a468e3ccd86a7f1e1ddf36bc6d378c211e1247d0
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* This file was derived from various remote-* modules. It is a collection
27 of generic support functions so GDB can talk directly to a ROM based
28 monitor. This saves use from having to hack an exception based handler
29 into existence, and makes for quick porting.
30
31 This module talks to a debug monitor called 'MONITOR', which
32 We communicate with MONITOR via either a direct serial line, or a TCP
33 (or possibly TELNET) stream to a terminal multiplexor,
34 which in turn talks to the target board. */
35
36 /* FIXME 32x64: This code assumes that registers and addresses are at
37 most 32 bits long. If they can be larger, you will need to declare
38 values as LONGEST and use %llx or some such to print values when
39 building commands to send to the monitor. Since we don't know of
40 any actual 64-bit targets with ROM monitors that use this code,
41 it's not an issue right now. -sts 4/18/96 */
42
43 #include "defs.h"
44 #include "gdbcore.h"
45 #include "target.h"
46 #include "exceptions.h"
47 #include <signal.h>
48 #include <ctype.h>
49 #include "gdb_string.h"
50 #include <sys/types.h>
51 #include "command.h"
52 #include "serial.h"
53 #include "monitor.h"
54 #include "gdbcmd.h"
55 #include "inferior.h"
56 #include "gdb_regex.h"
57 #include "srec.h"
58 #include "regcache.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
64
65 static int readchar (int timeout);
66
67 static void monitor_fetch_register (int regno);
68 static void monitor_store_register (int regno);
69
70 static void monitor_printable_string (char *newstr, char *oldstr, int len);
71 static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
72 static void monitor_detach (char *args, int from_tty);
73 static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
74 static void monitor_interrupt (int signo);
75 static void monitor_interrupt_twice (int signo);
76 static void monitor_interrupt_query (void);
77 static void monitor_wait_cleanup (void *old_timeout);
78
79 static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
80 static void monitor_fetch_registers (int regno);
81 static void monitor_store_registers (int regno);
82 static void monitor_prepare_to_store (void);
83 static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
84 int write,
85 struct mem_attrib *attrib,
86 struct target_ops *target);
87 static void monitor_files_info (struct target_ops *ops);
88 static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
89 static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
90 static void monitor_kill (void);
91 static void monitor_load (char *file, int from_tty);
92 static void monitor_mourn_inferior (void);
93 static void monitor_stop (void);
94
95 static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
96 static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
97 static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
98 static int monitor_write_memory_block (CORE_ADDR memaddr,
99 char *myaddr, int len);
100 static int monitor_expect_regexp (struct re_pattern_buffer *pat,
101 char *buf, int buflen);
102 static void monitor_dump_regs (void);
103 #if 0
104 static int from_hex (int a);
105 static unsigned long get_hex_word (void);
106 #endif
107 static void parse_register_dump (char *, int);
108
109 static struct monitor_ops *current_monitor;
110
111 static int hashmark; /* flag set by "set hash" */
112
113 static int timeout = 30;
114
115 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
116
117 static void (*ofunc) (); /* Old SIGINT signal handler */
118
119 static CORE_ADDR *breakaddr;
120
121 /* Descriptor for I/O to remote machine. Initialize it to NULL so
122 that monitor_open knows that we don't have a file open when the
123 program starts. */
124
125 static struct serial *monitor_desc = NULL;
126
127 /* Pointer to regexp pattern matching data */
128
129 static struct re_pattern_buffer register_pattern;
130 static char register_fastmap[256];
131
132 static struct re_pattern_buffer getmem_resp_delim_pattern;
133 static char getmem_resp_delim_fastmap[256];
134
135 static struct re_pattern_buffer setmem_resp_delim_pattern;
136 static char setmem_resp_delim_fastmap[256];
137
138 static struct re_pattern_buffer setreg_resp_delim_pattern;
139 static char setreg_resp_delim_fastmap[256];
140
141 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
142 monitor_wait wakes up. */
143
144 static int first_time = 0; /* is this the first time we're executing after
145 gaving created the child proccess? */
146
147 #define TARGET_BUF_SIZE 2048
148
149 /* Monitor specific debugging information. Typically only useful to
150 the developer of a new monitor interface. */
151
152 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
153
154 static int monitor_debug_p = 0;
155
156 /* NOTE: This file alternates between monitor_debug_p and remote_debug
157 when determining if debug information is printed. Perhaps this
158 could be simplified. */
159
160 static void
161 monitor_debug (const char *fmt, ...)
162 {
163 if (monitor_debug_p)
164 {
165 va_list args;
166 va_start (args, fmt);
167 vfprintf_filtered (gdb_stdlog, fmt, args);
168 va_end (args);
169 }
170 }
171
172
173 /* Convert a string into a printable representation, Return # byte in
174 the new string. When LEN is >0 it specifies the size of the
175 string. Otherwize strlen(oldstr) is used. */
176
177 static void
178 monitor_printable_string (char *newstr, char *oldstr, int len)
179 {
180 int ch;
181 int i;
182
183 if (len <= 0)
184 len = strlen (oldstr);
185
186 for (i = 0; i < len; i++)
187 {
188 ch = oldstr[i];
189 switch (ch)
190 {
191 default:
192 if (isprint (ch))
193 *newstr++ = ch;
194
195 else
196 {
197 sprintf (newstr, "\\x%02x", ch & 0xff);
198 newstr += 4;
199 }
200 break;
201
202 case '\\':
203 *newstr++ = '\\';
204 *newstr++ = '\\';
205 break;
206 case '\b':
207 *newstr++ = '\\';
208 *newstr++ = 'b';
209 break;
210 case '\f':
211 *newstr++ = '\\';
212 *newstr++ = 't';
213 break;
214 case '\n':
215 *newstr++ = '\\';
216 *newstr++ = 'n';
217 break;
218 case '\r':
219 *newstr++ = '\\';
220 *newstr++ = 'r';
221 break;
222 case '\t':
223 *newstr++ = '\\';
224 *newstr++ = 't';
225 break;
226 case '\v':
227 *newstr++ = '\\';
228 *newstr++ = 'v';
229 break;
230 }
231 }
232
233 *newstr++ = '\0';
234 }
235
236 /* Print monitor errors with a string, converting the string to printable
237 representation. */
238
239 static void
240 monitor_error (char *function, char *message,
241 CORE_ADDR memaddr, int len, char *string, int final_char)
242 {
243 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
244 char *safe_string = alloca ((real_len * 4) + 1);
245 monitor_printable_string (safe_string, string, real_len);
246
247 if (final_char)
248 error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
249 else
250 error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
251 }
252
253 /* Convert hex digit A to a number. */
254
255 static int
256 fromhex (int a)
257 {
258 if (a >= '0' && a <= '9')
259 return a - '0';
260 else if (a >= 'a' && a <= 'f')
261 return a - 'a' + 10;
262 else if (a >= 'A' && a <= 'F')
263 return a - 'A' + 10;
264 else
265 error ("Invalid hex digit %d", a);
266 }
267
268 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
269
270 This function exists to get around the problem that many host platforms
271 don't have a printf that can print 64-bit addresses. The %A format
272 specification is recognized as a special case, and causes the argument
273 to be printed as a 64-bit hexadecimal address.
274
275 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
276 If it is a '%s' format, the argument is a string; otherwise the
277 argument is assumed to be a long integer.
278
279 %% is also turned into a single %.
280 */
281
282 static void
283 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
284 {
285 char format[10];
286 char fmt;
287 char *p;
288 int i;
289 long arg_int;
290 CORE_ADDR arg_addr;
291 char *arg_string;
292
293 for (p = pattern; *p; p++)
294 {
295 if (*p == '%')
296 {
297 /* Copy the format specifier to a separate buffer. */
298 format[0] = *p++;
299 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
300 i++, p++)
301 format[i] = *p;
302 format[i] = fmt = *p;
303 format[i + 1] = '\0';
304
305 /* Fetch the next argument and print it. */
306 switch (fmt)
307 {
308 case '%':
309 strcpy (sndbuf, "%");
310 break;
311 case 'A':
312 arg_addr = va_arg (args, CORE_ADDR);
313 strcpy (sndbuf, paddr_nz (arg_addr));
314 break;
315 case 's':
316 arg_string = va_arg (args, char *);
317 sprintf (sndbuf, format, arg_string);
318 break;
319 default:
320 arg_int = va_arg (args, long);
321 sprintf (sndbuf, format, arg_int);
322 break;
323 }
324 sndbuf += strlen (sndbuf);
325 }
326 else
327 *sndbuf++ = *p;
328 }
329 *sndbuf = '\0';
330 }
331
332
333 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
334 Works just like printf. */
335
336 void
337 monitor_printf_noecho (char *pattern,...)
338 {
339 va_list args;
340 char sndbuf[2000];
341 int len;
342
343 va_start (args, pattern);
344
345 monitor_vsprintf (sndbuf, pattern, args);
346
347 len = strlen (sndbuf);
348 if (len + 1 > sizeof sndbuf)
349 internal_error (__FILE__, __LINE__, "failed internal consistency check");
350
351 if (monitor_debug_p)
352 {
353 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
354 monitor_printable_string (safe_string, sndbuf, 0);
355 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
356 }
357
358 monitor_write (sndbuf, len);
359 }
360
361 /* monitor_printf -- Send data to monitor and check the echo. Works just like
362 printf. */
363
364 void
365 monitor_printf (char *pattern,...)
366 {
367 va_list args;
368 char sndbuf[2000];
369 int len;
370
371 va_start (args, pattern);
372
373 monitor_vsprintf (sndbuf, pattern, args);
374
375 len = strlen (sndbuf);
376 if (len + 1 > sizeof sndbuf)
377 internal_error (__FILE__, __LINE__, "failed internal consistency check");
378
379 if (monitor_debug_p)
380 {
381 char *safe_string = (char *) alloca ((len * 4) + 1);
382 monitor_printable_string (safe_string, sndbuf, 0);
383 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
384 }
385
386 monitor_write (sndbuf, len);
387
388 /* We used to expect that the next immediate output was the characters we
389 just output, but sometimes some extra junk appeared before the characters
390 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
391 So, just start searching for what we sent, and skip anything unknown. */
392 monitor_debug ("ExpectEcho\n");
393 monitor_expect (sndbuf, (char *) 0, 0);
394 }
395
396
397 /* Write characters to the remote system. */
398
399 void
400 monitor_write (char *buf, int buflen)
401 {
402 if (serial_write (monitor_desc, buf, buflen))
403 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
404 safe_strerror (errno));
405 }
406
407
408 /* Read a binary character from the remote system, doing all the fancy
409 timeout stuff, but without interpreting the character in any way,
410 and without printing remote debug information. */
411
412 int
413 monitor_readchar (void)
414 {
415 int c;
416 int looping;
417
418 do
419 {
420 looping = 0;
421 c = serial_readchar (monitor_desc, timeout);
422
423 if (c >= 0)
424 c &= 0xff; /* don't lose bit 7 */
425 }
426 while (looping);
427
428 if (c >= 0)
429 return c;
430
431 if (c == SERIAL_TIMEOUT)
432 error ("Timeout reading from remote system.");
433
434 perror_with_name ("remote-monitor");
435 }
436
437
438 /* Read a character from the remote system, doing all the fancy
439 timeout stuff. */
440
441 static int
442 readchar (int timeout)
443 {
444 int c;
445 static enum
446 {
447 last_random, last_nl, last_cr, last_crnl
448 }
449 state = last_random;
450 int looping;
451
452 do
453 {
454 looping = 0;
455 c = serial_readchar (monitor_desc, timeout);
456
457 if (c >= 0)
458 {
459 c &= 0x7f;
460 /* This seems to interfere with proper function of the
461 input stream */
462 if (monitor_debug_p || remote_debug)
463 {
464 char buf[2];
465 buf[0] = c;
466 buf[1] = '\0';
467 puts_debug ("read -->", buf, "<--");
468 }
469
470 }
471
472 /* Canonicialize \n\r combinations into one \r */
473 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
474 {
475 if ((c == '\r' && state == last_nl)
476 || (c == '\n' && state == last_cr))
477 {
478 state = last_crnl;
479 looping = 1;
480 }
481 else if (c == '\r')
482 state = last_cr;
483 else if (c != '\n')
484 state = last_random;
485 else
486 {
487 state = last_nl;
488 c = '\r';
489 }
490 }
491 }
492 while (looping);
493
494 if (c >= 0)
495 return c;
496
497 if (c == SERIAL_TIMEOUT)
498 #if 0
499 /* I fail to see how detaching here can be useful */
500 if (in_monitor_wait) /* Watchdog went off */
501 {
502 target_mourn_inferior ();
503 error ("GDB serial timeout has expired. Target detached.\n");
504 }
505 else
506 #endif
507 error ("Timeout reading from remote system.");
508
509 perror_with_name ("remote-monitor");
510 }
511
512 /* Scan input from the remote system, until STRING is found. If BUF is non-
513 zero, then collect input until we have collected either STRING or BUFLEN-1
514 chars. In either case we terminate BUF with a 0. If input overflows BUF
515 because STRING can't be found, return -1, else return number of chars in BUF
516 (minus the terminating NUL). Note that in the non-overflow case, STRING
517 will be at the end of BUF. */
518
519 int
520 monitor_expect (char *string, char *buf, int buflen)
521 {
522 char *p = string;
523 int obuflen = buflen;
524 int c;
525
526 if (monitor_debug_p)
527 {
528 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
529 monitor_printable_string (safe_string, string, 0);
530 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
531 }
532
533 immediate_quit++;
534 while (1)
535 {
536 if (buf)
537 {
538 if (buflen < 2)
539 {
540 *buf = '\000';
541 immediate_quit--;
542 return -1;
543 }
544
545 c = readchar (timeout);
546 if (c == '\000')
547 continue;
548 *buf++ = c;
549 buflen--;
550 }
551 else
552 c = readchar (timeout);
553
554 /* Don't expect any ^C sent to be echoed */
555
556 if (*p == '\003' || c == *p)
557 {
558 p++;
559 if (*p == '\0')
560 {
561 immediate_quit--;
562
563 if (buf)
564 {
565 *buf++ = '\000';
566 return obuflen - buflen;
567 }
568 else
569 return 0;
570 }
571 }
572 else
573 {
574 /* We got a character that doesn't match the string. We need to
575 back up p, but how far? If we're looking for "..howdy" and the
576 monitor sends "...howdy"? There's certainly a match in there,
577 but when we receive the third ".", we won't find it if we just
578 restart the matching at the beginning of the string.
579
580 This is a Boyer-Moore kind of situation. We want to reset P to
581 the end of the longest prefix of STRING that is a suffix of
582 what we've read so far. In the example above, that would be
583 ".." --- the longest prefix of "..howdy" that is a suffix of
584 "...". This longest prefix could be the empty string, if C
585 is nowhere to be found in STRING.
586
587 If this longest prefix is not the empty string, it must contain
588 C, so let's search from the end of STRING for instances of C,
589 and see if the portion of STRING before that is a suffix of
590 what we read before C. Actually, we can search backwards from
591 p, since we know no prefix can be longer than that.
592
593 Note that we can use STRING itself, along with C, as a record
594 of what we've received so far. :) */
595 int i;
596
597 for (i = (p - string) - 1; i >= 0; i--)
598 if (string[i] == c)
599 {
600 /* Is this prefix a suffix of what we've read so far?
601 In other words, does
602 string[0 .. i-1] == string[p - i, p - 1]? */
603 if (! memcmp (string, p - i, i))
604 {
605 p = string + i + 1;
606 break;
607 }
608 }
609 if (i < 0)
610 p = string;
611 }
612 }
613 }
614
615 /* Search for a regexp. */
616
617 static int
618 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
619 {
620 char *mybuf;
621 char *p;
622 monitor_debug ("MON Expecting regexp\n");
623 if (buf)
624 mybuf = buf;
625 else
626 {
627 mybuf = alloca (TARGET_BUF_SIZE);
628 buflen = TARGET_BUF_SIZE;
629 }
630
631 p = mybuf;
632 while (1)
633 {
634 int retval;
635
636 if (p - mybuf >= buflen)
637 { /* Buffer about to overflow */
638
639 /* On overflow, we copy the upper half of the buffer to the lower half. Not
640 great, but it usually works... */
641
642 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
643 p = mybuf + buflen / 2;
644 }
645
646 *p++ = readchar (timeout);
647
648 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
649 if (retval >= 0)
650 return 1;
651 }
652 }
653
654 /* Keep discarding input until we see the MONITOR prompt.
655
656 The convention for dealing with the prompt is that you
657 o give your command
658 o *then* wait for the prompt.
659
660 Thus the last thing that a procedure does with the serial line will
661 be an monitor_expect_prompt(). Exception: monitor_resume does not
662 wait for the prompt, because the terminal is being handed over to
663 the inferior. However, the next thing which happens after that is
664 a monitor_wait which does wait for the prompt. Note that this
665 includes abnormal exit, e.g. error(). This is necessary to prevent
666 getting into states from which we can't recover. */
667
668 int
669 monitor_expect_prompt (char *buf, int buflen)
670 {
671 monitor_debug ("MON Expecting prompt\n");
672 return monitor_expect (current_monitor->prompt, buf, buflen);
673 }
674
675 /* Get N 32-bit words from remote, each preceded by a space, and put
676 them in registers starting at REGNO. */
677
678 #if 0
679 static unsigned long
680 get_hex_word (void)
681 {
682 unsigned long val;
683 int i;
684 int ch;
685
686 do
687 ch = readchar (timeout);
688 while (isspace (ch));
689
690 val = from_hex (ch);
691
692 for (i = 7; i >= 1; i--)
693 {
694 ch = readchar (timeout);
695 if (!isxdigit (ch))
696 break;
697 val = (val << 4) | from_hex (ch);
698 }
699
700 return val;
701 }
702 #endif
703
704 static void
705 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
706 char *fastmap)
707 {
708 int tmp;
709 const char *val;
710
711 compiled_pattern->fastmap = fastmap;
712
713 tmp = re_set_syntax (RE_SYNTAX_EMACS);
714 val = re_compile_pattern (pattern,
715 strlen (pattern),
716 compiled_pattern);
717 re_set_syntax (tmp);
718
719 if (val)
720 error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
721
722 if (fastmap)
723 re_compile_fastmap (compiled_pattern);
724 }
725
726 /* Open a connection to a remote debugger. NAME is the filename used
727 for communication. */
728
729 void
730 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
731 {
732 char *name;
733 char **p;
734
735 if (mon_ops->magic != MONITOR_OPS_MAGIC)
736 error ("Magic number of monitor_ops struct wrong.");
737
738 targ_ops = mon_ops->target;
739 name = targ_ops->to_shortname;
740
741 if (!args)
742 error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
743 `target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
744
745 target_preopen (from_tty);
746
747 /* Setup pattern for register dump */
748
749 if (mon_ops->register_pattern)
750 compile_pattern (mon_ops->register_pattern, &register_pattern,
751 register_fastmap);
752
753 if (mon_ops->getmem.resp_delim)
754 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
755 getmem_resp_delim_fastmap);
756
757 if (mon_ops->setmem.resp_delim)
758 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
759 setmem_resp_delim_fastmap);
760
761 if (mon_ops->setreg.resp_delim)
762 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
763 setreg_resp_delim_fastmap);
764
765 unpush_target (targ_ops);
766
767 if (dev_name)
768 xfree (dev_name);
769 dev_name = xstrdup (args);
770
771 monitor_desc = serial_open (dev_name);
772
773 if (!monitor_desc)
774 perror_with_name (dev_name);
775
776 if (baud_rate != -1)
777 {
778 if (serial_setbaudrate (monitor_desc, baud_rate))
779 {
780 serial_close (monitor_desc);
781 perror_with_name (dev_name);
782 }
783 }
784
785 serial_raw (monitor_desc);
786
787 serial_flush_input (monitor_desc);
788
789 /* some systems only work with 2 stop bits */
790
791 serial_setstopbits (monitor_desc, mon_ops->stopbits);
792
793 current_monitor = mon_ops;
794
795 /* See if we can wake up the monitor. First, try sending a stop sequence,
796 then send the init strings. Last, remove all breakpoints. */
797
798 if (current_monitor->stop)
799 {
800 monitor_stop ();
801 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
802 {
803 monitor_debug ("EXP Open echo\n");
804 monitor_expect_prompt (NULL, 0);
805 }
806 }
807
808 /* wake up the monitor and see if it's alive */
809 for (p = mon_ops->init; *p != NULL; p++)
810 {
811 /* Some of the characters we send may not be echoed,
812 but we hope to get a prompt at the end of it all. */
813
814 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
815 monitor_printf (*p);
816 else
817 monitor_printf_noecho (*p);
818 monitor_expect_prompt (NULL, 0);
819 }
820
821 serial_flush_input (monitor_desc);
822
823 /* Alloc breakpoints */
824 if (mon_ops->set_break != NULL)
825 {
826 if (mon_ops->num_breakpoints == 0)
827 mon_ops->num_breakpoints = 8;
828
829 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
830 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
831 }
832
833 /* Remove all breakpoints */
834
835 if (mon_ops->clr_all_break)
836 {
837 monitor_printf (mon_ops->clr_all_break);
838 monitor_expect_prompt (NULL, 0);
839 }
840
841 if (from_tty)
842 printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
843
844 push_target (targ_ops);
845
846 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
847
848 /* Give monitor_wait something to read */
849
850 monitor_printf (current_monitor->line_term);
851
852 start_remote ();
853 }
854
855 /* Close out all files and local state before this target loses
856 control. */
857
858 void
859 monitor_close (int quitting)
860 {
861 if (monitor_desc)
862 serial_close (monitor_desc);
863
864 /* Free breakpoint memory */
865 if (breakaddr != NULL)
866 {
867 xfree (breakaddr);
868 breakaddr = NULL;
869 }
870
871 monitor_desc = NULL;
872 }
873
874 /* Terminate the open connection to the remote debugger. Use this
875 when you want to detach and do something else with your gdb. */
876
877 static void
878 monitor_detach (char *args, int from_tty)
879 {
880 pop_target (); /* calls monitor_close to do the real work */
881 if (from_tty)
882 printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
883 }
884
885 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
886
887 char *
888 monitor_supply_register (int regno, char *valstr)
889 {
890 ULONGEST val;
891 unsigned char regbuf[MAX_REGISTER_SIZE];
892 char *p;
893
894 val = 0;
895 p = valstr;
896 while (p && *p != '\0')
897 {
898 if (*p == '\r' || *p == '\n')
899 {
900 while (*p != '\0')
901 p++;
902 break;
903 }
904 if (isspace (*p))
905 {
906 p++;
907 continue;
908 }
909 if (!isxdigit (*p) && *p != 'x')
910 {
911 break;
912 }
913
914 val <<= 4;
915 val += fromhex (*p++);
916 }
917 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
918
919 if (val == 0 && valstr == p)
920 error ("monitor_supply_register (%d): bad value from monitor: %s.",
921 regno, valstr);
922
923 /* supply register stores in target byte order, so swap here */
924
925 store_unsigned_integer (regbuf, register_size (current_gdbarch, regno), val);
926
927 regcache_raw_supply (current_regcache, regno, regbuf);
928
929 return p;
930 }
931
932 /* Tell the remote machine to resume. */
933
934 static void
935 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
936 {
937 /* Some monitors require a different command when starting a program */
938 monitor_debug ("MON resume\n");
939 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
940 {
941 first_time = 0;
942 monitor_printf ("run\r");
943 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
944 dump_reg_flag = 1;
945 return;
946 }
947 if (step)
948 monitor_printf (current_monitor->step);
949 else
950 {
951 if (current_monitor->continue_hook)
952 (*current_monitor->continue_hook) ();
953 else
954 monitor_printf (current_monitor->cont);
955 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
956 dump_reg_flag = 1;
957 }
958 }
959
960 /* Parse the output of a register dump command. A monitor specific
961 regexp is used to extract individual register descriptions of the
962 form REG=VAL. Each description is split up into a name and a value
963 string which are passed down to monitor specific code. */
964
965 static void
966 parse_register_dump (char *buf, int len)
967 {
968 monitor_debug ("MON Parsing register dump\n");
969 while (1)
970 {
971 int regnamelen, vallen;
972 char *regname, *val;
973 /* Element 0 points to start of register name, and element 1
974 points to the start of the register value. */
975 struct re_registers register_strings;
976
977 memset (&register_strings, 0, sizeof (struct re_registers));
978
979 if (re_search (&register_pattern, buf, len, 0, len,
980 &register_strings) == -1)
981 break;
982
983 regnamelen = register_strings.end[1] - register_strings.start[1];
984 regname = buf + register_strings.start[1];
985 vallen = register_strings.end[2] - register_strings.start[2];
986 val = buf + register_strings.start[2];
987
988 current_monitor->supply_register (regname, regnamelen, val, vallen);
989
990 buf += register_strings.end[0];
991 len -= register_strings.end[0];
992 }
993 }
994
995 /* Send ^C to target to halt it. Target will respond, and send us a
996 packet. */
997
998 static void
999 monitor_interrupt (int signo)
1000 {
1001 /* If this doesn't work, try more severe steps. */
1002 signal (signo, monitor_interrupt_twice);
1003
1004 if (monitor_debug_p || remote_debug)
1005 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1006
1007 target_stop ();
1008 }
1009
1010 /* The user typed ^C twice. */
1011
1012 static void
1013 monitor_interrupt_twice (int signo)
1014 {
1015 signal (signo, ofunc);
1016
1017 monitor_interrupt_query ();
1018
1019 signal (signo, monitor_interrupt);
1020 }
1021
1022 /* Ask the user what to do when an interrupt is received. */
1023
1024 static void
1025 monitor_interrupt_query (void)
1026 {
1027 target_terminal_ours ();
1028
1029 if (query ("Interrupted while waiting for the program.\n\
1030 Give up (and stop debugging it)? "))
1031 {
1032 target_mourn_inferior ();
1033 deprecated_throw_reason (RETURN_QUIT);
1034 }
1035
1036 target_terminal_inferior ();
1037 }
1038
1039 static void
1040 monitor_wait_cleanup (void *old_timeout)
1041 {
1042 timeout = *(int *) old_timeout;
1043 signal (SIGINT, ofunc);
1044 in_monitor_wait = 0;
1045 }
1046
1047
1048
1049 static void
1050 monitor_wait_filter (char *buf,
1051 int bufmax,
1052 int *ext_resp_len,
1053 struct target_waitstatus *status)
1054 {
1055 int resp_len;
1056 do
1057 {
1058 resp_len = monitor_expect_prompt (buf, bufmax);
1059 *ext_resp_len = resp_len;
1060
1061 if (resp_len <= 0)
1062 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1063 }
1064 while (resp_len < 0);
1065
1066 /* Print any output characters that were preceded by ^O. */
1067 /* FIXME - This would be great as a user settabgle flag */
1068 if (monitor_debug_p || remote_debug
1069 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1070 {
1071 int i;
1072
1073 for (i = 0; i < resp_len - 1; i++)
1074 if (buf[i] == 0x0f)
1075 putchar_unfiltered (buf[++i]);
1076 }
1077 }
1078
1079
1080
1081 /* Wait until the remote machine stops, then return, storing status in
1082 status just as `wait' would. */
1083
1084 static ptid_t
1085 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1086 {
1087 int old_timeout = timeout;
1088 char buf[TARGET_BUF_SIZE];
1089 int resp_len;
1090 struct cleanup *old_chain;
1091
1092 status->kind = TARGET_WAITKIND_EXITED;
1093 status->value.integer = 0;
1094
1095 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1096 monitor_debug ("MON wait\n");
1097
1098 #if 0
1099 /* This is somthing other than a maintenance command */
1100 in_monitor_wait = 1;
1101 timeout = watchdog > 0 ? watchdog : -1;
1102 #else
1103 timeout = -1; /* Don't time out -- user program is running. */
1104 #endif
1105
1106 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1107
1108 if (current_monitor->wait_filter)
1109 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1110 else
1111 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1112
1113 #if 0 /* Transferred to monitor wait filter */
1114 do
1115 {
1116 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1117
1118 if (resp_len <= 0)
1119 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1120 }
1121 while (resp_len < 0);
1122
1123 /* Print any output characters that were preceded by ^O. */
1124 /* FIXME - This would be great as a user settabgle flag */
1125 if (monitor_debug_p || remote_debug
1126 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1127 {
1128 int i;
1129
1130 for (i = 0; i < resp_len - 1; i++)
1131 if (buf[i] == 0x0f)
1132 putchar_unfiltered (buf[++i]);
1133 }
1134 #endif
1135
1136 signal (SIGINT, ofunc);
1137
1138 timeout = old_timeout;
1139 #if 0
1140 if (dump_reg_flag && current_monitor->dump_registers)
1141 {
1142 dump_reg_flag = 0;
1143 monitor_printf (current_monitor->dump_registers);
1144 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1145 }
1146
1147 if (current_monitor->register_pattern)
1148 parse_register_dump (buf, resp_len);
1149 #else
1150 monitor_debug ("Wait fetching registers after stop\n");
1151 monitor_dump_regs ();
1152 #endif
1153
1154 status->kind = TARGET_WAITKIND_STOPPED;
1155 status->value.sig = TARGET_SIGNAL_TRAP;
1156
1157 discard_cleanups (old_chain);
1158
1159 in_monitor_wait = 0;
1160
1161 return inferior_ptid;
1162 }
1163
1164 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1165 errno value. */
1166
1167 static void
1168 monitor_fetch_register (int regno)
1169 {
1170 const char *name;
1171 char *zerobuf;
1172 char *regbuf;
1173 int i;
1174
1175 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1176 zerobuf = alloca (MAX_REGISTER_SIZE);
1177 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1178
1179 if (current_monitor->regname != NULL)
1180 name = current_monitor->regname (regno);
1181 else
1182 name = current_monitor->regnames[regno];
1183 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1184
1185 if (!name || (*name == '\0'))
1186 {
1187 monitor_debug ("No register known for %d\n", regno);
1188 regcache_raw_supply (current_regcache, regno, zerobuf);
1189 return;
1190 }
1191
1192 /* send the register examine command */
1193
1194 monitor_printf (current_monitor->getreg.cmd, name);
1195
1196 /* If RESP_DELIM is specified, we search for that as a leading
1197 delimiter for the register value. Otherwise, we just start
1198 searching from the start of the buf. */
1199
1200 if (current_monitor->getreg.resp_delim)
1201 {
1202 monitor_debug ("EXP getreg.resp_delim\n");
1203 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1204 /* Handle case of first 32 registers listed in pairs. */
1205 if (current_monitor->flags & MO_32_REGS_PAIRED
1206 && (regno & 1) != 0 && regno < 32)
1207 {
1208 monitor_debug ("EXP getreg.resp_delim\n");
1209 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1210 }
1211 }
1212
1213 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1214 if (current_monitor->flags & MO_HEX_PREFIX)
1215 {
1216 int c;
1217 c = readchar (timeout);
1218 while (c == ' ')
1219 c = readchar (timeout);
1220 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1221 ;
1222 else
1223 error ("Bad value returned from monitor while fetching register %x.",
1224 regno);
1225 }
1226
1227 /* Read upto the maximum number of hex digits for this register, skipping
1228 spaces, but stop reading if something else is seen. Some monitors
1229 like to drop leading zeros. */
1230
1231 for (i = 0; i < register_size (current_gdbarch, regno) * 2; i++)
1232 {
1233 int c;
1234 c = readchar (timeout);
1235 while (c == ' ')
1236 c = readchar (timeout);
1237
1238 if (!isxdigit (c))
1239 break;
1240
1241 regbuf[i] = c;
1242 }
1243
1244 regbuf[i] = '\000'; /* terminate the number */
1245 monitor_debug ("REGVAL '%s'\n", regbuf);
1246
1247 /* If TERM is present, we wait for that to show up. Also, (if TERM
1248 is present), we will send TERM_CMD if that is present. In any
1249 case, we collect all of the output into buf, and then wait for
1250 the normal prompt. */
1251
1252 if (current_monitor->getreg.term)
1253 {
1254 monitor_debug ("EXP getreg.term\n");
1255 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1256 }
1257
1258 if (current_monitor->getreg.term_cmd)
1259 {
1260 monitor_debug ("EMIT getreg.term.cmd\n");
1261 monitor_printf (current_monitor->getreg.term_cmd);
1262 }
1263 if (!current_monitor->getreg.term || /* Already expected or */
1264 current_monitor->getreg.term_cmd) /* ack expected */
1265 monitor_expect_prompt (NULL, 0); /* get response */
1266
1267 monitor_supply_register (regno, regbuf);
1268 }
1269
1270 /* Sometimes, it takes several commands to dump the registers */
1271 /* This is a primitive for use by variations of monitor interfaces in
1272 case they need to compose the operation.
1273 */
1274 int
1275 monitor_dump_reg_block (char *block_cmd)
1276 {
1277 char buf[TARGET_BUF_SIZE];
1278 int resp_len;
1279 monitor_printf (block_cmd);
1280 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1281 parse_register_dump (buf, resp_len);
1282 return 1;
1283 }
1284
1285
1286 /* Read the remote registers into the block regs. */
1287 /* Call the specific function if it has been provided */
1288
1289 static void
1290 monitor_dump_regs (void)
1291 {
1292 char buf[TARGET_BUF_SIZE];
1293 int resp_len;
1294 if (current_monitor->dumpregs)
1295 (*(current_monitor->dumpregs)) (); /* call supplied function */
1296 else if (current_monitor->dump_registers) /* default version */
1297 {
1298 monitor_printf (current_monitor->dump_registers);
1299 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1300 parse_register_dump (buf, resp_len);
1301 }
1302 else
1303 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
1304 }
1305
1306 static void
1307 monitor_fetch_registers (int regno)
1308 {
1309 monitor_debug ("MON fetchregs\n");
1310 if (current_monitor->getreg.cmd)
1311 {
1312 if (regno >= 0)
1313 {
1314 monitor_fetch_register (regno);
1315 return;
1316 }
1317
1318 for (regno = 0; regno < NUM_REGS; regno++)
1319 monitor_fetch_register (regno);
1320 }
1321 else
1322 {
1323 monitor_dump_regs ();
1324 }
1325 }
1326
1327 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1328
1329 static void
1330 monitor_store_register (int regno)
1331 {
1332 const char *name;
1333 ULONGEST val;
1334
1335 if (current_monitor->regname != NULL)
1336 name = current_monitor->regname (regno);
1337 else
1338 name = current_monitor->regnames[regno];
1339
1340 if (!name || (*name == '\0'))
1341 {
1342 monitor_debug ("MON Cannot store unknown register\n");
1343 return;
1344 }
1345
1346 val = read_register (regno);
1347 monitor_debug ("MON storeg %d %s\n", regno,
1348 phex (val, register_size (current_gdbarch, regno)));
1349
1350 /* send the register deposit command */
1351
1352 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1353 monitor_printf (current_monitor->setreg.cmd, val, name);
1354 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1355 monitor_printf (current_monitor->setreg.cmd, name);
1356 else
1357 monitor_printf (current_monitor->setreg.cmd, name, val);
1358
1359 if (current_monitor->setreg.resp_delim)
1360 {
1361 monitor_debug ("EXP setreg.resp_delim\n");
1362 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1363 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1364 monitor_printf ("%s\r", paddr_nz (val));
1365 }
1366 if (current_monitor->setreg.term)
1367 {
1368 monitor_debug ("EXP setreg.term\n");
1369 monitor_expect (current_monitor->setreg.term, NULL, 0);
1370 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1371 monitor_printf ("%s\r", paddr_nz (val));
1372 monitor_expect_prompt (NULL, 0);
1373 }
1374 else
1375 monitor_expect_prompt (NULL, 0);
1376 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1377 {
1378 monitor_debug ("EXP setreg_termcmd\n");
1379 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1380 monitor_expect_prompt (NULL, 0);
1381 }
1382 } /* monitor_store_register */
1383
1384 /* Store the remote registers. */
1385
1386 static void
1387 monitor_store_registers (int regno)
1388 {
1389 if (regno >= 0)
1390 {
1391 monitor_store_register (regno);
1392 return;
1393 }
1394
1395 for (regno = 0; regno < NUM_REGS; regno++)
1396 monitor_store_register (regno);
1397 }
1398
1399 /* Get ready to modify the registers array. On machines which store
1400 individual registers, this doesn't need to do anything. On machines
1401 which store all the registers in one fell swoop, this makes sure
1402 that registers contains all the registers from the program being
1403 debugged. */
1404
1405 static void
1406 monitor_prepare_to_store (void)
1407 {
1408 /* Do nothing, since we can store individual regs */
1409 }
1410
1411 static void
1412 monitor_files_info (struct target_ops *ops)
1413 {
1414 printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
1415 }
1416
1417 static int
1418 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1419 {
1420 unsigned int val, hostval;
1421 char *cmd;
1422 int i;
1423
1424 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1425
1426 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1427 memaddr = ADDR_BITS_REMOVE (memaddr);
1428
1429 /* Use memory fill command for leading 0 bytes. */
1430
1431 if (current_monitor->fill)
1432 {
1433 for (i = 0; i < len; i++)
1434 if (myaddr[i] != 0)
1435 break;
1436
1437 if (i > 4) /* More than 4 zeros is worth doing */
1438 {
1439 monitor_debug ("MON FILL %d\n", i);
1440 if (current_monitor->flags & MO_FILL_USES_ADDR)
1441 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1442 else
1443 monitor_printf (current_monitor->fill, memaddr, i, 0);
1444
1445 monitor_expect_prompt (NULL, 0);
1446
1447 return i;
1448 }
1449 }
1450
1451 #if 0
1452 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1453 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1454 {
1455 len = 8;
1456 cmd = current_monitor->setmem.cmdll;
1457 }
1458 else
1459 #endif
1460 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1461 {
1462 len = 4;
1463 cmd = current_monitor->setmem.cmdl;
1464 }
1465 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1466 {
1467 len = 2;
1468 cmd = current_monitor->setmem.cmdw;
1469 }
1470 else
1471 {
1472 len = 1;
1473 cmd = current_monitor->setmem.cmdb;
1474 }
1475
1476 val = extract_unsigned_integer (myaddr, len);
1477
1478 if (len == 4)
1479 {
1480 hostval = *(unsigned int *) myaddr;
1481 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1482 }
1483
1484
1485 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1486 monitor_printf_noecho (cmd, memaddr, val);
1487 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1488 {
1489
1490 monitor_printf_noecho (cmd, memaddr);
1491
1492 if (current_monitor->setmem.resp_delim)
1493 {
1494 monitor_debug ("EXP setmem.resp_delim");
1495 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1496 monitor_printf ("%x\r", val);
1497 }
1498 if (current_monitor->setmem.term)
1499 {
1500 monitor_debug ("EXP setmem.term");
1501 monitor_expect (current_monitor->setmem.term, NULL, 0);
1502 monitor_printf ("%x\r", val);
1503 }
1504 if (current_monitor->setmem.term_cmd)
1505 { /* Emit this to get out of the memory editing state */
1506 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1507 /* Drop through to expecting a prompt */
1508 }
1509 }
1510 else
1511 monitor_printf (cmd, memaddr, val);
1512
1513 monitor_expect_prompt (NULL, 0);
1514
1515 return len;
1516 }
1517
1518
1519 static int
1520 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1521 {
1522 unsigned char val;
1523 int written = 0;
1524 if (len == 0)
1525 return 0;
1526 /* Enter the sub mode */
1527 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1528 monitor_expect_prompt (NULL, 0);
1529 while (len)
1530 {
1531 val = *myaddr;
1532 monitor_printf ("%x\r", val);
1533 myaddr++;
1534 memaddr++;
1535 written++;
1536 /* If we wanted to, here we could validate the address */
1537 monitor_expect_prompt (NULL, 0);
1538 len--;
1539 }
1540 /* Now exit the sub mode */
1541 monitor_printf (current_monitor->getreg.term_cmd);
1542 monitor_expect_prompt (NULL, 0);
1543 return written;
1544 }
1545
1546
1547 static void
1548 longlongendswap (unsigned char *a)
1549 {
1550 int i, j;
1551 unsigned char x;
1552 i = 0;
1553 j = 7;
1554 while (i < 4)
1555 {
1556 x = *(a + i);
1557 *(a + i) = *(a + j);
1558 *(a + j) = x;
1559 i++, j--;
1560 }
1561 }
1562 /* Format 32 chars of long long value, advance the pointer */
1563 static char *hexlate = "0123456789abcdef";
1564 static char *
1565 longlong_hexchars (unsigned long long value,
1566 char *outbuff)
1567 {
1568 if (value == 0)
1569 {
1570 *outbuff++ = '0';
1571 return outbuff;
1572 }
1573 else
1574 {
1575 static unsigned char disbuf[8]; /* disassembly buffer */
1576 unsigned char *scan, *limit; /* loop controls */
1577 unsigned char c, nib;
1578 int leadzero = 1;
1579 scan = disbuf;
1580 limit = scan + 8;
1581 {
1582 unsigned long long *dp;
1583 dp = (unsigned long long *) scan;
1584 *dp = value;
1585 }
1586 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1587 while (scan < limit)
1588 {
1589 c = *scan++; /* a byte of our long long value */
1590 if (leadzero)
1591 {
1592 if (c == 0)
1593 continue;
1594 else
1595 leadzero = 0; /* henceforth we print even zeroes */
1596 }
1597 nib = c >> 4; /* high nibble bits */
1598 *outbuff++ = hexlate[nib];
1599 nib = c & 0x0f; /* low nibble bits */
1600 *outbuff++ = hexlate[nib];
1601 }
1602 return outbuff;
1603 }
1604 } /* longlong_hexchars */
1605
1606
1607
1608 /* I am only going to call this when writing virtual byte streams.
1609 Which possably entails endian conversions
1610 */
1611 static int
1612 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1613 {
1614 static char hexstage[20]; /* At least 16 digits required, plus null */
1615 char *endstring;
1616 long long *llptr;
1617 long long value;
1618 int written = 0;
1619 llptr = (unsigned long long *) myaddr;
1620 if (len == 0)
1621 return 0;
1622 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1623 monitor_expect_prompt (NULL, 0);
1624 while (len >= 8)
1625 {
1626 value = *llptr;
1627 endstring = longlong_hexchars (*llptr, hexstage);
1628 *endstring = '\0'; /* NUll terminate for printf */
1629 monitor_printf ("%s\r", hexstage);
1630 llptr++;
1631 memaddr += 8;
1632 written += 8;
1633 /* If we wanted to, here we could validate the address */
1634 monitor_expect_prompt (NULL, 0);
1635 len -= 8;
1636 }
1637 /* Now exit the sub mode */
1638 monitor_printf (current_monitor->getreg.term_cmd);
1639 monitor_expect_prompt (NULL, 0);
1640 return written;
1641 } /* */
1642
1643
1644
1645 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1646 /* This is for the large blocks of memory which may occur in downloading.
1647 And for monitors which use interactive entry,
1648 And for monitors which do not have other downloading methods.
1649 Without this, we will end up calling monitor_write_memory many times
1650 and do the entry and exit of the sub mode many times
1651 This currently assumes...
1652 MO_SETMEM_INTERACTIVE
1653 ! MO_NO_ECHO_ON_SETMEM
1654 To use this, the you have to patch the monitor_cmds block with
1655 this function. Otherwise, its not tuned up for use by all
1656 monitor variations.
1657 */
1658
1659 static int
1660 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1661 {
1662 int written;
1663 written = 0;
1664 /* FIXME: This would be a good place to put the zero test */
1665 #if 1
1666 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1667 {
1668 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1669 }
1670 #endif
1671 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1672 return written;
1673 }
1674
1675 /* This is an alternate form of monitor_read_memory which is used for monitors
1676 which can only read a single byte/word/etc. at a time. */
1677
1678 static int
1679 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1680 {
1681 unsigned int val;
1682 char membuf[sizeof (int) * 2 + 1];
1683 char *p;
1684 char *cmd;
1685
1686 monitor_debug ("MON read single\n");
1687 #if 0
1688 /* Can't actually use long longs (nice idea, though). In fact, the
1689 call to strtoul below will fail if it tries to convert a value
1690 that's too big to fit in a long. */
1691 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1692 {
1693 len = 8;
1694 cmd = current_monitor->getmem.cmdll;
1695 }
1696 else
1697 #endif
1698 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1699 {
1700 len = 4;
1701 cmd = current_monitor->getmem.cmdl;
1702 }
1703 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1704 {
1705 len = 2;
1706 cmd = current_monitor->getmem.cmdw;
1707 }
1708 else
1709 {
1710 len = 1;
1711 cmd = current_monitor->getmem.cmdb;
1712 }
1713
1714 /* Send the examine command. */
1715
1716 monitor_printf (cmd, memaddr);
1717
1718 /* If RESP_DELIM is specified, we search for that as a leading
1719 delimiter for the memory value. Otherwise, we just start
1720 searching from the start of the buf. */
1721
1722 if (current_monitor->getmem.resp_delim)
1723 {
1724 monitor_debug ("EXP getmem.resp_delim\n");
1725 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1726 }
1727
1728 /* Now, read the appropriate number of hex digits for this loc,
1729 skipping spaces. */
1730
1731 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1732 if (current_monitor->flags & MO_HEX_PREFIX)
1733 {
1734 int c;
1735
1736 c = readchar (timeout);
1737 while (c == ' ')
1738 c = readchar (timeout);
1739 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1740 ;
1741 else
1742 monitor_error ("monitor_read_memory_single",
1743 "bad response from monitor",
1744 memaddr, 0, NULL, 0);
1745 }
1746
1747 {
1748 int i;
1749 for (i = 0; i < len * 2; i++)
1750 {
1751 int c;
1752
1753 while (1)
1754 {
1755 c = readchar (timeout);
1756 if (isxdigit (c))
1757 break;
1758 if (c == ' ')
1759 continue;
1760
1761 monitor_error ("monitor_read_memory_single",
1762 "bad response from monitor",
1763 memaddr, i, membuf, 0);
1764 }
1765 membuf[i] = c;
1766 }
1767 membuf[i] = '\000'; /* terminate the number */
1768 }
1769
1770 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1771 present), we will send TERM_CMD if that is present. In any case, we collect
1772 all of the output into buf, and then wait for the normal prompt. */
1773
1774 if (current_monitor->getmem.term)
1775 {
1776 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1777
1778 if (current_monitor->getmem.term_cmd)
1779 {
1780 monitor_printf (current_monitor->getmem.term_cmd);
1781 monitor_expect_prompt (NULL, 0);
1782 }
1783 }
1784 else
1785 monitor_expect_prompt (NULL, 0); /* get response */
1786
1787 p = membuf;
1788 val = strtoul (membuf, &p, 16);
1789
1790 if (val == 0 && membuf == p)
1791 monitor_error ("monitor_read_memory_single",
1792 "bad value from monitor",
1793 memaddr, 0, membuf, 0);
1794
1795 /* supply register stores in target byte order, so swap here */
1796
1797 store_unsigned_integer (myaddr, len, val);
1798
1799 return len;
1800 }
1801
1802 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1803 memory at MEMADDR. Returns length moved. Currently, we do no more
1804 than 16 bytes at a time. */
1805
1806 static int
1807 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1808 {
1809 unsigned int val;
1810 char buf[512];
1811 char *p, *p1;
1812 int resp_len;
1813 int i;
1814 CORE_ADDR dumpaddr;
1815
1816 if (len <= 0)
1817 {
1818 monitor_debug ("Zero length call to monitor_read_memory\n");
1819 return 0;
1820 }
1821
1822 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1823 paddr_nz (memaddr), (long) myaddr, len);
1824
1825 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1826 memaddr = ADDR_BITS_REMOVE (memaddr);
1827
1828 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1829 return monitor_read_memory_single (memaddr, myaddr, len);
1830
1831 len = min (len, 16);
1832
1833 /* Some dumpers align the first data with the preceeding 16
1834 byte boundary. Some print blanks and start at the
1835 requested boundary. EXACT_DUMPADDR
1836 */
1837
1838 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1839 ? memaddr : memaddr & ~0x0f;
1840
1841 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1842 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1843 len = ((memaddr + len) & ~0xf) - memaddr;
1844
1845 /* send the memory examine command */
1846
1847 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1848 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1849 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1850 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1851 else
1852 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1853
1854 /* If TERM is present, we wait for that to show up. Also, (if TERM
1855 is present), we will send TERM_CMD if that is present. In any
1856 case, we collect all of the output into buf, and then wait for
1857 the normal prompt. */
1858
1859 if (current_monitor->getmem.term)
1860 {
1861 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1862
1863 if (resp_len <= 0)
1864 monitor_error ("monitor_read_memory",
1865 "excessive response from monitor",
1866 memaddr, resp_len, buf, 0);
1867
1868 if (current_monitor->getmem.term_cmd)
1869 {
1870 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1871 strlen (current_monitor->getmem.term_cmd));
1872 monitor_expect_prompt (NULL, 0);
1873 }
1874 }
1875 else
1876 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1877
1878 p = buf;
1879
1880 /* If RESP_DELIM is specified, we search for that as a leading
1881 delimiter for the values. Otherwise, we just start searching
1882 from the start of the buf. */
1883
1884 if (current_monitor->getmem.resp_delim)
1885 {
1886 int retval, tmp;
1887 struct re_registers resp_strings;
1888 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1889
1890 memset (&resp_strings, 0, sizeof (struct re_registers));
1891 tmp = strlen (p);
1892 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1893 &resp_strings);
1894
1895 if (retval < 0)
1896 monitor_error ("monitor_read_memory",
1897 "bad response from monitor",
1898 memaddr, resp_len, buf, 0);
1899
1900 p += resp_strings.end[0];
1901 #if 0
1902 p = strstr (p, current_monitor->getmem.resp_delim);
1903 if (!p)
1904 monitor_error ("monitor_read_memory",
1905 "bad response from monitor",
1906 memaddr, resp_len, buf, 0);
1907 p += strlen (current_monitor->getmem.resp_delim);
1908 #endif
1909 }
1910 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1911 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1912 {
1913 char c;
1914 int fetched = 0;
1915 i = len;
1916 c = *p;
1917
1918
1919 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1920 {
1921 if (isxdigit (c))
1922 {
1923 if ((dumpaddr >= memaddr) && (i > 0))
1924 {
1925 val = fromhex (c) * 16 + fromhex (*(p + 1));
1926 *myaddr++ = val;
1927 if (monitor_debug_p || remote_debug)
1928 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1929 --i;
1930 fetched++;
1931 }
1932 ++dumpaddr;
1933 ++p;
1934 }
1935 ++p; /* skip a blank or other non hex char */
1936 c = *p;
1937 }
1938 if (fetched == 0)
1939 error ("Failed to read via monitor");
1940 if (monitor_debug_p || remote_debug)
1941 fprintf_unfiltered (gdb_stdlog, "\n");
1942 return fetched; /* Return the number of bytes actually read */
1943 }
1944 monitor_debug ("MON scanning bytes\n");
1945
1946 for (i = len; i > 0; i--)
1947 {
1948 /* Skip non-hex chars, but bomb on end of string and newlines */
1949
1950 while (1)
1951 {
1952 if (isxdigit (*p))
1953 break;
1954
1955 if (*p == '\000' || *p == '\n' || *p == '\r')
1956 monitor_error ("monitor_read_memory",
1957 "badly terminated response from monitor",
1958 memaddr, resp_len, buf, 0);
1959 p++;
1960 }
1961
1962 val = strtoul (p, &p1, 16);
1963
1964 if (val == 0 && p == p1)
1965 monitor_error ("monitor_read_memory",
1966 "bad value from monitor",
1967 memaddr, resp_len, buf, 0);
1968
1969 *myaddr++ = val;
1970
1971 if (i == 1)
1972 break;
1973
1974 p = p1;
1975 }
1976
1977 return len;
1978 }
1979
1980 /* Transfer LEN bytes between target address MEMADDR and GDB address
1981 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1982 unused. */
1983
1984 static int
1985 monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1986 struct mem_attrib *attrib, struct target_ops *target)
1987 {
1988 int res;
1989
1990 if (write)
1991 {
1992 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1993 res = monitor_write_memory_block(memaddr, myaddr, len);
1994 else
1995 res = monitor_write_memory(memaddr, myaddr, len);
1996 }
1997 else
1998 {
1999 res = monitor_read_memory(memaddr, myaddr, len);
2000 }
2001
2002 return res;
2003 }
2004
2005 static void
2006 monitor_kill (void)
2007 {
2008 return; /* ignore attempts to kill target system */
2009 }
2010
2011 /* All we actually do is set the PC to the start address of exec_bfd, and start
2012 the program at that point. */
2013
2014 static void
2015 monitor_create_inferior (char *exec_file, char *args, char **env,
2016 int from_tty)
2017 {
2018 if (args && (*args != '\000'))
2019 error ("Args are not supported by the monitor.");
2020
2021 first_time = 1;
2022 clear_proceed_status ();
2023 proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
2024 }
2025
2026 /* Clean up when a program exits.
2027 The program actually lives on in the remote processor's RAM, and may be
2028 run again without a download. Don't leave it full of breakpoint
2029 instructions. */
2030
2031 static void
2032 monitor_mourn_inferior (void)
2033 {
2034 unpush_target (targ_ops);
2035 generic_mourn_inferior (); /* Do all the proper things now */
2036 }
2037
2038 /* Tell the monitor to add a breakpoint. */
2039
2040 static int
2041 monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
2042 {
2043 int i;
2044 const unsigned char *bp;
2045 int bplen;
2046
2047 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2048 if (current_monitor->set_break == NULL)
2049 error ("No set_break defined for this monitor");
2050
2051 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2052 addr = ADDR_BITS_REMOVE (addr);
2053
2054 /* Determine appropriate breakpoint size for this address. */
2055 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2056
2057 for (i = 0; i < current_monitor->num_breakpoints; i++)
2058 {
2059 if (breakaddr[i] == 0)
2060 {
2061 breakaddr[i] = addr;
2062 monitor_read_memory (addr, shadow, bplen);
2063 monitor_printf (current_monitor->set_break, addr);
2064 monitor_expect_prompt (NULL, 0);
2065 return 0;
2066 }
2067 }
2068
2069 error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
2070 }
2071
2072 /* Tell the monitor to remove a breakpoint. */
2073
2074 static int
2075 monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
2076 {
2077 int i;
2078
2079 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2080 if (current_monitor->clr_break == NULL)
2081 error ("No clr_break defined for this monitor");
2082
2083 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2084 addr = ADDR_BITS_REMOVE (addr);
2085
2086 for (i = 0; i < current_monitor->num_breakpoints; i++)
2087 {
2088 if (breakaddr[i] == addr)
2089 {
2090 breakaddr[i] = 0;
2091 /* some monitors remove breakpoints based on the address */
2092 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2093 monitor_printf (current_monitor->clr_break, addr);
2094 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2095 monitor_printf (current_monitor->clr_break, i + 1);
2096 else
2097 monitor_printf (current_monitor->clr_break, i);
2098 monitor_expect_prompt (NULL, 0);
2099 return 0;
2100 }
2101 }
2102 fprintf_unfiltered (gdb_stderr,
2103 "Can't find breakpoint associated with 0x%s\n",
2104 paddr_nz (addr));
2105 return 1;
2106 }
2107
2108 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2109 an S-record. Return non-zero if the ACK is received properly. */
2110
2111 static int
2112 monitor_wait_srec_ack (void)
2113 {
2114 int ch;
2115
2116 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2117 {
2118 return (readchar (timeout) == '+');
2119 }
2120 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2121 {
2122 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2123 if ((ch = readchar (1)) < 0)
2124 return 0;
2125 if ((ch = readchar (1)) < 0)
2126 return 0;
2127 if ((ch = readchar (1)) < 0)
2128 return 0;
2129 if ((ch = readchar (1)) < 0)
2130 return 0;
2131 }
2132 return 1;
2133 }
2134
2135 /* monitor_load -- download a file. */
2136
2137 static void
2138 monitor_load (char *file, int from_tty)
2139 {
2140 monitor_debug ("MON load\n");
2141
2142 if (current_monitor->load_routine)
2143 current_monitor->load_routine (monitor_desc, file, hashmark);
2144 else
2145 { /* The default is ascii S-records */
2146 int n;
2147 unsigned long load_offset;
2148 char buf[128];
2149
2150 /* enable user to specify address for downloading as 2nd arg to load */
2151 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2152 if (n > 1)
2153 file = buf;
2154 else
2155 load_offset = 0;
2156
2157 monitor_printf (current_monitor->load);
2158 if (current_monitor->loadresp)
2159 monitor_expect (current_monitor->loadresp, NULL, 0);
2160
2161 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2162 32, SREC_ALL, hashmark,
2163 current_monitor->flags & MO_SREC_ACK ?
2164 monitor_wait_srec_ack : NULL);
2165
2166 monitor_expect_prompt (NULL, 0);
2167 }
2168
2169 /* Finally, make the PC point at the start address */
2170 if (exec_bfd)
2171 write_pc (bfd_get_start_address (exec_bfd));
2172
2173 /* There used to be code here which would clear inferior_ptid and
2174 call clear_symtab_users. None of that should be necessary:
2175 monitor targets should behave like remote protocol targets, and
2176 since generic_load does none of those things, this function
2177 shouldn't either.
2178
2179 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2180 a load, we still have a valid connection to the monitor, with a
2181 live processor state to fiddle with. The user can type
2182 `continue' or `jump *start' and make the program run. If they do
2183 these things, however, GDB will be talking to a running program
2184 while inferior_ptid is null_ptid; this makes things like
2185 reinit_frame_cache very confused. */
2186 }
2187
2188 static void
2189 monitor_stop (void)
2190 {
2191 monitor_debug ("MON stop\n");
2192 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2193 serial_send_break (monitor_desc);
2194 if (current_monitor->stop)
2195 monitor_printf_noecho (current_monitor->stop);
2196 }
2197
2198 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2199 in OUTPUT until the prompt is seen. FIXME: We read the characters
2200 ourseleves here cause of a nasty echo. */
2201
2202 static void
2203 monitor_rcmd (char *command,
2204 struct ui_file *outbuf)
2205 {
2206 char *p;
2207 int resp_len;
2208 char buf[1000];
2209
2210 if (monitor_desc == NULL)
2211 error ("monitor target not open.");
2212
2213 p = current_monitor->prompt;
2214
2215 /* Send the command. Note that if no args were supplied, then we're
2216 just sending the monitor a newline, which is sometimes useful. */
2217
2218 monitor_printf ("%s\r", (command ? command : ""));
2219
2220 resp_len = monitor_expect_prompt (buf, sizeof buf);
2221
2222 fputs_unfiltered (buf, outbuf); /* Output the response */
2223 }
2224
2225 /* Convert hex digit A to a number. */
2226
2227 #if 0
2228 static int
2229 from_hex (int a)
2230 {
2231 if (a >= '0' && a <= '9')
2232 return a - '0';
2233 if (a >= 'a' && a <= 'f')
2234 return a - 'a' + 10;
2235 if (a >= 'A' && a <= 'F')
2236 return a - 'A' + 10;
2237
2238 error ("Reply contains invalid hex digit 0x%x", a);
2239 }
2240 #endif
2241
2242 char *
2243 monitor_get_dev_name (void)
2244 {
2245 return dev_name;
2246 }
2247
2248 static struct target_ops monitor_ops;
2249
2250 static void
2251 init_base_monitor_ops (void)
2252 {
2253 monitor_ops.to_close = monitor_close;
2254 monitor_ops.to_detach = monitor_detach;
2255 monitor_ops.to_resume = monitor_resume;
2256 monitor_ops.to_wait = monitor_wait;
2257 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2258 monitor_ops.to_store_registers = monitor_store_registers;
2259 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2260 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2261 monitor_ops.to_files_info = monitor_files_info;
2262 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2263 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2264 monitor_ops.to_kill = monitor_kill;
2265 monitor_ops.to_load = monitor_load;
2266 monitor_ops.to_create_inferior = monitor_create_inferior;
2267 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2268 monitor_ops.to_stop = monitor_stop;
2269 monitor_ops.to_rcmd = monitor_rcmd;
2270 monitor_ops.to_stratum = process_stratum;
2271 monitor_ops.to_has_all_memory = 1;
2272 monitor_ops.to_has_memory = 1;
2273 monitor_ops.to_has_stack = 1;
2274 monitor_ops.to_has_registers = 1;
2275 monitor_ops.to_has_execution = 1;
2276 monitor_ops.to_magic = OPS_MAGIC;
2277 } /* init_base_monitor_ops */
2278
2279 /* Init the target_ops structure pointed at by OPS */
2280
2281 void
2282 init_monitor_ops (struct target_ops *ops)
2283 {
2284 if (monitor_ops.to_magic != OPS_MAGIC)
2285 init_base_monitor_ops ();
2286
2287 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2288 }
2289
2290 /* Define additional commands that are usually only used by monitors. */
2291
2292 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2293
2294 void
2295 _initialize_remote_monitors (void)
2296 {
2297 init_base_monitor_ops ();
2298 deprecated_add_show_from_set
2299 (add_set_cmd ("hash", no_class, var_boolean,
2300 (char *) &hashmark,
2301 "Set display of activity while downloading a file.\n\
2302 When enabled, a hashmark \'#\' is displayed.",
2303 &setlist),
2304 &showlist);
2305
2306 deprecated_add_show_from_set
2307 (add_set_cmd ("monitor", no_class, var_zinteger,
2308 (char *) &monitor_debug_p,
2309 "Set debugging of remote monitor communication.\n\
2310 When enabled, communication between GDB and the remote monitor\n\
2311 is displayed.", &setdebuglist),
2312 &showdebuglist);
2313 }
This page took 0.072517 seconds and 3 git commands to generate.