2009-10-19 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file was derived from various remote-* modules. It is a collection
25 of generic support functions so GDB can talk directly to a ROM based
26 monitor. This saves use from having to hack an exception based handler
27 into existence, and makes for quick porting.
28
29 This module talks to a debug monitor called 'MONITOR', which
30 We communicate with MONITOR via either a direct serial line, or a TCP
31 (or possibly TELNET) stream to a terminal multiplexor,
32 which in turn talks to the target board. */
33
34 /* FIXME 32x64: This code assumes that registers and addresses are at
35 most 32 bits long. If they can be larger, you will need to declare
36 values as LONGEST and use %llx or some such to print values when
37 building commands to send to the monitor. Since we don't know of
38 any actual 64-bit targets with ROM monitors that use this code,
39 it's not an issue right now. -sts 4/18/96 */
40
41 #include "defs.h"
42 #include "gdbcore.h"
43 #include "target.h"
44 #include "exceptions.h"
45 #include <signal.h>
46 #include <ctype.h>
47 #include "gdb_string.h"
48 #include <sys/types.h>
49 #include "command.h"
50 #include "serial.h"
51 #include "monitor.h"
52 #include "gdbcmd.h"
53 #include "inferior.h"
54 #include "gdb_regex.h"
55 #include "srec.h"
56 #include "regcache.h"
57 #include "gdbthread.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_interrupt_query (void);
63 static void monitor_interrupt_twice (int);
64 static void monitor_stop (ptid_t);
65 static void monitor_dump_regs (struct regcache *regcache);
66
67 #if 0
68 static int from_hex (int a);
69 #endif
70
71 static struct monitor_ops *current_monitor;
72
73 static int hashmark; /* flag set by "set hash" */
74
75 static int timeout = 30;
76
77 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
78
79 static void (*ofunc) (); /* Old SIGINT signal handler */
80
81 static CORE_ADDR *breakaddr;
82
83 /* Descriptor for I/O to remote machine. Initialize it to NULL so
84 that monitor_open knows that we don't have a file open when the
85 program starts. */
86
87 static struct serial *monitor_desc = NULL;
88
89 /* Pointer to regexp pattern matching data */
90
91 static struct re_pattern_buffer register_pattern;
92 static char register_fastmap[256];
93
94 static struct re_pattern_buffer getmem_resp_delim_pattern;
95 static char getmem_resp_delim_fastmap[256];
96
97 static struct re_pattern_buffer setmem_resp_delim_pattern;
98 static char setmem_resp_delim_fastmap[256];
99
100 static struct re_pattern_buffer setreg_resp_delim_pattern;
101 static char setreg_resp_delim_fastmap[256];
102
103 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
104 monitor_wait wakes up. */
105
106 static int first_time = 0; /* is this the first time we're executing after
107 gaving created the child proccess? */
108
109
110 /* This is the ptid we use while we're connected to a monitor. Its
111 value is arbitrary, as monitor targets don't have a notion of
112 processes or threads, but we need something non-null to place in
113 inferior_ptid. */
114 static ptid_t monitor_ptid;
115
116 #define TARGET_BUF_SIZE 2048
117
118 /* Monitor specific debugging information. Typically only useful to
119 the developer of a new monitor interface. */
120
121 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
122
123 static int monitor_debug_p = 0;
124
125 /* NOTE: This file alternates between monitor_debug_p and remote_debug
126 when determining if debug information is printed. Perhaps this
127 could be simplified. */
128
129 static void
130 monitor_debug (const char *fmt, ...)
131 {
132 if (monitor_debug_p)
133 {
134 va_list args;
135 va_start (args, fmt);
136 vfprintf_filtered (gdb_stdlog, fmt, args);
137 va_end (args);
138 }
139 }
140
141
142 /* Convert a string into a printable representation, Return # byte in
143 the new string. When LEN is >0 it specifies the size of the
144 string. Otherwize strlen(oldstr) is used. */
145
146 static void
147 monitor_printable_string (char *newstr, char *oldstr, int len)
148 {
149 int ch;
150 int i;
151
152 if (len <= 0)
153 len = strlen (oldstr);
154
155 for (i = 0; i < len; i++)
156 {
157 ch = oldstr[i];
158 switch (ch)
159 {
160 default:
161 if (isprint (ch))
162 *newstr++ = ch;
163
164 else
165 {
166 sprintf (newstr, "\\x%02x", ch & 0xff);
167 newstr += 4;
168 }
169 break;
170
171 case '\\':
172 *newstr++ = '\\';
173 *newstr++ = '\\';
174 break;
175 case '\b':
176 *newstr++ = '\\';
177 *newstr++ = 'b';
178 break;
179 case '\f':
180 *newstr++ = '\\';
181 *newstr++ = 't';
182 break;
183 case '\n':
184 *newstr++ = '\\';
185 *newstr++ = 'n';
186 break;
187 case '\r':
188 *newstr++ = '\\';
189 *newstr++ = 'r';
190 break;
191 case '\t':
192 *newstr++ = '\\';
193 *newstr++ = 't';
194 break;
195 case '\v':
196 *newstr++ = '\\';
197 *newstr++ = 'v';
198 break;
199 }
200 }
201
202 *newstr++ = '\0';
203 }
204
205 /* Print monitor errors with a string, converting the string to printable
206 representation. */
207
208 static void
209 monitor_error (char *function, char *message,
210 CORE_ADDR memaddr, int len, char *string, int final_char)
211 {
212 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
213 char *safe_string = alloca ((real_len * 4) + 1);
214 monitor_printable_string (safe_string, string, real_len);
215
216 if (final_char)
217 error (_("%s (%s): %s: %s%c"),
218 function, paddress (target_gdbarch, memaddr),
219 message, safe_string, final_char);
220 else
221 error (_("%s (%s): %s: %s"),
222 function, paddress (target_gdbarch, memaddr),
223 message, safe_string);
224 }
225
226 /* Convert hex digit A to a number. */
227
228 static int
229 fromhex (int a)
230 {
231 if (a >= '0' && a <= '9')
232 return a - '0';
233 else if (a >= 'a' && a <= 'f')
234 return a - 'a' + 10;
235 else if (a >= 'A' && a <= 'F')
236 return a - 'A' + 10;
237 else
238 error (_("Invalid hex digit %d"), a);
239 }
240
241 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
242
243 This function exists to get around the problem that many host platforms
244 don't have a printf that can print 64-bit addresses. The %A format
245 specification is recognized as a special case, and causes the argument
246 to be printed as a 64-bit hexadecimal address.
247
248 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
249 If it is a '%s' format, the argument is a string; otherwise the
250 argument is assumed to be a long integer.
251
252 %% is also turned into a single %.
253 */
254
255 static void
256 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
257 {
258 int addr_bit = gdbarch_addr_bit (target_gdbarch);
259 char format[10];
260 char fmt;
261 char *p;
262 int i;
263 long arg_int;
264 CORE_ADDR arg_addr;
265 char *arg_string;
266
267 for (p = pattern; *p; p++)
268 {
269 if (*p == '%')
270 {
271 /* Copy the format specifier to a separate buffer. */
272 format[0] = *p++;
273 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
274 i++, p++)
275 format[i] = *p;
276 format[i] = fmt = *p;
277 format[i + 1] = '\0';
278
279 /* Fetch the next argument and print it. */
280 switch (fmt)
281 {
282 case '%':
283 strcpy (sndbuf, "%");
284 break;
285 case 'A':
286 arg_addr = va_arg (args, CORE_ADDR);
287 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
288 break;
289 case 's':
290 arg_string = va_arg (args, char *);
291 sprintf (sndbuf, format, arg_string);
292 break;
293 default:
294 arg_int = va_arg (args, long);
295 sprintf (sndbuf, format, arg_int);
296 break;
297 }
298 sndbuf += strlen (sndbuf);
299 }
300 else
301 *sndbuf++ = *p;
302 }
303 *sndbuf = '\0';
304 }
305
306
307 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
308 Works just like printf. */
309
310 void
311 monitor_printf_noecho (char *pattern,...)
312 {
313 va_list args;
314 char sndbuf[2000];
315 int len;
316
317 va_start (args, pattern);
318
319 monitor_vsprintf (sndbuf, pattern, args);
320
321 len = strlen (sndbuf);
322 if (len + 1 > sizeof sndbuf)
323 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
324
325 if (monitor_debug_p)
326 {
327 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
328 monitor_printable_string (safe_string, sndbuf, 0);
329 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
330 }
331
332 monitor_write (sndbuf, len);
333 }
334
335 /* monitor_printf -- Send data to monitor and check the echo. Works just like
336 printf. */
337
338 void
339 monitor_printf (char *pattern,...)
340 {
341 va_list args;
342 char sndbuf[2000];
343 int len;
344
345 va_start (args, pattern);
346
347 monitor_vsprintf (sndbuf, pattern, args);
348
349 len = strlen (sndbuf);
350 if (len + 1 > sizeof sndbuf)
351 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
352
353 if (monitor_debug_p)
354 {
355 char *safe_string = (char *) alloca ((len * 4) + 1);
356 monitor_printable_string (safe_string, sndbuf, 0);
357 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
358 }
359
360 monitor_write (sndbuf, len);
361
362 /* We used to expect that the next immediate output was the characters we
363 just output, but sometimes some extra junk appeared before the characters
364 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
365 So, just start searching for what we sent, and skip anything unknown. */
366 monitor_debug ("ExpectEcho\n");
367 monitor_expect (sndbuf, (char *) 0, 0);
368 }
369
370
371 /* Write characters to the remote system. */
372
373 void
374 monitor_write (char *buf, int buflen)
375 {
376 if (serial_write (monitor_desc, buf, buflen))
377 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
378 safe_strerror (errno));
379 }
380
381
382 /* Read a binary character from the remote system, doing all the fancy
383 timeout stuff, but without interpreting the character in any way,
384 and without printing remote debug information. */
385
386 int
387 monitor_readchar (void)
388 {
389 int c;
390 int looping;
391
392 do
393 {
394 looping = 0;
395 c = serial_readchar (monitor_desc, timeout);
396
397 if (c >= 0)
398 c &= 0xff; /* don't lose bit 7 */
399 }
400 while (looping);
401
402 if (c >= 0)
403 return c;
404
405 if (c == SERIAL_TIMEOUT)
406 error (_("Timeout reading from remote system."));
407
408 perror_with_name (_("remote-monitor"));
409 }
410
411
412 /* Read a character from the remote system, doing all the fancy
413 timeout stuff. */
414
415 static int
416 readchar (int timeout)
417 {
418 int c;
419 static enum
420 {
421 last_random, last_nl, last_cr, last_crnl
422 }
423 state = last_random;
424 int looping;
425
426 do
427 {
428 looping = 0;
429 c = serial_readchar (monitor_desc, timeout);
430
431 if (c >= 0)
432 {
433 c &= 0x7f;
434 /* This seems to interfere with proper function of the
435 input stream */
436 if (monitor_debug_p || remote_debug)
437 {
438 char buf[2];
439 buf[0] = c;
440 buf[1] = '\0';
441 puts_debug ("read -->", buf, "<--");
442 }
443
444 }
445
446 /* Canonicialize \n\r combinations into one \r */
447 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
448 {
449 if ((c == '\r' && state == last_nl)
450 || (c == '\n' && state == last_cr))
451 {
452 state = last_crnl;
453 looping = 1;
454 }
455 else if (c == '\r')
456 state = last_cr;
457 else if (c != '\n')
458 state = last_random;
459 else
460 {
461 state = last_nl;
462 c = '\r';
463 }
464 }
465 }
466 while (looping);
467
468 if (c >= 0)
469 return c;
470
471 if (c == SERIAL_TIMEOUT)
472 #if 0
473 /* I fail to see how detaching here can be useful */
474 if (in_monitor_wait) /* Watchdog went off */
475 {
476 target_mourn_inferior ();
477 error (_("GDB serial timeout has expired. Target detached."));
478 }
479 else
480 #endif
481 error (_("Timeout reading from remote system."));
482
483 perror_with_name (_("remote-monitor"));
484 }
485
486 /* Scan input from the remote system, until STRING is found. If BUF is non-
487 zero, then collect input until we have collected either STRING or BUFLEN-1
488 chars. In either case we terminate BUF with a 0. If input overflows BUF
489 because STRING can't be found, return -1, else return number of chars in BUF
490 (minus the terminating NUL). Note that in the non-overflow case, STRING
491 will be at the end of BUF. */
492
493 int
494 monitor_expect (char *string, char *buf, int buflen)
495 {
496 char *p = string;
497 int obuflen = buflen;
498 int c;
499
500 if (monitor_debug_p)
501 {
502 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
503 monitor_printable_string (safe_string, string, 0);
504 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
505 }
506
507 immediate_quit++;
508 while (1)
509 {
510 if (buf)
511 {
512 if (buflen < 2)
513 {
514 *buf = '\000';
515 immediate_quit--;
516 return -1;
517 }
518
519 c = readchar (timeout);
520 if (c == '\000')
521 continue;
522 *buf++ = c;
523 buflen--;
524 }
525 else
526 c = readchar (timeout);
527
528 /* Don't expect any ^C sent to be echoed */
529
530 if (*p == '\003' || c == *p)
531 {
532 p++;
533 if (*p == '\0')
534 {
535 immediate_quit--;
536
537 if (buf)
538 {
539 *buf++ = '\000';
540 return obuflen - buflen;
541 }
542 else
543 return 0;
544 }
545 }
546 else
547 {
548 /* We got a character that doesn't match the string. We need to
549 back up p, but how far? If we're looking for "..howdy" and the
550 monitor sends "...howdy"? There's certainly a match in there,
551 but when we receive the third ".", we won't find it if we just
552 restart the matching at the beginning of the string.
553
554 This is a Boyer-Moore kind of situation. We want to reset P to
555 the end of the longest prefix of STRING that is a suffix of
556 what we've read so far. In the example above, that would be
557 ".." --- the longest prefix of "..howdy" that is a suffix of
558 "...". This longest prefix could be the empty string, if C
559 is nowhere to be found in STRING.
560
561 If this longest prefix is not the empty string, it must contain
562 C, so let's search from the end of STRING for instances of C,
563 and see if the portion of STRING before that is a suffix of
564 what we read before C. Actually, we can search backwards from
565 p, since we know no prefix can be longer than that.
566
567 Note that we can use STRING itself, along with C, as a record
568 of what we've received so far. :) */
569 int i;
570
571 for (i = (p - string) - 1; i >= 0; i--)
572 if (string[i] == c)
573 {
574 /* Is this prefix a suffix of what we've read so far?
575 In other words, does
576 string[0 .. i-1] == string[p - i, p - 1]? */
577 if (! memcmp (string, p - i, i))
578 {
579 p = string + i + 1;
580 break;
581 }
582 }
583 if (i < 0)
584 p = string;
585 }
586 }
587 }
588
589 /* Search for a regexp. */
590
591 static int
592 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
593 {
594 char *mybuf;
595 char *p;
596 monitor_debug ("MON Expecting regexp\n");
597 if (buf)
598 mybuf = buf;
599 else
600 {
601 mybuf = alloca (TARGET_BUF_SIZE);
602 buflen = TARGET_BUF_SIZE;
603 }
604
605 p = mybuf;
606 while (1)
607 {
608 int retval;
609
610 if (p - mybuf >= buflen)
611 { /* Buffer about to overflow */
612
613 /* On overflow, we copy the upper half of the buffer to the lower half. Not
614 great, but it usually works... */
615
616 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
617 p = mybuf + buflen / 2;
618 }
619
620 *p++ = readchar (timeout);
621
622 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
623 if (retval >= 0)
624 return 1;
625 }
626 }
627
628 /* Keep discarding input until we see the MONITOR prompt.
629
630 The convention for dealing with the prompt is that you
631 o give your command
632 o *then* wait for the prompt.
633
634 Thus the last thing that a procedure does with the serial line will
635 be an monitor_expect_prompt(). Exception: monitor_resume does not
636 wait for the prompt, because the terminal is being handed over to
637 the inferior. However, the next thing which happens after that is
638 a monitor_wait which does wait for the prompt. Note that this
639 includes abnormal exit, e.g. error(). This is necessary to prevent
640 getting into states from which we can't recover. */
641
642 int
643 monitor_expect_prompt (char *buf, int buflen)
644 {
645 monitor_debug ("MON Expecting prompt\n");
646 return monitor_expect (current_monitor->prompt, buf, buflen);
647 }
648
649 /* Get N 32-bit words from remote, each preceded by a space, and put
650 them in registers starting at REGNO. */
651
652 #if 0
653 static unsigned long
654 get_hex_word (void)
655 {
656 unsigned long val;
657 int i;
658 int ch;
659
660 do
661 ch = readchar (timeout);
662 while (isspace (ch));
663
664 val = from_hex (ch);
665
666 for (i = 7; i >= 1; i--)
667 {
668 ch = readchar (timeout);
669 if (!isxdigit (ch))
670 break;
671 val = (val << 4) | from_hex (ch);
672 }
673
674 return val;
675 }
676 #endif
677
678 static void
679 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
680 char *fastmap)
681 {
682 int tmp;
683 const char *val;
684
685 compiled_pattern->fastmap = fastmap;
686
687 tmp = re_set_syntax (RE_SYNTAX_EMACS);
688 val = re_compile_pattern (pattern,
689 strlen (pattern),
690 compiled_pattern);
691 re_set_syntax (tmp);
692
693 if (val)
694 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
695
696 if (fastmap)
697 re_compile_fastmap (compiled_pattern);
698 }
699
700 /* Open a connection to a remote debugger. NAME is the filename used
701 for communication. */
702
703 void
704 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
705 {
706 char *name;
707 char **p;
708 struct inferior *inf;
709
710 if (mon_ops->magic != MONITOR_OPS_MAGIC)
711 error (_("Magic number of monitor_ops struct wrong."));
712
713 targ_ops = mon_ops->target;
714 name = targ_ops->to_shortname;
715
716 if (!args)
717 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
718 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
719
720 target_preopen (from_tty);
721
722 /* Setup pattern for register dump */
723
724 if (mon_ops->register_pattern)
725 compile_pattern (mon_ops->register_pattern, &register_pattern,
726 register_fastmap);
727
728 if (mon_ops->getmem.resp_delim)
729 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
730 getmem_resp_delim_fastmap);
731
732 if (mon_ops->setmem.resp_delim)
733 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
734 setmem_resp_delim_fastmap);
735
736 if (mon_ops->setreg.resp_delim)
737 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
738 setreg_resp_delim_fastmap);
739
740 unpush_target (targ_ops);
741
742 if (dev_name)
743 xfree (dev_name);
744 dev_name = xstrdup (args);
745
746 monitor_desc = serial_open (dev_name);
747
748 if (!monitor_desc)
749 perror_with_name (dev_name);
750
751 if (baud_rate != -1)
752 {
753 if (serial_setbaudrate (monitor_desc, baud_rate))
754 {
755 serial_close (monitor_desc);
756 perror_with_name (dev_name);
757 }
758 }
759
760 serial_raw (monitor_desc);
761
762 serial_flush_input (monitor_desc);
763
764 /* some systems only work with 2 stop bits */
765
766 serial_setstopbits (monitor_desc, mon_ops->stopbits);
767
768 current_monitor = mon_ops;
769
770 /* See if we can wake up the monitor. First, try sending a stop sequence,
771 then send the init strings. Last, remove all breakpoints. */
772
773 if (current_monitor->stop)
774 {
775 monitor_stop (inferior_ptid);
776 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
777 {
778 monitor_debug ("EXP Open echo\n");
779 monitor_expect_prompt (NULL, 0);
780 }
781 }
782
783 /* wake up the monitor and see if it's alive */
784 for (p = mon_ops->init; *p != NULL; p++)
785 {
786 /* Some of the characters we send may not be echoed,
787 but we hope to get a prompt at the end of it all. */
788
789 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
790 monitor_printf (*p);
791 else
792 monitor_printf_noecho (*p);
793 monitor_expect_prompt (NULL, 0);
794 }
795
796 serial_flush_input (monitor_desc);
797
798 /* Alloc breakpoints */
799 if (mon_ops->set_break != NULL)
800 {
801 if (mon_ops->num_breakpoints == 0)
802 mon_ops->num_breakpoints = 8;
803
804 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
805 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
806 }
807
808 /* Remove all breakpoints */
809
810 if (mon_ops->clr_all_break)
811 {
812 monitor_printf (mon_ops->clr_all_break);
813 monitor_expect_prompt (NULL, 0);
814 }
815
816 if (from_tty)
817 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
818
819 push_target (targ_ops);
820
821 /* Start afresh. */
822 init_thread_list ();
823
824 /* Make run command think we are busy... */
825 inferior_ptid = monitor_ptid;
826 inf = current_inferior ();
827 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
828 add_thread_silent (inferior_ptid);
829
830 /* Give monitor_wait something to read */
831
832 monitor_printf (current_monitor->line_term);
833
834 start_remote (from_tty);
835 }
836
837 /* Close out all files and local state before this target loses
838 control. */
839
840 void
841 monitor_close (int quitting)
842 {
843 if (monitor_desc)
844 serial_close (monitor_desc);
845
846 /* Free breakpoint memory */
847 if (breakaddr != NULL)
848 {
849 xfree (breakaddr);
850 breakaddr = NULL;
851 }
852
853 monitor_desc = NULL;
854
855 delete_thread_silent (monitor_ptid);
856 delete_inferior_silent (ptid_get_pid (monitor_ptid));
857 }
858
859 /* Terminate the open connection to the remote debugger. Use this
860 when you want to detach and do something else with your gdb. */
861
862 static void
863 monitor_detach (struct target_ops *ops, char *args, int from_tty)
864 {
865 pop_target (); /* calls monitor_close to do the real work */
866 if (from_tty)
867 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
868 }
869
870 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
871
872 char *
873 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
874 {
875 struct gdbarch *gdbarch = get_regcache_arch (regcache);
876 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
877 ULONGEST val;
878 unsigned char regbuf[MAX_REGISTER_SIZE];
879 char *p;
880
881 val = 0;
882 p = valstr;
883 while (p && *p != '\0')
884 {
885 if (*p == '\r' || *p == '\n')
886 {
887 while (*p != '\0')
888 p++;
889 break;
890 }
891 if (isspace (*p))
892 {
893 p++;
894 continue;
895 }
896 if (!isxdigit (*p) && *p != 'x')
897 {
898 break;
899 }
900
901 val <<= 4;
902 val += fromhex (*p++);
903 }
904 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
905
906 if (val == 0 && valstr == p)
907 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
908 regno, valstr);
909
910 /* supply register stores in target byte order, so swap here */
911
912 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
913 val);
914
915 regcache_raw_supply (regcache, regno, regbuf);
916
917 return p;
918 }
919
920 /* Tell the remote machine to resume. */
921
922 static void
923 monitor_resume (struct target_ops *ops,
924 ptid_t ptid, int step, enum target_signal sig)
925 {
926 /* Some monitors require a different command when starting a program */
927 monitor_debug ("MON resume\n");
928 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
929 {
930 first_time = 0;
931 monitor_printf ("run\r");
932 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
933 dump_reg_flag = 1;
934 return;
935 }
936 if (step)
937 monitor_printf (current_monitor->step);
938 else
939 {
940 if (current_monitor->continue_hook)
941 (*current_monitor->continue_hook) ();
942 else
943 monitor_printf (current_monitor->cont);
944 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
945 dump_reg_flag = 1;
946 }
947 }
948
949 /* Parse the output of a register dump command. A monitor specific
950 regexp is used to extract individual register descriptions of the
951 form REG=VAL. Each description is split up into a name and a value
952 string which are passed down to monitor specific code. */
953
954 static void
955 parse_register_dump (struct regcache *regcache, char *buf, int len)
956 {
957 monitor_debug ("MON Parsing register dump\n");
958 while (1)
959 {
960 int regnamelen, vallen;
961 char *regname, *val;
962 /* Element 0 points to start of register name, and element 1
963 points to the start of the register value. */
964 struct re_registers register_strings;
965
966 memset (&register_strings, 0, sizeof (struct re_registers));
967
968 if (re_search (&register_pattern, buf, len, 0, len,
969 &register_strings) == -1)
970 break;
971
972 regnamelen = register_strings.end[1] - register_strings.start[1];
973 regname = buf + register_strings.start[1];
974 vallen = register_strings.end[2] - register_strings.start[2];
975 val = buf + register_strings.start[2];
976
977 current_monitor->supply_register (regcache, regname, regnamelen,
978 val, vallen);
979
980 buf += register_strings.end[0];
981 len -= register_strings.end[0];
982 }
983 }
984
985 /* Send ^C to target to halt it. Target will respond, and send us a
986 packet. */
987
988 static void
989 monitor_interrupt (int signo)
990 {
991 /* If this doesn't work, try more severe steps. */
992 signal (signo, monitor_interrupt_twice);
993
994 if (monitor_debug_p || remote_debug)
995 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
996
997 target_stop (inferior_ptid);
998 }
999
1000 /* The user typed ^C twice. */
1001
1002 static void
1003 monitor_interrupt_twice (int signo)
1004 {
1005 signal (signo, ofunc);
1006
1007 monitor_interrupt_query ();
1008
1009 signal (signo, monitor_interrupt);
1010 }
1011
1012 /* Ask the user what to do when an interrupt is received. */
1013
1014 static void
1015 monitor_interrupt_query (void)
1016 {
1017 target_terminal_ours ();
1018
1019 if (query (_("Interrupted while waiting for the program.\n\
1020 Give up (and stop debugging it)? ")))
1021 {
1022 target_mourn_inferior ();
1023 deprecated_throw_reason (RETURN_QUIT);
1024 }
1025
1026 target_terminal_inferior ();
1027 }
1028
1029 static void
1030 monitor_wait_cleanup (void *old_timeout)
1031 {
1032 timeout = *(int *) old_timeout;
1033 signal (SIGINT, ofunc);
1034 in_monitor_wait = 0;
1035 }
1036
1037
1038
1039 static void
1040 monitor_wait_filter (char *buf,
1041 int bufmax,
1042 int *ext_resp_len,
1043 struct target_waitstatus *status)
1044 {
1045 int resp_len;
1046 do
1047 {
1048 resp_len = monitor_expect_prompt (buf, bufmax);
1049 *ext_resp_len = resp_len;
1050
1051 if (resp_len <= 0)
1052 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1053 }
1054 while (resp_len < 0);
1055
1056 /* Print any output characters that were preceded by ^O. */
1057 /* FIXME - This would be great as a user settabgle flag */
1058 if (monitor_debug_p || remote_debug
1059 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1060 {
1061 int i;
1062
1063 for (i = 0; i < resp_len - 1; i++)
1064 if (buf[i] == 0x0f)
1065 putchar_unfiltered (buf[++i]);
1066 }
1067 }
1068
1069
1070
1071 /* Wait until the remote machine stops, then return, storing status in
1072 status just as `wait' would. */
1073
1074 static ptid_t
1075 monitor_wait (struct target_ops *ops,
1076 ptid_t ptid, struct target_waitstatus *status, int options)
1077 {
1078 int old_timeout = timeout;
1079 char buf[TARGET_BUF_SIZE];
1080 int resp_len;
1081 struct cleanup *old_chain;
1082
1083 status->kind = TARGET_WAITKIND_EXITED;
1084 status->value.integer = 0;
1085
1086 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1087 monitor_debug ("MON wait\n");
1088
1089 #if 0
1090 /* This is somthing other than a maintenance command */
1091 in_monitor_wait = 1;
1092 timeout = watchdog > 0 ? watchdog : -1;
1093 #else
1094 timeout = -1; /* Don't time out -- user program is running. */
1095 #endif
1096
1097 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1098
1099 if (current_monitor->wait_filter)
1100 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1101 else
1102 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1103
1104 #if 0 /* Transferred to monitor wait filter */
1105 do
1106 {
1107 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1108
1109 if (resp_len <= 0)
1110 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1111 }
1112 while (resp_len < 0);
1113
1114 /* Print any output characters that were preceded by ^O. */
1115 /* FIXME - This would be great as a user settabgle flag */
1116 if (monitor_debug_p || remote_debug
1117 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1118 {
1119 int i;
1120
1121 for (i = 0; i < resp_len - 1; i++)
1122 if (buf[i] == 0x0f)
1123 putchar_unfiltered (buf[++i]);
1124 }
1125 #endif
1126
1127 signal (SIGINT, ofunc);
1128
1129 timeout = old_timeout;
1130 #if 0
1131 if (dump_reg_flag && current_monitor->dump_registers)
1132 {
1133 dump_reg_flag = 0;
1134 monitor_printf (current_monitor->dump_registers);
1135 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1136 }
1137
1138 if (current_monitor->register_pattern)
1139 parse_register_dump (get_current_regcache (), buf, resp_len);
1140 #else
1141 monitor_debug ("Wait fetching registers after stop\n");
1142 monitor_dump_regs (get_current_regcache ());
1143 #endif
1144
1145 status->kind = TARGET_WAITKIND_STOPPED;
1146 status->value.sig = TARGET_SIGNAL_TRAP;
1147
1148 discard_cleanups (old_chain);
1149
1150 in_monitor_wait = 0;
1151
1152 return inferior_ptid;
1153 }
1154
1155 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1156 errno value. */
1157
1158 static void
1159 monitor_fetch_register (struct regcache *regcache, int regno)
1160 {
1161 const char *name;
1162 char *zerobuf;
1163 char *regbuf;
1164 int i;
1165
1166 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1167 zerobuf = alloca (MAX_REGISTER_SIZE);
1168 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1169
1170 if (current_monitor->regname != NULL)
1171 name = current_monitor->regname (regno);
1172 else
1173 name = current_monitor->regnames[regno];
1174 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1175
1176 if (!name || (*name == '\0'))
1177 {
1178 monitor_debug ("No register known for %d\n", regno);
1179 regcache_raw_supply (regcache, regno, zerobuf);
1180 return;
1181 }
1182
1183 /* send the register examine command */
1184
1185 monitor_printf (current_monitor->getreg.cmd, name);
1186
1187 /* If RESP_DELIM is specified, we search for that as a leading
1188 delimiter for the register value. Otherwise, we just start
1189 searching from the start of the buf. */
1190
1191 if (current_monitor->getreg.resp_delim)
1192 {
1193 monitor_debug ("EXP getreg.resp_delim\n");
1194 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1195 /* Handle case of first 32 registers listed in pairs. */
1196 if (current_monitor->flags & MO_32_REGS_PAIRED
1197 && (regno & 1) != 0 && regno < 32)
1198 {
1199 monitor_debug ("EXP getreg.resp_delim\n");
1200 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1201 }
1202 }
1203
1204 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1205 if (current_monitor->flags & MO_HEX_PREFIX)
1206 {
1207 int c;
1208 c = readchar (timeout);
1209 while (c == ' ')
1210 c = readchar (timeout);
1211 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1212 ;
1213 else
1214 error (_("Bad value returned from monitor while fetching register %x."),
1215 regno);
1216 }
1217
1218 /* Read upto the maximum number of hex digits for this register, skipping
1219 spaces, but stop reading if something else is seen. Some monitors
1220 like to drop leading zeros. */
1221
1222 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1223 {
1224 int c;
1225 c = readchar (timeout);
1226 while (c == ' ')
1227 c = readchar (timeout);
1228
1229 if (!isxdigit (c))
1230 break;
1231
1232 regbuf[i] = c;
1233 }
1234
1235 regbuf[i] = '\000'; /* terminate the number */
1236 monitor_debug ("REGVAL '%s'\n", regbuf);
1237
1238 /* If TERM is present, we wait for that to show up. Also, (if TERM
1239 is present), we will send TERM_CMD if that is present. In any
1240 case, we collect all of the output into buf, and then wait for
1241 the normal prompt. */
1242
1243 if (current_monitor->getreg.term)
1244 {
1245 monitor_debug ("EXP getreg.term\n");
1246 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1247 }
1248
1249 if (current_monitor->getreg.term_cmd)
1250 {
1251 monitor_debug ("EMIT getreg.term.cmd\n");
1252 monitor_printf (current_monitor->getreg.term_cmd);
1253 }
1254 if (!current_monitor->getreg.term || /* Already expected or */
1255 current_monitor->getreg.term_cmd) /* ack expected */
1256 monitor_expect_prompt (NULL, 0); /* get response */
1257
1258 monitor_supply_register (regcache, regno, regbuf);
1259 }
1260
1261 /* Sometimes, it takes several commands to dump the registers */
1262 /* This is a primitive for use by variations of monitor interfaces in
1263 case they need to compose the operation.
1264 */
1265 int
1266 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1267 {
1268 char buf[TARGET_BUF_SIZE];
1269 int resp_len;
1270 monitor_printf (block_cmd);
1271 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1272 parse_register_dump (regcache, buf, resp_len);
1273 return 1;
1274 }
1275
1276
1277 /* Read the remote registers into the block regs. */
1278 /* Call the specific function if it has been provided */
1279
1280 static void
1281 monitor_dump_regs (struct regcache *regcache)
1282 {
1283 char buf[TARGET_BUF_SIZE];
1284 int resp_len;
1285 if (current_monitor->dumpregs)
1286 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1287 else if (current_monitor->dump_registers) /* default version */
1288 {
1289 monitor_printf (current_monitor->dump_registers);
1290 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1291 parse_register_dump (regcache, buf, resp_len);
1292 }
1293 else
1294 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1295 }
1296
1297 static void
1298 monitor_fetch_registers (struct target_ops *ops,
1299 struct regcache *regcache, int regno)
1300 {
1301 monitor_debug ("MON fetchregs\n");
1302 if (current_monitor->getreg.cmd)
1303 {
1304 if (regno >= 0)
1305 {
1306 monitor_fetch_register (regcache, regno);
1307 return;
1308 }
1309
1310 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1311 regno++)
1312 monitor_fetch_register (regcache, regno);
1313 }
1314 else
1315 {
1316 monitor_dump_regs (regcache);
1317 }
1318 }
1319
1320 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1321
1322 static void
1323 monitor_store_register (struct regcache *regcache, int regno)
1324 {
1325 int reg_size = register_size (get_regcache_arch (regcache), regno);
1326 const char *name;
1327 ULONGEST val;
1328
1329 if (current_monitor->regname != NULL)
1330 name = current_monitor->regname (regno);
1331 else
1332 name = current_monitor->regnames[regno];
1333
1334 if (!name || (*name == '\0'))
1335 {
1336 monitor_debug ("MON Cannot store unknown register\n");
1337 return;
1338 }
1339
1340 regcache_cooked_read_unsigned (regcache, regno, &val);
1341 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1342
1343 /* send the register deposit command */
1344
1345 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1346 monitor_printf (current_monitor->setreg.cmd, val, name);
1347 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1348 monitor_printf (current_monitor->setreg.cmd, name);
1349 else
1350 monitor_printf (current_monitor->setreg.cmd, name, val);
1351
1352 if (current_monitor->setreg.resp_delim)
1353 {
1354 monitor_debug ("EXP setreg.resp_delim\n");
1355 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1356 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1357 monitor_printf ("%s\r", phex_nz (val, reg_size));
1358 }
1359 if (current_monitor->setreg.term)
1360 {
1361 monitor_debug ("EXP setreg.term\n");
1362 monitor_expect (current_monitor->setreg.term, NULL, 0);
1363 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1364 monitor_printf ("%s\r", phex_nz (val, reg_size));
1365 monitor_expect_prompt (NULL, 0);
1366 }
1367 else
1368 monitor_expect_prompt (NULL, 0);
1369 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1370 {
1371 monitor_debug ("EXP setreg_termcmd\n");
1372 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1373 monitor_expect_prompt (NULL, 0);
1374 }
1375 } /* monitor_store_register */
1376
1377 /* Store the remote registers. */
1378
1379 static void
1380 monitor_store_registers (struct target_ops *ops,
1381 struct regcache *regcache, int regno)
1382 {
1383 if (regno >= 0)
1384 {
1385 monitor_store_register (regcache, regno);
1386 return;
1387 }
1388
1389 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1390 regno++)
1391 monitor_store_register (regcache, regno);
1392 }
1393
1394 /* Get ready to modify the registers array. On machines which store
1395 individual registers, this doesn't need to do anything. On machines
1396 which store all the registers in one fell swoop, this makes sure
1397 that registers contains all the registers from the program being
1398 debugged. */
1399
1400 static void
1401 monitor_prepare_to_store (struct regcache *regcache)
1402 {
1403 /* Do nothing, since we can store individual regs */
1404 }
1405
1406 static void
1407 monitor_files_info (struct target_ops *ops)
1408 {
1409 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1410 }
1411
1412 static int
1413 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1414 {
1415 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1416 unsigned int val, hostval;
1417 char *cmd;
1418 int i;
1419
1420 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1421
1422 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1423 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1424
1425 /* Use memory fill command for leading 0 bytes. */
1426
1427 if (current_monitor->fill)
1428 {
1429 for (i = 0; i < len; i++)
1430 if (myaddr[i] != 0)
1431 break;
1432
1433 if (i > 4) /* More than 4 zeros is worth doing */
1434 {
1435 monitor_debug ("MON FILL %d\n", i);
1436 if (current_monitor->flags & MO_FILL_USES_ADDR)
1437 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1438 else
1439 monitor_printf (current_monitor->fill, memaddr, i, 0);
1440
1441 monitor_expect_prompt (NULL, 0);
1442
1443 return i;
1444 }
1445 }
1446
1447 #if 0
1448 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1449 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1450 {
1451 len = 8;
1452 cmd = current_monitor->setmem.cmdll;
1453 }
1454 else
1455 #endif
1456 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1457 {
1458 len = 4;
1459 cmd = current_monitor->setmem.cmdl;
1460 }
1461 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1462 {
1463 len = 2;
1464 cmd = current_monitor->setmem.cmdw;
1465 }
1466 else
1467 {
1468 len = 1;
1469 cmd = current_monitor->setmem.cmdb;
1470 }
1471
1472 val = extract_unsigned_integer (myaddr, len, byte_order);
1473
1474 if (len == 4)
1475 {
1476 hostval = *(unsigned int *) myaddr;
1477 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1478 }
1479
1480
1481 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1482 monitor_printf_noecho (cmd, memaddr, val);
1483 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1484 {
1485
1486 monitor_printf_noecho (cmd, memaddr);
1487
1488 if (current_monitor->setmem.resp_delim)
1489 {
1490 monitor_debug ("EXP setmem.resp_delim");
1491 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1492 monitor_printf ("%x\r", val);
1493 }
1494 if (current_monitor->setmem.term)
1495 {
1496 monitor_debug ("EXP setmem.term");
1497 monitor_expect (current_monitor->setmem.term, NULL, 0);
1498 monitor_printf ("%x\r", val);
1499 }
1500 if (current_monitor->setmem.term_cmd)
1501 { /* Emit this to get out of the memory editing state */
1502 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1503 /* Drop through to expecting a prompt */
1504 }
1505 }
1506 else
1507 monitor_printf (cmd, memaddr, val);
1508
1509 monitor_expect_prompt (NULL, 0);
1510
1511 return len;
1512 }
1513
1514
1515 static int
1516 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1517 {
1518 unsigned char val;
1519 int written = 0;
1520 if (len == 0)
1521 return 0;
1522 /* Enter the sub mode */
1523 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1524 monitor_expect_prompt (NULL, 0);
1525 while (len)
1526 {
1527 val = *myaddr;
1528 monitor_printf ("%x\r", val);
1529 myaddr++;
1530 memaddr++;
1531 written++;
1532 /* If we wanted to, here we could validate the address */
1533 monitor_expect_prompt (NULL, 0);
1534 len--;
1535 }
1536 /* Now exit the sub mode */
1537 monitor_printf (current_monitor->getreg.term_cmd);
1538 monitor_expect_prompt (NULL, 0);
1539 return written;
1540 }
1541
1542
1543 static void
1544 longlongendswap (unsigned char *a)
1545 {
1546 int i, j;
1547 unsigned char x;
1548 i = 0;
1549 j = 7;
1550 while (i < 4)
1551 {
1552 x = *(a + i);
1553 *(a + i) = *(a + j);
1554 *(a + j) = x;
1555 i++, j--;
1556 }
1557 }
1558 /* Format 32 chars of long long value, advance the pointer */
1559 static char *hexlate = "0123456789abcdef";
1560 static char *
1561 longlong_hexchars (unsigned long long value,
1562 char *outbuff)
1563 {
1564 if (value == 0)
1565 {
1566 *outbuff++ = '0';
1567 return outbuff;
1568 }
1569 else
1570 {
1571 static unsigned char disbuf[8]; /* disassembly buffer */
1572 unsigned char *scan, *limit; /* loop controls */
1573 unsigned char c, nib;
1574 int leadzero = 1;
1575 scan = disbuf;
1576 limit = scan + 8;
1577 {
1578 unsigned long long *dp;
1579 dp = (unsigned long long *) scan;
1580 *dp = value;
1581 }
1582 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1583 while (scan < limit)
1584 {
1585 c = *scan++; /* a byte of our long long value */
1586 if (leadzero)
1587 {
1588 if (c == 0)
1589 continue;
1590 else
1591 leadzero = 0; /* henceforth we print even zeroes */
1592 }
1593 nib = c >> 4; /* high nibble bits */
1594 *outbuff++ = hexlate[nib];
1595 nib = c & 0x0f; /* low nibble bits */
1596 *outbuff++ = hexlate[nib];
1597 }
1598 return outbuff;
1599 }
1600 } /* longlong_hexchars */
1601
1602
1603
1604 /* I am only going to call this when writing virtual byte streams.
1605 Which possably entails endian conversions
1606 */
1607 static int
1608 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1609 {
1610 static char hexstage[20]; /* At least 16 digits required, plus null */
1611 char *endstring;
1612 long long *llptr;
1613 long long value;
1614 int written = 0;
1615 llptr = (unsigned long long *) myaddr;
1616 if (len == 0)
1617 return 0;
1618 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1619 monitor_expect_prompt (NULL, 0);
1620 while (len >= 8)
1621 {
1622 value = *llptr;
1623 endstring = longlong_hexchars (*llptr, hexstage);
1624 *endstring = '\0'; /* NUll terminate for printf */
1625 monitor_printf ("%s\r", hexstage);
1626 llptr++;
1627 memaddr += 8;
1628 written += 8;
1629 /* If we wanted to, here we could validate the address */
1630 monitor_expect_prompt (NULL, 0);
1631 len -= 8;
1632 }
1633 /* Now exit the sub mode */
1634 monitor_printf (current_monitor->getreg.term_cmd);
1635 monitor_expect_prompt (NULL, 0);
1636 return written;
1637 } /* */
1638
1639
1640
1641 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1642 /* This is for the large blocks of memory which may occur in downloading.
1643 And for monitors which use interactive entry,
1644 And for monitors which do not have other downloading methods.
1645 Without this, we will end up calling monitor_write_memory many times
1646 and do the entry and exit of the sub mode many times
1647 This currently assumes...
1648 MO_SETMEM_INTERACTIVE
1649 ! MO_NO_ECHO_ON_SETMEM
1650 To use this, the you have to patch the monitor_cmds block with
1651 this function. Otherwise, its not tuned up for use by all
1652 monitor variations.
1653 */
1654
1655 static int
1656 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1657 {
1658 int written;
1659 written = 0;
1660 /* FIXME: This would be a good place to put the zero test */
1661 #if 1
1662 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1663 {
1664 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1665 }
1666 #endif
1667 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1668 return written;
1669 }
1670
1671 /* This is an alternate form of monitor_read_memory which is used for monitors
1672 which can only read a single byte/word/etc. at a time. */
1673
1674 static int
1675 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1676 {
1677 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1678 unsigned int val;
1679 char membuf[sizeof (int) * 2 + 1];
1680 char *p;
1681 char *cmd;
1682
1683 monitor_debug ("MON read single\n");
1684 #if 0
1685 /* Can't actually use long longs (nice idea, though). In fact, the
1686 call to strtoul below will fail if it tries to convert a value
1687 that's too big to fit in a long. */
1688 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1689 {
1690 len = 8;
1691 cmd = current_monitor->getmem.cmdll;
1692 }
1693 else
1694 #endif
1695 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1696 {
1697 len = 4;
1698 cmd = current_monitor->getmem.cmdl;
1699 }
1700 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1701 {
1702 len = 2;
1703 cmd = current_monitor->getmem.cmdw;
1704 }
1705 else
1706 {
1707 len = 1;
1708 cmd = current_monitor->getmem.cmdb;
1709 }
1710
1711 /* Send the examine command. */
1712
1713 monitor_printf (cmd, memaddr);
1714
1715 /* If RESP_DELIM is specified, we search for that as a leading
1716 delimiter for the memory value. Otherwise, we just start
1717 searching from the start of the buf. */
1718
1719 if (current_monitor->getmem.resp_delim)
1720 {
1721 monitor_debug ("EXP getmem.resp_delim\n");
1722 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1723 }
1724
1725 /* Now, read the appropriate number of hex digits for this loc,
1726 skipping spaces. */
1727
1728 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1729 if (current_monitor->flags & MO_HEX_PREFIX)
1730 {
1731 int c;
1732
1733 c = readchar (timeout);
1734 while (c == ' ')
1735 c = readchar (timeout);
1736 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1737 ;
1738 else
1739 monitor_error ("monitor_read_memory_single",
1740 "bad response from monitor",
1741 memaddr, 0, NULL, 0);
1742 }
1743
1744 {
1745 int i;
1746 for (i = 0; i < len * 2; i++)
1747 {
1748 int c;
1749
1750 while (1)
1751 {
1752 c = readchar (timeout);
1753 if (isxdigit (c))
1754 break;
1755 if (c == ' ')
1756 continue;
1757
1758 monitor_error ("monitor_read_memory_single",
1759 "bad response from monitor",
1760 memaddr, i, membuf, 0);
1761 }
1762 membuf[i] = c;
1763 }
1764 membuf[i] = '\000'; /* terminate the number */
1765 }
1766
1767 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1768 present), we will send TERM_CMD if that is present. In any case, we collect
1769 all of the output into buf, and then wait for the normal prompt. */
1770
1771 if (current_monitor->getmem.term)
1772 {
1773 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1774
1775 if (current_monitor->getmem.term_cmd)
1776 {
1777 monitor_printf (current_monitor->getmem.term_cmd);
1778 monitor_expect_prompt (NULL, 0);
1779 }
1780 }
1781 else
1782 monitor_expect_prompt (NULL, 0); /* get response */
1783
1784 p = membuf;
1785 val = strtoul (membuf, &p, 16);
1786
1787 if (val == 0 && membuf == p)
1788 monitor_error ("monitor_read_memory_single",
1789 "bad value from monitor",
1790 memaddr, 0, membuf, 0);
1791
1792 /* supply register stores in target byte order, so swap here */
1793
1794 store_unsigned_integer (myaddr, len, byte_order, val);
1795
1796 return len;
1797 }
1798
1799 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1800 memory at MEMADDR. Returns length moved. Currently, we do no more
1801 than 16 bytes at a time. */
1802
1803 static int
1804 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1805 {
1806 unsigned int val;
1807 char buf[512];
1808 char *p, *p1;
1809 int resp_len;
1810 int i;
1811 CORE_ADDR dumpaddr;
1812
1813 if (len <= 0)
1814 {
1815 monitor_debug ("Zero length call to monitor_read_memory\n");
1816 return 0;
1817 }
1818
1819 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1820 paddress (target_gdbarch, memaddr), (long) myaddr, len);
1821
1822 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1823 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1824
1825 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1826 return monitor_read_memory_single (memaddr, myaddr, len);
1827
1828 len = min (len, 16);
1829
1830 /* Some dumpers align the first data with the preceeding 16
1831 byte boundary. Some print blanks and start at the
1832 requested boundary. EXACT_DUMPADDR
1833 */
1834
1835 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1836 ? memaddr : memaddr & ~0x0f;
1837
1838 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1839 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1840 len = ((memaddr + len) & ~0xf) - memaddr;
1841
1842 /* send the memory examine command */
1843
1844 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1845 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1846 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1847 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1848 else
1849 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1850
1851 /* If TERM is present, we wait for that to show up. Also, (if TERM
1852 is present), we will send TERM_CMD if that is present. In any
1853 case, we collect all of the output into buf, and then wait for
1854 the normal prompt. */
1855
1856 if (current_monitor->getmem.term)
1857 {
1858 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1859
1860 if (resp_len <= 0)
1861 monitor_error ("monitor_read_memory",
1862 "excessive response from monitor",
1863 memaddr, resp_len, buf, 0);
1864
1865 if (current_monitor->getmem.term_cmd)
1866 {
1867 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1868 strlen (current_monitor->getmem.term_cmd));
1869 monitor_expect_prompt (NULL, 0);
1870 }
1871 }
1872 else
1873 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1874
1875 p = buf;
1876
1877 /* If RESP_DELIM is specified, we search for that as a leading
1878 delimiter for the values. Otherwise, we just start searching
1879 from the start of the buf. */
1880
1881 if (current_monitor->getmem.resp_delim)
1882 {
1883 int retval, tmp;
1884 struct re_registers resp_strings;
1885 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1886
1887 memset (&resp_strings, 0, sizeof (struct re_registers));
1888 tmp = strlen (p);
1889 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1890 &resp_strings);
1891
1892 if (retval < 0)
1893 monitor_error ("monitor_read_memory",
1894 "bad response from monitor",
1895 memaddr, resp_len, buf, 0);
1896
1897 p += resp_strings.end[0];
1898 #if 0
1899 p = strstr (p, current_monitor->getmem.resp_delim);
1900 if (!p)
1901 monitor_error ("monitor_read_memory",
1902 "bad response from monitor",
1903 memaddr, resp_len, buf, 0);
1904 p += strlen (current_monitor->getmem.resp_delim);
1905 #endif
1906 }
1907 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1908 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1909 {
1910 char c;
1911 int fetched = 0;
1912 i = len;
1913 c = *p;
1914
1915
1916 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1917 {
1918 if (isxdigit (c))
1919 {
1920 if ((dumpaddr >= memaddr) && (i > 0))
1921 {
1922 val = fromhex (c) * 16 + fromhex (*(p + 1));
1923 *myaddr++ = val;
1924 if (monitor_debug_p || remote_debug)
1925 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1926 --i;
1927 fetched++;
1928 }
1929 ++dumpaddr;
1930 ++p;
1931 }
1932 ++p; /* skip a blank or other non hex char */
1933 c = *p;
1934 }
1935 if (fetched == 0)
1936 error (_("Failed to read via monitor"));
1937 if (monitor_debug_p || remote_debug)
1938 fprintf_unfiltered (gdb_stdlog, "\n");
1939 return fetched; /* Return the number of bytes actually read */
1940 }
1941 monitor_debug ("MON scanning bytes\n");
1942
1943 for (i = len; i > 0; i--)
1944 {
1945 /* Skip non-hex chars, but bomb on end of string and newlines */
1946
1947 while (1)
1948 {
1949 if (isxdigit (*p))
1950 break;
1951
1952 if (*p == '\000' || *p == '\n' || *p == '\r')
1953 monitor_error ("monitor_read_memory",
1954 "badly terminated response from monitor",
1955 memaddr, resp_len, buf, 0);
1956 p++;
1957 }
1958
1959 val = strtoul (p, &p1, 16);
1960
1961 if (val == 0 && p == p1)
1962 monitor_error ("monitor_read_memory",
1963 "bad value from monitor",
1964 memaddr, resp_len, buf, 0);
1965
1966 *myaddr++ = val;
1967
1968 if (i == 1)
1969 break;
1970
1971 p = p1;
1972 }
1973
1974 return len;
1975 }
1976
1977 /* Transfer LEN bytes between target address MEMADDR and GDB address
1978 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1979 unused. */
1980
1981 static int
1982 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1983 struct mem_attrib *attrib, struct target_ops *target)
1984 {
1985 int res;
1986
1987 if (write)
1988 {
1989 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1990 res = monitor_write_memory_block(memaddr, myaddr, len);
1991 else
1992 res = monitor_write_memory(memaddr, myaddr, len);
1993 }
1994 else
1995 {
1996 res = monitor_read_memory(memaddr, myaddr, len);
1997 }
1998
1999 return res;
2000 }
2001
2002 static void
2003 monitor_kill (struct target_ops *ops)
2004 {
2005 return; /* ignore attempts to kill target system */
2006 }
2007
2008 /* All we actually do is set the PC to the start address of exec_bfd. */
2009
2010 static void
2011 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2012 char *args, char **env, int from_tty)
2013 {
2014 if (args && (*args != '\000'))
2015 error (_("Args are not supported by the monitor."));
2016
2017 first_time = 1;
2018 clear_proceed_status ();
2019 regcache_write_pc (get_current_regcache (),
2020 bfd_get_start_address (exec_bfd));
2021 }
2022
2023 /* Clean up when a program exits.
2024 The program actually lives on in the remote processor's RAM, and may be
2025 run again without a download. Don't leave it full of breakpoint
2026 instructions. */
2027
2028 static void
2029 monitor_mourn_inferior (struct target_ops *ops)
2030 {
2031 unpush_target (targ_ops);
2032 generic_mourn_inferior (); /* Do all the proper things now */
2033 delete_thread_silent (monitor_ptid);
2034 }
2035
2036 /* Tell the monitor to add a breakpoint. */
2037
2038 static int
2039 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2040 struct bp_target_info *bp_tgt)
2041 {
2042 CORE_ADDR addr = bp_tgt->placed_address;
2043 int i;
2044 int bplen;
2045
2046 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2047 if (current_monitor->set_break == NULL)
2048 error (_("No set_break defined for this monitor"));
2049
2050 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2051 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2052
2053 /* Determine appropriate breakpoint size for this address. */
2054 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2055 bp_tgt->placed_address = addr;
2056 bp_tgt->placed_size = bplen;
2057
2058 for (i = 0; i < current_monitor->num_breakpoints; i++)
2059 {
2060 if (breakaddr[i] == 0)
2061 {
2062 breakaddr[i] = addr;
2063 monitor_printf (current_monitor->set_break, addr);
2064 monitor_expect_prompt (NULL, 0);
2065 return 0;
2066 }
2067 }
2068
2069 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2070 }
2071
2072 /* Tell the monitor to remove a breakpoint. */
2073
2074 static int
2075 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2076 struct bp_target_info *bp_tgt)
2077 {
2078 CORE_ADDR addr = bp_tgt->placed_address;
2079 int i;
2080
2081 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2082 if (current_monitor->clr_break == NULL)
2083 error (_("No clr_break defined for this monitor"));
2084
2085 for (i = 0; i < current_monitor->num_breakpoints; i++)
2086 {
2087 if (breakaddr[i] == addr)
2088 {
2089 breakaddr[i] = 0;
2090 /* some monitors remove breakpoints based on the address */
2091 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2092 monitor_printf (current_monitor->clr_break, addr);
2093 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2094 monitor_printf (current_monitor->clr_break, i + 1);
2095 else
2096 monitor_printf (current_monitor->clr_break, i);
2097 monitor_expect_prompt (NULL, 0);
2098 return 0;
2099 }
2100 }
2101 fprintf_unfiltered (gdb_stderr,
2102 "Can't find breakpoint associated with %s\n",
2103 paddress (gdbarch, addr));
2104 return 1;
2105 }
2106
2107 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2108 an S-record. Return non-zero if the ACK is received properly. */
2109
2110 static int
2111 monitor_wait_srec_ack (void)
2112 {
2113 int ch;
2114
2115 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2116 {
2117 return (readchar (timeout) == '+');
2118 }
2119 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2120 {
2121 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2122 if ((ch = readchar (1)) < 0)
2123 return 0;
2124 if ((ch = readchar (1)) < 0)
2125 return 0;
2126 if ((ch = readchar (1)) < 0)
2127 return 0;
2128 if ((ch = readchar (1)) < 0)
2129 return 0;
2130 }
2131 return 1;
2132 }
2133
2134 /* monitor_load -- download a file. */
2135
2136 static void
2137 monitor_load (char *file, int from_tty)
2138 {
2139 monitor_debug ("MON load\n");
2140
2141 if (current_monitor->load_routine)
2142 current_monitor->load_routine (monitor_desc, file, hashmark);
2143 else
2144 { /* The default is ascii S-records */
2145 int n;
2146 unsigned long load_offset;
2147 char buf[128];
2148
2149 /* enable user to specify address for downloading as 2nd arg to load */
2150 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2151 if (n > 1)
2152 file = buf;
2153 else
2154 load_offset = 0;
2155
2156 monitor_printf (current_monitor->load);
2157 if (current_monitor->loadresp)
2158 monitor_expect (current_monitor->loadresp, NULL, 0);
2159
2160 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2161 32, SREC_ALL, hashmark,
2162 current_monitor->flags & MO_SREC_ACK ?
2163 monitor_wait_srec_ack : NULL);
2164
2165 monitor_expect_prompt (NULL, 0);
2166 }
2167
2168 /* Finally, make the PC point at the start address */
2169 if (exec_bfd)
2170 regcache_write_pc (get_current_regcache (),
2171 bfd_get_start_address (exec_bfd));
2172
2173 /* There used to be code here which would clear inferior_ptid and
2174 call clear_symtab_users. None of that should be necessary:
2175 monitor targets should behave like remote protocol targets, and
2176 since generic_load does none of those things, this function
2177 shouldn't either.
2178
2179 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2180 a load, we still have a valid connection to the monitor, with a
2181 live processor state to fiddle with. The user can type
2182 `continue' or `jump *start' and make the program run. If they do
2183 these things, however, GDB will be talking to a running program
2184 while inferior_ptid is null_ptid; this makes things like
2185 reinit_frame_cache very confused. */
2186 }
2187
2188 static void
2189 monitor_stop (ptid_t ptid)
2190 {
2191 monitor_debug ("MON stop\n");
2192 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2193 serial_send_break (monitor_desc);
2194 if (current_monitor->stop)
2195 monitor_printf_noecho (current_monitor->stop);
2196 }
2197
2198 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2199 in OUTPUT until the prompt is seen. FIXME: We read the characters
2200 ourseleves here cause of a nasty echo. */
2201
2202 static void
2203 monitor_rcmd (char *command,
2204 struct ui_file *outbuf)
2205 {
2206 char *p;
2207 int resp_len;
2208 char buf[1000];
2209
2210 if (monitor_desc == NULL)
2211 error (_("monitor target not open."));
2212
2213 p = current_monitor->prompt;
2214
2215 /* Send the command. Note that if no args were supplied, then we're
2216 just sending the monitor a newline, which is sometimes useful. */
2217
2218 monitor_printf ("%s\r", (command ? command : ""));
2219
2220 resp_len = monitor_expect_prompt (buf, sizeof buf);
2221
2222 fputs_unfiltered (buf, outbuf); /* Output the response */
2223 }
2224
2225 /* Convert hex digit A to a number. */
2226
2227 #if 0
2228 static int
2229 from_hex (int a)
2230 {
2231 if (a >= '0' && a <= '9')
2232 return a - '0';
2233 if (a >= 'a' && a <= 'f')
2234 return a - 'a' + 10;
2235 if (a >= 'A' && a <= 'F')
2236 return a - 'A' + 10;
2237
2238 error (_("Reply contains invalid hex digit 0x%x"), a);
2239 }
2240 #endif
2241
2242 char *
2243 monitor_get_dev_name (void)
2244 {
2245 return dev_name;
2246 }
2247
2248 /* Check to see if a thread is still alive. */
2249
2250 static int
2251 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2252 {
2253 if (ptid_equal (ptid, monitor_ptid))
2254 /* The monitor's task is always alive. */
2255 return 1;
2256
2257 return 0;
2258 }
2259
2260 /* Convert a thread ID to a string. Returns the string in a static
2261 buffer. */
2262
2263 static char *
2264 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2265 {
2266 static char buf[64];
2267
2268 if (ptid_equal (monitor_ptid, ptid))
2269 {
2270 xsnprintf (buf, sizeof buf, "Thread <main>");
2271 return buf;
2272 }
2273
2274 return normal_pid_to_str (ptid);
2275 }
2276
2277 static struct target_ops monitor_ops;
2278
2279 static void
2280 init_base_monitor_ops (void)
2281 {
2282 monitor_ops.to_close = monitor_close;
2283 monitor_ops.to_detach = monitor_detach;
2284 monitor_ops.to_resume = monitor_resume;
2285 monitor_ops.to_wait = monitor_wait;
2286 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2287 monitor_ops.to_store_registers = monitor_store_registers;
2288 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2289 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2290 monitor_ops.to_files_info = monitor_files_info;
2291 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2292 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2293 monitor_ops.to_kill = monitor_kill;
2294 monitor_ops.to_load = monitor_load;
2295 monitor_ops.to_create_inferior = monitor_create_inferior;
2296 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2297 monitor_ops.to_stop = monitor_stop;
2298 monitor_ops.to_rcmd = monitor_rcmd;
2299 monitor_ops.to_log_command = serial_log_command;
2300 monitor_ops.to_thread_alive = monitor_thread_alive;
2301 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2302 monitor_ops.to_stratum = process_stratum;
2303 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2304 monitor_ops.to_has_memory = default_child_has_memory;
2305 monitor_ops.to_has_stack = default_child_has_stack;
2306 monitor_ops.to_has_registers = default_child_has_registers;
2307 monitor_ops.to_has_execution = default_child_has_execution;
2308 monitor_ops.to_magic = OPS_MAGIC;
2309 } /* init_base_monitor_ops */
2310
2311 /* Init the target_ops structure pointed at by OPS */
2312
2313 void
2314 init_monitor_ops (struct target_ops *ops)
2315 {
2316 if (monitor_ops.to_magic != OPS_MAGIC)
2317 init_base_monitor_ops ();
2318
2319 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2320 }
2321
2322 /* Define additional commands that are usually only used by monitors. */
2323
2324 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2325
2326 void
2327 _initialize_remote_monitors (void)
2328 {
2329 init_base_monitor_ops ();
2330 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2331 Set display of activity while downloading a file."), _("\
2332 Show display of activity while downloading a file."), _("\
2333 When enabled, a hashmark \'#\' is displayed."),
2334 NULL,
2335 NULL, /* FIXME: i18n: */
2336 &setlist, &showlist);
2337
2338 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2339 Set debugging of remote monitor communication."), _("\
2340 Show debugging of remote monitor communication."), _("\
2341 When enabled, communication between GDB and the remote monitor\n\
2342 is displayed."),
2343 NULL,
2344 NULL, /* FIXME: i18n: */
2345 &setdebuglist, &showdebuglist);
2346
2347 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2348 isn't 0. */
2349 monitor_ptid = ptid_build (42000, 0, 42000);
2350 }
This page took 0.109538 seconds and 4 git commands to generate.