZE 2048
139
140 /* Monitor specific debugging information. Typically only useful to
141 the developer of a new monitor interface. */
142
143 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
144
145 static int monitor_debug_p = 0;
146
147 /* NOTE: This file alternates between monitor_debug_p and remote_debug
148 when determining if debug information is printed. Perhaphs this
149 could be simplified. */
150
151 static void
152 monitor_debug (const char *fmt, ...)
153 {
154 if (monitor_debug_p)
155 {
156 va_list args;
157 va_start (args, fmt);
158 vfprintf_filtered (gdb_stdlog, fmt, args);
159 va_end (args);
160 }
161 }
162
163
164 /* Convert a string into a printable representation, Return # byte in
165 the new string. When LEN is >0 it specifies the size of the
166 string. Otherwize strlen(oldstr) is used. */
167
168 static void
169 monitor_printable_string (char *newstr, char *oldstr, int len)
170 {
171 int ch;
172 int i;
173
174 if (len <= 0)
175 len = strlen (oldstr);
176
177 for (i = 0; i < len; i++)
178 {
179 ch = oldstr[i];
180 switch (ch)
181 {
182 default:
183 if (isprint (ch))
184 *newstr++ = ch;
185
186 else
187 {
188 sprintf (newstr, "\\x%02x", ch & 0xff);
189 newstr += 4;
190 }
191 break;
192
193 case '\\':
194 *newstr++ = '\\';
195 *newstr++ = '\\';
196 break;
197 case '\b':
198 *newstr++ = '\\';
199 *newstr++ = 'b';
200 break;
201 case '\f':
202 *newstr++ = '\\';
203 *newstr++ = 't';
204 break;
205 case '\n':
206 *newstr++ = '\\';
207 *newstr++ = 'n';
208 break;
209 case '\r':
210 *newstr++ = '\\';
211 *newstr++ = 'r';
212 break;
213 case '\t':
214 *newstr++ = '\\';
215 *newstr++ = 't';
216 break;
217 case '\v':
218 *newstr++ = '\\';
219 *newstr++ = 'v';
220 break;
221 }
222 }
223
224 *newstr++ = '\0';
225 }
226
227 /* Print monitor errors with a string, converting the string to printable
228 representation. */
229
230 static void
231 monitor_error (char *function, char *message,
232 CORE_ADDR memaddr, int len, char *string, int final_char)
233 {
234 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
235 char *safe_string = alloca ((real_len * 4) + 1);
236 monitor_printable_string (safe_string, string, real_len);
237
238 if (final_char)
239 error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
240 else
241 error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
242 }
243
244 /* Convert hex digit A to a number. */
245
246 static int
247 fromhex (int a)
248 {
249 if (a >= '0' && a <= '9')
250 return a - '0';
251 else if (a >= 'a' && a <= 'f')
252 return a - 'a' + 10;
253 else if (a >= 'A' && a <= 'F')
254 return a - 'A' + 10;
255 else
256 error ("Invalid hex digit %d", a);
257 }
258
259 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
260
261 This function exists to get around the problem that many host platforms
262 don't have a printf that can print 64-bit addresses. The %A format
263 specification is recognized as a special case, and causes the argument
264 to be printed as a 64-bit hexadecimal address.
265
266 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
267 If it is a '%s' format, the argument is a string; otherwise the
268 argument is assumed to be a long integer.
269
270 %% is also turned into a single %.
271 */
272
273 static void
274 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
275 {
276 char format[10];
277 char fmt;
278 char *p;
279 int i;
280 long arg_int;
281 CORE_ADDR arg_addr;
282 char *arg_string;
283
284 for (p = pattern; *p; p++)
285 {
286 if (*p == '%')
287 {
288 /* Copy the format specifier to a separate buffer. */
289 format[0] = *p++;
290 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
291 i++, p++)
292 format[i] = *p;
293 format[i] = fmt = *p;
294 format[i + 1] = '\0';
295
296 /* Fetch the next argument and print it. */
297 switch (fmt)
298 {
299 case '%':
300 strcpy (sndbuf, "%");
301 break;
302 case 'A':
303 arg_addr = va_arg (args, CORE_ADDR);
304 strcpy (sndbuf, paddr_nz (arg_addr));
305 break;
306 case 's':
307 arg_string = va_arg (args, char *);
308 sprintf (sndbuf, format, arg_string);
309 break;
310 default:
311 arg_int = va_arg (args, long);
312 sprintf (sndbuf, format, arg_int);
313 break;
314 }
315 sndbuf += strlen (sndbuf);
316 }
317 else
318 *sndbuf++ = *p;
319 }
320 *sndbuf = '\0';
321 }
322
323
324 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
325 Works just like printf. */
326
327 void
328 monitor_printf_noecho (char *pattern,...)
329 {
330 va_list args;
331 char sndbuf[2000];
332 int len;
333
334 va_start (args, pattern);
335
336 monitor_vsprintf (sndbuf, pattern, args);
337
338 len = strlen (sndbuf);
339 if (len + 1 > sizeof sndbuf)
340 internal_error (__FILE__, __LINE__, "failed internal consistency check");
341
342 if (monitor_debug_p)
343 {
344 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
345 monitor_printable_string (safe_string, sndbuf, 0);
346 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
347 }
348
349 monitor_write (sndbuf, len);
350 }
351
352 /* monitor_printf -- Send data to monitor and check the echo. Works just like
353 printf. */
354
355 void
356 monitor_printf (char *pattern,...)
357 {
358 va_list args;
359 char sndbuf[2000];
360 int len;
361
362 va_start (args, pattern);
363
364 monitor_vsprintf (sndbuf, pattern, args);
365
366 len = strlen (sndbuf);
367 if (len + 1 > sizeof sndbuf)
368 internal_error (__FILE__, __LINE__, "failed internal consistency check");
369
370 if (monitor_debug_p)
371 {
372 char *safe_string = (char *) alloca ((len * 4) + 1);
373 monitor_printable_string (safe_string, sndbuf, 0);
374 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
375 }
376
377 monitor_write (sndbuf, len);
378
379 /* We used to expect that the next immediate output was the characters we
380 just output, but sometimes some extra junk appeared before the characters
381 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
382 So, just start searching for what we sent, and skip anything unknown. */
383 monitor_debug ("ExpectEcho\n");
384 monitor_expect (sndbuf, (char *) 0, 0);
385 }
386
387
388 /* Write characters to the remote system. */
389
390 void
391 monitor_write (char *buf, int buflen)
392 {
393 if (SERIAL_WRITE (monitor_desc, buf, buflen))
394 fprintf_unfiltered (gdb_stderr, "SERIAL_WRITE failed: %s\n",
395 safe_strerror (errno));
396 }
397
398
399 /* Read a binary character from the remote system, doing all the fancy
400 timeout stuff, but without interpreting the character in any way,
401 and without printing remote debug information. */
402
403 int
404 monitor_readchar (void)
405 {
406 int c;
407 int looping;
408
409 do
410 {
411 looping = 0;
412 c = SERIAL_READCHAR (monitor_desc, timeout);
413
414 if (c >= 0)
415 c &= 0xff; /* don't lose bit 7 */
416 }
417 while (looping);
418
419 if (c >= 0)
420 return c;
421
422 if (c == SERIAL_TIMEOUT)
423 error ("Timeout reading from remote system.");
424
425 perror_with_name ("remote-monitor");
426 }
427
428
429 /* Read a character from the remote system, doing all the fancy
430 timeout stuff. */
431
432 static int
433 readchar (int timeout)
434 {
435 int c;
436 static enum
437 {
438 last_random, last_nl, last_cr, last_crnl
439 }
440 state = last_random;
441 int looping;
442
443 do
444 {
445 looping = 0;
446 c = SERIAL_READCHAR (monitor_desc, timeout);
447
448 if (c >= 0)
449 {
450 c &= 0x7f;
451 /* This seems to interfere with proper function of the
452 input stream */
453 if (monitor_debug_p || remote_debug)
454 {
455 char buf[2];
456 buf[0] = c;
457 buf[1] = '\0';
458 puts_debug ("read -->", buf, "<--");
459 }
460
461 }
462
463 /* Canonicialize \n\r combinations into one \r */
464 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
465 {
466 if ((c == '\r' && state == last_nl)
467 || (c == '\n' && state == last_cr))
468 {
469 state = last_crnl;
470 looping = 1;
471 }
472 else if (c == '\r')
473 state = last_cr;
474 else if (c != '\n')
475 state = last_random;
476 else
477 {
478 state = last_nl;
479 c = '\r';
480 }
481 }
482 }
483 while (looping);
484
485 if (c >= 0)
486 return c;
487
488 if (c == SERIAL_TIMEOUT)
489 #if 0
490 /* I fail to see how detaching here can be useful */
491 if (in_monitor_wait) /* Watchdog went off */
492 {
493 target_mourn_inferior ();
494 error ("GDB serial timeout has expired. Target detached.\n");
495 }
496 else
497 #endif
498 error ("Timeout reading from remote system.");
499
500 perror_with_name ("remote-monitor");
501 }
502
503 /* Scan input from the remote system, until STRING is found. If BUF is non-
504 zero, then collect input until we have collected either STRING or BUFLEN-1
505 chars. In either case we terminate BUF with a 0. If input overflows BUF
506 because STRING can't be found, return -1, else return number of chars in BUF
507 (minus the terminating NUL). Note that in the non-overflow case, STRING
508 will be at the end of BUF. */
509
510 int
511 monitor_expect (char *string, char *buf, int buflen)
512 {
513 char *p = string;
514 int obuflen = buflen;
515 int c;
516 extern struct target_ops *targ_ops;
517
518 if (monitor_debug_p)
519 {
520 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
521 monitor_printable_string (safe_string, string, 0);
522 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
523 }
524
525 immediate_quit++;
526 while (1)
527 {
528 if (buf)
529 {
530 if (buflen < 2)
531 {
532 *buf = '\000';
533 immediate_quit--;
534 return -1;
535 }
536
537 c = readchar (timeout);
538 if (c == '\000')
539 continue;
540 *buf++ = c;
541 buflen--;
542 }
543 else
544 c = readchar (timeout);
545
546 /* Don't expect any ^C sent to be echoed */
547
548 if (*p == '\003' || c == *p)
549 {
550 p++;
551 if (*p == '\0')
552 {
553 immediate_quit--;
554
555 if (buf)
556 {
557 *buf++ = '\000';
558 return obuflen - buflen;
559 }
560 else
561 return 0;
562 }
563 }
564 else if ((c == '\021' || c == '\023') &&
565 (STREQ (targ_ops->to_shortname, "m32r")
566 || STREQ (targ_ops->to_shortname, "mon2000")))
567 { /* m32r monitor emits random DC1/DC3 chars */
568 continue;
569 }
570 else
571 {
572 /* We got a character that doesn't match the string. We need to
573 back up p, but how far? If we're looking for "..howdy" and the
574 monitor sends "...howdy"? There's certainly a match in there,
575 but when we receive the third ".", we won't find it if we just
576 restart the matching at the beginning of the string.
577
578 This is a Boyer-Moore kind of situation. We want to reset P to
579 the end of the longest prefix of STRING that is a suffix of
580 what we've read so far. In the example above, that would be
581 ".." --- the longest prefix of "..howdy" that is a suffix of
582 "...". This longest prefix could be the empty string, if C
583 is nowhere to be found in STRING.
584
585 If this longest prefix is not the empty string, it must contain
586 C, so let's search from the end of STRING for instances of C,
587 and see if the portion of STRING before that is a suffix of
588 what we read before C. Actually, we can search backwards from
589 p, since we know no prefix can be longer than that.
590
591 Note that we can use STRING itself, along with C, as a record
592 of what we've received so far. :) */
593 int i;
594
595 for (i = (p - string) - 1; i >= 0; i--)
596 if (string[i] == c)
597 {
598 /* Is this prefix a suffix of what we've read so far?
599 In other words, does
600 string[0 .. i-1] == string[p - i, p - 1]? */
601 if (! memcmp (string, p - i, i))
602 {
603 p = string + i + 1;
604 break;
605 }
606 }
607 if (i < 0)
608 p = string;
609 }
610 }
611 }
612
613 /* Search for a regexp. */
614
615 static int
616 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
617 {
618 char *mybuf;
619 char *p;
620 monitor_debug ("MON Expecting regexp\n");
621 if (buf)
622 mybuf = buf;
623 else
624 {
625 mybuf = alloca (TARGET_BUF_SIZE);
626 buflen = TARGET_BUF_SIZE;
627 }
628
629 p = mybuf;
630 while (1)
631 {
632 int retval;
633
634 if (p - mybuf >= buflen)
635 { /* Buffer about to overflow */
636
637 /* On overflow, we copy the upper half of the buffer to the lower half. Not
638 great, but it usually works... */
639
640 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
641 p = mybuf + buflen / 2;
642 }
643
644 *p++ = readchar (timeout);
645
646 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
647 if (retval >= 0)
648 return 1;
649 }
650 }
651
652 /* Keep discarding input until we see the MONITOR prompt.
653
654 The convention for dealing with the prompt is that you
655 o give your command
656 o *then* wait for the prompt.
657
658 Thus the last thing that a procedure does with the serial line will
659 be an monitor_expect_prompt(). Exception: monitor_resume does not
660 wait for the prompt, because the terminal is being handed over to
661 the inferior. However, the next thing which happens after that is
662 a monitor_wait which does wait for the prompt. Note that this
663 includes abnormal exit, e.g. error(). This is necessary to prevent
664 getting into states from which we can't recover. */
665
666 int
667 monitor_expect_prompt (char *buf, int buflen)
668 {
669 monitor_debug ("MON Expecting prompt\n");
670 return monitor_expect (current_monitor->prompt, buf, buflen);
671 }
672
673 /* Get N 32-bit words from remote, each preceded by a space, and put
674 them in registers starting at REGNO. */
675
676 #if 0
677 static unsigned long
678 get_hex_word (void)
679 {
680 unsigned long val;
681 int i;
682 int ch;
683
684 do
685 ch = readchar (timeout);
686 while (isspace (ch));
687
688 val = from_hex (ch);
689
690 for (i = 7; i >= 1; i--)
691 {
692 ch = readchar (timeout);
693 if (!isxdigit (ch))
694 break;
695 val = (val << 4) | from_hex (ch);
696 }
697
698 return val;
699 }
700 #endif
701
702 static void
703 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
704 char *fastmap)
705 {
706 int tmp;
707 const char *val;
708
709 compiled_pattern->fastmap = fastmap;
710
711 tmp = re_set_syntax (RE_SYNTAX_EMACS);
712 val = re_compile_pattern (pattern,
713 strlen (pattern),
714 compiled_pattern);
715 re_set_syntax (tmp);
716
717 if (val)
718 error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
719
720 if (fastmap)
721 re_compile_fastmap (compiled_pattern);
722 }
723
724 /* Open a connection to a remote debugger. NAME is the filename used
725 for communication. */
726
727 void
728 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
729 {
730 char *name;
731 char **p;
732
733 if (mon_ops->magic != MONITOR_OPS_MAGIC)
734 error ("Magic number of monitor_ops struct wrong.");
735
736 targ_ops = mon_ops->target;
737 name = targ_ops->to_shortname;
738
739 if (!args)
740 error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
741 `target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
742
743 target_preopen (from_tty);
744
745 /* Setup pattern for register dump */
746
747 if (mon_ops->register_pattern)
748 compile_pattern (mon_ops->register_pattern, &register_pattern,
749 register_fastmap);
750
751 if (mon_ops->getmem.resp_delim)
752 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
753 getmem_resp_delim_fastmap);
754
755 unpush_target (targ_ops);
756
757 if (dev_name)
758 xfree (dev_name);
759 dev_name = xstrdup (args);
760
761 monitor_desc = SERIAL_OPEN (dev_name);
762
763 if (!monitor_desc)
764 perror_with_name (dev_name);
765
766 if (baud_rate != -1)
767 {
768 if (SERIAL_SETBAUDRATE (monitor_desc, baud_rate))
769 {
770 SERIAL_CLOSE (monitor_desc);
771 perror_with_name (dev_name);
772 }
773 }
774
775 SERIAL_RAW (monitor_desc);
776
777 SERIAL_FLUSH_INPUT (monitor_desc);
778
779 /* some systems only work with 2 stop bits */
780
781 SERIAL_SETSTOPBITS (monitor_desc, mon_ops->stopbits);
782
783 current_monitor = mon_ops;
784
785 /* See if we can wake up the monitor. First, try sending a stop sequence,
786 then send the init strings. Last, remove all breakpoints. */
787
788 if (current_monitor->stop)
789 {
790 monitor_stop ();
791 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
792 {
793 monitor_debug ("EXP Open echo\n");
794 monitor_expect_prompt (NULL, 0);
795 }
796 }
797
798 /* wake up the monitor and see if it's alive */
799 for (p = mon_ops->init; *p != NULL; p++)
800 {
801 /* Some of the characters we send may not be echoed,
802 but we hope to get a prompt at the end of it all. */
803
804 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
805 monitor_printf (*p);
806 else
807 monitor_printf_noecho (*p);
808 monitor_expect_prompt (NULL, 0);
809 }
810
811 SERIAL_FLUSH_INPUT (monitor_desc);
812
813 /* Alloc breakpoints */
814 if (mon_ops->set_break != NULL)
815 {
816 if (mon_ops->num_breakpoints == 0)
817 mon_ops->num_breakpoints = 8;
818
819 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
820 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
821 }
822
823 /* Remove all breakpoints */
824
825 if (mon_ops->clr_all_break)
826 {
827 monitor_printf (mon_ops->clr_all_break);
828 monitor_expect_prompt (NULL, 0);
829 }
830
831 if (from_tty)
832 printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
833
834 push_target (targ_ops);
835
836 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
837
838 /* Give monitor_wait something to read */
839
840 monitor_printf (current_monitor->line_term);
841
842 start_remote ();
843 }
844
845 /* Close out all files and local state before this target loses
846 control. */
847
848 void
849 monitor_close (int quitting)
850 {
851 if (monitor_desc)
852 SERIAL_CLOSE (monitor_desc);
853
854 /* Free breakpoint memory */
855 if (breakaddr != NULL)
856 {
857 xfree (breakaddr);
858 breakaddr = NULL;
859 }
860
861 monitor_desc = NULL;
862 }
863
864 /* Terminate the open connection to the remote debugger. Use this
865 when you want to detach and do something else with your gdb. */
866
867 static void
868 monitor_detach (char *args, int from_tty)
869 {
870 pop_target (); /* calls monitor_close to do the real work */
871 if (from_tty)
872 printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
873 }
874
875 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
876
877 char *
878 monitor_supply_register (int regno, char *valstr)
879 {
880 ULONGEST val;
881 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
882 char *p;
883
884 val = 0;
885 p = valstr;
886 while (p && *p != '\0')
887 {
888 if (*p == '\r' || *p == '\n')
889 {
890 while (*p != '\0')
891 p++;
892 break;
893 }
894 if (isspace (*p))
895 {
896 p++;
897 continue;
898 }
899 if (!isxdigit (*p) && *p != 'x')
900 {
901 break;
902 }
903
904 val <<= 4;
905 val += fromhex (*p++);
906 }
907 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
908
909 if (val == 0 && valstr == p)
910 error ("monitor_supply_register (%d): bad value from monitor: %s.",
911 regno, valstr);
912
913 /* supply register stores in target byte order, so swap here */
914
915 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
916
917 supply_register (regno, regbuf);
918
919 return p;
920 }
921
922 /* Tell the remote machine to resume. */
923
924 static void
925 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
926 {
927 /* Some monitors require a different command when starting a program */
928 monitor_debug ("MON resume\n");
929 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
930 {
931 first_time = 0;
932 monitor_printf ("run\r");
933 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
934 dump_reg_flag = 1;
935 return;
936 }
937 if (step)
938 monitor_printf (current_monitor->step);
939 else
940 {
941 if (current_monitor->continue_hook)
942 (*current_monitor->continue_hook) ();
943 else
944 monitor_printf (current_monitor->cont);
945 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
946 dump_reg_flag = 1;
947 }
948 }
949
950 /* Parse the output of a register dump command. A monitor specific
951 regexp is used to extract individual register descriptions of the
952 form REG=VAL. Each description is split up into a name and a value
953 string which are passed down to monitor specific code. */
954
955 static void
956 parse_register_dump (char *buf, int len)
957 {
958 monitor_debug ("MON Parsing register dump\n");
959 while (1)
960 {
961 int regnamelen, vallen;
962 char *regname, *val;
963 /* Element 0 points to start of register name, and element 1
964 points to the start of the register value. */
965 struct re_registers register_strings;
966
967 memset (&register_strings, 0, sizeof (struct re_registers));
968
969 if (re_search (&register_pattern, buf, len, 0, len,
970 &register_strings) == -1)
971 break;
972
973 regnamelen = register_strings.end[1] - register_strings.start[1];
974 regname = buf + register_strings.start[1];
975 vallen = register_strings.end[2] - register_strings.start[2];
976 val = buf + register_strings.start[2];
977
978 current_monitor->supply_register (regname, regnamelen, val, vallen);
979
980 buf += register_strings.end[0];
981 len -= register_strings.end[0];
982 }
983 }
984
985 /* Send ^C to target to halt it. Target will respond, and send us a
986 packet. */
987
988 static void
989 monitor_interrupt (int signo)
990 {
991 /* If this doesn't work, try more severe steps. */
992 signal (signo, monitor_interrupt_twice);
993
994 if (monitor_debug_p || remote_debug)
995 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
996
997 target_stop ();
998 }
999
1000 /* The user typed ^C twice. */
1001
1002 static void
1003 monitor_interrupt_twice (int signo)
1004 {
1005 signal (signo, ofunc);
1006
1007 monitor_interrupt_query ();
1008
1009 signal (signo, monitor_interrupt);
1010 }
1011
1012 /* Ask the user what to do when an interrupt is received. */
1013
1014 static void
1015 monitor_interrupt_query (void)
1016 {
1017 target_terminal_ours ();
1018
1019 if (query ("Interrupted while waiting for the program.\n\
1020 Give up (and stop debugging it)? "))
1021 {
1022 target_mourn_inferior ();
1023 return_to_top_level (RETURN_QUIT);
1024 }
1025
1026 target_terminal_inferior ();
1027 }
1028
1029 static void
1030 monitor_wait_cleanup (void *old_timeout)
1031 {
1032 timeout = *(int *) old_timeout;
1033 signal (SIGINT, ofunc);
1034 in_monitor_wait = 0;
1035 }
1036
1037
1038
1039 void
1040 monitor_wait_filter (char *buf,
1041 int bufmax,
1042 int *ext_resp_len,
1043 struct target_waitstatus *status
1044 )
1045 {
1046 int resp_len;
1047 do
1048 {
1049 resp_len = monitor_expect_prompt (buf, bufmax);
1050 *ext_resp_len = resp_len;
1051
1052 if (resp_len <= 0)
1053 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1054 }
1055 while (resp_len < 0);
1056
1057 /* Print any output characters that were preceded by ^O. */
1058 /* FIXME - This would be great as a user settabgle flag */
1059 if (monitor_debug_p || remote_debug
1060 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1061 {
1062 int i;
1063
1064 for (i = 0; i < resp_len - 1; i++)
1065 if (buf[i] == 0x0f)
1066 putchar_unfiltered (buf[++i]);
1067 }
1068 }
1069
1070
1071
1072 /* Wait until the remote machine stops, then return, storing status in
1073 status just as `wait' would. */
1074
1075 static ptid_t
1076 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1077 {
1078 int old_timeout = timeout;
1079 char buf[TARGET_BUF_SIZE];
1080 int resp_len;
1081 struct cleanup *old_chain;
1082
1083 status->kind = TARGET_WAITKIND_EXITED;
1084 status->value.integer = 0;
1085
1086 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1087 monitor_debug ("MON wait\n");
1088
1089 #if 0
1090 /* This is somthing other than a maintenance command */
1091 in_monitor_wait = 1;
1092 timeout = watchdog > 0 ? watchdog : -1;
1093 #else
1094 timeout = -1; /* Don't time out -- user program is running. */
1095 #endif
1096
1097 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1098
1099 if (current_monitor->wait_filter)
1100 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1101 else
1102 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1103
1104 #if 0 /* Transferred to monitor wait filter */
1105 do
1106 {
1107 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1108
1109 if (resp_len <= 0)
1110 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1111 }
1112 while (resp_len < 0);
1113
1114 /* Print any output characters that were preceded by ^O. */
1115 /* FIXME - This would be great as a user settabgle flag */
1116 if (monitor_debug_p || remote_debug
1117 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1118 {
1119 int i;
1120
1121 for (i = 0; i < resp_len - 1; i++)
1122 if (buf[i] == 0x0f)
1123 putchar_unfiltered (buf[++i]);
1124 }
1125 #endif
1126
1127 signal (SIGINT, ofunc);
1128
1129 timeout = old_timeout;
1130 #if 0
1131 if (dump_reg_flag && current_monitor->dump_registers)
1132 {
1133 dump_reg_flag = 0;
1134 monitor_printf (current_monitor->dump_registers);
1135 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1136 }
1137
1138 if (current_monitor->register_pattern)
1139 parse_register_dump (buf, resp_len);
1140 #else
1141 monitor_debug ("Wait fetching registers after stop\n");
1142 monitor_dump_regs ();
1143 #endif
1144
1145 status->kind = TARGET_WAITKIND_STOPPED;
1146 status->value.sig = TARGET_SIGNAL_TRAP;
1147
1148 discard_cleanups (old_chain);
1149
1150 in_monitor_wait = 0;
1151
1152 return inferior_ptid;
1153 }
1154
1155 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1156 errno value. */
1157
1158 static void
1159 monitor_fetch_register (int regno)
1160 {
1161 char *name;
1162 char *zerobuf;
1163 char *regbuf;
1164 int i;
1165
1166 regbuf = alloca (MAX_REGISTER_RAW_SIZE * 2 + 1);
1167 zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
1168 memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
1169
1170 name = current_monitor->regnames[regno];
1171 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1172
1173 if (!name || (*name == '\0'))
1174 {
1175 monitor_debug ("No register known for %d\n", regno);
1176 supply_register (regno, zerobuf);
1177 return;
1178 }
1179
1180 /* send the register examine command */
1181
1182 monitor_printf (current_monitor->getreg.cmd, name);
1183
1184 /* If RESP_DELIM is specified, we search for that as a leading
1185 delimiter for the register value. Otherwise, we just start
1186 searching from the start of the buf. */
1187
1188 if (current_monitor->getreg.resp_delim)
1189 {
1190 monitor_debug ("EXP getreg.resp_delim\n");
1191 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1192 /* Handle case of first 32 registers listed in pairs. */
1193 if (current_monitor->flags & MO_32_REGS_PAIRED
1194 && (regno & 1) != 0 && regno < 32)
1195 {
1196 monitor_debug ("EXP getreg.resp_delim\n");
1197 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1198 }
1199 }
1200
1201 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1202 if (current_monitor->flags & MO_HEX_PREFIX)
1203 {
1204 int c;
1205 c = readchar (timeout);
1206 while (c == ' ')
1207 c = readchar (timeout);
1208 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1209 ;
1210 else
1211 error ("Bad value returned from monitor while fetching register %x.",
1212 regno);
1213 }
1214
1215 /* Read upto the maximum number of hex digits for this register, skipping
1216 spaces, but stop reading if something else is seen. Some monitors
1217 like to drop leading zeros. */
1218
1219 for (i = 0; i < REGISTER_RAW_SIZE (regno) * 2; i++)
1220 {
1221 int c;
1222 c = readchar (timeout);
1223 while (c == ' ')
1224 c = readchar (timeout);
1225
1226 if (!isxdigit (c))
1227 break;
1228
1229 regbuf[i] = c;
1230 }
1231
1232 regbuf[i] = '\000'; /* terminate the number */
1233 monitor_debug ("REGVAL '%s'\n", regbuf);
1234
1235 /* If TERM is present, we wait for that to show up. Also, (if TERM
1236 is present), we will send TERM_CMD if that is present. In any
1237 case, we collect all of the output into buf, and then wait for
1238 the normal prompt. */
1239
1240 if (current_monitor->getreg.term)
1241 {
1242 monitor_debug ("EXP getreg.term\n");
1243 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1244 }
1245
1246 if (current_monitor->getreg.term_cmd)
1247 {
1248 monitor_debug ("EMIT getreg.term.cmd\n");
1249 monitor_printf (current_monitor->getreg.term_cmd);
1250 }
1251 if (!current_monitor->getreg.term || /* Already expected or */
1252 current_monitor->getreg.term_cmd) /* ack expected */
1253 monitor_expect_prompt (NULL, 0); /* get response */
1254
1255 monitor_supply_register (regno, regbuf);
1256 }
1257
1258 /* Sometimes, it takes several commands to dump the registers */
1259 /* This is a primitive for use by variations of monitor interfaces in
1260 case they need to compose the operation.
1261 */
1262 int
1263 monitor_dump_reg_block (char *block_cmd)
1264 {
1265 char buf[TARGET_BUF_SIZE];
1266 int resp_len;
1267 monitor_printf (block_cmd);
1268 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1269 parse_register_dump (buf, resp_len);
1270 return 1;
1271 }
1272
1273
1274 /* Read the remote registers into the block regs. */
1275 /* Call the specific function if it has been provided */
1276
1277 static void
1278 monitor_dump_regs (void)
1279 {
1280 char buf[TARGET_BUF_SIZE];
1281 int resp_len;
1282 if (current_monitor->dumpregs)
1283 (*(current_monitor->dumpregs)) (); /* call supplied function */
1284 else if (current_monitor->dump_registers) /* default version */
1285 {
1286 monitor_printf (current_monitor->dump_registers);
1287 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1288 parse_register_dump (buf, resp_len);
1289 }
1290 else
1291 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
1292 }
1293
1294 static void
1295 monitor_fetch_registers (int regno)
1296 {
1297 monitor_debug ("MON fetchregs\n");
1298 if (current_monitor->getreg.cmd)
1299 {
1300 if (regno >= 0)
1301 {
1302 monitor_fetch_register (regno);
1303 return;
1304 }
1305
1306 for (regno = 0; regno < NUM_REGS; regno++)
1307 monitor_fetch_register (regno);
1308 }
1309 else
1310 {
1311 monitor_dump_regs ();
1312 }
1313 }
1314
1315 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1316
1317 static void
1318 monitor_store_register (int regno)
1319 {
1320 char *name;
1321 ULONGEST val;
1322
1323 name = current_monitor->regnames[regno];
1324 if (!name || (*name == '\0'))
1325 {
1326 monitor_debug ("MON Cannot store unknown register\n");
1327 return;
1328 }
1329
1330 val = read_register (regno);
1331 monitor_debug ("MON storeg %d %s\n", regno,
1332 phex (val, REGISTER_RAW_SIZE (regno)));
1333
1334 /* send the register deposit command */
1335
1336 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1337 monitor_printf (current_monitor->setreg.cmd, val, name);
1338 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1339 monitor_printf (current_monitor->setreg.cmd, name);
1340 else
1341 monitor_printf (current_monitor->setreg.cmd, name, val);
1342
1343 if (current_monitor->setreg.term)
1344 {
1345 monitor_debug ("EXP setreg.term\n");
1346 monitor_expect (current_monitor->setreg.term, NULL, 0);
1347 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1348 monitor_printf ("%s\r", paddr_nz (val));
1349 monitor_expect_prompt (NULL, 0);
1350 }
1351 else
1352 monitor_expect_prompt (NULL, 0);
1353 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1354 {
1355 monitor_debug ("EXP setreg_termcmd\n");
1356 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1357 monitor_expect_prompt (NULL, 0);
1358 }
1359 } /* monitor_store_register */
1360
1361 /* Store the remote registers. */
1362
1363 static void
1364 monitor_store_registers (int regno)
1365 {
1366 if (regno >= 0)
1367 {
1368 monitor_store_register (regno);
1369 return;
1370 }
1371
1372 for (regno = 0; regno < NUM_REGS; regno++)
1373 monitor_store_register (regno);
1374 }
1375
1376 /* Get ready to modify the registers array. On machines which store
1377 individual registers, this doesn't need to do anything. On machines
1378 which store all the registers in one fell swoop, this makes sure
1379 that registers contains all the registers from the program being
1380 debugged. */
1381
1382 static void
1383 monitor_prepare_to_store (void)
1384 {
1385 /* Do nothing, since we can store individual regs */
1386 }
1387
1388 static void
1389 monitor_files_info (struct target_ops *ops)
1390 {
1391 printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
1392 }
1393
1394 static int
1395 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1396 {
1397 unsigned int val, hostval;
1398 char *cmd;
1399 int i;
1400
1401 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1402
1403 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1404 memaddr = ADDR_BITS_REMOVE (memaddr);
1405
1406 /* Use memory fill command for leading 0 bytes. */
1407
1408 if (current_monitor->fill)
1409 {
1410 for (i = 0; i < len; i++)
1411 if (myaddr[i] != 0)
1412 break;
1413
1414 if (i > 4) /* More than 4 zeros is worth doing */
1415 {
1416 monitor_debug ("MON FILL %d\n", i);
1417 if (current_monitor->flags & MO_FILL_USES_ADDR)
1418 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1419 else
1420 monitor_printf (current_monitor->fill, memaddr, i, 0);
1421
1422 monitor_expect_prompt (NULL, 0);
1423
1424 return i;
1425 }
1426 }
1427
1428 #if 0
1429 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1430 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1431 {
1432 len = 8;
1433 cmd = current_monitor->setmem.cmdll;
1434 }
1435 else
1436 #endif
1437 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1438 {
1439 len = 4;
1440 cmd = current_monitor->setmem.cmdl;
1441 }
1442 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1443 {
1444 len = 2;
1445 cmd = current_monitor->setmem.cmdw;
1446 }
1447 else
1448 {
1449 len = 1;
1450 cmd = current_monitor->setmem.cmdb;
1451 }
1452
1453 val = extract_unsigned_integer (myaddr, len);
1454
1455 if (len == 4)
1456 {
1457 hostval = *(unsigned int *) myaddr;
1458 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1459 }
1460
1461
1462 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1463 monitor_printf_noecho (cmd, memaddr, val);
1464 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1465 {
1466
1467 monitor_printf_noecho (cmd, memaddr);
1468
1469 if (current_monitor->setmem.term)
1470 {
1471 monitor_debug ("EXP setmem.term");
1472 monitor_expect (current_monitor->setmem.term, NULL, 0);
1473 monitor_printf ("%x\r", val);
1474 }
1475 if (current_monitor->setmem.term_cmd)
1476 { /* Emit this to get out of the memory editing state */
1477 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1478 /* Drop through to expecting a prompt */
1479 }
1480 }
1481 else
1482 monitor_printf (cmd, memaddr, val);
1483
1484 monitor_expect_prompt (NULL, 0);
1485
1486 return len;
1487 }
1488
1489
1490 static int
1491 monitor_write_even_block (CORE_ADDR memaddr, char *myaddr, int len)
1492 {
1493 unsigned int val;
1494 int written = 0;;
1495 /* Enter the sub mode */
1496 monitor_printf (current_monitor->setmem.cmdl, memaddr);
1497 monitor_expect_prompt (NULL, 0);
1498
1499 while (len)
1500 {
1501 val = extract_unsigned_integer (myaddr, 4); /* REALLY */
1502 monitor_printf ("%x\r", val);
1503 myaddr += 4;
1504 memaddr += 4;
1505 written += 4;
1506 monitor_debug (" @ %s\n", paddr (memaddr));
1507 /* If we wanted to, here we could validate the address */
1508 monitor_expect_prompt (NULL, 0);
1509 }
1510 /* Now exit the sub mode */
1511 monitor_printf (current_monitor->getreg.term_cmd);
1512 monitor_expect_prompt (NULL, 0);
1513 return written;
1514 }
1515
1516
1517 static int
1518 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1519 {
1520 unsigned char val;
1521 int written = 0;
1522 if (len == 0)
1523 return 0;
1524 /* Enter the sub mode */
1525 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1526 monitor_expect_prompt (NULL, 0);
1527 while (len)
1528 {
1529 val = *myaddr;
1530 monitor_printf ("%x\r", val);
1531 myaddr++;
1532 memaddr++;
1533 written++;
1534 /* If we wanted to, here we could validate the address */
1535 monitor_expect_prompt (NULL, 0);
1536 len--;
1537 }
1538 /* Now exit the sub mode */
1539 monitor_printf (current_monitor->getreg.term_cmd);
1540 monitor_expect_prompt (NULL, 0);
1541 return written;
1542 }
1543
1544
1545 static void
1546 longlongendswap (unsigned char *a)
1547 {
1548 int i, j;
1549 unsigned char x;
1550 i = 0;
1551 j = 7;
1552 while (i < 4)
1553 {
1554 x = *(a + i);
1555 *(a + i) = *(a + j);
1556 *(a + j) = x;
1557 i++, j--;
1558 }
1559 }
1560 /* Format 32 chars of long long value, advance the pointer */
1561 static char *hexlate = "0123456789abcdef";
1562 static char *
1563 longlong_hexchars (unsigned long long value,
1564 char *outbuff)
1565 {
1566 if (value == 0)
1567 {
1568 *outbuff++ = '0';
1569 return outbuff;
1570 }
1571 else
1572 {
1573 static unsigned char disbuf[8]; /* disassembly buffer */
1574 unsigned char *scan, *limit; /* loop controls */
1575 unsigned char c, nib;
1576 int leadzero = 1;
1577 scan = disbuf;
1578 limit = scan + 8;
1579 {
1580 unsigned long long *dp;
1581 dp = (unsigned long long *) scan;
1582 *dp = value;
1583 }
1584 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1585 while (scan < limit)
1586 {
1587 c = *scan++; /* a byte of our long long value */
1588 if (leadzero)
1589 {
1590 if (c == 0)
1591 continue;
1592 else
1593 leadzero = 0; /* henceforth we print even zeroes */
1594 }
1595 nib = c >> 4; /* high nibble bits */
1596 *outbuff++ = hexlate[nib];
1597 nib = c & 0x0f; /* low nibble bits */
1598 *outbuff++ = hexlate[nib];
1599 }
1600 return outbuff;
1601 }
1602 } /* longlong_hexchars */
1603
1604
1605
1606 /* I am only going to call this when writing virtual byte streams.
1607 Which possably entails endian conversions
1608 */
1609 static int
1610 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1611 {
1612 static char hexstage[20]; /* At least 16 digits required, plus null */
1613 char *endstring;
1614 long long *llptr;
1615 long long value;
1616 int written = 0;
1617 llptr = (unsigned long long *) myaddr;
1618 if (len == 0)
1619 return 0;
1620 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1621 monitor_expect_prompt (NULL, 0);
1622 while (len >= 8)
1623 {
1624 value = *llptr;
1625 endstring = longlong_hexchars (*llptr, hexstage);
1626 *endstring = '\0'; /* NUll terminate for printf */
1627 monitor_printf ("%s\r", hexstage);
1628 llptr++;
1629 memaddr += 8;
1630 written += 8;
1631 /* If we wanted to, here we could validate the address */
1632 monitor_expect_prompt (NULL, 0);
1633 len -= 8;
1634 }
1635 /* Now exit the sub mode */
1636 monitor_printf (current_monitor->getreg.term_cmd);
1637 monitor_expect_prompt (NULL, 0);
1638 return written;
1639 } /* */
1640
1641
1642
1643 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1644 /* This is for the large blocks of memory which may occur in downloading.
1645 And for monitors which use interactive entry,
1646 And for monitors which do not have other downloading methods.
1647 Without this, we will end up calling monitor_write_memory many times
1648 and do the entry and exit of the sub mode many times
1649 This currently assumes...
1650 MO_SETMEM_INTERACTIVE
1651 ! MO_NO_ECHO_ON_SETMEM
1652 To use this, the you have to patch the monitor_cmds block with
1653 this function. Otherwise, its not tuned up for use by all
1654 monitor variations.
1655 */
1656
1657 static int
1658 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1659 {
1660 int written;
1661 written = 0;
1662 /* FIXME: This would be a good place to put the zero test */
1663 #if 1
1664 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1665 {
1666 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1667 }
1668 #endif
1669 #if 0
1670 if (len > 4)
1671 {
1672 int sublen;
1673 written = monitor_write_even_block (memaddr, myaddr, len);
1674 /* Adjust calling parameters by written amount */
1675 memaddr += written;
1676 myaddr += written;
1677 len -= written;
1678 }
1679 #endif
1680 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1681 return written;
1682 }
1683
1684 /* This is an alternate form of monitor_read_memory which is used for monitors
1685 which can only read a single byte/word/etc. at a time. */
1686
1687 static int
1688 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1689 {
1690 unsigned int val;
1691 char membuf[sizeof (int) * 2 + 1];
1692 char *p;
1693 char *cmd;
1694
1695 monitor_debug ("MON read single\n");
1696 #if 0
1697 /* Can't actually use long longs (nice idea, though). In fact, the
1698 call to strtoul below will fail if it tries to convert a value
1699 that's too big to fit in a long. */
1700 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1701 {
1702 len = 8;
1703 cmd = current_monitor->getmem.cmdll;
1704 }
1705 else
1706 #endif
1707 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1708 {
1709 len = 4;
1710 cmd = current_monitor->getmem.cmdl;
1711 }
1712 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1713 {
1714 len = 2;
1715 cmd = current_monitor->getmem.cmdw;
1716 }
1717 else
1718 {
1719 len = 1;
1720 cmd = current_monitor->getmem.cmdb;
1721 }
1722
1723 /* Send the examine command. */
1724
1725 monitor_printf (cmd, memaddr);
1726
1727 /* If RESP_DELIM is specified, we search for that as a leading
1728 delimiter for the memory value. Otherwise, we just start
1729 searching from the start of the buf. */
1730
1731 if (current_monitor->getmem.resp_delim)
1732 {
1733 monitor_debug ("EXP getmem.resp_delim\n");
1734 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1735 }
1736
1737 /* Now, read the appropriate number of hex digits for this loc,
1738 skipping spaces. */
1739
1740 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1741 if (current_monitor->flags & MO_HEX_PREFIX)
1742 {
1743 int c;
1744
1745 c = readchar (timeout);
1746 while (c == ' ')
1747 c = readchar (timeout);
1748 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1749 ;
1750 else
1751 monitor_error ("monitor_read_memory_single",
1752 "bad response from monitor",
1753 memaddr, 0, NULL, 0);
1754 }
1755
1756 {
1757 int i;
1758 for (i = 0; i < len * 2; i++)
1759 {
1760 int c;
1761
1762 while (1)
1763 {
1764 c = readchar (timeout);
1765 if (isxdigit (c))
1766 break;
1767 if (c == ' ')
1768 continue;
1769
1770 monitor_error ("monitor_read_memory_single",
1771 "bad response from monitor",
1772 memaddr, i, membuf, 0);
1773 }
1774 membuf[i] = c;
1775 }
1776 membuf[i] = '\000'; /* terminate the number */
1777 }
1778
1779 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1780 present), we will send TERM_CMD if that is present. In any case, we collect
1781 all of the output into buf, and then wait for the normal prompt. */
1782
1783 if (current_monitor->getmem.term)
1784 {
1785 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1786
1787 if (current_monitor->getmem.term_cmd)
1788 {
1789 monitor_printf (current_monitor->getmem.term_cmd);
1790 monitor_expect_prompt (NULL, 0);
1791 }
1792 }
1793 else
1794 monitor_expect_prompt (NULL, 0); /* get response */
1795
1796 p = membuf;
1797 val = strtoul (membuf, &p, 16);
1798
1799 if (val == 0 && membuf == p)
1800 monitor_error ("monitor_read_memory_single",
1801 "bad value from monitor",
1802 memaddr, 0, membuf, 0);
1803
1804 /* supply register stores in target byte order, so swap here */
1805
1806 store_unsigned_integer (myaddr, len, val);
1807
1808 return len;
1809 }
1810
1811 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1812 memory at MEMADDR. Returns length moved. Currently, we do no more
1813 than 16 bytes at a time. */
1814
1815 static int
1816 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1817 {
1818 unsigned int val;
1819 char buf[512];
1820 char *p, *p1;
1821 int resp_len;
1822 int i;
1823 CORE_ADDR dumpaddr;
1824
1825 if (len <= 0)
1826 {
1827 monitor_debug ("Zero length call to monitor_read_memory\n");
1828 return 0;
1829 }
1830
1831 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1832 paddr_nz (memaddr), (long) myaddr, len);
1833
1834 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1835 memaddr = ADDR_BITS_REMOVE (memaddr);
1836
1837 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1838 return monitor_read_memory_single (memaddr, myaddr, len);
1839
1840 len = min (len, 16);
1841
1842 /* Some dumpers align the first data with the preceeding 16
1843 byte boundary. Some print blanks and start at the
1844 requested boundary. EXACT_DUMPADDR
1845 */
1846
1847 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1848 ? memaddr : memaddr & ~0x0f;
1849
1850 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1851 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1852 len = ((memaddr + len) & ~0xf) - memaddr;
1853
1854 /* send the memory examine command */
1855
1856 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1857 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1858 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1859 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1860 else
1861 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1862
1863 /* If TERM is present, we wait for that to show up. Also, (if TERM
1864 is present), we will send TERM_CMD if that is present. In any
1865 case, we collect all of the output into buf, and then wait for
1866 the normal prompt. */
1867
1868 if (current_monitor->getmem.term)
1869 {
1870 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1871
1872 if (resp_len <= 0)
1873 monitor_error ("monitor_read_memory",
1874 "excessive response from monitor",
1875 memaddr, resp_len, buf, 0);
1876
1877 if (current_monitor->getmem.term_cmd)
1878 {
1879 SERIAL_WRITE (monitor_desc, current_monitor->getmem.term_cmd,
1880 strlen (current_monitor->getmem.term_cmd));
1881 monitor_expect_prompt (NULL, 0);
1882 }
1883 }
1884 else
1885 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1886
1887 p = buf;
1888
1889 /* If RESP_DELIM is specified, we search for that as a leading
1890 delimiter for the values. Otherwise, we just start searching
1891 from the start of the buf. */
1892
1893 if (current_monitor->getmem.resp_delim)
1894 {
1895 int retval, tmp;
1896 struct re_registers resp_strings;
1897 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1898
1899 memset (&resp_strings, 0, sizeof (struct re_registers));
1900 tmp = strlen (p);
1901 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1902 &resp_strings);
1903
1904 if (retval < 0)
1905 monitor_error ("monitor_read_memory",
1906 "bad response from monitor",
1907 memaddr, resp_len, buf, 0);
1908
1909 p += resp_strings.end[0];
1910 #if 0
1911 p = strstr (p, current_monitor->getmem.resp_delim);
1912 if (!p)
1913 monitor_error ("monitor_read_memory",
1914 "bad response from monitor",
1915 memaddr, resp_len, buf, 0);
1916 p += strlen (current_monitor->getmem.resp_delim);
1917 #endif
1918 }
1919 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1920 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1921 {
1922 char c;
1923 int fetched = 0;
1924 i = len;
1925 c = *p;
1926
1927
1928 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1929 {
1930 if (isxdigit (c))
1931 {
1932 if ((dumpaddr >= memaddr) && (i > 0))
1933 {
1934 val = fromhex (c) * 16 + fromhex (*(p + 1));
1935 *myaddr++ = val;
1936 if (monitor_debug_p || remote_debug)
1937 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1938 --i;
1939 fetched++;
1940 }
1941 ++dumpaddr;
1942 ++p;
1943 }
1944 ++p; /* skip a blank or other non hex char */
1945 c = *p;
1946 }
1947 if (fetched == 0)
1948 error ("Failed to read via monitor");
1949 if (monitor_debug_p || remote_debug)
1950 fprintf_unfiltered (gdb_stdlog, "\n");
1951 return fetched; /* Return the number of bytes actually read */
1952 }
1953 monitor_debug ("MON scanning bytes\n");
1954
1955 for (i = len; i > 0; i--)
1956 {
1957 /* Skip non-hex chars, but bomb on end of string and newlines */
1958
1959 while (1)
1960 {
1961 if (isxdigit (*p))
1962 break;
1963
1964 if (*p == '\000' || *p == '\n' || *p == '\r')
1965 monitor_error ("monitor_read_memory",
1966 "badly terminated response from monitor",
1967 memaddr, resp_len, buf, 0);
1968 p++;
1969 }
1970
1971 val = strtoul (p, &p1, 16);
1972
1973 if (val == 0 && p == p1)
1974 monitor_error ("monitor_read_memory",
1975 "bad value from monitor",
1976 memaddr, resp_len, buf, 0);
1977
1978 *myaddr++ = val;
1979
1980 if (i == 1)
1981 break;
1982
1983 p = p1;
1984 }
1985
1986 return len;
1987 }
1988
1989 /* Transfer LEN bytes between target address MEMADDR and GDB address
1990 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1991 unused. */
1992
1993 static int
1994 monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1995 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
1996 struct target_ops *target ATTRIBUTE_UNUSED)
1997 {
1998 int res;
1999
2000 if (write)
2001 {
2002 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2003 res = monitor_write_memory_block(memaddr, myaddr, len);
2004 else
2005 res = monitor_write_memory(memaddr, myaddr, len);
2006 }
2007 else
2008 {
2009 res = monitor_read_memory(memaddr, myaddr, len);
2010 }
2011
2012 return res;
2013 }
2014
2015 static void
2016 monitor_kill (void)
2017 {
2018 return; /* ignore attempts to kill target system */
2019 }
2020
2021 /* All we actually do is set the PC to the start address of exec_bfd, and start
2022 the program at that point. */
2023
2024 static void
2025 monitor_create_inferior (char *exec_file, char *args, char **env)
2026 {
2027 if (args && (*args != '\000'))
2028 error ("Args are not supported by the monitor.");
2029
2030 first_time = 1;
2031 clear_proceed_status ();
2032 proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
2033 }
2034
2035 /* Clean up when a program exits.
2036 The program actually lives on in the remote processor's RAM, and may be
2037 run again without a download. Don't leave it full of breakpoint
2038 instructions. */
2039
2040 static void
2041 monitor_mourn_inferior (void)
2042 {
2043 unpush_target (targ_ops);
2044 generic_mourn_inferior (); /* Do all the proper things now */
2045 }
2046
2047 /* Tell the monitor to add a breakpoint. */
2048
2049 static int
2050 monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
2051 {
2052 int i;
2053 unsigned char *bp;
2054 int bplen;
2055
2056 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2057 if (current_monitor->set_break == NULL)
2058 error ("No set_break defined for this monitor");
2059
2060 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2061 addr = ADDR_BITS_REMOVE (addr);
2062
2063 /* Determine appropriate breakpoint size for this address. */
2064 bp = memory_breakpoint_from_pc (&addr, &bplen);
2065
2066 for (i = 0; i < current_monitor->num_breakpoints; i++)
2067 {
2068 if (breakaddr[i] == 0)
2069 {
2070 breakaddr[i] = addr;
2071 monitor_read_memory (addr, shadow, bplen);
2072 monitor_printf (current_monitor->set_break, addr);
2073 monitor_expect_prompt (NULL, 0);
2074 return 0;
2075 }
2076 }
2077
2078 error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
2079 }
2080
2081 /* Tell the monitor to remove a breakpoint. */
2082
2083 static int
2084 monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
2085 {
2086 int i;
2087
2088 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2089 if (current_monitor->clr_break == NULL)
2090 error ("No clr_break defined for this monitor");
2091
2092 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2093 addr = ADDR_BITS_REMOVE (addr);
2094
2095 for (i = 0; i < current_monitor->num_breakpoints; i++)
2096 {
2097 if (breakaddr[i] == addr)
2098 {
2099 breakaddr[i] = 0;
2100 /* some monitors remove breakpoints based on the address */
2101 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2102 monitor_printf (current_monitor->clr_break, addr);
2103 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2104 monitor_printf (current_monitor->clr_break, i + 1);
2105 else
2106 monitor_printf (current_monitor->clr_break, i);
2107 monitor_expect_prompt (NULL, 0);
2108 return 0;
2109 }
2110 }
2111 fprintf_unfiltered (gdb_stderr,
2112 "Can't find breakpoint associated with 0x%s\n",
2113 paddr_nz (addr));
2114 return 1;
2115 }
2116
2117 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2118 an S-record. Return non-zero if the ACK is received properly. */
2119
2120 static int
2121 monitor_wait_srec_ack (void)
2122 {
2123 int ch;
2124
2125 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2126 {
2127 return (readchar (timeout) == '+');
2128 }
2129 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2130 {
2131 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2132 if ((ch = readchar (1)) < 0)
2133 return 0;
2134 if ((ch = readchar (1)) < 0)
2135 return 0;
2136 if ((ch = readchar (1)) < 0)
2137 return 0;
2138 if ((ch = readchar (1)) < 0)
2139 return 0;
2140 }
2141 return 1;
2142 }
2143
2144 /* monitor_load -- download a file. */
2145
2146 static void
2147 monitor_load (char *file, int from_tty)
2148 {
2149 monitor_debug ("MON load\n");
2150
2151 if (current_monitor->load_routine)
2152 current_monitor->load_routine (monitor_desc, file, hashmark);
2153 else
2154 { /* The default is ascii S-records */
2155 int n;
2156 unsigned long load_offset;
2157 char buf[128];
2158
2159 /* enable user to specify address for downloading as 2nd arg to load */
2160 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2161 if (n > 1)
2162 file = buf;
2163 else
2164 load_offset = 0;
2165
2166 monitor_printf (current_monitor->load);
2167 if (current_monitor->loadresp)
2168 monitor_expect (current_monitor->loadresp, NULL, 0);
2169
2170 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2171 32, SREC_ALL, hashmark,
2172 current_monitor->flags & MO_SREC_ACK ?
2173 monitor_wait_srec_ack : NULL);
2174
2175 monitor_expect_prompt (NULL, 0);
2176 }
2177
2178 /* Finally, make the PC point at the start address */
2179
2180 if (exec_bfd)
2181 write_pc (bfd_get_start_address (exec_bfd));
2182
2183 inferior_ptid = null_ptid ; /* No process now */
2184
2185 /* This is necessary because many things were based on the PC at the time that
2186 we attached to the monitor, which is no longer valid now that we have loaded
2187 new code (and just changed the PC). Another way to do this might be to call
2188 normal_stop, except that the stack may not be valid, and things would get
2189 horribly confused... */
2190
2191 clear_symtab_users ();
2192 }
2193
2194 static void
2195 monitor_stop (void)
2196 {
2197 monitor_debug ("MON stop\n");
2198 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2199 SERIAL_SEND_BREAK (monitor_desc);
2200 if (current_monitor->stop)
2201 monitor_printf_noecho (current_monitor->stop);
2202 }
2203
2204 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2205 in OUTPUT until the prompt is seen. FIXME: We read the characters
2206 ourseleves here cause of a nasty echo. */
2207
2208 static void
2209 monitor_rcmd (char *command,
2210 struct ui_file *outbuf)
2211 {
2212 char *p;
2213 int resp_len;
2214 char buf[1000];
2215
2216 if (monitor_desc == NULL)
2217 error ("monitor target not open.");
2218
2219 p = current_monitor->prompt;
2220
2221 /* Send the command. Note that if no args were supplied, then we're
2222 just sending the monitor a newline, which is sometimes useful. */
2223
2224 monitor_printf ("%s\r", (command ? command : ""));
2225
2226 resp_len = monitor_expect_prompt (buf, sizeof buf);
2227
2228 fputs_unfiltered (buf, outbuf); /* Output the response */
2229 }
2230
2231 /* Convert hex digit A to a number. */
2232
2233 #if 0
2234 static int
2235 from_hex (int a)
2236 {
2237 if (a >= '0' && a <= '9')
2238 return a - '0';
2239 if (a >= 'a' && a <= 'f')
2240 return a - 'a' + 10;
2241 if (a >= 'A' && a <= 'F')
2242 return a - 'A' + 10;
2243
2244 error ("Reply contains invalid hex digit 0x%x", a);
2245 }
2246 #endif
2247
2248 char *
2249 monitor_get_dev_name (void)
2250 {
2251 return dev_name;
2252 }
2253
2254 static struct target_ops monitor_ops;
2255
2256 static void
2257 init_base_monitor_ops (void)
2258 {
2259 monitor_ops.to_shortname = NULL;
2260 monitor_ops.to_longname = NULL;
2261 monitor_ops.to_doc = NULL;
2262 monitor_ops.to_open = NULL;
2263 monitor_ops.to_close = monitor_close;
2264 monitor_ops.to_attach = NULL;
2265 monitor_ops.to_post_attach = NULL;
2266 monitor_ops.to_require_attach = NULL;
2267 monitor_ops.to_detach = monitor_detach;
2268 monitor_ops.to_require_detach = NULL;
2269 monitor_ops.to_resume = monitor_resume;
2270 monitor_ops.to_wait = monitor_wait;
2271 monitor_ops.to_post_wait = NULL;
2272 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2273 monitor_ops.to_store_registers = monitor_store_registers;
2274 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2275 monitor_ops.to_xfer_memory = monitor_xfer_memory;
2276 monitor_ops.to_files_info = monitor_files_info;
2277 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2278 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2279 monitor_ops.to_terminal_init = 0;
2280 monitor_ops.to_terminal_inferior = 0;
2281 monitor_ops.to_terminal_ours_for_output = 0;
2282 monitor_ops.to_terminal_ours = 0;
2283 monitor_ops.to_terminal_info = 0;
2284 monitor_ops.to_kill = monitor_kill;
2285 monitor_ops.to_load = monitor_load;
2286 monitor_ops.to_lookup_symbol = 0;
2287 monitor_ops.to_create_inferior = monitor_create_inferior;
2288 monitor_ops.to_post_startup_inferior = NULL;
2289 monitor_ops.to_acknowledge_created_inferior = NULL;
2290 monitor_ops.to_clone_and_follow_inferior = NULL;
2291 monitor_ops.to_post_follow_inferior_by_clone = NULL;
2292 monitor_ops.to_insert_fork_catchpoint = NULL;
2293 monitor_ops.to_remove_fork_catchpoint = NULL;
2294 monitor_ops.to_insert_vfork_catchpoint = NULL;
2295 monitor_ops.to_remove_vfork_catchpoint = NULL;
2296 monitor_ops.to_has_forked = NULL;
2297 monitor_ops.to_has_vforked = NULL;
2298 monitor_ops.to_can_follow_vfork_prior_to_exec = NULL;
2299 monitor_ops.to_post_follow_vfork = NULL;
2300 monitor_ops.to_insert_exec_catchpoint = NULL;
2301 monitor_ops.to_remove_exec_catchpoint = NULL;
2302 monitor_ops.to_has_execd = NULL;
2303 monitor_ops.to_reported_exec_events_per_exec_call = NULL;
2304 monitor_ops.to_has_exited = NULL;
2305 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2306 monitor_ops.to_can_run = 0;
2307 monitor_ops.to_notice_signals = 0;
2308 monitor_ops.to_thread_alive = 0;
2309 monitor_ops.to_stop = monitor_stop;
2310 monitor_ops.to_rcmd = monitor_rcmd;
2311 monitor_ops.to_pid_to_exec_file = NULL;
2312 monitor_ops.to_stratum = process_stratum;
2313 monitor_ops.DONT_USE = 0;
2314 monitor_ops.to_has_all_memory = 1;
2315 monitor_ops.to_has_memory = 1;
2316 monitor_ops.to_has_stack = 1;
2317 monitor_ops.to_has_registers = 1;
2318 monitor_ops.to_has_execution = 1;
2319 monitor_ops.to_sections = 0;
2320 monitor_ops.to_sections_end = 0;
2321 monitor_ops.to_magic = OPS_MAGIC;
2322 } /* init_base_monitor_ops */
2323
2324 /* Init the target_ops structure pointed at by OPS */
2325
2326 void
2327 init_monitor_ops (struct target_ops *ops)
2328 {
2329 if (monitor_ops.to_magic != OPS_MAGIC)
2330 init_base_monitor_ops ();
2331
2332 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2333 }
2334
2335 /* Define additional commands that are usually only used by monitors. */
2336
2337 void
2338 _initialize_remote_monitors (void)
2339 {
2340 init_base_monitor_ops ();
2341 add_show_from_set (add_set_cmd ("hash", no_class, var_boolean,
2342 (char *) &hashmark,
2343 "Set display of activity while downloading a file.\n\
2344 When enabled, a hashmark \'#\' is displayed.",
2345 &setlist),
2346 &showlist);
2347
2348 add_show_from_set
2349 (add_set_cmd ("monitor", no_class, var_zinteger,
2350 (char *) &monitor_debug_p,
2351 "Set debugging of remote monitor communication.\n\
2352 When enabled, communication between GDB and the remote monitor\n\
2353 is displayed.", &setdebuglist),
2354 &showdebuglist);
2355 }
This page took 0.085842 seconds and 4 git commands to generate.