Fix targ_ops declaration problem.
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* This file was derived from various remote-* modules. It is a collection
27 of generic support functions so GDB can talk directly to a ROM based
28 monitor. This saves use from having to hack an exception based handler
29 into existence, and makes for quick porting.
30
31 This module talks to a debug monitor called 'MONITOR', which
32 We communicate with MONITOR via either a direct serial line, or a TCP
33 (or possibly TELNET) stream to a terminal multiplexor,
34 which in turn talks to the target board. */
35
36 /* FIXME 32x64: This code assumes that registers and addresses are at
37 most 32 bits long. If they can be larger, you will need to declare
38 values as LONGEST and use %llx or some such to print values when
39 building commands to send to the monitor. Since we don't know of
40 any actual 64-bit targets with ROM monitors that use this code,
41 it's not an issue right now. -sts 4/18/96 */
42
43 #include "defs.h"
44 #include "gdbcore.h"
45 #include "target.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
63
64 static int readchar (int timeout);
65
66 static void monitor_fetch_register (int regno);
67 static void monitor_store_register (int regno);
68
69 static void monitor_printable_string (char *newstr, char *oldstr, int len);
70 static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
71 static void monitor_detach (char *args, int from_tty);
72 static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
73 static void monitor_interrupt (int signo);
74 static void monitor_interrupt_twice (int signo);
75 static void monitor_interrupt_query (void);
76 static void monitor_wait_cleanup (void *old_timeout);
77
78 static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
79 static void monitor_fetch_registers (int regno);
80 static void monitor_store_registers (int regno);
81 static void monitor_prepare_to_store (void);
82 static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
83 int write,
84 struct mem_attrib *attrib,
85 struct target_ops *target);
86 static void monitor_files_info (struct target_ops *ops);
87 static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
88 static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
89 static void monitor_kill (void);
90 static void monitor_load (char *file, int from_tty);
91 static void monitor_mourn_inferior (void);
92 static void monitor_stop (void);
93
94 static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
95 static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
96 static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
97 static int monitor_write_memory_block (CORE_ADDR memaddr,
98 char *myaddr, int len);
99 static int monitor_expect_regexp (struct re_pattern_buffer *pat,
100 char *buf, int buflen);
101 static void monitor_dump_regs (void);
102 #if 0
103 static int from_hex (int a);
104 static unsigned long get_hex_word (void);
105 #endif
106 static void parse_register_dump (char *, int);
107
108 static struct monitor_ops *current_monitor;
109
110 static int hashmark; /* flag set by "set hash" */
111
112 static int timeout = 30;
113
114 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
115
116 static void (*ofunc) (); /* Old SIGINT signal handler */
117
118 static CORE_ADDR *breakaddr;
119
120 /* Descriptor for I/O to remote machine. Initialize it to NULL so
121 that monitor_open knows that we don't have a file open when the
122 program starts. */
123
124 static struct serial *monitor_desc = NULL;
125
126 /* Pointer to regexp pattern matching data */
127
128 static struct re_pattern_buffer register_pattern;
129 static char register_fastmap[256];
130
131 static struct re_pattern_buffer getmem_resp_delim_pattern;
132 static char getmem_resp_delim_fastmap[256];
133
134 static struct re_pattern_buffer setmem_resp_delim_pattern;
135 static char setmem_resp_delim_fastmap[256];
136
137 static struct re_pattern_buffer setreg_resp_delim_pattern;
138 static char setreg_resp_delim_fastmap[256];
139
140 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
141 monitor_wait wakes up. */
142
143 static int first_time = 0; /* is this the first time we're executing after
144 gaving created the child proccess? */
145
146 #define TARGET_BUF_SIZE 2048
147
148 /* Monitor specific debugging information. Typically only useful to
149 the developer of a new monitor interface. */
150
151 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
152
153 static int monitor_debug_p = 0;
154
155 /* NOTE: This file alternates between monitor_debug_p and remote_debug
156 when determining if debug information is printed. Perhaphs this
157 could be simplified. */
158
159 static void
160 monitor_debug (const char *fmt, ...)
161 {
162 if (monitor_debug_p)
163 {
164 va_list args;
165 va_start (args, fmt);
166 vfprintf_filtered (gdb_stdlog, fmt, args);
167 va_end (args);
168 }
169 }
170
171
172 /* Convert a string into a printable representation, Return # byte in
173 the new string. When LEN is >0 it specifies the size of the
174 string. Otherwize strlen(oldstr) is used. */
175
176 static void
177 monitor_printable_string (char *newstr, char *oldstr, int len)
178 {
179 int ch;
180 int i;
181
182 if (len <= 0)
183 len = strlen (oldstr);
184
185 for (i = 0; i < len; i++)
186 {
187 ch = oldstr[i];
188 switch (ch)
189 {
190 default:
191 if (isprint (ch))
192 *newstr++ = ch;
193
194 else
195 {
196 sprintf (newstr, "\\x%02x", ch & 0xff);
197 newstr += 4;
198 }
199 break;
200
201 case '\\':
202 *newstr++ = '\\';
203 *newstr++ = '\\';
204 break;
205 case '\b':
206 *newstr++ = '\\';
207 *newstr++ = 'b';
208 break;
209 case '\f':
210 *newstr++ = '\\';
211 *newstr++ = 't';
212 break;
213 case '\n':
214 *newstr++ = '\\';
215 *newstr++ = 'n';
216 break;
217 case '\r':
218 *newstr++ = '\\';
219 *newstr++ = 'r';
220 break;
221 case '\t':
222 *newstr++ = '\\';
223 *newstr++ = 't';
224 break;
225 case '\v':
226 *newstr++ = '\\';
227 *newstr++ = 'v';
228 break;
229 }
230 }
231
232 *newstr++ = '\0';
233 }
234
235 /* Print monitor errors with a string, converting the string to printable
236 representation. */
237
238 static void
239 monitor_error (char *function, char *message,
240 CORE_ADDR memaddr, int len, char *string, int final_char)
241 {
242 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
243 char *safe_string = alloca ((real_len * 4) + 1);
244 monitor_printable_string (safe_string, string, real_len);
245
246 if (final_char)
247 error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
248 else
249 error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
250 }
251
252 /* Convert hex digit A to a number. */
253
254 static int
255 fromhex (int a)
256 {
257 if (a >= '0' && a <= '9')
258 return a - '0';
259 else if (a >= 'a' && a <= 'f')
260 return a - 'a' + 10;
261 else if (a >= 'A' && a <= 'F')
262 return a - 'A' + 10;
263 else
264 error ("Invalid hex digit %d", a);
265 }
266
267 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
268
269 This function exists to get around the problem that many host platforms
270 don't have a printf that can print 64-bit addresses. The %A format
271 specification is recognized as a special case, and causes the argument
272 to be printed as a 64-bit hexadecimal address.
273
274 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
275 If it is a '%s' format, the argument is a string; otherwise the
276 argument is assumed to be a long integer.
277
278 %% is also turned into a single %.
279 */
280
281 static void
282 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
283 {
284 char format[10];
285 char fmt;
286 char *p;
287 int i;
288 long arg_int;
289 CORE_ADDR arg_addr;
290 char *arg_string;
291
292 for (p = pattern; *p; p++)
293 {
294 if (*p == '%')
295 {
296 /* Copy the format specifier to a separate buffer. */
297 format[0] = *p++;
298 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
299 i++, p++)
300 format[i] = *p;
301 format[i] = fmt = *p;
302 format[i + 1] = '\0';
303
304 /* Fetch the next argument and print it. */
305 switch (fmt)
306 {
307 case '%':
308 strcpy (sndbuf, "%");
309 break;
310 case 'A':
311 arg_addr = va_arg (args, CORE_ADDR);
312 strcpy (sndbuf, paddr_nz (arg_addr));
313 break;
314 case 's':
315 arg_string = va_arg (args, char *);
316 sprintf (sndbuf, format, arg_string);
317 break;
318 default:
319 arg_int = va_arg (args, long);
320 sprintf (sndbuf, format, arg_int);
321 break;
322 }
323 sndbuf += strlen (sndbuf);
324 }
325 else
326 *sndbuf++ = *p;
327 }
328 *sndbuf = '\0';
329 }
330
331
332 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
333 Works just like printf. */
334
335 void
336 monitor_printf_noecho (char *pattern,...)
337 {
338 va_list args;
339 char sndbuf[2000];
340 int len;
341
342 va_start (args, pattern);
343
344 monitor_vsprintf (sndbuf, pattern, args);
345
346 len = strlen (sndbuf);
347 if (len + 1 > sizeof sndbuf)
348 internal_error (__FILE__, __LINE__, "failed internal consistency check");
349
350 if (monitor_debug_p)
351 {
352 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
353 monitor_printable_string (safe_string, sndbuf, 0);
354 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
355 }
356
357 monitor_write (sndbuf, len);
358 }
359
360 /* monitor_printf -- Send data to monitor and check the echo. Works just like
361 printf. */
362
363 void
364 monitor_printf (char *pattern,...)
365 {
366 va_list args;
367 char sndbuf[2000];
368 int len;
369
370 va_start (args, pattern);
371
372 monitor_vsprintf (sndbuf, pattern, args);
373
374 len = strlen (sndbuf);
375 if (len + 1 > sizeof sndbuf)
376 internal_error (__FILE__, __LINE__, "failed internal consistency check");
377
378 if (monitor_debug_p)
379 {
380 char *safe_string = (char *) alloca ((len * 4) + 1);
381 monitor_printable_string (safe_string, sndbuf, 0);
382 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
383 }
384
385 monitor_write (sndbuf, len);
386
387 /* We used to expect that the next immediate output was the characters we
388 just output, but sometimes some extra junk appeared before the characters
389 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
390 So, just start searching for what we sent, and skip anything unknown. */
391 monitor_debug ("ExpectEcho\n");
392 monitor_expect (sndbuf, (char *) 0, 0);
393 }
394
395
396 /* Write characters to the remote system. */
397
398 void
399 monitor_write (char *buf, int buflen)
400 {
401 if (serial_write (monitor_desc, buf, buflen))
402 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
403 safe_strerror (errno));
404 }
405
406
407 /* Read a binary character from the remote system, doing all the fancy
408 timeout stuff, but without interpreting the character in any way,
409 and without printing remote debug information. */
410
411 int
412 monitor_readchar (void)
413 {
414 int c;
415 int looping;
416
417 do
418 {
419 looping = 0;
420 c = serial_readchar (monitor_desc, timeout);
421
422 if (c >= 0)
423 c &= 0xff; /* don't lose bit 7 */
424 }
425 while (looping);
426
427 if (c >= 0)
428 return c;
429
430 if (c == SERIAL_TIMEOUT)
431 error ("Timeout reading from remote system.");
432
433 perror_with_name ("remote-monitor");
434 }
435
436
437 /* Read a character from the remote system, doing all the fancy
438 timeout stuff. */
439
440 static int
441 readchar (int timeout)
442 {
443 int c;
444 static enum
445 {
446 last_random, last_nl, last_cr, last_crnl
447 }
448 state = last_random;
449 int looping;
450
451 do
452 {
453 looping = 0;
454 c = serial_readchar (monitor_desc, timeout);
455
456 if (c >= 0)
457 {
458 c &= 0x7f;
459 /* This seems to interfere with proper function of the
460 input stream */
461 if (monitor_debug_p || remote_debug)
462 {
463 char buf[2];
464 buf[0] = c;
465 buf[1] = '\0';
466 puts_debug ("read -->", buf, "<--");
467 }
468
469 }
470
471 /* Canonicialize \n\r combinations into one \r */
472 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
473 {
474 if ((c == '\r' && state == last_nl)
475 || (c == '\n' && state == last_cr))
476 {
477 state = last_crnl;
478 looping = 1;
479 }
480 else if (c == '\r')
481 state = last_cr;
482 else if (c != '\n')
483 state = last_random;
484 else
485 {
486 state = last_nl;
487 c = '\r';
488 }
489 }
490 }
491 while (looping);
492
493 if (c >= 0)
494 return c;
495
496 if (c == SERIAL_TIMEOUT)
497 #if 0
498 /* I fail to see how detaching here can be useful */
499 if (in_monitor_wait) /* Watchdog went off */
500 {
501 target_mourn_inferior ();
502 error ("GDB serial timeout has expired. Target detached.\n");
503 }
504 else
505 #endif
506 error ("Timeout reading from remote system.");
507
508 perror_with_name ("remote-monitor");
509 }
510
511 /* Scan input from the remote system, until STRING is found. If BUF is non-
512 zero, then collect input until we have collected either STRING or BUFLEN-1
513 chars. In either case we terminate BUF with a 0. If input overflows BUF
514 because STRING can't be found, return -1, else return number of chars in BUF
515 (minus the terminating NUL). Note that in the non-overflow case, STRING
516 will be at the end of BUF. */
517
518 int
519 monitor_expect (char *string, char *buf, int buflen)
520 {
521 char *p = string;
522 int obuflen = buflen;
523 int c;
524
525 if (monitor_debug_p)
526 {
527 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
528 monitor_printable_string (safe_string, string, 0);
529 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
530 }
531
532 immediate_quit++;
533 while (1)
534 {
535 if (buf)
536 {
537 if (buflen < 2)
538 {
539 *buf = '\000';
540 immediate_quit--;
541 return -1;
542 }
543
544 c = readchar (timeout);
545 if (c == '\000')
546 continue;
547 *buf++ = c;
548 buflen--;
549 }
550 else
551 c = readchar (timeout);
552
553 /* Don't expect any ^C sent to be echoed */
554
555 if (*p == '\003' || c == *p)
556 {
557 p++;
558 if (*p == '\0')
559 {
560 immediate_quit--;
561
562 if (buf)
563 {
564 *buf++ = '\000';
565 return obuflen - buflen;
566 }
567 else
568 return 0;
569 }
570 }
571 #if 0
572 // OBSOLETE else if ((c == '\021' || c == '\023') &&
573 // OBSOLETE (STREQ (targ_ops->to_shortname, "m32r")
574 // OBSOLETE || STREQ (targ_ops->to_shortname, "mon2000")))
575 // OBSOLETE { /* m32r monitor emits random DC1/DC3 chars */
576 // OBSOLETE continue;
577 // OBSOLETE }
578 #endif
579 else
580 {
581 /* We got a character that doesn't match the string. We need to
582 back up p, but how far? If we're looking for "..howdy" and the
583 monitor sends "...howdy"? There's certainly a match in there,
584 but when we receive the third ".", we won't find it if we just
585 restart the matching at the beginning of the string.
586
587 This is a Boyer-Moore kind of situation. We want to reset P to
588 the end of the longest prefix of STRING that is a suffix of
589 what we've read so far. In the example above, that would be
590 ".." --- the longest prefix of "..howdy" that is a suffix of
591 "...". This longest prefix could be the empty string, if C
592 is nowhere to be found in STRING.
593
594 If this longest prefix is not the empty string, it must contain
595 C, so let's search from the end of STRING for instances of C,
596 and see if the portion of STRING before that is a suffix of
597 what we read before C. Actually, we can search backwards from
598 p, since we know no prefix can be longer than that.
599
600 Note that we can use STRING itself, along with C, as a record
601 of what we've received so far. :) */
602 int i;
603
604 for (i = (p - string) - 1; i >= 0; i--)
605 if (string[i] == c)
606 {
607 /* Is this prefix a suffix of what we've read so far?
608 In other words, does
609 string[0 .. i-1] == string[p - i, p - 1]? */
610 if (! memcmp (string, p - i, i))
611 {
612 p = string + i + 1;
613 break;
614 }
615 }
616 if (i < 0)
617 p = string;
618 }
619 }
620 }
621
622 /* Search for a regexp. */
623
624 static int
625 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
626 {
627 char *mybuf;
628 char *p;
629 monitor_debug ("MON Expecting regexp\n");
630 if (buf)
631 mybuf = buf;
632 else
633 {
634 mybuf = alloca (TARGET_BUF_SIZE);
635 buflen = TARGET_BUF_SIZE;
636 }
637
638 p = mybuf;
639 while (1)
640 {
641 int retval;
642
643 if (p - mybuf >= buflen)
644 { /* Buffer about to overflow */
645
646 /* On overflow, we copy the upper half of the buffer to the lower half. Not
647 great, but it usually works... */
648
649 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
650 p = mybuf + buflen / 2;
651 }
652
653 *p++ = readchar (timeout);
654
655 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
656 if (retval >= 0)
657 return 1;
658 }
659 }
660
661 /* Keep discarding input until we see the MONITOR prompt.
662
663 The convention for dealing with the prompt is that you
664 o give your command
665 o *then* wait for the prompt.
666
667 Thus the last thing that a procedure does with the serial line will
668 be an monitor_expect_prompt(). Exception: monitor_resume does not
669 wait for the prompt, because the terminal is being handed over to
670 the inferior. However, the next thing which happens after that is
671 a monitor_wait which does wait for the prompt. Note that this
672 includes abnormal exit, e.g. error(). This is necessary to prevent
673 getting into states from which we can't recover. */
674
675 int
676 monitor_expect_prompt (char *buf, int buflen)
677 {
678 monitor_debug ("MON Expecting prompt\n");
679 return monitor_expect (current_monitor->prompt, buf, buflen);
680 }
681
682 /* Get N 32-bit words from remote, each preceded by a space, and put
683 them in registers starting at REGNO. */
684
685 #if 0
686 static unsigned long
687 get_hex_word (void)
688 {
689 unsigned long val;
690 int i;
691 int ch;
692
693 do
694 ch = readchar (timeout);
695 while (isspace (ch));
696
697 val = from_hex (ch);
698
699 for (i = 7; i >= 1; i--)
700 {
701 ch = readchar (timeout);
702 if (!isxdigit (ch))
703 break;
704 val = (val << 4) | from_hex (ch);
705 }
706
707 return val;
708 }
709 #endif
710
711 static void
712 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
713 char *fastmap)
714 {
715 int tmp;
716 const char *val;
717
718 compiled_pattern->fastmap = fastmap;
719
720 tmp = re_set_syntax (RE_SYNTAX_EMACS);
721 val = re_compile_pattern (pattern,
722 strlen (pattern),
723 compiled_pattern);
724 re_set_syntax (tmp);
725
726 if (val)
727 error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
728
729 if (fastmap)
730 re_compile_fastmap (compiled_pattern);
731 }
732
733 /* Open a connection to a remote debugger. NAME is the filename used
734 for communication. */
735
736 void
737 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
738 {
739 char *name;
740 char **p;
741
742 if (mon_ops->magic != MONITOR_OPS_MAGIC)
743 error ("Magic number of monitor_ops struct wrong.");
744
745 targ_ops = mon_ops->target;
746 name = targ_ops->to_shortname;
747
748 if (!args)
749 error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
750 `target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
751
752 target_preopen (from_tty);
753
754 /* Setup pattern for register dump */
755
756 if (mon_ops->register_pattern)
757 compile_pattern (mon_ops->register_pattern, &register_pattern,
758 register_fastmap);
759
760 if (mon_ops->getmem.resp_delim)
761 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
762 getmem_resp_delim_fastmap);
763
764 if (mon_ops->setmem.resp_delim)
765 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
766 setmem_resp_delim_fastmap);
767
768 if (mon_ops->setreg.resp_delim)
769 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
770 setreg_resp_delim_fastmap);
771
772 unpush_target (targ_ops);
773
774 if (dev_name)
775 xfree (dev_name);
776 dev_name = xstrdup (args);
777
778 monitor_desc = serial_open (dev_name);
779
780 if (!monitor_desc)
781 perror_with_name (dev_name);
782
783 if (baud_rate != -1)
784 {
785 if (serial_setbaudrate (monitor_desc, baud_rate))
786 {
787 serial_close (monitor_desc);
788 perror_with_name (dev_name);
789 }
790 }
791
792 serial_raw (monitor_desc);
793
794 serial_flush_input (monitor_desc);
795
796 /* some systems only work with 2 stop bits */
797
798 serial_setstopbits (monitor_desc, mon_ops->stopbits);
799
800 current_monitor = mon_ops;
801
802 /* See if we can wake up the monitor. First, try sending a stop sequence,
803 then send the init strings. Last, remove all breakpoints. */
804
805 if (current_monitor->stop)
806 {
807 monitor_stop ();
808 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
809 {
810 monitor_debug ("EXP Open echo\n");
811 monitor_expect_prompt (NULL, 0);
812 }
813 }
814
815 /* wake up the monitor and see if it's alive */
816 for (p = mon_ops->init; *p != NULL; p++)
817 {
818 /* Some of the characters we send may not be echoed,
819 but we hope to get a prompt at the end of it all. */
820
821 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
822 monitor_printf (*p);
823 else
824 monitor_printf_noecho (*p);
825 monitor_expect_prompt (NULL, 0);
826 }
827
828 serial_flush_input (monitor_desc);
829
830 /* Alloc breakpoints */
831 if (mon_ops->set_break != NULL)
832 {
833 if (mon_ops->num_breakpoints == 0)
834 mon_ops->num_breakpoints = 8;
835
836 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
837 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
838 }
839
840 /* Remove all breakpoints */
841
842 if (mon_ops->clr_all_break)
843 {
844 monitor_printf (mon_ops->clr_all_break);
845 monitor_expect_prompt (NULL, 0);
846 }
847
848 if (from_tty)
849 printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
850
851 push_target (targ_ops);
852
853 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
854
855 /* Give monitor_wait something to read */
856
857 monitor_printf (current_monitor->line_term);
858
859 start_remote ();
860 }
861
862 /* Close out all files and local state before this target loses
863 control. */
864
865 void
866 monitor_close (int quitting)
867 {
868 if (monitor_desc)
869 serial_close (monitor_desc);
870
871 /* Free breakpoint memory */
872 if (breakaddr != NULL)
873 {
874 xfree (breakaddr);
875 breakaddr = NULL;
876 }
877
878 monitor_desc = NULL;
879 }
880
881 /* Terminate the open connection to the remote debugger. Use this
882 when you want to detach and do something else with your gdb. */
883
884 static void
885 monitor_detach (char *args, int from_tty)
886 {
887 pop_target (); /* calls monitor_close to do the real work */
888 if (from_tty)
889 printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
890 }
891
892 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
893
894 char *
895 monitor_supply_register (int regno, char *valstr)
896 {
897 ULONGEST val;
898 unsigned char regbuf[MAX_REGISTER_SIZE];
899 char *p;
900
901 val = 0;
902 p = valstr;
903 while (p && *p != '\0')
904 {
905 if (*p == '\r' || *p == '\n')
906 {
907 while (*p != '\0')
908 p++;
909 break;
910 }
911 if (isspace (*p))
912 {
913 p++;
914 continue;
915 }
916 if (!isxdigit (*p) && *p != 'x')
917 {
918 break;
919 }
920
921 val <<= 4;
922 val += fromhex (*p++);
923 }
924 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
925
926 if (val == 0 && valstr == p)
927 error ("monitor_supply_register (%d): bad value from monitor: %s.",
928 regno, valstr);
929
930 /* supply register stores in target byte order, so swap here */
931
932 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
933
934 supply_register (regno, regbuf);
935
936 return p;
937 }
938
939 /* Tell the remote machine to resume. */
940
941 static void
942 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
943 {
944 /* Some monitors require a different command when starting a program */
945 monitor_debug ("MON resume\n");
946 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
947 {
948 first_time = 0;
949 monitor_printf ("run\r");
950 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
951 dump_reg_flag = 1;
952 return;
953 }
954 if (step)
955 monitor_printf (current_monitor->step);
956 else
957 {
958 if (current_monitor->continue_hook)
959 (*current_monitor->continue_hook) ();
960 else
961 monitor_printf (current_monitor->cont);
962 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
963 dump_reg_flag = 1;
964 }
965 }
966
967 /* Parse the output of a register dump command. A monitor specific
968 regexp is used to extract individual register descriptions of the
969 form REG=VAL. Each description is split up into a name and a value
970 string which are passed down to monitor specific code. */
971
972 static void
973 parse_register_dump (char *buf, int len)
974 {
975 monitor_debug ("MON Parsing register dump\n");
976 while (1)
977 {
978 int regnamelen, vallen;
979 char *regname, *val;
980 /* Element 0 points to start of register name, and element 1
981 points to the start of the register value. */
982 struct re_registers register_strings;
983
984 memset (&register_strings, 0, sizeof (struct re_registers));
985
986 if (re_search (&register_pattern, buf, len, 0, len,
987 &register_strings) == -1)
988 break;
989
990 regnamelen = register_strings.end[1] - register_strings.start[1];
991 regname = buf + register_strings.start[1];
992 vallen = register_strings.end[2] - register_strings.start[2];
993 val = buf + register_strings.start[2];
994
995 current_monitor->supply_register (regname, regnamelen, val, vallen);
996
997 buf += register_strings.end[0];
998 len -= register_strings.end[0];
999 }
1000 }
1001
1002 /* Send ^C to target to halt it. Target will respond, and send us a
1003 packet. */
1004
1005 static void
1006 monitor_interrupt (int signo)
1007 {
1008 /* If this doesn't work, try more severe steps. */
1009 signal (signo, monitor_interrupt_twice);
1010
1011 if (monitor_debug_p || remote_debug)
1012 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1013
1014 target_stop ();
1015 }
1016
1017 /* The user typed ^C twice. */
1018
1019 static void
1020 monitor_interrupt_twice (int signo)
1021 {
1022 signal (signo, ofunc);
1023
1024 monitor_interrupt_query ();
1025
1026 signal (signo, monitor_interrupt);
1027 }
1028
1029 /* Ask the user what to do when an interrupt is received. */
1030
1031 static void
1032 monitor_interrupt_query (void)
1033 {
1034 target_terminal_ours ();
1035
1036 if (query ("Interrupted while waiting for the program.\n\
1037 Give up (and stop debugging it)? "))
1038 {
1039 target_mourn_inferior ();
1040 throw_exception (RETURN_QUIT);
1041 }
1042
1043 target_terminal_inferior ();
1044 }
1045
1046 static void
1047 monitor_wait_cleanup (void *old_timeout)
1048 {
1049 timeout = *(int *) old_timeout;
1050 signal (SIGINT, ofunc);
1051 in_monitor_wait = 0;
1052 }
1053
1054
1055
1056 static void
1057 monitor_wait_filter (char *buf,
1058 int bufmax,
1059 int *ext_resp_len,
1060 struct target_waitstatus *status)
1061 {
1062 int resp_len;
1063 do
1064 {
1065 resp_len = monitor_expect_prompt (buf, bufmax);
1066 *ext_resp_len = resp_len;
1067
1068 if (resp_len <= 0)
1069 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1070 }
1071 while (resp_len < 0);
1072
1073 /* Print any output characters that were preceded by ^O. */
1074 /* FIXME - This would be great as a user settabgle flag */
1075 if (monitor_debug_p || remote_debug
1076 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1077 {
1078 int i;
1079
1080 for (i = 0; i < resp_len - 1; i++)
1081 if (buf[i] == 0x0f)
1082 putchar_unfiltered (buf[++i]);
1083 }
1084 }
1085
1086
1087
1088 /* Wait until the remote machine stops, then return, storing status in
1089 status just as `wait' would. */
1090
1091 static ptid_t
1092 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1093 {
1094 int old_timeout = timeout;
1095 char buf[TARGET_BUF_SIZE];
1096 int resp_len;
1097 struct cleanup *old_chain;
1098
1099 status->kind = TARGET_WAITKIND_EXITED;
1100 status->value.integer = 0;
1101
1102 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1103 monitor_debug ("MON wait\n");
1104
1105 #if 0
1106 /* This is somthing other than a maintenance command */
1107 in_monitor_wait = 1;
1108 timeout = watchdog > 0 ? watchdog : -1;
1109 #else
1110 timeout = -1; /* Don't time out -- user program is running. */
1111 #endif
1112
1113 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1114
1115 if (current_monitor->wait_filter)
1116 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1117 else
1118 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1119
1120 #if 0 /* Transferred to monitor wait filter */
1121 do
1122 {
1123 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1124
1125 if (resp_len <= 0)
1126 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1127 }
1128 while (resp_len < 0);
1129
1130 /* Print any output characters that were preceded by ^O. */
1131 /* FIXME - This would be great as a user settabgle flag */
1132 if (monitor_debug_p || remote_debug
1133 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1134 {
1135 int i;
1136
1137 for (i = 0; i < resp_len - 1; i++)
1138 if (buf[i] == 0x0f)
1139 putchar_unfiltered (buf[++i]);
1140 }
1141 #endif
1142
1143 signal (SIGINT, ofunc);
1144
1145 timeout = old_timeout;
1146 #if 0
1147 if (dump_reg_flag && current_monitor->dump_registers)
1148 {
1149 dump_reg_flag = 0;
1150 monitor_printf (current_monitor->dump_registers);
1151 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1152 }
1153
1154 if (current_monitor->register_pattern)
1155 parse_register_dump (buf, resp_len);
1156 #else
1157 monitor_debug ("Wait fetching registers after stop\n");
1158 monitor_dump_regs ();
1159 #endif
1160
1161 status->kind = TARGET_WAITKIND_STOPPED;
1162 status->value.sig = TARGET_SIGNAL_TRAP;
1163
1164 discard_cleanups (old_chain);
1165
1166 in_monitor_wait = 0;
1167
1168 return inferior_ptid;
1169 }
1170
1171 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1172 errno value. */
1173
1174 static void
1175 monitor_fetch_register (int regno)
1176 {
1177 const char *name;
1178 char *zerobuf;
1179 char *regbuf;
1180 int i;
1181
1182 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1183 zerobuf = alloca (MAX_REGISTER_SIZE);
1184 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1185
1186 if (current_monitor->regname != NULL)
1187 name = current_monitor->regname (regno);
1188 else
1189 name = current_monitor->regnames[regno];
1190 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1191
1192 if (!name || (*name == '\0'))
1193 {
1194 monitor_debug ("No register known for %d\n", regno);
1195 supply_register (regno, zerobuf);
1196 return;
1197 }
1198
1199 /* send the register examine command */
1200
1201 monitor_printf (current_monitor->getreg.cmd, name);
1202
1203 /* If RESP_DELIM is specified, we search for that as a leading
1204 delimiter for the register value. Otherwise, we just start
1205 searching from the start of the buf. */
1206
1207 if (current_monitor->getreg.resp_delim)
1208 {
1209 monitor_debug ("EXP getreg.resp_delim\n");
1210 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1211 /* Handle case of first 32 registers listed in pairs. */
1212 if (current_monitor->flags & MO_32_REGS_PAIRED
1213 && (regno & 1) != 0 && regno < 32)
1214 {
1215 monitor_debug ("EXP getreg.resp_delim\n");
1216 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1217 }
1218 }
1219
1220 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1221 if (current_monitor->flags & MO_HEX_PREFIX)
1222 {
1223 int c;
1224 c = readchar (timeout);
1225 while (c == ' ')
1226 c = readchar (timeout);
1227 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1228 ;
1229 else
1230 error ("Bad value returned from monitor while fetching register %x.",
1231 regno);
1232 }
1233
1234 /* Read upto the maximum number of hex digits for this register, skipping
1235 spaces, but stop reading if something else is seen. Some monitors
1236 like to drop leading zeros. */
1237
1238 for (i = 0; i < REGISTER_RAW_SIZE (regno) * 2; i++)
1239 {
1240 int c;
1241 c = readchar (timeout);
1242 while (c == ' ')
1243 c = readchar (timeout);
1244
1245 if (!isxdigit (c))
1246 break;
1247
1248 regbuf[i] = c;
1249 }
1250
1251 regbuf[i] = '\000'; /* terminate the number */
1252 monitor_debug ("REGVAL '%s'\n", regbuf);
1253
1254 /* If TERM is present, we wait for that to show up. Also, (if TERM
1255 is present), we will send TERM_CMD if that is present. In any
1256 case, we collect all of the output into buf, and then wait for
1257 the normal prompt. */
1258
1259 if (current_monitor->getreg.term)
1260 {
1261 monitor_debug ("EXP getreg.term\n");
1262 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1263 }
1264
1265 if (current_monitor->getreg.term_cmd)
1266 {
1267 monitor_debug ("EMIT getreg.term.cmd\n");
1268 monitor_printf (current_monitor->getreg.term_cmd);
1269 }
1270 if (!current_monitor->getreg.term || /* Already expected or */
1271 current_monitor->getreg.term_cmd) /* ack expected */
1272 monitor_expect_prompt (NULL, 0); /* get response */
1273
1274 monitor_supply_register (regno, regbuf);
1275 }
1276
1277 /* Sometimes, it takes several commands to dump the registers */
1278 /* This is a primitive for use by variations of monitor interfaces in
1279 case they need to compose the operation.
1280 */
1281 int
1282 monitor_dump_reg_block (char *block_cmd)
1283 {
1284 char buf[TARGET_BUF_SIZE];
1285 int resp_len;
1286 monitor_printf (block_cmd);
1287 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1288 parse_register_dump (buf, resp_len);
1289 return 1;
1290 }
1291
1292
1293 /* Read the remote registers into the block regs. */
1294 /* Call the specific function if it has been provided */
1295
1296 static void
1297 monitor_dump_regs (void)
1298 {
1299 char buf[TARGET_BUF_SIZE];
1300 int resp_len;
1301 if (current_monitor->dumpregs)
1302 (*(current_monitor->dumpregs)) (); /* call supplied function */
1303 else if (current_monitor->dump_registers) /* default version */
1304 {
1305 monitor_printf (current_monitor->dump_registers);
1306 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1307 parse_register_dump (buf, resp_len);
1308 }
1309 else
1310 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
1311 }
1312
1313 static void
1314 monitor_fetch_registers (int regno)
1315 {
1316 monitor_debug ("MON fetchregs\n");
1317 if (current_monitor->getreg.cmd)
1318 {
1319 if (regno >= 0)
1320 {
1321 monitor_fetch_register (regno);
1322 return;
1323 }
1324
1325 for (regno = 0; regno < NUM_REGS; regno++)
1326 monitor_fetch_register (regno);
1327 }
1328 else
1329 {
1330 monitor_dump_regs ();
1331 }
1332 }
1333
1334 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1335
1336 static void
1337 monitor_store_register (int regno)
1338 {
1339 const char *name;
1340 ULONGEST val;
1341
1342 if (current_monitor->regname != NULL)
1343 name = current_monitor->regname (regno);
1344 else
1345 name = current_monitor->regnames[regno];
1346
1347 if (!name || (*name == '\0'))
1348 {
1349 monitor_debug ("MON Cannot store unknown register\n");
1350 return;
1351 }
1352
1353 val = read_register (regno);
1354 monitor_debug ("MON storeg %d %s\n", regno,
1355 phex (val, REGISTER_RAW_SIZE (regno)));
1356
1357 /* send the register deposit command */
1358
1359 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1360 monitor_printf (current_monitor->setreg.cmd, val, name);
1361 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1362 monitor_printf (current_monitor->setreg.cmd, name);
1363 else
1364 monitor_printf (current_monitor->setreg.cmd, name, val);
1365
1366 if (current_monitor->setreg.resp_delim)
1367 {
1368 monitor_debug ("EXP setreg.resp_delim\n");
1369 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1370 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1371 monitor_printf ("%s\r", paddr_nz (val));
1372 }
1373 if (current_monitor->setreg.term)
1374 {
1375 monitor_debug ("EXP setreg.term\n");
1376 monitor_expect (current_monitor->setreg.term, NULL, 0);
1377 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1378 monitor_printf ("%s\r", paddr_nz (val));
1379 monitor_expect_prompt (NULL, 0);
1380 }
1381 else
1382 monitor_expect_prompt (NULL, 0);
1383 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1384 {
1385 monitor_debug ("EXP setreg_termcmd\n");
1386 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1387 monitor_expect_prompt (NULL, 0);
1388 }
1389 } /* monitor_store_register */
1390
1391 /* Store the remote registers. */
1392
1393 static void
1394 monitor_store_registers (int regno)
1395 {
1396 if (regno >= 0)
1397 {
1398 monitor_store_register (regno);
1399 return;
1400 }
1401
1402 for (regno = 0; regno < NUM_REGS; regno++)
1403 monitor_store_register (regno);
1404 }
1405
1406 /* Get ready to modify the registers array. On machines which store
1407 individual registers, this doesn't need to do anything. On machines
1408 which store all the registers in one fell swoop, this makes sure
1409 that registers contains all the registers from the program being
1410 debugged. */
1411
1412 static void
1413 monitor_prepare_to_store (void)
1414 {
1415 /* Do nothing, since we can store individual regs */
1416 }
1417
1418 static void
1419 monitor_files_info (struct target_ops *ops)
1420 {
1421 printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
1422 }
1423
1424 static int
1425 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1426 {
1427 unsigned int val, hostval;
1428 char *cmd;
1429 int i;
1430
1431 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1432
1433 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1434 memaddr = ADDR_BITS_REMOVE (memaddr);
1435
1436 /* Use memory fill command for leading 0 bytes. */
1437
1438 if (current_monitor->fill)
1439 {
1440 for (i = 0; i < len; i++)
1441 if (myaddr[i] != 0)
1442 break;
1443
1444 if (i > 4) /* More than 4 zeros is worth doing */
1445 {
1446 monitor_debug ("MON FILL %d\n", i);
1447 if (current_monitor->flags & MO_FILL_USES_ADDR)
1448 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1449 else
1450 monitor_printf (current_monitor->fill, memaddr, i, 0);
1451
1452 monitor_expect_prompt (NULL, 0);
1453
1454 return i;
1455 }
1456 }
1457
1458 #if 0
1459 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1460 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1461 {
1462 len = 8;
1463 cmd = current_monitor->setmem.cmdll;
1464 }
1465 else
1466 #endif
1467 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1468 {
1469 len = 4;
1470 cmd = current_monitor->setmem.cmdl;
1471 }
1472 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1473 {
1474 len = 2;
1475 cmd = current_monitor->setmem.cmdw;
1476 }
1477 else
1478 {
1479 len = 1;
1480 cmd = current_monitor->setmem.cmdb;
1481 }
1482
1483 val = extract_unsigned_integer (myaddr, len);
1484
1485 if (len == 4)
1486 {
1487 hostval = *(unsigned int *) myaddr;
1488 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1489 }
1490
1491
1492 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1493 monitor_printf_noecho (cmd, memaddr, val);
1494 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1495 {
1496
1497 monitor_printf_noecho (cmd, memaddr);
1498
1499 if (current_monitor->setmem.resp_delim)
1500 {
1501 monitor_debug ("EXP setmem.resp_delim");
1502 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1503 monitor_printf ("%x\r", val);
1504 }
1505 if (current_monitor->setmem.term)
1506 {
1507 monitor_debug ("EXP setmem.term");
1508 monitor_expect (current_monitor->setmem.term, NULL, 0);
1509 monitor_printf ("%x\r", val);
1510 }
1511 if (current_monitor->setmem.term_cmd)
1512 { /* Emit this to get out of the memory editing state */
1513 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1514 /* Drop through to expecting a prompt */
1515 }
1516 }
1517 else
1518 monitor_printf (cmd, memaddr, val);
1519
1520 monitor_expect_prompt (NULL, 0);
1521
1522 return len;
1523 }
1524
1525
1526 static int
1527 monitor_write_even_block (CORE_ADDR memaddr, char *myaddr, int len)
1528 {
1529 unsigned int val;
1530 int written = 0;;
1531 /* Enter the sub mode */
1532 monitor_printf (current_monitor->setmem.cmdl, memaddr);
1533 monitor_expect_prompt (NULL, 0);
1534
1535 while (len)
1536 {
1537 val = extract_unsigned_integer (myaddr, 4); /* REALLY */
1538 monitor_printf ("%x\r", val);
1539 myaddr += 4;
1540 memaddr += 4;
1541 written += 4;
1542 monitor_debug (" @ %s\n", paddr (memaddr));
1543 /* If we wanted to, here we could validate the address */
1544 monitor_expect_prompt (NULL, 0);
1545 }
1546 /* Now exit the sub mode */
1547 monitor_printf (current_monitor->getreg.term_cmd);
1548 monitor_expect_prompt (NULL, 0);
1549 return written;
1550 }
1551
1552
1553 static int
1554 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1555 {
1556 unsigned char val;
1557 int written = 0;
1558 if (len == 0)
1559 return 0;
1560 /* Enter the sub mode */
1561 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1562 monitor_expect_prompt (NULL, 0);
1563 while (len)
1564 {
1565 val = *myaddr;
1566 monitor_printf ("%x\r", val);
1567 myaddr++;
1568 memaddr++;
1569 written++;
1570 /* If we wanted to, here we could validate the address */
1571 monitor_expect_prompt (NULL, 0);
1572 len--;
1573 }
1574 /* Now exit the sub mode */
1575 monitor_printf (current_monitor->getreg.term_cmd);
1576 monitor_expect_prompt (NULL, 0);
1577 return written;
1578 }
1579
1580
1581 static void
1582 longlongendswap (unsigned char *a)
1583 {
1584 int i, j;
1585 unsigned char x;
1586 i = 0;
1587 j = 7;
1588 while (i < 4)
1589 {
1590 x = *(a + i);
1591 *(a + i) = *(a + j);
1592 *(a + j) = x;
1593 i++, j--;
1594 }
1595 }
1596 /* Format 32 chars of long long value, advance the pointer */
1597 static char *hexlate = "0123456789abcdef";
1598 static char *
1599 longlong_hexchars (unsigned long long value,
1600 char *outbuff)
1601 {
1602 if (value == 0)
1603 {
1604 *outbuff++ = '0';
1605 return outbuff;
1606 }
1607 else
1608 {
1609 static unsigned char disbuf[8]; /* disassembly buffer */
1610 unsigned char *scan, *limit; /* loop controls */
1611 unsigned char c, nib;
1612 int leadzero = 1;
1613 scan = disbuf;
1614 limit = scan + 8;
1615 {
1616 unsigned long long *dp;
1617 dp = (unsigned long long *) scan;
1618 *dp = value;
1619 }
1620 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1621 while (scan < limit)
1622 {
1623 c = *scan++; /* a byte of our long long value */
1624 if (leadzero)
1625 {
1626 if (c == 0)
1627 continue;
1628 else
1629 leadzero = 0; /* henceforth we print even zeroes */
1630 }
1631 nib = c >> 4; /* high nibble bits */
1632 *outbuff++ = hexlate[nib];
1633 nib = c & 0x0f; /* low nibble bits */
1634 *outbuff++ = hexlate[nib];
1635 }
1636 return outbuff;
1637 }
1638 } /* longlong_hexchars */
1639
1640
1641
1642 /* I am only going to call this when writing virtual byte streams.
1643 Which possably entails endian conversions
1644 */
1645 static int
1646 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1647 {
1648 static char hexstage[20]; /* At least 16 digits required, plus null */
1649 char *endstring;
1650 long long *llptr;
1651 long long value;
1652 int written = 0;
1653 llptr = (unsigned long long *) myaddr;
1654 if (len == 0)
1655 return 0;
1656 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1657 monitor_expect_prompt (NULL, 0);
1658 while (len >= 8)
1659 {
1660 value = *llptr;
1661 endstring = longlong_hexchars (*llptr, hexstage);
1662 *endstring = '\0'; /* NUll terminate for printf */
1663 monitor_printf ("%s\r", hexstage);
1664 llptr++;
1665 memaddr += 8;
1666 written += 8;
1667 /* If we wanted to, here we could validate the address */
1668 monitor_expect_prompt (NULL, 0);
1669 len -= 8;
1670 }
1671 /* Now exit the sub mode */
1672 monitor_printf (current_monitor->getreg.term_cmd);
1673 monitor_expect_prompt (NULL, 0);
1674 return written;
1675 } /* */
1676
1677
1678
1679 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1680 /* This is for the large blocks of memory which may occur in downloading.
1681 And for monitors which use interactive entry,
1682 And for monitors which do not have other downloading methods.
1683 Without this, we will end up calling monitor_write_memory many times
1684 and do the entry and exit of the sub mode many times
1685 This currently assumes...
1686 MO_SETMEM_INTERACTIVE
1687 ! MO_NO_ECHO_ON_SETMEM
1688 To use this, the you have to patch the monitor_cmds block with
1689 this function. Otherwise, its not tuned up for use by all
1690 monitor variations.
1691 */
1692
1693 static int
1694 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1695 {
1696 int written;
1697 written = 0;
1698 /* FIXME: This would be a good place to put the zero test */
1699 #if 1
1700 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1701 {
1702 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1703 }
1704 #endif
1705 #if 0
1706 if (len > 4)
1707 {
1708 int sublen;
1709 written = monitor_write_even_block (memaddr, myaddr, len);
1710 /* Adjust calling parameters by written amount */
1711 memaddr += written;
1712 myaddr += written;
1713 len -= written;
1714 }
1715 #endif
1716 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1717 return written;
1718 }
1719
1720 /* This is an alternate form of monitor_read_memory which is used for monitors
1721 which can only read a single byte/word/etc. at a time. */
1722
1723 static int
1724 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1725 {
1726 unsigned int val;
1727 char membuf[sizeof (int) * 2 + 1];
1728 char *p;
1729 char *cmd;
1730
1731 monitor_debug ("MON read single\n");
1732 #if 0
1733 /* Can't actually use long longs (nice idea, though). In fact, the
1734 call to strtoul below will fail if it tries to convert a value
1735 that's too big to fit in a long. */
1736 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1737 {
1738 len = 8;
1739 cmd = current_monitor->getmem.cmdll;
1740 }
1741 else
1742 #endif
1743 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1744 {
1745 len = 4;
1746 cmd = current_monitor->getmem.cmdl;
1747 }
1748 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1749 {
1750 len = 2;
1751 cmd = current_monitor->getmem.cmdw;
1752 }
1753 else
1754 {
1755 len = 1;
1756 cmd = current_monitor->getmem.cmdb;
1757 }
1758
1759 /* Send the examine command. */
1760
1761 monitor_printf (cmd, memaddr);
1762
1763 /* If RESP_DELIM is specified, we search for that as a leading
1764 delimiter for the memory value. Otherwise, we just start
1765 searching from the start of the buf. */
1766
1767 if (current_monitor->getmem.resp_delim)
1768 {
1769 monitor_debug ("EXP getmem.resp_delim\n");
1770 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1771 }
1772
1773 /* Now, read the appropriate number of hex digits for this loc,
1774 skipping spaces. */
1775
1776 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1777 if (current_monitor->flags & MO_HEX_PREFIX)
1778 {
1779 int c;
1780
1781 c = readchar (timeout);
1782 while (c == ' ')
1783 c = readchar (timeout);
1784 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1785 ;
1786 else
1787 monitor_error ("monitor_read_memory_single",
1788 "bad response from monitor",
1789 memaddr, 0, NULL, 0);
1790 }
1791
1792 {
1793 int i;
1794 for (i = 0; i < len * 2; i++)
1795 {
1796 int c;
1797
1798 while (1)
1799 {
1800 c = readchar (timeout);
1801 if (isxdigit (c))
1802 break;
1803 if (c == ' ')
1804 continue;
1805
1806 monitor_error ("monitor_read_memory_single",
1807 "bad response from monitor",
1808 memaddr, i, membuf, 0);
1809 }
1810 membuf[i] = c;
1811 }
1812 membuf[i] = '\000'; /* terminate the number */
1813 }
1814
1815 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1816 present), we will send TERM_CMD if that is present. In any case, we collect
1817 all of the output into buf, and then wait for the normal prompt. */
1818
1819 if (current_monitor->getmem.term)
1820 {
1821 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1822
1823 if (current_monitor->getmem.term_cmd)
1824 {
1825 monitor_printf (current_monitor->getmem.term_cmd);
1826 monitor_expect_prompt (NULL, 0);
1827 }
1828 }
1829 else
1830 monitor_expect_prompt (NULL, 0); /* get response */
1831
1832 p = membuf;
1833 val = strtoul (membuf, &p, 16);
1834
1835 if (val == 0 && membuf == p)
1836 monitor_error ("monitor_read_memory_single",
1837 "bad value from monitor",
1838 memaddr, 0, membuf, 0);
1839
1840 /* supply register stores in target byte order, so swap here */
1841
1842 store_unsigned_integer (myaddr, len, val);
1843
1844 return len;
1845 }
1846
1847 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1848 memory at MEMADDR. Returns length moved. Currently, we do no more
1849 than 16 bytes at a time. */
1850
1851 static int
1852 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1853 {
1854 unsigned int val;
1855 char buf[512];
1856 char *p, *p1;
1857 int resp_len;
1858 int i;
1859 CORE_ADDR dumpaddr;
1860
1861 if (len <= 0)
1862 {
1863 monitor_debug ("Zero length call to monitor_read_memory\n");
1864 return 0;
1865 }
1866
1867 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1868 paddr_nz (memaddr), (long) myaddr, len);
1869
1870 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1871 memaddr = ADDR_BITS_REMOVE (memaddr);
1872
1873 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1874 return monitor_read_memory_single (memaddr, myaddr, len);
1875
1876 len = min (len, 16);
1877
1878 /* Some dumpers align the first data with the preceeding 16
1879 byte boundary. Some print blanks and start at the
1880 requested boundary. EXACT_DUMPADDR
1881 */
1882
1883 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1884 ? memaddr : memaddr & ~0x0f;
1885
1886 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1887 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1888 len = ((memaddr + len) & ~0xf) - memaddr;
1889
1890 /* send the memory examine command */
1891
1892 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1893 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1894 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1895 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1896 else
1897 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1898
1899 /* If TERM is present, we wait for that to show up. Also, (if TERM
1900 is present), we will send TERM_CMD if that is present. In any
1901 case, we collect all of the output into buf, and then wait for
1902 the normal prompt. */
1903
1904 if (current_monitor->getmem.term)
1905 {
1906 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1907
1908 if (resp_len <= 0)
1909 monitor_error ("monitor_read_memory",
1910 "excessive response from monitor",
1911 memaddr, resp_len, buf, 0);
1912
1913 if (current_monitor->getmem.term_cmd)
1914 {
1915 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1916 strlen (current_monitor->getmem.term_cmd));
1917 monitor_expect_prompt (NULL, 0);
1918 }
1919 }
1920 else
1921 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1922
1923 p = buf;
1924
1925 /* If RESP_DELIM is specified, we search for that as a leading
1926 delimiter for the values. Otherwise, we just start searching
1927 from the start of the buf. */
1928
1929 if (current_monitor->getmem.resp_delim)
1930 {
1931 int retval, tmp;
1932 struct re_registers resp_strings;
1933 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1934
1935 memset (&resp_strings, 0, sizeof (struct re_registers));
1936 tmp = strlen (p);
1937 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1938 &resp_strings);
1939
1940 if (retval < 0)
1941 monitor_error ("monitor_read_memory",
1942 "bad response from monitor",
1943 memaddr, resp_len, buf, 0);
1944
1945 p += resp_strings.end[0];
1946 #if 0
1947 p = strstr (p, current_monitor->getmem.resp_delim);
1948 if (!p)
1949 monitor_error ("monitor_read_memory",
1950 "bad response from monitor",
1951 memaddr, resp_len, buf, 0);
1952 p += strlen (current_monitor->getmem.resp_delim);
1953 #endif
1954 }
1955 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1956 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1957 {
1958 char c;
1959 int fetched = 0;
1960 i = len;
1961 c = *p;
1962
1963
1964 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1965 {
1966 if (isxdigit (c))
1967 {
1968 if ((dumpaddr >= memaddr) && (i > 0))
1969 {
1970 val = fromhex (c) * 16 + fromhex (*(p + 1));
1971 *myaddr++ = val;
1972 if (monitor_debug_p || remote_debug)
1973 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1974 --i;
1975 fetched++;
1976 }
1977 ++dumpaddr;
1978 ++p;
1979 }
1980 ++p; /* skip a blank or other non hex char */
1981 c = *p;
1982 }
1983 if (fetched == 0)
1984 error ("Failed to read via monitor");
1985 if (monitor_debug_p || remote_debug)
1986 fprintf_unfiltered (gdb_stdlog, "\n");
1987 return fetched; /* Return the number of bytes actually read */
1988 }
1989 monitor_debug ("MON scanning bytes\n");
1990
1991 for (i = len; i > 0; i--)
1992 {
1993 /* Skip non-hex chars, but bomb on end of string and newlines */
1994
1995 while (1)
1996 {
1997 if (isxdigit (*p))
1998 break;
1999
2000 if (*p == '\000' || *p == '\n' || *p == '\r')
2001 monitor_error ("monitor_read_memory",
2002 "badly terminated response from monitor",
2003 memaddr, resp_len, buf, 0);
2004 p++;
2005 }
2006
2007 val = strtoul (p, &p1, 16);
2008
2009 if (val == 0 && p == p1)
2010 monitor_error ("monitor_read_memory",
2011 "bad value from monitor",
2012 memaddr, resp_len, buf, 0);
2013
2014 *myaddr++ = val;
2015
2016 if (i == 1)
2017 break;
2018
2019 p = p1;
2020 }
2021
2022 return len;
2023 }
2024
2025 /* Transfer LEN bytes between target address MEMADDR and GDB address
2026 MYADDR. Returns 0 for success, errno code for failure. TARGET is
2027 unused. */
2028
2029 static int
2030 monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
2031 struct mem_attrib *attrib, struct target_ops *target)
2032 {
2033 int res;
2034
2035 if (write)
2036 {
2037 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2038 res = monitor_write_memory_block(memaddr, myaddr, len);
2039 else
2040 res = monitor_write_memory(memaddr, myaddr, len);
2041 }
2042 else
2043 {
2044 res = monitor_read_memory(memaddr, myaddr, len);
2045 }
2046
2047 return res;
2048 }
2049
2050 static void
2051 monitor_kill (void)
2052 {
2053 return; /* ignore attempts to kill target system */
2054 }
2055
2056 /* All we actually do is set the PC to the start address of exec_bfd, and start
2057 the program at that point. */
2058
2059 static void
2060 monitor_create_inferior (char *exec_file, char *args, char **env)
2061 {
2062 if (args && (*args != '\000'))
2063 error ("Args are not supported by the monitor.");
2064
2065 first_time = 1;
2066 clear_proceed_status ();
2067 proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
2068 }
2069
2070 /* Clean up when a program exits.
2071 The program actually lives on in the remote processor's RAM, and may be
2072 run again without a download. Don't leave it full of breakpoint
2073 instructions. */
2074
2075 static void
2076 monitor_mourn_inferior (void)
2077 {
2078 unpush_target (targ_ops);
2079 generic_mourn_inferior (); /* Do all the proper things now */
2080 }
2081
2082 /* Tell the monitor to add a breakpoint. */
2083
2084 static int
2085 monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
2086 {
2087 int i;
2088 const unsigned char *bp;
2089 int bplen;
2090
2091 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2092 if (current_monitor->set_break == NULL)
2093 error ("No set_break defined for this monitor");
2094
2095 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2096 addr = ADDR_BITS_REMOVE (addr);
2097
2098 /* Determine appropriate breakpoint size for this address. */
2099 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2100
2101 for (i = 0; i < current_monitor->num_breakpoints; i++)
2102 {
2103 if (breakaddr[i] == 0)
2104 {
2105 breakaddr[i] = addr;
2106 monitor_read_memory (addr, shadow, bplen);
2107 monitor_printf (current_monitor->set_break, addr);
2108 monitor_expect_prompt (NULL, 0);
2109 return 0;
2110 }
2111 }
2112
2113 error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
2114 }
2115
2116 /* Tell the monitor to remove a breakpoint. */
2117
2118 static int
2119 monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
2120 {
2121 int i;
2122
2123 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2124 if (current_monitor->clr_break == NULL)
2125 error ("No clr_break defined for this monitor");
2126
2127 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2128 addr = ADDR_BITS_REMOVE (addr);
2129
2130 for (i = 0; i < current_monitor->num_breakpoints; i++)
2131 {
2132 if (breakaddr[i] == addr)
2133 {
2134 breakaddr[i] = 0;
2135 /* some monitors remove breakpoints based on the address */
2136 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2137 monitor_printf (current_monitor->clr_break, addr);
2138 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2139 monitor_printf (current_monitor->clr_break, i + 1);
2140 else
2141 monitor_printf (current_monitor->clr_break, i);
2142 monitor_expect_prompt (NULL, 0);
2143 return 0;
2144 }
2145 }
2146 fprintf_unfiltered (gdb_stderr,
2147 "Can't find breakpoint associated with 0x%s\n",
2148 paddr_nz (addr));
2149 return 1;
2150 }
2151
2152 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2153 an S-record. Return non-zero if the ACK is received properly. */
2154
2155 static int
2156 monitor_wait_srec_ack (void)
2157 {
2158 int ch;
2159
2160 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2161 {
2162 return (readchar (timeout) == '+');
2163 }
2164 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2165 {
2166 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2167 if ((ch = readchar (1)) < 0)
2168 return 0;
2169 if ((ch = readchar (1)) < 0)
2170 return 0;
2171 if ((ch = readchar (1)) < 0)
2172 return 0;
2173 if ((ch = readchar (1)) < 0)
2174 return 0;
2175 }
2176 return 1;
2177 }
2178
2179 /* monitor_load -- download a file. */
2180
2181 static void
2182 monitor_load (char *file, int from_tty)
2183 {
2184 monitor_debug ("MON load\n");
2185
2186 if (current_monitor->load_routine)
2187 current_monitor->load_routine (monitor_desc, file, hashmark);
2188 else
2189 { /* The default is ascii S-records */
2190 int n;
2191 unsigned long load_offset;
2192 char buf[128];
2193
2194 /* enable user to specify address for downloading as 2nd arg to load */
2195 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2196 if (n > 1)
2197 file = buf;
2198 else
2199 load_offset = 0;
2200
2201 monitor_printf (current_monitor->load);
2202 if (current_monitor->loadresp)
2203 monitor_expect (current_monitor->loadresp, NULL, 0);
2204
2205 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2206 32, SREC_ALL, hashmark,
2207 current_monitor->flags & MO_SREC_ACK ?
2208 monitor_wait_srec_ack : NULL);
2209
2210 monitor_expect_prompt (NULL, 0);
2211 }
2212
2213 /* Finally, make the PC point at the start address */
2214 if (exec_bfd)
2215 write_pc (bfd_get_start_address (exec_bfd));
2216
2217 /* There used to be code here which would clear inferior_ptid and
2218 call clear_symtab_users. None of that should be necessary:
2219 monitor targets should behave like remote protocol targets, and
2220 since generic_load does none of those things, this function
2221 shouldn't either.
2222
2223 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2224 a load, we still have a valid connection to the monitor, with a
2225 live processor state to fiddle with. The user can type
2226 `continue' or `jump *start' and make the program run. If they do
2227 these things, however, GDB will be talking to a running program
2228 while inferior_ptid is null_ptid; this makes things like
2229 reinit_frame_cache very confused. */
2230 }
2231
2232 static void
2233 monitor_stop (void)
2234 {
2235 monitor_debug ("MON stop\n");
2236 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2237 serial_send_break (monitor_desc);
2238 if (current_monitor->stop)
2239 monitor_printf_noecho (current_monitor->stop);
2240 }
2241
2242 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2243 in OUTPUT until the prompt is seen. FIXME: We read the characters
2244 ourseleves here cause of a nasty echo. */
2245
2246 static void
2247 monitor_rcmd (char *command,
2248 struct ui_file *outbuf)
2249 {
2250 char *p;
2251 int resp_len;
2252 char buf[1000];
2253
2254 if (monitor_desc == NULL)
2255 error ("monitor target not open.");
2256
2257 p = current_monitor->prompt;
2258
2259 /* Send the command. Note that if no args were supplied, then we're
2260 just sending the monitor a newline, which is sometimes useful. */
2261
2262 monitor_printf ("%s\r", (command ? command : ""));
2263
2264 resp_len = monitor_expect_prompt (buf, sizeof buf);
2265
2266 fputs_unfiltered (buf, outbuf); /* Output the response */
2267 }
2268
2269 /* Convert hex digit A to a number. */
2270
2271 #if 0
2272 static int
2273 from_hex (int a)
2274 {
2275 if (a >= '0' && a <= '9')
2276 return a - '0';
2277 if (a >= 'a' && a <= 'f')
2278 return a - 'a' + 10;
2279 if (a >= 'A' && a <= 'F')
2280 return a - 'A' + 10;
2281
2282 error ("Reply contains invalid hex digit 0x%x", a);
2283 }
2284 #endif
2285
2286 char *
2287 monitor_get_dev_name (void)
2288 {
2289 return dev_name;
2290 }
2291
2292 static struct target_ops monitor_ops;
2293
2294 static void
2295 init_base_monitor_ops (void)
2296 {
2297 monitor_ops.to_close = monitor_close;
2298 monitor_ops.to_detach = monitor_detach;
2299 monitor_ops.to_resume = monitor_resume;
2300 monitor_ops.to_wait = monitor_wait;
2301 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2302 monitor_ops.to_store_registers = monitor_store_registers;
2303 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2304 monitor_ops.to_xfer_memory = monitor_xfer_memory;
2305 monitor_ops.to_files_info = monitor_files_info;
2306 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2307 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2308 monitor_ops.to_kill = monitor_kill;
2309 monitor_ops.to_load = monitor_load;
2310 monitor_ops.to_create_inferior = monitor_create_inferior;
2311 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2312 monitor_ops.to_stop = monitor_stop;
2313 monitor_ops.to_rcmd = monitor_rcmd;
2314 monitor_ops.to_stratum = process_stratum;
2315 monitor_ops.to_has_all_memory = 1;
2316 monitor_ops.to_has_memory = 1;
2317 monitor_ops.to_has_stack = 1;
2318 monitor_ops.to_has_registers = 1;
2319 monitor_ops.to_has_execution = 1;
2320 monitor_ops.to_magic = OPS_MAGIC;
2321 } /* init_base_monitor_ops */
2322
2323 /* Init the target_ops structure pointed at by OPS */
2324
2325 void
2326 init_monitor_ops (struct target_ops *ops)
2327 {
2328 if (monitor_ops.to_magic != OPS_MAGIC)
2329 init_base_monitor_ops ();
2330
2331 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2332 }
2333
2334 /* Define additional commands that are usually only used by monitors. */
2335
2336 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2337
2338 void
2339 _initialize_remote_monitors (void)
2340 {
2341 init_base_monitor_ops ();
2342 add_show_from_set (add_set_cmd ("hash", no_class, var_boolean,
2343 (char *) &hashmark,
2344 "Set display of activity while downloading a file.\n\
2345 When enabled, a hashmark \'#\' is displayed.",
2346 &setlist),
2347 &showlist);
2348
2349 add_show_from_set
2350 (add_set_cmd ("monitor", no_class, var_zinteger,
2351 (char *) &monitor_debug_p,
2352 "Set debugging of remote monitor communication.\n\
2353 When enabled, communication between GDB and the remote monitor\n\
2354 is displayed.", &setdebuglist),
2355 &showdebuglist);
2356 }
This page took 0.080856 seconds and 4 git commands to generate.