2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
8 Resurrected from the ashes by Stu Grossman.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 /* This file was derived from various remote-* modules. It is a collection
26 of generic support functions so GDB can talk directly to a ROM based
27 monitor. This saves use from having to hack an exception based handler
28 into existence, and makes for quick porting.
29
30 This module talks to a debug monitor called 'MONITOR', which
31 We communicate with MONITOR via either a direct serial line, or a TCP
32 (or possibly TELNET) stream to a terminal multiplexor,
33 which in turn talks to the target board. */
34
35 /* FIXME 32x64: This code assumes that registers and addresses are at
36 most 32 bits long. If they can be larger, you will need to declare
37 values as LONGEST and use %llx or some such to print values when
38 building commands to send to the monitor. Since we don't know of
39 any actual 64-bit targets with ROM monitors that use this code,
40 it's not an issue right now. -sts 4/18/96 */
41
42 #include "defs.h"
43 #include "gdbcore.h"
44 #include "target.h"
45 #include "exceptions.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58 #include "gdbthread.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_interrupt_query (void);
64 static void monitor_interrupt_twice (int);
65 static void monitor_stop (ptid_t);
66 static void monitor_dump_regs (struct regcache *regcache);
67
68 #if 0
69 static int from_hex (int a);
70 #endif
71
72 static struct monitor_ops *current_monitor;
73
74 static int hashmark; /* flag set by "set hash" */
75
76 static int timeout = 30;
77
78 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
79
80 static void (*ofunc) (); /* Old SIGINT signal handler */
81
82 static CORE_ADDR *breakaddr;
83
84 /* Descriptor for I/O to remote machine. Initialize it to NULL so
85 that monitor_open knows that we don't have a file open when the
86 program starts. */
87
88 static struct serial *monitor_desc = NULL;
89
90 /* Pointer to regexp pattern matching data */
91
92 static struct re_pattern_buffer register_pattern;
93 static char register_fastmap[256];
94
95 static struct re_pattern_buffer getmem_resp_delim_pattern;
96 static char getmem_resp_delim_fastmap[256];
97
98 static struct re_pattern_buffer setmem_resp_delim_pattern;
99 static char setmem_resp_delim_fastmap[256];
100
101 static struct re_pattern_buffer setreg_resp_delim_pattern;
102 static char setreg_resp_delim_fastmap[256];
103
104 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
105 monitor_wait wakes up. */
106
107 static int first_time = 0; /* Is this the first time we're
108 executing after gaving created the
109 child proccess? */
110
111
112 /* This is the ptid we use while we're connected to a monitor. Its
113 value is arbitrary, as monitor targets don't have a notion of
114 processes or threads, but we need something non-null to place in
115 inferior_ptid. */
116 static ptid_t monitor_ptid;
117
118 #define TARGET_BUF_SIZE 2048
119
120 /* Monitor specific debugging information. Typically only useful to
121 the developer of a new monitor interface. */
122
123 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
124
125 static int monitor_debug_p = 0;
126
127 /* NOTE: This file alternates between monitor_debug_p and remote_debug
128 when determining if debug information is printed. Perhaps this
129 could be simplified. */
130
131 static void
132 monitor_debug (const char *fmt, ...)
133 {
134 if (monitor_debug_p)
135 {
136 va_list args;
137
138 va_start (args, fmt);
139 vfprintf_filtered (gdb_stdlog, fmt, args);
140 va_end (args);
141 }
142 }
143
144
145 /* Convert a string into a printable representation, Return # byte in
146 the new string. When LEN is >0 it specifies the size of the
147 string. Otherwize strlen(oldstr) is used. */
148
149 static void
150 monitor_printable_string (char *newstr, char *oldstr, int len)
151 {
152 int ch;
153 int i;
154
155 if (len <= 0)
156 len = strlen (oldstr);
157
158 for (i = 0; i < len; i++)
159 {
160 ch = oldstr[i];
161 switch (ch)
162 {
163 default:
164 if (isprint (ch))
165 *newstr++ = ch;
166
167 else
168 {
169 sprintf (newstr, "\\x%02x", ch & 0xff);
170 newstr += 4;
171 }
172 break;
173
174 case '\\':
175 *newstr++ = '\\';
176 *newstr++ = '\\';
177 break;
178 case '\b':
179 *newstr++ = '\\';
180 *newstr++ = 'b';
181 break;
182 case '\f':
183 *newstr++ = '\\';
184 *newstr++ = 't';
185 break;
186 case '\n':
187 *newstr++ = '\\';
188 *newstr++ = 'n';
189 break;
190 case '\r':
191 *newstr++ = '\\';
192 *newstr++ = 'r';
193 break;
194 case '\t':
195 *newstr++ = '\\';
196 *newstr++ = 't';
197 break;
198 case '\v':
199 *newstr++ = '\\';
200 *newstr++ = 'v';
201 break;
202 }
203 }
204
205 *newstr++ = '\0';
206 }
207
208 /* Print monitor errors with a string, converting the string to printable
209 representation. */
210
211 static void
212 monitor_error (char *function, char *message,
213 CORE_ADDR memaddr, int len, char *string, int final_char)
214 {
215 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
216 char *safe_string = alloca ((real_len * 4) + 1);
217
218 monitor_printable_string (safe_string, string, real_len);
219
220 if (final_char)
221 error (_("%s (%s): %s: %s%c"),
222 function, paddress (target_gdbarch, memaddr),
223 message, safe_string, final_char);
224 else
225 error (_("%s (%s): %s: %s"),
226 function, paddress (target_gdbarch, memaddr),
227 message, safe_string);
228 }
229
230 /* Convert hex digit A to a number. */
231
232 static int
233 fromhex (int a)
234 {
235 if (a >= '0' && a <= '9')
236 return a - '0';
237 else if (a >= 'a' && a <= 'f')
238 return a - 'a' + 10;
239 else if (a >= 'A' && a <= 'F')
240 return a - 'A' + 10;
241 else
242 error (_("Invalid hex digit %d"), a);
243 }
244
245 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
246
247 This function exists to get around the problem that many host platforms
248 don't have a printf that can print 64-bit addresses. The %A format
249 specification is recognized as a special case, and causes the argument
250 to be printed as a 64-bit hexadecimal address.
251
252 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
253 If it is a '%s' format, the argument is a string; otherwise the
254 argument is assumed to be a long integer.
255
256 %% is also turned into a single %.
257 */
258
259 static void
260 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
261 {
262 int addr_bit = gdbarch_addr_bit (target_gdbarch);
263 char format[10];
264 char fmt;
265 char *p;
266 int i;
267 long arg_int;
268 CORE_ADDR arg_addr;
269 char *arg_string;
270
271 for (p = pattern; *p; p++)
272 {
273 if (*p == '%')
274 {
275 /* Copy the format specifier to a separate buffer. */
276 format[0] = *p++;
277 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
278 i++, p++)
279 format[i] = *p;
280 format[i] = fmt = *p;
281 format[i + 1] = '\0';
282
283 /* Fetch the next argument and print it. */
284 switch (fmt)
285 {
286 case '%':
287 strcpy (sndbuf, "%");
288 break;
289 case 'A':
290 arg_addr = va_arg (args, CORE_ADDR);
291 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
292 break;
293 case 's':
294 arg_string = va_arg (args, char *);
295 sprintf (sndbuf, format, arg_string);
296 break;
297 default:
298 arg_int = va_arg (args, long);
299 sprintf (sndbuf, format, arg_int);
300 break;
301 }
302 sndbuf += strlen (sndbuf);
303 }
304 else
305 *sndbuf++ = *p;
306 }
307 *sndbuf = '\0';
308 }
309
310
311 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
312 Works just like printf. */
313
314 void
315 monitor_printf_noecho (char *pattern,...)
316 {
317 va_list args;
318 char sndbuf[2000];
319 int len;
320
321 va_start (args, pattern);
322
323 monitor_vsprintf (sndbuf, pattern, args);
324
325 len = strlen (sndbuf);
326 if (len + 1 > sizeof sndbuf)
327 internal_error (__FILE__, __LINE__,
328 _("failed internal consistency check"));
329
330 if (monitor_debug_p)
331 {
332 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
333
334 monitor_printable_string (safe_string, sndbuf, 0);
335 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
336 }
337
338 monitor_write (sndbuf, len);
339 }
340
341 /* monitor_printf -- Send data to monitor and check the echo. Works just like
342 printf. */
343
344 void
345 monitor_printf (char *pattern,...)
346 {
347 va_list args;
348 char sndbuf[2000];
349 int len;
350
351 va_start (args, pattern);
352
353 monitor_vsprintf (sndbuf, pattern, args);
354
355 len = strlen (sndbuf);
356 if (len + 1 > sizeof sndbuf)
357 internal_error (__FILE__, __LINE__,
358 _("failed internal consistency check"));
359
360 if (monitor_debug_p)
361 {
362 char *safe_string = (char *) alloca ((len * 4) + 1);
363
364 monitor_printable_string (safe_string, sndbuf, 0);
365 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
366 }
367
368 monitor_write (sndbuf, len);
369
370 /* We used to expect that the next immediate output was the
371 characters we just output, but sometimes some extra junk appeared
372 before the characters we expected, like an extra prompt, or a
373 portmaster sending telnet negotiations. So, just start searching
374 for what we sent, and skip anything unknown. */
375 monitor_debug ("ExpectEcho\n");
376 monitor_expect (sndbuf, (char *) 0, 0);
377 }
378
379
380 /* Write characters to the remote system. */
381
382 void
383 monitor_write (char *buf, int buflen)
384 {
385 if (serial_write (monitor_desc, buf, buflen))
386 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
387 safe_strerror (errno));
388 }
389
390
391 /* Read a binary character from the remote system, doing all the fancy
392 timeout stuff, but without interpreting the character in any way,
393 and without printing remote debug information. */
394
395 int
396 monitor_readchar (void)
397 {
398 int c;
399 int looping;
400
401 do
402 {
403 looping = 0;
404 c = serial_readchar (monitor_desc, timeout);
405
406 if (c >= 0)
407 c &= 0xff; /* don't lose bit 7 */
408 }
409 while (looping);
410
411 if (c >= 0)
412 return c;
413
414 if (c == SERIAL_TIMEOUT)
415 error (_("Timeout reading from remote system."));
416
417 perror_with_name (_("remote-monitor"));
418 }
419
420
421 /* Read a character from the remote system, doing all the fancy
422 timeout stuff. */
423
424 static int
425 readchar (int timeout)
426 {
427 int c;
428 static enum
429 {
430 last_random, last_nl, last_cr, last_crnl
431 }
432 state = last_random;
433 int looping;
434
435 do
436 {
437 looping = 0;
438 c = serial_readchar (monitor_desc, timeout);
439
440 if (c >= 0)
441 {
442 c &= 0x7f;
443 /* This seems to interfere with proper function of the
444 input stream */
445 if (monitor_debug_p || remote_debug)
446 {
447 char buf[2];
448
449 buf[0] = c;
450 buf[1] = '\0';
451 puts_debug ("read -->", buf, "<--");
452 }
453
454 }
455
456 /* Canonicialize \n\r combinations into one \r */
457 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
458 {
459 if ((c == '\r' && state == last_nl)
460 || (c == '\n' && state == last_cr))
461 {
462 state = last_crnl;
463 looping = 1;
464 }
465 else if (c == '\r')
466 state = last_cr;
467 else if (c != '\n')
468 state = last_random;
469 else
470 {
471 state = last_nl;
472 c = '\r';
473 }
474 }
475 }
476 while (looping);
477
478 if (c >= 0)
479 return c;
480
481 if (c == SERIAL_TIMEOUT)
482 #if 0
483 /* I fail to see how detaching here can be useful */
484 if (in_monitor_wait) /* Watchdog went off */
485 {
486 target_mourn_inferior ();
487 error (_("GDB serial timeout has expired. Target detached."));
488 }
489 else
490 #endif
491 error (_("Timeout reading from remote system."));
492
493 perror_with_name (_("remote-monitor"));
494 }
495
496 /* Scan input from the remote system, until STRING is found. If BUF is non-
497 zero, then collect input until we have collected either STRING or BUFLEN-1
498 chars. In either case we terminate BUF with a 0. If input overflows BUF
499 because STRING can't be found, return -1, else return number of chars in BUF
500 (minus the terminating NUL). Note that in the non-overflow case, STRING
501 will be at the end of BUF. */
502
503 int
504 monitor_expect (char *string, char *buf, int buflen)
505 {
506 char *p = string;
507 int obuflen = buflen;
508 int c;
509
510 if (monitor_debug_p)
511 {
512 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
513 monitor_printable_string (safe_string, string, 0);
514 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
515 }
516
517 immediate_quit++;
518 while (1)
519 {
520 if (buf)
521 {
522 if (buflen < 2)
523 {
524 *buf = '\000';
525 immediate_quit--;
526 return -1;
527 }
528
529 c = readchar (timeout);
530 if (c == '\000')
531 continue;
532 *buf++ = c;
533 buflen--;
534 }
535 else
536 c = readchar (timeout);
537
538 /* Don't expect any ^C sent to be echoed */
539
540 if (*p == '\003' || c == *p)
541 {
542 p++;
543 if (*p == '\0')
544 {
545 immediate_quit--;
546
547 if (buf)
548 {
549 *buf++ = '\000';
550 return obuflen - buflen;
551 }
552 else
553 return 0;
554 }
555 }
556 else
557 {
558 /* We got a character that doesn't match the string. We need to
559 back up p, but how far? If we're looking for "..howdy" and the
560 monitor sends "...howdy"? There's certainly a match in there,
561 but when we receive the third ".", we won't find it if we just
562 restart the matching at the beginning of the string.
563
564 This is a Boyer-Moore kind of situation. We want to reset P to
565 the end of the longest prefix of STRING that is a suffix of
566 what we've read so far. In the example above, that would be
567 ".." --- the longest prefix of "..howdy" that is a suffix of
568 "...". This longest prefix could be the empty string, if C
569 is nowhere to be found in STRING.
570
571 If this longest prefix is not the empty string, it must contain
572 C, so let's search from the end of STRING for instances of C,
573 and see if the portion of STRING before that is a suffix of
574 what we read before C. Actually, we can search backwards from
575 p, since we know no prefix can be longer than that.
576
577 Note that we can use STRING itself, along with C, as a record
578 of what we've received so far. :) */
579 int i;
580
581 for (i = (p - string) - 1; i >= 0; i--)
582 if (string[i] == c)
583 {
584 /* Is this prefix a suffix of what we've read so far?
585 In other words, does
586 string[0 .. i-1] == string[p - i, p - 1]? */
587 if (! memcmp (string, p - i, i))
588 {
589 p = string + i + 1;
590 break;
591 }
592 }
593 if (i < 0)
594 p = string;
595 }
596 }
597 }
598
599 /* Search for a regexp. */
600
601 static int
602 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
603 {
604 char *mybuf;
605 char *p;
606
607 monitor_debug ("MON Expecting regexp\n");
608 if (buf)
609 mybuf = buf;
610 else
611 {
612 mybuf = alloca (TARGET_BUF_SIZE);
613 buflen = TARGET_BUF_SIZE;
614 }
615
616 p = mybuf;
617 while (1)
618 {
619 int retval;
620
621 if (p - mybuf >= buflen)
622 { /* Buffer about to overflow */
623
624 /* On overflow, we copy the upper half of the buffer to the lower half. Not
625 great, but it usually works... */
626
627 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
628 p = mybuf + buflen / 2;
629 }
630
631 *p++ = readchar (timeout);
632
633 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
634 if (retval >= 0)
635 return 1;
636 }
637 }
638
639 /* Keep discarding input until we see the MONITOR prompt.
640
641 The convention for dealing with the prompt is that you
642 o give your command
643 o *then* wait for the prompt.
644
645 Thus the last thing that a procedure does with the serial line will
646 be an monitor_expect_prompt(). Exception: monitor_resume does not
647 wait for the prompt, because the terminal is being handed over to
648 the inferior. However, the next thing which happens after that is
649 a monitor_wait which does wait for the prompt. Note that this
650 includes abnormal exit, e.g. error(). This is necessary to prevent
651 getting into states from which we can't recover. */
652
653 int
654 monitor_expect_prompt (char *buf, int buflen)
655 {
656 monitor_debug ("MON Expecting prompt\n");
657 return monitor_expect (current_monitor->prompt, buf, buflen);
658 }
659
660 /* Get N 32-bit words from remote, each preceded by a space, and put
661 them in registers starting at REGNO. */
662
663 #if 0
664 static unsigned long
665 get_hex_word (void)
666 {
667 unsigned long val;
668 int i;
669 int ch;
670
671 do
672 ch = readchar (timeout);
673 while (isspace (ch));
674
675 val = from_hex (ch);
676
677 for (i = 7; i >= 1; i--)
678 {
679 ch = readchar (timeout);
680 if (!isxdigit (ch))
681 break;
682 val = (val << 4) | from_hex (ch);
683 }
684
685 return val;
686 }
687 #endif
688
689 static void
690 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
691 char *fastmap)
692 {
693 int tmp;
694 const char *val;
695
696 compiled_pattern->fastmap = fastmap;
697
698 tmp = re_set_syntax (RE_SYNTAX_EMACS);
699 val = re_compile_pattern (pattern,
700 strlen (pattern),
701 compiled_pattern);
702 re_set_syntax (tmp);
703
704 if (val)
705 error (_("compile_pattern: Can't compile pattern string `%s': %s!"),
706 pattern, val);
707
708 if (fastmap)
709 re_compile_fastmap (compiled_pattern);
710 }
711
712 /* Open a connection to a remote debugger. NAME is the filename used
713 for communication. */
714
715 void
716 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
717 {
718 char *name;
719 char **p;
720 struct inferior *inf;
721
722 if (mon_ops->magic != MONITOR_OPS_MAGIC)
723 error (_("Magic number of monitor_ops struct wrong."));
724
725 targ_ops = mon_ops->target;
726 name = targ_ops->to_shortname;
727
728 if (!args)
729 error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\
730 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
731
732 target_preopen (from_tty);
733
734 /* Setup pattern for register dump */
735
736 if (mon_ops->register_pattern)
737 compile_pattern (mon_ops->register_pattern, &register_pattern,
738 register_fastmap);
739
740 if (mon_ops->getmem.resp_delim)
741 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
742 getmem_resp_delim_fastmap);
743
744 if (mon_ops->setmem.resp_delim)
745 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
746 setmem_resp_delim_fastmap);
747
748 if (mon_ops->setreg.resp_delim)
749 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
750 setreg_resp_delim_fastmap);
751
752 unpush_target (targ_ops);
753
754 if (dev_name)
755 xfree (dev_name);
756 dev_name = xstrdup (args);
757
758 monitor_desc = serial_open (dev_name);
759
760 if (!monitor_desc)
761 perror_with_name (dev_name);
762
763 if (baud_rate != -1)
764 {
765 if (serial_setbaudrate (monitor_desc, baud_rate))
766 {
767 serial_close (monitor_desc);
768 perror_with_name (dev_name);
769 }
770 }
771
772 serial_raw (monitor_desc);
773
774 serial_flush_input (monitor_desc);
775
776 /* some systems only work with 2 stop bits */
777
778 serial_setstopbits (monitor_desc, mon_ops->stopbits);
779
780 current_monitor = mon_ops;
781
782 /* See if we can wake up the monitor. First, try sending a stop sequence,
783 then send the init strings. Last, remove all breakpoints. */
784
785 if (current_monitor->stop)
786 {
787 monitor_stop (inferior_ptid);
788 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
789 {
790 monitor_debug ("EXP Open echo\n");
791 monitor_expect_prompt (NULL, 0);
792 }
793 }
794
795 /* wake up the monitor and see if it's alive */
796 for (p = mon_ops->init; *p != NULL; p++)
797 {
798 /* Some of the characters we send may not be echoed,
799 but we hope to get a prompt at the end of it all. */
800
801 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
802 monitor_printf (*p);
803 else
804 monitor_printf_noecho (*p);
805 monitor_expect_prompt (NULL, 0);
806 }
807
808 serial_flush_input (monitor_desc);
809
810 /* Alloc breakpoints */
811 if (mon_ops->set_break != NULL)
812 {
813 if (mon_ops->num_breakpoints == 0)
814 mon_ops->num_breakpoints = 8;
815
816 breakaddr = (CORE_ADDR *)
817 xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
818 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
819 }
820
821 /* Remove all breakpoints */
822
823 if (mon_ops->clr_all_break)
824 {
825 monitor_printf (mon_ops->clr_all_break);
826 monitor_expect_prompt (NULL, 0);
827 }
828
829 if (from_tty)
830 printf_unfiltered (_("Remote target %s connected to %s\n"),
831 name, dev_name);
832
833 push_target (targ_ops);
834
835 /* Start afresh. */
836 init_thread_list ();
837
838 /* Make run command think we are busy... */
839 inferior_ptid = monitor_ptid;
840 inf = current_inferior ();
841 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
842 add_thread_silent (inferior_ptid);
843
844 /* Give monitor_wait something to read */
845
846 monitor_printf (current_monitor->line_term);
847
848 start_remote (from_tty);
849 }
850
851 /* Close out all files and local state before this target loses
852 control. */
853
854 void
855 monitor_close (int quitting)
856 {
857 if (monitor_desc)
858 serial_close (monitor_desc);
859
860 /* Free breakpoint memory */
861 if (breakaddr != NULL)
862 {
863 xfree (breakaddr);
864 breakaddr = NULL;
865 }
866
867 monitor_desc = NULL;
868
869 delete_thread_silent (monitor_ptid);
870 delete_inferior_silent (ptid_get_pid (monitor_ptid));
871 }
872
873 /* Terminate the open connection to the remote debugger. Use this
874 when you want to detach and do something else with your gdb. */
875
876 static void
877 monitor_detach (struct target_ops *ops, char *args, int from_tty)
878 {
879 pop_target (); /* calls monitor_close to do the real work */
880 if (from_tty)
881 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
882 }
883
884 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
885
886 char *
887 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
888 {
889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
890 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
891 ULONGEST val;
892 unsigned char regbuf[MAX_REGISTER_SIZE];
893 char *p;
894
895 val = 0;
896 p = valstr;
897 while (p && *p != '\0')
898 {
899 if (*p == '\r' || *p == '\n')
900 {
901 while (*p != '\0')
902 p++;
903 break;
904 }
905 if (isspace (*p))
906 {
907 p++;
908 continue;
909 }
910 if (!isxdigit (*p) && *p != 'x')
911 {
912 break;
913 }
914
915 val <<= 4;
916 val += fromhex (*p++);
917 }
918 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
919
920 if (val == 0 && valstr == p)
921 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
922 regno, valstr);
923
924 /* supply register stores in target byte order, so swap here */
925
926 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
927 val);
928
929 regcache_raw_supply (regcache, regno, regbuf);
930
931 return p;
932 }
933
934 /* Tell the remote machine to resume. */
935
936 static void
937 monitor_resume (struct target_ops *ops,
938 ptid_t ptid, int step, enum target_signal sig)
939 {
940 /* Some monitors require a different command when starting a program */
941 monitor_debug ("MON resume\n");
942 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
943 {
944 first_time = 0;
945 monitor_printf ("run\r");
946 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
947 dump_reg_flag = 1;
948 return;
949 }
950 if (step)
951 monitor_printf (current_monitor->step);
952 else
953 {
954 if (current_monitor->continue_hook)
955 (*current_monitor->continue_hook) ();
956 else
957 monitor_printf (current_monitor->cont);
958 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
959 dump_reg_flag = 1;
960 }
961 }
962
963 /* Parse the output of a register dump command. A monitor specific
964 regexp is used to extract individual register descriptions of the
965 form REG=VAL. Each description is split up into a name and a value
966 string which are passed down to monitor specific code. */
967
968 static void
969 parse_register_dump (struct regcache *regcache, char *buf, int len)
970 {
971 monitor_debug ("MON Parsing register dump\n");
972 while (1)
973 {
974 int regnamelen, vallen;
975 char *regname, *val;
976
977 /* Element 0 points to start of register name, and element 1
978 points to the start of the register value. */
979 struct re_registers register_strings;
980
981 memset (&register_strings, 0, sizeof (struct re_registers));
982
983 if (re_search (&register_pattern, buf, len, 0, len,
984 &register_strings) == -1)
985 break;
986
987 regnamelen = register_strings.end[1] - register_strings.start[1];
988 regname = buf + register_strings.start[1];
989 vallen = register_strings.end[2] - register_strings.start[2];
990 val = buf + register_strings.start[2];
991
992 current_monitor->supply_register (regcache, regname, regnamelen,
993 val, vallen);
994
995 buf += register_strings.end[0];
996 len -= register_strings.end[0];
997 }
998 }
999
1000 /* Send ^C to target to halt it. Target will respond, and send us a
1001 packet. */
1002
1003 static void
1004 monitor_interrupt (int signo)
1005 {
1006 /* If this doesn't work, try more severe steps. */
1007 signal (signo, monitor_interrupt_twice);
1008
1009 if (monitor_debug_p || remote_debug)
1010 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1011
1012 target_stop (inferior_ptid);
1013 }
1014
1015 /* The user typed ^C twice. */
1016
1017 static void
1018 monitor_interrupt_twice (int signo)
1019 {
1020 signal (signo, ofunc);
1021
1022 monitor_interrupt_query ();
1023
1024 signal (signo, monitor_interrupt);
1025 }
1026
1027 /* Ask the user what to do when an interrupt is received. */
1028
1029 static void
1030 monitor_interrupt_query (void)
1031 {
1032 target_terminal_ours ();
1033
1034 if (query (_("Interrupted while waiting for the program.\n\
1035 Give up (and stop debugging it)? ")))
1036 {
1037 target_mourn_inferior ();
1038 deprecated_throw_reason (RETURN_QUIT);
1039 }
1040
1041 target_terminal_inferior ();
1042 }
1043
1044 static void
1045 monitor_wait_cleanup (void *old_timeout)
1046 {
1047 timeout = *(int *) old_timeout;
1048 signal (SIGINT, ofunc);
1049 in_monitor_wait = 0;
1050 }
1051
1052
1053
1054 static void
1055 monitor_wait_filter (char *buf,
1056 int bufmax,
1057 int *ext_resp_len,
1058 struct target_waitstatus *status)
1059 {
1060 int resp_len;
1061
1062 do
1063 {
1064 resp_len = monitor_expect_prompt (buf, bufmax);
1065 *ext_resp_len = resp_len;
1066
1067 if (resp_len <= 0)
1068 fprintf_unfiltered (gdb_stderr,
1069 "monitor_wait: excessive "
1070 "response from monitor: %s.", buf);
1071 }
1072 while (resp_len < 0);
1073
1074 /* Print any output characters that were preceded by ^O. */
1075 /* FIXME - This would be great as a user settabgle flag */
1076 if (monitor_debug_p || remote_debug
1077 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1078 {
1079 int i;
1080
1081 for (i = 0; i < resp_len - 1; i++)
1082 if (buf[i] == 0x0f)
1083 putchar_unfiltered (buf[++i]);
1084 }
1085 }
1086
1087
1088
1089 /* Wait until the remote machine stops, then return, storing status in
1090 status just as `wait' would. */
1091
1092 static ptid_t
1093 monitor_wait (struct target_ops *ops,
1094 ptid_t ptid, struct target_waitstatus *status, int options)
1095 {
1096 int old_timeout = timeout;
1097 char buf[TARGET_BUF_SIZE];
1098 int resp_len;
1099 struct cleanup *old_chain;
1100
1101 status->kind = TARGET_WAITKIND_EXITED;
1102 status->value.integer = 0;
1103
1104 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1105 monitor_debug ("MON wait\n");
1106
1107 #if 0
1108 /* This is somthing other than a maintenance command */
1109 in_monitor_wait = 1;
1110 timeout = watchdog > 0 ? watchdog : -1;
1111 #else
1112 timeout = -1; /* Don't time out -- user program is running. */
1113 #endif
1114
1115 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1116
1117 if (current_monitor->wait_filter)
1118 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1119 else
1120 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1121
1122 #if 0 /* Transferred to monitor wait filter */
1123 do
1124 {
1125 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1126
1127 if (resp_len <= 0)
1128 fprintf_unfiltered (gdb_stderr,
1129 "monitor_wait: excessive "
1130 "response from monitor: %s.", buf);
1131 }
1132 while (resp_len < 0);
1133
1134 /* Print any output characters that were preceded by ^O. */
1135 /* FIXME - This would be great as a user settabgle flag */
1136 if (monitor_debug_p || remote_debug
1137 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1138 {
1139 int i;
1140
1141 for (i = 0; i < resp_len - 1; i++)
1142 if (buf[i] == 0x0f)
1143 putchar_unfiltered (buf[++i]);
1144 }
1145 #endif
1146
1147 signal (SIGINT, ofunc);
1148
1149 timeout = old_timeout;
1150 #if 0
1151 if (dump_reg_flag && current_monitor->dump_registers)
1152 {
1153 dump_reg_flag = 0;
1154 monitor_printf (current_monitor->dump_registers);
1155 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1156 }
1157
1158 if (current_monitor->register_pattern)
1159 parse_register_dump (get_current_regcache (), buf, resp_len);
1160 #else
1161 monitor_debug ("Wait fetching registers after stop\n");
1162 monitor_dump_regs (get_current_regcache ());
1163 #endif
1164
1165 status->kind = TARGET_WAITKIND_STOPPED;
1166 status->value.sig = TARGET_SIGNAL_TRAP;
1167
1168 discard_cleanups (old_chain);
1169
1170 in_monitor_wait = 0;
1171
1172 return inferior_ptid;
1173 }
1174
1175 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1176 errno value. */
1177
1178 static void
1179 monitor_fetch_register (struct regcache *regcache, int regno)
1180 {
1181 const char *name;
1182 char *zerobuf;
1183 char *regbuf;
1184 int i;
1185
1186 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1187 zerobuf = alloca (MAX_REGISTER_SIZE);
1188 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1189
1190 if (current_monitor->regname != NULL)
1191 name = current_monitor->regname (regno);
1192 else
1193 name = current_monitor->regnames[regno];
1194 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1195
1196 if (!name || (*name == '\0'))
1197 {
1198 monitor_debug ("No register known for %d\n", regno);
1199 regcache_raw_supply (regcache, regno, zerobuf);
1200 return;
1201 }
1202
1203 /* send the register examine command */
1204
1205 monitor_printf (current_monitor->getreg.cmd, name);
1206
1207 /* If RESP_DELIM is specified, we search for that as a leading
1208 delimiter for the register value. Otherwise, we just start
1209 searching from the start of the buf. */
1210
1211 if (current_monitor->getreg.resp_delim)
1212 {
1213 monitor_debug ("EXP getreg.resp_delim\n");
1214 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1215 /* Handle case of first 32 registers listed in pairs. */
1216 if (current_monitor->flags & MO_32_REGS_PAIRED
1217 && (regno & 1) != 0 && regno < 32)
1218 {
1219 monitor_debug ("EXP getreg.resp_delim\n");
1220 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1221 }
1222 }
1223
1224 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1225 if (current_monitor->flags & MO_HEX_PREFIX)
1226 {
1227 int c;
1228
1229 c = readchar (timeout);
1230 while (c == ' ')
1231 c = readchar (timeout);
1232 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1233 ;
1234 else
1235 error (_("Bad value returned from monitor "
1236 "while fetching register %x."),
1237 regno);
1238 }
1239
1240 /* Read upto the maximum number of hex digits for this register, skipping
1241 spaces, but stop reading if something else is seen. Some monitors
1242 like to drop leading zeros. */
1243
1244 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1245 {
1246 int c;
1247
1248 c = readchar (timeout);
1249 while (c == ' ')
1250 c = readchar (timeout);
1251
1252 if (!isxdigit (c))
1253 break;
1254
1255 regbuf[i] = c;
1256 }
1257
1258 regbuf[i] = '\000'; /* terminate the number */
1259 monitor_debug ("REGVAL '%s'\n", regbuf);
1260
1261 /* If TERM is present, we wait for that to show up. Also, (if TERM
1262 is present), we will send TERM_CMD if that is present. In any
1263 case, we collect all of the output into buf, and then wait for
1264 the normal prompt. */
1265
1266 if (current_monitor->getreg.term)
1267 {
1268 monitor_debug ("EXP getreg.term\n");
1269 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get
1270 response */
1271 }
1272
1273 if (current_monitor->getreg.term_cmd)
1274 {
1275 monitor_debug ("EMIT getreg.term.cmd\n");
1276 monitor_printf (current_monitor->getreg.term_cmd);
1277 }
1278 if (!current_monitor->getreg.term || /* Already expected or */
1279 current_monitor->getreg.term_cmd) /* ack expected */
1280 monitor_expect_prompt (NULL, 0); /* get response */
1281
1282 monitor_supply_register (regcache, regno, regbuf);
1283 }
1284
1285 /* Sometimes, it takes several commands to dump the registers */
1286 /* This is a primitive for use by variations of monitor interfaces in
1287 case they need to compose the operation.
1288 */
1289 int
1290 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1291 {
1292 char buf[TARGET_BUF_SIZE];
1293 int resp_len;
1294
1295 monitor_printf (block_cmd);
1296 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1297 parse_register_dump (regcache, buf, resp_len);
1298 return 1;
1299 }
1300
1301
1302 /* Read the remote registers into the block regs. */
1303 /* Call the specific function if it has been provided */
1304
1305 static void
1306 monitor_dump_regs (struct regcache *regcache)
1307 {
1308 char buf[TARGET_BUF_SIZE];
1309 int resp_len;
1310
1311 if (current_monitor->dumpregs)
1312 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1313 else if (current_monitor->dump_registers) /* default version */
1314 {
1315 monitor_printf (current_monitor->dump_registers);
1316 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1317 parse_register_dump (regcache, buf, resp_len);
1318 }
1319 else
1320 /* Need some way to read registers */
1321 internal_error (__FILE__, __LINE__,
1322 _("failed internal consistency check"));
1323 }
1324
1325 static void
1326 monitor_fetch_registers (struct target_ops *ops,
1327 struct regcache *regcache, int regno)
1328 {
1329 monitor_debug ("MON fetchregs\n");
1330 if (current_monitor->getreg.cmd)
1331 {
1332 if (regno >= 0)
1333 {
1334 monitor_fetch_register (regcache, regno);
1335 return;
1336 }
1337
1338 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1339 regno++)
1340 monitor_fetch_register (regcache, regno);
1341 }
1342 else
1343 {
1344 monitor_dump_regs (regcache);
1345 }
1346 }
1347
1348 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1349
1350 static void
1351 monitor_store_register (struct regcache *regcache, int regno)
1352 {
1353 int reg_size = register_size (get_regcache_arch (regcache), regno);
1354 const char *name;
1355 ULONGEST val;
1356
1357 if (current_monitor->regname != NULL)
1358 name = current_monitor->regname (regno);
1359 else
1360 name = current_monitor->regnames[regno];
1361
1362 if (!name || (*name == '\0'))
1363 {
1364 monitor_debug ("MON Cannot store unknown register\n");
1365 return;
1366 }
1367
1368 regcache_cooked_read_unsigned (regcache, regno, &val);
1369 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1370
1371 /* send the register deposit command */
1372
1373 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1374 monitor_printf (current_monitor->setreg.cmd, val, name);
1375 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1376 monitor_printf (current_monitor->setreg.cmd, name);
1377 else
1378 monitor_printf (current_monitor->setreg.cmd, name, val);
1379
1380 if (current_monitor->setreg.resp_delim)
1381 {
1382 monitor_debug ("EXP setreg.resp_delim\n");
1383 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1384 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1385 monitor_printf ("%s\r", phex_nz (val, reg_size));
1386 }
1387 if (current_monitor->setreg.term)
1388 {
1389 monitor_debug ("EXP setreg.term\n");
1390 monitor_expect (current_monitor->setreg.term, NULL, 0);
1391 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1392 monitor_printf ("%s\r", phex_nz (val, reg_size));
1393 monitor_expect_prompt (NULL, 0);
1394 }
1395 else
1396 monitor_expect_prompt (NULL, 0);
1397 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1398 {
1399 monitor_debug ("EXP setreg_termcmd\n");
1400 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1401 monitor_expect_prompt (NULL, 0);
1402 }
1403 } /* monitor_store_register */
1404
1405 /* Store the remote registers. */
1406
1407 static void
1408 monitor_store_registers (struct target_ops *ops,
1409 struct regcache *regcache, int regno)
1410 {
1411 if (regno >= 0)
1412 {
1413 monitor_store_register (regcache, regno);
1414 return;
1415 }
1416
1417 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1418 regno++)
1419 monitor_store_register (regcache, regno);
1420 }
1421
1422 /* Get ready to modify the registers array. On machines which store
1423 individual registers, this doesn't need to do anything. On machines
1424 which store all the registers in one fell swoop, this makes sure
1425 that registers contains all the registers from the program being
1426 debugged. */
1427
1428 static void
1429 monitor_prepare_to_store (struct regcache *regcache)
1430 {
1431 /* Do nothing, since we can store individual regs */
1432 }
1433
1434 static void
1435 monitor_files_info (struct target_ops *ops)
1436 {
1437 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1438 }
1439
1440 static int
1441 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1442 {
1443 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1444 unsigned int val, hostval;
1445 char *cmd;
1446 int i;
1447
1448 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1449
1450 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1451 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1452
1453 /* Use memory fill command for leading 0 bytes. */
1454
1455 if (current_monitor->fill)
1456 {
1457 for (i = 0; i < len; i++)
1458 if (myaddr[i] != 0)
1459 break;
1460
1461 if (i > 4) /* More than 4 zeros is worth doing */
1462 {
1463 monitor_debug ("MON FILL %d\n", i);
1464 if (current_monitor->flags & MO_FILL_USES_ADDR)
1465 monitor_printf (current_monitor->fill, memaddr,
1466 (memaddr + i) - 1, 0);
1467 else
1468 monitor_printf (current_monitor->fill, memaddr, i, 0);
1469
1470 monitor_expect_prompt (NULL, 0);
1471
1472 return i;
1473 }
1474 }
1475
1476 #if 0
1477 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1478 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1479 {
1480 len = 8;
1481 cmd = current_monitor->setmem.cmdll;
1482 }
1483 else
1484 #endif
1485 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1486 {
1487 len = 4;
1488 cmd = current_monitor->setmem.cmdl;
1489 }
1490 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1491 {
1492 len = 2;
1493 cmd = current_monitor->setmem.cmdw;
1494 }
1495 else
1496 {
1497 len = 1;
1498 cmd = current_monitor->setmem.cmdb;
1499 }
1500
1501 val = extract_unsigned_integer (myaddr, len, byte_order);
1502
1503 if (len == 4)
1504 {
1505 hostval = *(unsigned int *) myaddr;
1506 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1507 }
1508
1509
1510 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1511 monitor_printf_noecho (cmd, memaddr, val);
1512 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1513 {
1514 monitor_printf_noecho (cmd, memaddr);
1515
1516 if (current_monitor->setmem.resp_delim)
1517 {
1518 monitor_debug ("EXP setmem.resp_delim");
1519 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1520 monitor_printf ("%x\r", val);
1521 }
1522 if (current_monitor->setmem.term)
1523 {
1524 monitor_debug ("EXP setmem.term");
1525 monitor_expect (current_monitor->setmem.term, NULL, 0);
1526 monitor_printf ("%x\r", val);
1527 }
1528 if (current_monitor->setmem.term_cmd)
1529 { /* Emit this to get out of the memory editing state */
1530 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1531 /* Drop through to expecting a prompt */
1532 }
1533 }
1534 else
1535 monitor_printf (cmd, memaddr, val);
1536
1537 monitor_expect_prompt (NULL, 0);
1538
1539 return len;
1540 }
1541
1542
1543 static int
1544 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1545 {
1546 unsigned char val;
1547 int written = 0;
1548
1549 if (len == 0)
1550 return 0;
1551 /* Enter the sub mode */
1552 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1553 monitor_expect_prompt (NULL, 0);
1554 while (len)
1555 {
1556 val = *myaddr;
1557 monitor_printf ("%x\r", val);
1558 myaddr++;
1559 memaddr++;
1560 written++;
1561 /* If we wanted to, here we could validate the address */
1562 monitor_expect_prompt (NULL, 0);
1563 len--;
1564 }
1565 /* Now exit the sub mode */
1566 monitor_printf (current_monitor->getreg.term_cmd);
1567 monitor_expect_prompt (NULL, 0);
1568 return written;
1569 }
1570
1571
1572 static void
1573 longlongendswap (unsigned char *a)
1574 {
1575 int i, j;
1576 unsigned char x;
1577
1578 i = 0;
1579 j = 7;
1580 while (i < 4)
1581 {
1582 x = *(a + i);
1583 *(a + i) = *(a + j);
1584 *(a + j) = x;
1585 i++, j--;
1586 }
1587 }
1588 /* Format 32 chars of long long value, advance the pointer */
1589 static char *hexlate = "0123456789abcdef";
1590 static char *
1591 longlong_hexchars (unsigned long long value,
1592 char *outbuff)
1593 {
1594 if (value == 0)
1595 {
1596 *outbuff++ = '0';
1597 return outbuff;
1598 }
1599 else
1600 {
1601 static unsigned char disbuf[8]; /* disassembly buffer */
1602 unsigned char *scan, *limit; /* loop controls */
1603 unsigned char c, nib;
1604 int leadzero = 1;
1605
1606 scan = disbuf;
1607 limit = scan + 8;
1608 {
1609 unsigned long long *dp;
1610
1611 dp = (unsigned long long *) scan;
1612 *dp = value;
1613 }
1614 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1615 while (scan < limit)
1616 {
1617 c = *scan++; /* a byte of our long long value */
1618 if (leadzero)
1619 {
1620 if (c == 0)
1621 continue;
1622 else
1623 leadzero = 0; /* henceforth we print even zeroes */
1624 }
1625 nib = c >> 4; /* high nibble bits */
1626 *outbuff++ = hexlate[nib];
1627 nib = c & 0x0f; /* low nibble bits */
1628 *outbuff++ = hexlate[nib];
1629 }
1630 return outbuff;
1631 }
1632 } /* longlong_hexchars */
1633
1634
1635
1636 /* I am only going to call this when writing virtual byte streams.
1637 Which possably entails endian conversions
1638 */
1639 static int
1640 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1641 {
1642 static char hexstage[20]; /* At least 16 digits required, plus null */
1643 char *endstring;
1644 long long *llptr;
1645 long long value;
1646 int written = 0;
1647
1648 llptr = (unsigned long long *) myaddr;
1649 if (len == 0)
1650 return 0;
1651 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1652 monitor_expect_prompt (NULL, 0);
1653 while (len >= 8)
1654 {
1655 value = *llptr;
1656 endstring = longlong_hexchars (*llptr, hexstage);
1657 *endstring = '\0'; /* NUll terminate for printf */
1658 monitor_printf ("%s\r", hexstage);
1659 llptr++;
1660 memaddr += 8;
1661 written += 8;
1662 /* If we wanted to, here we could validate the address */
1663 monitor_expect_prompt (NULL, 0);
1664 len -= 8;
1665 }
1666 /* Now exit the sub mode */
1667 monitor_printf (current_monitor->getreg.term_cmd);
1668 monitor_expect_prompt (NULL, 0);
1669 return written;
1670 } /* */
1671
1672
1673
1674 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1675 /* This is for the large blocks of memory which may occur in downloading.
1676 And for monitors which use interactive entry,
1677 And for monitors which do not have other downloading methods.
1678 Without this, we will end up calling monitor_write_memory many times
1679 and do the entry and exit of the sub mode many times
1680 This currently assumes...
1681 MO_SETMEM_INTERACTIVE
1682 ! MO_NO_ECHO_ON_SETMEM
1683 To use this, the you have to patch the monitor_cmds block with
1684 this function. Otherwise, its not tuned up for use by all
1685 monitor variations.
1686 */
1687
1688 static int
1689 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1690 {
1691 int written;
1692
1693 written = 0;
1694 /* FIXME: This would be a good place to put the zero test */
1695 #if 1
1696 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1697 {
1698 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1699 }
1700 #endif
1701 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1702 return written;
1703 }
1704
1705 /* This is an alternate form of monitor_read_memory which is used for monitors
1706 which can only read a single byte/word/etc. at a time. */
1707
1708 static int
1709 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1710 {
1711 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1712 unsigned int val;
1713 char membuf[sizeof (int) * 2 + 1];
1714 char *p;
1715 char *cmd;
1716
1717 monitor_debug ("MON read single\n");
1718 #if 0
1719 /* Can't actually use long longs (nice idea, though). In fact, the
1720 call to strtoul below will fail if it tries to convert a value
1721 that's too big to fit in a long. */
1722 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1723 {
1724 len = 8;
1725 cmd = current_monitor->getmem.cmdll;
1726 }
1727 else
1728 #endif
1729 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1730 {
1731 len = 4;
1732 cmd = current_monitor->getmem.cmdl;
1733 }
1734 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1735 {
1736 len = 2;
1737 cmd = current_monitor->getmem.cmdw;
1738 }
1739 else
1740 {
1741 len = 1;
1742 cmd = current_monitor->getmem.cmdb;
1743 }
1744
1745 /* Send the examine command. */
1746
1747 monitor_printf (cmd, memaddr);
1748
1749 /* If RESP_DELIM is specified, we search for that as a leading
1750 delimiter for the memory value. Otherwise, we just start
1751 searching from the start of the buf. */
1752
1753 if (current_monitor->getmem.resp_delim)
1754 {
1755 monitor_debug ("EXP getmem.resp_delim\n");
1756 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1757 }
1758
1759 /* Now, read the appropriate number of hex digits for this loc,
1760 skipping spaces. */
1761
1762 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1763 if (current_monitor->flags & MO_HEX_PREFIX)
1764 {
1765 int c;
1766
1767 c = readchar (timeout);
1768 while (c == ' ')
1769 c = readchar (timeout);
1770 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1771 ;
1772 else
1773 monitor_error ("monitor_read_memory_single",
1774 "bad response from monitor",
1775 memaddr, 0, NULL, 0);
1776 }
1777
1778 {
1779 int i;
1780
1781 for (i = 0; i < len * 2; i++)
1782 {
1783 int c;
1784
1785 while (1)
1786 {
1787 c = readchar (timeout);
1788 if (isxdigit (c))
1789 break;
1790 if (c == ' ')
1791 continue;
1792
1793 monitor_error ("monitor_read_memory_single",
1794 "bad response from monitor",
1795 memaddr, i, membuf, 0);
1796 }
1797 membuf[i] = c;
1798 }
1799 membuf[i] = '\000'; /* terminate the number */
1800 }
1801
1802 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1803 present), we will send TERM_CMD if that is present. In any case, we collect
1804 all of the output into buf, and then wait for the normal prompt. */
1805
1806 if (current_monitor->getmem.term)
1807 {
1808 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get
1809 response */
1810
1811 if (current_monitor->getmem.term_cmd)
1812 {
1813 monitor_printf (current_monitor->getmem.term_cmd);
1814 monitor_expect_prompt (NULL, 0);
1815 }
1816 }
1817 else
1818 monitor_expect_prompt (NULL, 0); /* get response */
1819
1820 p = membuf;
1821 val = strtoul (membuf, &p, 16);
1822
1823 if (val == 0 && membuf == p)
1824 monitor_error ("monitor_read_memory_single",
1825 "bad value from monitor",
1826 memaddr, 0, membuf, 0);
1827
1828 /* supply register stores in target byte order, so swap here */
1829
1830 store_unsigned_integer (myaddr, len, byte_order, val);
1831
1832 return len;
1833 }
1834
1835 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1836 memory at MEMADDR. Returns length moved. Currently, we do no more
1837 than 16 bytes at a time. */
1838
1839 static int
1840 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1841 {
1842 unsigned int val;
1843 char buf[512];
1844 char *p, *p1;
1845 int resp_len;
1846 int i;
1847 CORE_ADDR dumpaddr;
1848
1849 if (len <= 0)
1850 {
1851 monitor_debug ("Zero length call to monitor_read_memory\n");
1852 return 0;
1853 }
1854
1855 monitor_debug ("MON read block ta(%s) ha(%s) %d\n",
1856 paddress (target_gdbarch, memaddr),
1857 host_address_to_string (myaddr), len);
1858
1859 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1860 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1861
1862 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1863 return monitor_read_memory_single (memaddr, myaddr, len);
1864
1865 len = min (len, 16);
1866
1867 /* Some dumpers align the first data with the preceeding 16
1868 byte boundary. Some print blanks and start at the
1869 requested boundary. EXACT_DUMPADDR
1870 */
1871
1872 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1873 ? memaddr : memaddr & ~0x0f;
1874
1875 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1876 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1877 len = ((memaddr + len) & ~0xf) - memaddr;
1878
1879 /* send the memory examine command */
1880
1881 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1882 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1883 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1884 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1885 else
1886 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1887
1888 /* If TERM is present, we wait for that to show up. Also, (if TERM
1889 is present), we will send TERM_CMD if that is present. In any
1890 case, we collect all of the output into buf, and then wait for
1891 the normal prompt. */
1892
1893 if (current_monitor->getmem.term)
1894 {
1895 resp_len = monitor_expect (current_monitor->getmem.term,
1896 buf, sizeof buf); /* get response */
1897
1898 if (resp_len <= 0)
1899 monitor_error ("monitor_read_memory",
1900 "excessive response from monitor",
1901 memaddr, resp_len, buf, 0);
1902
1903 if (current_monitor->getmem.term_cmd)
1904 {
1905 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1906 strlen (current_monitor->getmem.term_cmd));
1907 monitor_expect_prompt (NULL, 0);
1908 }
1909 }
1910 else
1911 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1912
1913 p = buf;
1914
1915 /* If RESP_DELIM is specified, we search for that as a leading
1916 delimiter for the values. Otherwise, we just start searching
1917 from the start of the buf. */
1918
1919 if (current_monitor->getmem.resp_delim)
1920 {
1921 int retval, tmp;
1922 struct re_registers resp_strings;
1923
1924 monitor_debug ("MON getmem.resp_delim %s\n",
1925 current_monitor->getmem.resp_delim);
1926
1927 memset (&resp_strings, 0, sizeof (struct re_registers));
1928 tmp = strlen (p);
1929 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1930 &resp_strings);
1931
1932 if (retval < 0)
1933 monitor_error ("monitor_read_memory",
1934 "bad response from monitor",
1935 memaddr, resp_len, buf, 0);
1936
1937 p += resp_strings.end[0];
1938 #if 0
1939 p = strstr (p, current_monitor->getmem.resp_delim);
1940 if (!p)
1941 monitor_error ("monitor_read_memory",
1942 "bad response from monitor",
1943 memaddr, resp_len, buf, 0);
1944 p += strlen (current_monitor->getmem.resp_delim);
1945 #endif
1946 }
1947 monitor_debug ("MON scanning %d ,%s '%s'\n", len,
1948 host_address_to_string (p), p);
1949 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1950 {
1951 char c;
1952 int fetched = 0;
1953 i = len;
1954 c = *p;
1955
1956
1957 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1958 {
1959 if (isxdigit (c))
1960 {
1961 if ((dumpaddr >= memaddr) && (i > 0))
1962 {
1963 val = fromhex (c) * 16 + fromhex (*(p + 1));
1964 *myaddr++ = val;
1965 if (monitor_debug_p || remote_debug)
1966 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1967 --i;
1968 fetched++;
1969 }
1970 ++dumpaddr;
1971 ++p;
1972 }
1973 ++p; /* skip a blank or other non hex char */
1974 c = *p;
1975 }
1976 if (fetched == 0)
1977 error (_("Failed to read via monitor"));
1978 if (monitor_debug_p || remote_debug)
1979 fprintf_unfiltered (gdb_stdlog, "\n");
1980 return fetched; /* Return the number of bytes actually read */
1981 }
1982 monitor_debug ("MON scanning bytes\n");
1983
1984 for (i = len; i > 0; i--)
1985 {
1986 /* Skip non-hex chars, but bomb on end of string and newlines */
1987
1988 while (1)
1989 {
1990 if (isxdigit (*p))
1991 break;
1992
1993 if (*p == '\000' || *p == '\n' || *p == '\r')
1994 monitor_error ("monitor_read_memory",
1995 "badly terminated response from monitor",
1996 memaddr, resp_len, buf, 0);
1997 p++;
1998 }
1999
2000 val = strtoul (p, &p1, 16);
2001
2002 if (val == 0 && p == p1)
2003 monitor_error ("monitor_read_memory",
2004 "bad value from monitor",
2005 memaddr, resp_len, buf, 0);
2006
2007 *myaddr++ = val;
2008
2009 if (i == 1)
2010 break;
2011
2012 p = p1;
2013 }
2014
2015 return len;
2016 }
2017
2018 /* Transfer LEN bytes between target address MEMADDR and GDB address
2019 MYADDR. Returns 0 for success, errno code for failure. TARGET is
2020 unused. */
2021
2022 static int
2023 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
2024 struct mem_attrib *attrib, struct target_ops *target)
2025 {
2026 int res;
2027
2028 if (write)
2029 {
2030 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2031 res = monitor_write_memory_block(memaddr, myaddr, len);
2032 else
2033 res = monitor_write_memory(memaddr, myaddr, len);
2034 }
2035 else
2036 {
2037 res = monitor_read_memory(memaddr, myaddr, len);
2038 }
2039
2040 return res;
2041 }
2042
2043 static void
2044 monitor_kill (struct target_ops *ops)
2045 {
2046 return; /* ignore attempts to kill target system */
2047 }
2048
2049 /* All we actually do is set the PC to the start address of exec_bfd. */
2050
2051 static void
2052 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2053 char *args, char **env, int from_tty)
2054 {
2055 if (args && (*args != '\000'))
2056 error (_("Args are not supported by the monitor."));
2057
2058 first_time = 1;
2059 clear_proceed_status ();
2060 regcache_write_pc (get_current_regcache (),
2061 bfd_get_start_address (exec_bfd));
2062 }
2063
2064 /* Clean up when a program exits.
2065 The program actually lives on in the remote processor's RAM, and may be
2066 run again without a download. Don't leave it full of breakpoint
2067 instructions. */
2068
2069 static void
2070 monitor_mourn_inferior (struct target_ops *ops)
2071 {
2072 unpush_target (targ_ops);
2073 generic_mourn_inferior (); /* Do all the proper things now */
2074 delete_thread_silent (monitor_ptid);
2075 }
2076
2077 /* Tell the monitor to add a breakpoint. */
2078
2079 static int
2080 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2081 struct bp_target_info *bp_tgt)
2082 {
2083 CORE_ADDR addr = bp_tgt->placed_address;
2084 int i;
2085 int bplen;
2086
2087 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2088 if (current_monitor->set_break == NULL)
2089 error (_("No set_break defined for this monitor"));
2090
2091 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2092 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2093
2094 /* Determine appropriate breakpoint size for this address. */
2095 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2096 bp_tgt->placed_address = addr;
2097 bp_tgt->placed_size = bplen;
2098
2099 for (i = 0; i < current_monitor->num_breakpoints; i++)
2100 {
2101 if (breakaddr[i] == 0)
2102 {
2103 breakaddr[i] = addr;
2104 monitor_printf (current_monitor->set_break, addr);
2105 monitor_expect_prompt (NULL, 0);
2106 return 0;
2107 }
2108 }
2109
2110 error (_("Too many breakpoints (> %d) for monitor."),
2111 current_monitor->num_breakpoints);
2112 }
2113
2114 /* Tell the monitor to remove a breakpoint. */
2115
2116 static int
2117 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2118 struct bp_target_info *bp_tgt)
2119 {
2120 CORE_ADDR addr = bp_tgt->placed_address;
2121 int i;
2122
2123 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2124 if (current_monitor->clr_break == NULL)
2125 error (_("No clr_break defined for this monitor"));
2126
2127 for (i = 0; i < current_monitor->num_breakpoints; i++)
2128 {
2129 if (breakaddr[i] == addr)
2130 {
2131 breakaddr[i] = 0;
2132 /* some monitors remove breakpoints based on the address */
2133 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2134 monitor_printf (current_monitor->clr_break, addr);
2135 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2136 monitor_printf (current_monitor->clr_break, i + 1);
2137 else
2138 monitor_printf (current_monitor->clr_break, i);
2139 monitor_expect_prompt (NULL, 0);
2140 return 0;
2141 }
2142 }
2143 fprintf_unfiltered (gdb_stderr,
2144 "Can't find breakpoint associated with %s\n",
2145 paddress (gdbarch, addr));
2146 return 1;
2147 }
2148
2149 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2150 an S-record. Return non-zero if the ACK is received properly. */
2151
2152 static int
2153 monitor_wait_srec_ack (void)
2154 {
2155 int ch;
2156
2157 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2158 {
2159 return (readchar (timeout) == '+');
2160 }
2161 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2162 {
2163 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2164 if ((ch = readchar (1)) < 0)
2165 return 0;
2166 if ((ch = readchar (1)) < 0)
2167 return 0;
2168 if ((ch = readchar (1)) < 0)
2169 return 0;
2170 if ((ch = readchar (1)) < 0)
2171 return 0;
2172 }
2173 return 1;
2174 }
2175
2176 /* monitor_load -- download a file. */
2177
2178 static void
2179 monitor_load (char *file, int from_tty)
2180 {
2181 monitor_debug ("MON load\n");
2182
2183 if (current_monitor->load_routine)
2184 current_monitor->load_routine (monitor_desc, file, hashmark);
2185 else
2186 { /* The default is ascii S-records */
2187 int n;
2188 unsigned long load_offset;
2189 char buf[128];
2190
2191 /* enable user to specify address for downloading as 2nd arg to load */
2192 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2193 if (n > 1)
2194 file = buf;
2195 else
2196 load_offset = 0;
2197
2198 monitor_printf (current_monitor->load);
2199 if (current_monitor->loadresp)
2200 monitor_expect (current_monitor->loadresp, NULL, 0);
2201
2202 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2203 32, SREC_ALL, hashmark,
2204 current_monitor->flags & MO_SREC_ACK ?
2205 monitor_wait_srec_ack : NULL);
2206
2207 monitor_expect_prompt (NULL, 0);
2208 }
2209
2210 /* Finally, make the PC point at the start address */
2211 if (exec_bfd)
2212 regcache_write_pc (get_current_regcache (),
2213 bfd_get_start_address (exec_bfd));
2214
2215 /* There used to be code here which would clear inferior_ptid and
2216 call clear_symtab_users. None of that should be necessary:
2217 monitor targets should behave like remote protocol targets, and
2218 since generic_load does none of those things, this function
2219 shouldn't either.
2220
2221 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2222 a load, we still have a valid connection to the monitor, with a
2223 live processor state to fiddle with. The user can type
2224 `continue' or `jump *start' and make the program run. If they do
2225 these things, however, GDB will be talking to a running program
2226 while inferior_ptid is null_ptid; this makes things like
2227 reinit_frame_cache very confused. */
2228 }
2229
2230 static void
2231 monitor_stop (ptid_t ptid)
2232 {
2233 monitor_debug ("MON stop\n");
2234 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2235 serial_send_break (monitor_desc);
2236 if (current_monitor->stop)
2237 monitor_printf_noecho (current_monitor->stop);
2238 }
2239
2240 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2241 in OUTPUT until the prompt is seen. FIXME: We read the characters
2242 ourseleves here cause of a nasty echo. */
2243
2244 static void
2245 monitor_rcmd (char *command,
2246 struct ui_file *outbuf)
2247 {
2248 char *p;
2249 int resp_len;
2250 char buf[1000];
2251
2252 if (monitor_desc == NULL)
2253 error (_("monitor target not open."));
2254
2255 p = current_monitor->prompt;
2256
2257 /* Send the command. Note that if no args were supplied, then we're
2258 just sending the monitor a newline, which is sometimes useful. */
2259
2260 monitor_printf ("%s\r", (command ? command : ""));
2261
2262 resp_len = monitor_expect_prompt (buf, sizeof buf);
2263
2264 fputs_unfiltered (buf, outbuf); /* Output the response */
2265 }
2266
2267 /* Convert hex digit A to a number. */
2268
2269 #if 0
2270 static int
2271 from_hex (int a)
2272 {
2273 if (a >= '0' && a <= '9')
2274 return a - '0';
2275 if (a >= 'a' && a <= 'f')
2276 return a - 'a' + 10;
2277 if (a >= 'A' && a <= 'F')
2278 return a - 'A' + 10;
2279
2280 error (_("Reply contains invalid hex digit 0x%x"), a);
2281 }
2282 #endif
2283
2284 char *
2285 monitor_get_dev_name (void)
2286 {
2287 return dev_name;
2288 }
2289
2290 /* Check to see if a thread is still alive. */
2291
2292 static int
2293 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2294 {
2295 if (ptid_equal (ptid, monitor_ptid))
2296 /* The monitor's task is always alive. */
2297 return 1;
2298
2299 return 0;
2300 }
2301
2302 /* Convert a thread ID to a string. Returns the string in a static
2303 buffer. */
2304
2305 static char *
2306 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2307 {
2308 static char buf[64];
2309
2310 if (ptid_equal (monitor_ptid, ptid))
2311 {
2312 xsnprintf (buf, sizeof buf, "Thread <main>");
2313 return buf;
2314 }
2315
2316 return normal_pid_to_str (ptid);
2317 }
2318
2319 static struct target_ops monitor_ops;
2320
2321 static void
2322 init_base_monitor_ops (void)
2323 {
2324 monitor_ops.to_close = monitor_close;
2325 monitor_ops.to_detach = monitor_detach;
2326 monitor_ops.to_resume = monitor_resume;
2327 monitor_ops.to_wait = monitor_wait;
2328 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2329 monitor_ops.to_store_registers = monitor_store_registers;
2330 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2331 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2332 monitor_ops.to_files_info = monitor_files_info;
2333 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2334 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2335 monitor_ops.to_kill = monitor_kill;
2336 monitor_ops.to_load = monitor_load;
2337 monitor_ops.to_create_inferior = monitor_create_inferior;
2338 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2339 monitor_ops.to_stop = monitor_stop;
2340 monitor_ops.to_rcmd = monitor_rcmd;
2341 monitor_ops.to_log_command = serial_log_command;
2342 monitor_ops.to_thread_alive = monitor_thread_alive;
2343 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2344 monitor_ops.to_stratum = process_stratum;
2345 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2346 monitor_ops.to_has_memory = default_child_has_memory;
2347 monitor_ops.to_has_stack = default_child_has_stack;
2348 monitor_ops.to_has_registers = default_child_has_registers;
2349 monitor_ops.to_has_execution = default_child_has_execution;
2350 monitor_ops.to_magic = OPS_MAGIC;
2351 } /* init_base_monitor_ops */
2352
2353 /* Init the target_ops structure pointed at by OPS */
2354
2355 void
2356 init_monitor_ops (struct target_ops *ops)
2357 {
2358 if (monitor_ops.to_magic != OPS_MAGIC)
2359 init_base_monitor_ops ();
2360
2361 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2362 }
2363
2364 /* Define additional commands that are usually only used by monitors. */
2365
2366 /* -Wmissing-prototypes */
2367 extern initialize_file_ftype _initialize_remote_monitors;
2368
2369 void
2370 _initialize_remote_monitors (void)
2371 {
2372 init_base_monitor_ops ();
2373 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2374 Set display of activity while downloading a file."), _("\
2375 Show display of activity while downloading a file."), _("\
2376 When enabled, a hashmark \'#\' is displayed."),
2377 NULL,
2378 NULL, /* FIXME: i18n: */
2379 &setlist, &showlist);
2380
2381 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2382 Set debugging of remote monitor communication."), _("\
2383 Show debugging of remote monitor communication."), _("\
2384 When enabled, communication between GDB and the remote monitor\n\
2385 is displayed."),
2386 NULL,
2387 NULL, /* FIXME: i18n: */
2388 &setdebuglist, &showdebuglist);
2389
2390 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2391 isn't 0. */
2392 monitor_ptid = ptid_build (42000, 0, 42000);
2393 }
This page took 0.135884 seconds and 4 git commands to generate.