ee2280d968c9fef35b383033ddcf74ca7893118d
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* This file was derived from various remote-* modules. It is a collection
27 of generic support functions so GDB can talk directly to a ROM based
28 monitor. This saves use from having to hack an exception based handler
29 into existence, and makes for quick porting.
30
31 This module talks to a debug monitor called 'MONITOR', which
32 We communicate with MONITOR via either a direct serial line, or a TCP
33 (or possibly TELNET) stream to a terminal multiplexor,
34 which in turn talks to the target board. */
35
36 /* FIXME 32x64: This code assumes that registers and addresses are at
37 most 32 bits long. If they can be larger, you will need to declare
38 values as LONGEST and use %llx or some such to print values when
39 building commands to send to the monitor. Since we don't know of
40 any actual 64-bit targets with ROM monitors that use this code,
41 it's not an issue right now. -sts 4/18/96 */
42
43 #include "defs.h"
44 #include "gdbcore.h"
45 #include "target.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
63
64 static int readchar (int timeout);
65
66 static void monitor_fetch_register (int regno);
67 static void monitor_store_register (int regno);
68
69 static void monitor_printable_string (char *newstr, char *oldstr, int len);
70 static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
71 static void monitor_detach (char *args, int from_tty);
72 static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
73 static void monitor_interrupt (int signo);
74 static void monitor_interrupt_twice (int signo);
75 static void monitor_interrupt_query (void);
76 static void monitor_wait_cleanup (void *old_timeout);
77
78 static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
79 static void monitor_fetch_registers (int regno);
80 static void monitor_store_registers (int regno);
81 static void monitor_prepare_to_store (void);
82 static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
83 int write,
84 struct mem_attrib *attrib,
85 struct target_ops *target);
86 static void monitor_files_info (struct target_ops *ops);
87 static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
88 static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
89 static void monitor_kill (void);
90 static void monitor_load (char *file, int from_tty);
91 static void monitor_mourn_inferior (void);
92 static void monitor_stop (void);
93
94 static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
95 static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
96 static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
97 static int monitor_write_memory_block (CORE_ADDR memaddr,
98 char *myaddr, int len);
99 static int monitor_expect_regexp (struct re_pattern_buffer *pat,
100 char *buf, int buflen);
101 static void monitor_dump_regs (void);
102 #if 0
103 static int from_hex (int a);
104 static unsigned long get_hex_word (void);
105 #endif
106 static void parse_register_dump (char *, int);
107
108 static struct monitor_ops *current_monitor;
109
110 static int hashmark; /* flag set by "set hash" */
111
112 static int timeout = 30;
113
114 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
115
116 static void (*ofunc) (); /* Old SIGINT signal handler */
117
118 static CORE_ADDR *breakaddr;
119
120 /* Descriptor for I/O to remote machine. Initialize it to NULL so
121 that monitor_open knows that we don't have a file open when the
122 program starts. */
123
124 static struct serial *monitor_desc = NULL;
125
126 /* Pointer to regexp pattern matching data */
127
128 static struct re_pattern_buffer register_pattern;
129 static char register_fastmap[256];
130
131 static struct re_pattern_buffer getmem_resp_delim_pattern;
132 static char getmem_resp_delim_fastmap[256];
133
134 static struct re_pattern_buffer setmem_resp_delim_pattern;
135 static char setmem_resp_delim_fastmap[256];
136
137 static struct re_pattern_buffer setreg_resp_delim_pattern;
138 static char setreg_resp_delim_fastmap[256];
139
140 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
141 monitor_wait wakes up. */
142
143 static int first_time = 0; /* is this the first time we're executing after
144 gaving created the child proccess? */
145
146 #define TARGET_BUF_SIZE 2048
147
148 /* Monitor specific debugging information. Typically only useful to
149 the developer of a new monitor interface. */
150
151 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
152
153 static int monitor_debug_p = 0;
154
155 /* NOTE: This file alternates between monitor_debug_p and remote_debug
156 when determining if debug information is printed. Perhaphs this
157 could be simplified. */
158
159 static void
160 monitor_debug (const char *fmt, ...)
161 {
162 if (monitor_debug_p)
163 {
164 va_list args;
165 va_start (args, fmt);
166 vfprintf_filtered (gdb_stdlog, fmt, args);
167 va_end (args);
168 }
169 }
170
171
172 /* Convert a string into a printable representation, Return # byte in
173 the new string. When LEN is >0 it specifies the size of the
174 string. Otherwize strlen(oldstr) is used. */
175
176 static void
177 monitor_printable_string (char *newstr, char *oldstr, int len)
178 {
179 int ch;
180 int i;
181
182 if (len <= 0)
183 len = strlen (oldstr);
184
185 for (i = 0; i < len; i++)
186 {
187 ch = oldstr[i];
188 switch (ch)
189 {
190 default:
191 if (isprint (ch))
192 *newstr++ = ch;
193
194 else
195 {
196 sprintf (newstr, "\\x%02x", ch & 0xff);
197 newstr += 4;
198 }
199 break;
200
201 case '\\':
202 *newstr++ = '\\';
203 *newstr++ = '\\';
204 break;
205 case '\b':
206 *newstr++ = '\\';
207 *newstr++ = 'b';
208 break;
209 case '\f':
210 *newstr++ = '\\';
211 *newstr++ = 't';
212 break;
213 case '\n':
214 *newstr++ = '\\';
215 *newstr++ = 'n';
216 break;
217 case '\r':
218 *newstr++ = '\\';
219 *newstr++ = 'r';
220 break;
221 case '\t':
222 *newstr++ = '\\';
223 *newstr++ = 't';
224 break;
225 case '\v':
226 *newstr++ = '\\';
227 *newstr++ = 'v';
228 break;
229 }
230 }
231
232 *newstr++ = '\0';
233 }
234
235 /* Print monitor errors with a string, converting the string to printable
236 representation. */
237
238 static void
239 monitor_error (char *function, char *message,
240 CORE_ADDR memaddr, int len, char *string, int final_char)
241 {
242 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
243 char *safe_string = alloca ((real_len * 4) + 1);
244 monitor_printable_string (safe_string, string, real_len);
245
246 if (final_char)
247 error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
248 else
249 error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
250 }
251
252 /* Convert hex digit A to a number. */
253
254 static int
255 fromhex (int a)
256 {
257 if (a >= '0' && a <= '9')
258 return a - '0';
259 else if (a >= 'a' && a <= 'f')
260 return a - 'a' + 10;
261 else if (a >= 'A' && a <= 'F')
262 return a - 'A' + 10;
263 else
264 error ("Invalid hex digit %d", a);
265 }
266
267 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
268
269 This function exists to get around the problem that many host platforms
270 don't have a printf that can print 64-bit addresses. The %A format
271 specification is recognized as a special case, and causes the argument
272 to be printed as a 64-bit hexadecimal address.
273
274 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
275 If it is a '%s' format, the argument is a string; otherwise the
276 argument is assumed to be a long integer.
277
278 %% is also turned into a single %.
279 */
280
281 static void
282 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
283 {
284 char format[10];
285 char fmt;
286 char *p;
287 int i;
288 long arg_int;
289 CORE_ADDR arg_addr;
290 char *arg_string;
291
292 for (p = pattern; *p; p++)
293 {
294 if (*p == '%')
295 {
296 /* Copy the format specifier to a separate buffer. */
297 format[0] = *p++;
298 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
299 i++, p++)
300 format[i] = *p;
301 format[i] = fmt = *p;
302 format[i + 1] = '\0';
303
304 /* Fetch the next argument and print it. */
305 switch (fmt)
306 {
307 case '%':
308 strcpy (sndbuf, "%");
309 break;
310 case 'A':
311 arg_addr = va_arg (args, CORE_ADDR);
312 strcpy (sndbuf, paddr_nz (arg_addr));
313 break;
314 case 's':
315 arg_string = va_arg (args, char *);
316 sprintf (sndbuf, format, arg_string);
317 break;
318 default:
319 arg_int = va_arg (args, long);
320 sprintf (sndbuf, format, arg_int);
321 break;
322 }
323 sndbuf += strlen (sndbuf);
324 }
325 else
326 *sndbuf++ = *p;
327 }
328 *sndbuf = '\0';
329 }
330
331
332 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
333 Works just like printf. */
334
335 void
336 monitor_printf_noecho (char *pattern,...)
337 {
338 va_list args;
339 char sndbuf[2000];
340 int len;
341
342 va_start (args, pattern);
343
344 monitor_vsprintf (sndbuf, pattern, args);
345
346 len = strlen (sndbuf);
347 if (len + 1 > sizeof sndbuf)
348 internal_error (__FILE__, __LINE__, "failed internal consistency check");
349
350 if (monitor_debug_p)
351 {
352 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
353 monitor_printable_string (safe_string, sndbuf, 0);
354 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
355 }
356
357 monitor_write (sndbuf, len);
358 }
359
360 /* monitor_printf -- Send data to monitor and check the echo. Works just like
361 printf. */
362
363 void
364 monitor_printf (char *pattern,...)
365 {
366 va_list args;
367 char sndbuf[2000];
368 int len;
369
370 va_start (args, pattern);
371
372 monitor_vsprintf (sndbuf, pattern, args);
373
374 len = strlen (sndbuf);
375 if (len + 1 > sizeof sndbuf)
376 internal_error (__FILE__, __LINE__, "failed internal consistency check");
377
378 if (monitor_debug_p)
379 {
380 char *safe_string = (char *) alloca ((len * 4) + 1);
381 monitor_printable_string (safe_string, sndbuf, 0);
382 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
383 }
384
385 monitor_write (sndbuf, len);
386
387 /* We used to expect that the next immediate output was the characters we
388 just output, but sometimes some extra junk appeared before the characters
389 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
390 So, just start searching for what we sent, and skip anything unknown. */
391 monitor_debug ("ExpectEcho\n");
392 monitor_expect (sndbuf, (char *) 0, 0);
393 }
394
395
396 /* Write characters to the remote system. */
397
398 void
399 monitor_write (char *buf, int buflen)
400 {
401 if (serial_write (monitor_desc, buf, buflen))
402 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
403 safe_strerror (errno));
404 }
405
406
407 /* Read a binary character from the remote system, doing all the fancy
408 timeout stuff, but without interpreting the character in any way,
409 and without printing remote debug information. */
410
411 int
412 monitor_readchar (void)
413 {
414 int c;
415 int looping;
416
417 do
418 {
419 looping = 0;
420 c = serial_readchar (monitor_desc, timeout);
421
422 if (c >= 0)
423 c &= 0xff; /* don't lose bit 7 */
424 }
425 while (looping);
426
427 if (c >= 0)
428 return c;
429
430 if (c == SERIAL_TIMEOUT)
431 error ("Timeout reading from remote system.");
432
433 perror_with_name ("remote-monitor");
434 }
435
436
437 /* Read a character from the remote system, doing all the fancy
438 timeout stuff. */
439
440 static int
441 readchar (int timeout)
442 {
443 int c;
444 static enum
445 {
446 last_random, last_nl, last_cr, last_crnl
447 }
448 state = last_random;
449 int looping;
450
451 do
452 {
453 looping = 0;
454 c = serial_readchar (monitor_desc, timeout);
455
456 if (c >= 0)
457 {
458 c &= 0x7f;
459 /* This seems to interfere with proper function of the
460 input stream */
461 if (monitor_debug_p || remote_debug)
462 {
463 char buf[2];
464 buf[0] = c;
465 buf[1] = '\0';
466 puts_debug ("read -->", buf, "<--");
467 }
468
469 }
470
471 /* Canonicialize \n\r combinations into one \r */
472 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
473 {
474 if ((c == '\r' && state == last_nl)
475 || (c == '\n' && state == last_cr))
476 {
477 state = last_crnl;
478 looping = 1;
479 }
480 else if (c == '\r')
481 state = last_cr;
482 else if (c != '\n')
483 state = last_random;
484 else
485 {
486 state = last_nl;
487 c = '\r';
488 }
489 }
490 }
491 while (looping);
492
493 if (c >= 0)
494 return c;
495
496 if (c == SERIAL_TIMEOUT)
497 #if 0
498 /* I fail to see how detaching here can be useful */
499 if (in_monitor_wait) /* Watchdog went off */
500 {
501 target_mourn_inferior ();
502 error ("GDB serial timeout has expired. Target detached.\n");
503 }
504 else
505 #endif
506 error ("Timeout reading from remote system.");
507
508 perror_with_name ("remote-monitor");
509 }
510
511 /* Scan input from the remote system, until STRING is found. If BUF is non-
512 zero, then collect input until we have collected either STRING or BUFLEN-1
513 chars. In either case we terminate BUF with a 0. If input overflows BUF
514 because STRING can't be found, return -1, else return number of chars in BUF
515 (minus the terminating NUL). Note that in the non-overflow case, STRING
516 will be at the end of BUF. */
517
518 int
519 monitor_expect (char *string, char *buf, int buflen)
520 {
521 char *p = string;
522 int obuflen = buflen;
523 int c;
524 extern struct target_ops *targ_ops;
525
526 if (monitor_debug_p)
527 {
528 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
529 monitor_printable_string (safe_string, string, 0);
530 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
531 }
532
533 immediate_quit++;
534 while (1)
535 {
536 if (buf)
537 {
538 if (buflen < 2)
539 {
540 *buf = '\000';
541 immediate_quit--;
542 return -1;
543 }
544
545 c = readchar (timeout);
546 if (c == '\000')
547 continue;
548 *buf++ = c;
549 buflen--;
550 }
551 else
552 c = readchar (timeout);
553
554 /* Don't expect any ^C sent to be echoed */
555
556 if (*p == '\003' || c == *p)
557 {
558 p++;
559 if (*p == '\0')
560 {
561 immediate_quit--;
562
563 if (buf)
564 {
565 *buf++ = '\000';
566 return obuflen - buflen;
567 }
568 else
569 return 0;
570 }
571 }
572 #if 0
573 // OBSOLETE else if ((c == '\021' || c == '\023') &&
574 // OBSOLETE (STREQ (targ_ops->to_shortname, "m32r")
575 // OBSOLETE || STREQ (targ_ops->to_shortname, "mon2000")))
576 // OBSOLETE { /* m32r monitor emits random DC1/DC3 chars */
577 // OBSOLETE continue;
578 // OBSOLETE }
579 #endif
580 else
581 {
582 /* We got a character that doesn't match the string. We need to
583 back up p, but how far? If we're looking for "..howdy" and the
584 monitor sends "...howdy"? There's certainly a match in there,
585 but when we receive the third ".", we won't find it if we just
586 restart the matching at the beginning of the string.
587
588 This is a Boyer-Moore kind of situation. We want to reset P to
589 the end of the longest prefix of STRING that is a suffix of
590 what we've read so far. In the example above, that would be
591 ".." --- the longest prefix of "..howdy" that is a suffix of
592 "...". This longest prefix could be the empty string, if C
593 is nowhere to be found in STRING.
594
595 If this longest prefix is not the empty string, it must contain
596 C, so let's search from the end of STRING for instances of C,
597 and see if the portion of STRING before that is a suffix of
598 what we read before C. Actually, we can search backwards from
599 p, since we know no prefix can be longer than that.
600
601 Note that we can use STRING itself, along with C, as a record
602 of what we've received so far. :) */
603 int i;
604
605 for (i = (p - string) - 1; i >= 0; i--)
606 if (string[i] == c)
607 {
608 /* Is this prefix a suffix of what we've read so far?
609 In other words, does
610 string[0 .. i-1] == string[p - i, p - 1]? */
611 if (! memcmp (string, p - i, i))
612 {
613 p = string + i + 1;
614 break;
615 }
616 }
617 if (i < 0)
618 p = string;
619 }
620 }
621 }
622
623 /* Search for a regexp. */
624
625 static int
626 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
627 {
628 char *mybuf;
629 char *p;
630 monitor_debug ("MON Expecting regexp\n");
631 if (buf)
632 mybuf = buf;
633 else
634 {
635 mybuf = alloca (TARGET_BUF_SIZE);
636 buflen = TARGET_BUF_SIZE;
637 }
638
639 p = mybuf;
640 while (1)
641 {
642 int retval;
643
644 if (p - mybuf >= buflen)
645 { /* Buffer about to overflow */
646
647 /* On overflow, we copy the upper half of the buffer to the lower half. Not
648 great, but it usually works... */
649
650 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
651 p = mybuf + buflen / 2;
652 }
653
654 *p++ = readchar (timeout);
655
656 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
657 if (retval >= 0)
658 return 1;
659 }
660 }
661
662 /* Keep discarding input until we see the MONITOR prompt.
663
664 The convention for dealing with the prompt is that you
665 o give your command
666 o *then* wait for the prompt.
667
668 Thus the last thing that a procedure does with the serial line will
669 be an monitor_expect_prompt(). Exception: monitor_resume does not
670 wait for the prompt, because the terminal is being handed over to
671 the inferior. However, the next thing which happens after that is
672 a monitor_wait which does wait for the prompt. Note that this
673 includes abnormal exit, e.g. error(). This is necessary to prevent
674 getting into states from which we can't recover. */
675
676 int
677 monitor_expect_prompt (char *buf, int buflen)
678 {
679 monitor_debug ("MON Expecting prompt\n");
680 return monitor_expect (current_monitor->prompt, buf, buflen);
681 }
682
683 /* Get N 32-bit words from remote, each preceded by a space, and put
684 them in registers starting at REGNO. */
685
686 #if 0
687 static unsigned long
688 get_hex_word (void)
689 {
690 unsigned long val;
691 int i;
692 int ch;
693
694 do
695 ch = readchar (timeout);
696 while (isspace (ch));
697
698 val = from_hex (ch);
699
700 for (i = 7; i >= 1; i--)
701 {
702 ch = readchar (timeout);
703 if (!isxdigit (ch))
704 break;
705 val = (val << 4) | from_hex (ch);
706 }
707
708 return val;
709 }
710 #endif
711
712 static void
713 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
714 char *fastmap)
715 {
716 int tmp;
717 const char *val;
718
719 compiled_pattern->fastmap = fastmap;
720
721 tmp = re_set_syntax (RE_SYNTAX_EMACS);
722 val = re_compile_pattern (pattern,
723 strlen (pattern),
724 compiled_pattern);
725 re_set_syntax (tmp);
726
727 if (val)
728 error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
729
730 if (fastmap)
731 re_compile_fastmap (compiled_pattern);
732 }
733
734 /* Open a connection to a remote debugger. NAME is the filename used
735 for communication. */
736
737 void
738 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
739 {
740 char *name;
741 char **p;
742
743 if (mon_ops->magic != MONITOR_OPS_MAGIC)
744 error ("Magic number of monitor_ops struct wrong.");
745
746 targ_ops = mon_ops->target;
747 name = targ_ops->to_shortname;
748
749 if (!args)
750 error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
751 `target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
752
753 target_preopen (from_tty);
754
755 /* Setup pattern for register dump */
756
757 if (mon_ops->register_pattern)
758 compile_pattern (mon_ops->register_pattern, &register_pattern,
759 register_fastmap);
760
761 if (mon_ops->getmem.resp_delim)
762 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
763 getmem_resp_delim_fastmap);
764
765 if (mon_ops->setmem.resp_delim)
766 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
767 setmem_resp_delim_fastmap);
768
769 if (mon_ops->setreg.resp_delim)
770 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
771 setreg_resp_delim_fastmap);
772
773 unpush_target (targ_ops);
774
775 if (dev_name)
776 xfree (dev_name);
777 dev_name = xstrdup (args);
778
779 monitor_desc = serial_open (dev_name);
780
781 if (!monitor_desc)
782 perror_with_name (dev_name);
783
784 if (baud_rate != -1)
785 {
786 if (serial_setbaudrate (monitor_desc, baud_rate))
787 {
788 serial_close (monitor_desc);
789 perror_with_name (dev_name);
790 }
791 }
792
793 serial_raw (monitor_desc);
794
795 serial_flush_input (monitor_desc);
796
797 /* some systems only work with 2 stop bits */
798
799 serial_setstopbits (monitor_desc, mon_ops->stopbits);
800
801 current_monitor = mon_ops;
802
803 /* See if we can wake up the monitor. First, try sending a stop sequence,
804 then send the init strings. Last, remove all breakpoints. */
805
806 if (current_monitor->stop)
807 {
808 monitor_stop ();
809 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
810 {
811 monitor_debug ("EXP Open echo\n");
812 monitor_expect_prompt (NULL, 0);
813 }
814 }
815
816 /* wake up the monitor and see if it's alive */
817 for (p = mon_ops->init; *p != NULL; p++)
818 {
819 /* Some of the characters we send may not be echoed,
820 but we hope to get a prompt at the end of it all. */
821
822 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
823 monitor_printf (*p);
824 else
825 monitor_printf_noecho (*p);
826 monitor_expect_prompt (NULL, 0);
827 }
828
829 serial_flush_input (monitor_desc);
830
831 /* Alloc breakpoints */
832 if (mon_ops->set_break != NULL)
833 {
834 if (mon_ops->num_breakpoints == 0)
835 mon_ops->num_breakpoints = 8;
836
837 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
838 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
839 }
840
841 /* Remove all breakpoints */
842
843 if (mon_ops->clr_all_break)
844 {
845 monitor_printf (mon_ops->clr_all_break);
846 monitor_expect_prompt (NULL, 0);
847 }
848
849 if (from_tty)
850 printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
851
852 push_target (targ_ops);
853
854 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
855
856 /* Give monitor_wait something to read */
857
858 monitor_printf (current_monitor->line_term);
859
860 start_remote ();
861 }
862
863 /* Close out all files and local state before this target loses
864 control. */
865
866 void
867 monitor_close (int quitting)
868 {
869 if (monitor_desc)
870 serial_close (monitor_desc);
871
872 /* Free breakpoint memory */
873 if (breakaddr != NULL)
874 {
875 xfree (breakaddr);
876 breakaddr = NULL;
877 }
878
879 monitor_desc = NULL;
880 }
881
882 /* Terminate the open connection to the remote debugger. Use this
883 when you want to detach and do something else with your gdb. */
884
885 static void
886 monitor_detach (char *args, int from_tty)
887 {
888 pop_target (); /* calls monitor_close to do the real work */
889 if (from_tty)
890 printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
891 }
892
893 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
894
895 char *
896 monitor_supply_register (int regno, char *valstr)
897 {
898 ULONGEST val;
899 unsigned char regbuf[MAX_REGISTER_SIZE];
900 char *p;
901
902 val = 0;
903 p = valstr;
904 while (p && *p != '\0')
905 {
906 if (*p == '\r' || *p == '\n')
907 {
908 while (*p != '\0')
909 p++;
910 break;
911 }
912 if (isspace (*p))
913 {
914 p++;
915 continue;
916 }
917 if (!isxdigit (*p) && *p != 'x')
918 {
919 break;
920 }
921
922 val <<= 4;
923 val += fromhex (*p++);
924 }
925 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
926
927 if (val == 0 && valstr == p)
928 error ("monitor_supply_register (%d): bad value from monitor: %s.",
929 regno, valstr);
930
931 /* supply register stores in target byte order, so swap here */
932
933 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
934
935 supply_register (regno, regbuf);
936
937 return p;
938 }
939
940 /* Tell the remote machine to resume. */
941
942 static void
943 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
944 {
945 /* Some monitors require a different command when starting a program */
946 monitor_debug ("MON resume\n");
947 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
948 {
949 first_time = 0;
950 monitor_printf ("run\r");
951 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
952 dump_reg_flag = 1;
953 return;
954 }
955 if (step)
956 monitor_printf (current_monitor->step);
957 else
958 {
959 if (current_monitor->continue_hook)
960 (*current_monitor->continue_hook) ();
961 else
962 monitor_printf (current_monitor->cont);
963 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
964 dump_reg_flag = 1;
965 }
966 }
967
968 /* Parse the output of a register dump command. A monitor specific
969 regexp is used to extract individual register descriptions of the
970 form REG=VAL. Each description is split up into a name and a value
971 string which are passed down to monitor specific code. */
972
973 static void
974 parse_register_dump (char *buf, int len)
975 {
976 monitor_debug ("MON Parsing register dump\n");
977 while (1)
978 {
979 int regnamelen, vallen;
980 char *regname, *val;
981 /* Element 0 points to start of register name, and element 1
982 points to the start of the register value. */
983 struct re_registers register_strings;
984
985 memset (&register_strings, 0, sizeof (struct re_registers));
986
987 if (re_search (&register_pattern, buf, len, 0, len,
988 &register_strings) == -1)
989 break;
990
991 regnamelen = register_strings.end[1] - register_strings.start[1];
992 regname = buf + register_strings.start[1];
993 vallen = register_strings.end[2] - register_strings.start[2];
994 val = buf + register_strings.start[2];
995
996 current_monitor->supply_register (regname, regnamelen, val, vallen);
997
998 buf += register_strings.end[0];
999 len -= register_strings.end[0];
1000 }
1001 }
1002
1003 /* Send ^C to target to halt it. Target will respond, and send us a
1004 packet. */
1005
1006 static void
1007 monitor_interrupt (int signo)
1008 {
1009 /* If this doesn't work, try more severe steps. */
1010 signal (signo, monitor_interrupt_twice);
1011
1012 if (monitor_debug_p || remote_debug)
1013 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1014
1015 target_stop ();
1016 }
1017
1018 /* The user typed ^C twice. */
1019
1020 static void
1021 monitor_interrupt_twice (int signo)
1022 {
1023 signal (signo, ofunc);
1024
1025 monitor_interrupt_query ();
1026
1027 signal (signo, monitor_interrupt);
1028 }
1029
1030 /* Ask the user what to do when an interrupt is received. */
1031
1032 static void
1033 monitor_interrupt_query (void)
1034 {
1035 target_terminal_ours ();
1036
1037 if (query ("Interrupted while waiting for the program.\n\
1038 Give up (and stop debugging it)? "))
1039 {
1040 target_mourn_inferior ();
1041 throw_exception (RETURN_QUIT);
1042 }
1043
1044 target_terminal_inferior ();
1045 }
1046
1047 static void
1048 monitor_wait_cleanup (void *old_timeout)
1049 {
1050 timeout = *(int *) old_timeout;
1051 signal (SIGINT, ofunc);
1052 in_monitor_wait = 0;
1053 }
1054
1055
1056
1057 static void
1058 monitor_wait_filter (char *buf,
1059 int bufmax,
1060 int *ext_resp_len,
1061 struct target_waitstatus *status)
1062 {
1063 int resp_len;
1064 do
1065 {
1066 resp_len = monitor_expect_prompt (buf, bufmax);
1067 *ext_resp_len = resp_len;
1068
1069 if (resp_len <= 0)
1070 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1071 }
1072 while (resp_len < 0);
1073
1074 /* Print any output characters that were preceded by ^O. */
1075 /* FIXME - This would be great as a user settabgle flag */
1076 if (monitor_debug_p || remote_debug
1077 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1078 {
1079 int i;
1080
1081 for (i = 0; i < resp_len - 1; i++)
1082 if (buf[i] == 0x0f)
1083 putchar_unfiltered (buf[++i]);
1084 }
1085 }
1086
1087
1088
1089 /* Wait until the remote machine stops, then return, storing status in
1090 status just as `wait' would. */
1091
1092 static ptid_t
1093 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1094 {
1095 int old_timeout = timeout;
1096 char buf[TARGET_BUF_SIZE];
1097 int resp_len;
1098 struct cleanup *old_chain;
1099
1100 status->kind = TARGET_WAITKIND_EXITED;
1101 status->value.integer = 0;
1102
1103 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1104 monitor_debug ("MON wait\n");
1105
1106 #if 0
1107 /* This is somthing other than a maintenance command */
1108 in_monitor_wait = 1;
1109 timeout = watchdog > 0 ? watchdog : -1;
1110 #else
1111 timeout = -1; /* Don't time out -- user program is running. */
1112 #endif
1113
1114 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1115
1116 if (current_monitor->wait_filter)
1117 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1118 else
1119 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1120
1121 #if 0 /* Transferred to monitor wait filter */
1122 do
1123 {
1124 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1125
1126 if (resp_len <= 0)
1127 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1128 }
1129 while (resp_len < 0);
1130
1131 /* Print any output characters that were preceded by ^O. */
1132 /* FIXME - This would be great as a user settabgle flag */
1133 if (monitor_debug_p || remote_debug
1134 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1135 {
1136 int i;
1137
1138 for (i = 0; i < resp_len - 1; i++)
1139 if (buf[i] == 0x0f)
1140 putchar_unfiltered (buf[++i]);
1141 }
1142 #endif
1143
1144 signal (SIGINT, ofunc);
1145
1146 timeout = old_timeout;
1147 #if 0
1148 if (dump_reg_flag && current_monitor->dump_registers)
1149 {
1150 dump_reg_flag = 0;
1151 monitor_printf (current_monitor->dump_registers);
1152 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1153 }
1154
1155 if (current_monitor->register_pattern)
1156 parse_register_dump (buf, resp_len);
1157 #else
1158 monitor_debug ("Wait fetching registers after stop\n");
1159 monitor_dump_regs ();
1160 #endif
1161
1162 status->kind = TARGET_WAITKIND_STOPPED;
1163 status->value.sig = TARGET_SIGNAL_TRAP;
1164
1165 discard_cleanups (old_chain);
1166
1167 in_monitor_wait = 0;
1168
1169 return inferior_ptid;
1170 }
1171
1172 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1173 errno value. */
1174
1175 static void
1176 monitor_fetch_register (int regno)
1177 {
1178 const char *name;
1179 char *zerobuf;
1180 char *regbuf;
1181 int i;
1182
1183 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1184 zerobuf = alloca (MAX_REGISTER_SIZE);
1185 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1186
1187 if (current_monitor->regname != NULL)
1188 name = current_monitor->regname (regno);
1189 else
1190 name = current_monitor->regnames[regno];
1191 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1192
1193 if (!name || (*name == '\0'))
1194 {
1195 monitor_debug ("No register known for %d\n", regno);
1196 supply_register (regno, zerobuf);
1197 return;
1198 }
1199
1200 /* send the register examine command */
1201
1202 monitor_printf (current_monitor->getreg.cmd, name);
1203
1204 /* If RESP_DELIM is specified, we search for that as a leading
1205 delimiter for the register value. Otherwise, we just start
1206 searching from the start of the buf. */
1207
1208 if (current_monitor->getreg.resp_delim)
1209 {
1210 monitor_debug ("EXP getreg.resp_delim\n");
1211 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1212 /* Handle case of first 32 registers listed in pairs. */
1213 if (current_monitor->flags & MO_32_REGS_PAIRED
1214 && (regno & 1) != 0 && regno < 32)
1215 {
1216 monitor_debug ("EXP getreg.resp_delim\n");
1217 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1218 }
1219 }
1220
1221 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1222 if (current_monitor->flags & MO_HEX_PREFIX)
1223 {
1224 int c;
1225 c = readchar (timeout);
1226 while (c == ' ')
1227 c = readchar (timeout);
1228 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1229 ;
1230 else
1231 error ("Bad value returned from monitor while fetching register %x.",
1232 regno);
1233 }
1234
1235 /* Read upto the maximum number of hex digits for this register, skipping
1236 spaces, but stop reading if something else is seen. Some monitors
1237 like to drop leading zeros. */
1238
1239 for (i = 0; i < REGISTER_RAW_SIZE (regno) * 2; i++)
1240 {
1241 int c;
1242 c = readchar (timeout);
1243 while (c == ' ')
1244 c = readchar (timeout);
1245
1246 if (!isxdigit (c))
1247 break;
1248
1249 regbuf[i] = c;
1250 }
1251
1252 regbuf[i] = '\000'; /* terminate the number */
1253 monitor_debug ("REGVAL '%s'\n", regbuf);
1254
1255 /* If TERM is present, we wait for that to show up. Also, (if TERM
1256 is present), we will send TERM_CMD if that is present. In any
1257 case, we collect all of the output into buf, and then wait for
1258 the normal prompt. */
1259
1260 if (current_monitor->getreg.term)
1261 {
1262 monitor_debug ("EXP getreg.term\n");
1263 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1264 }
1265
1266 if (current_monitor->getreg.term_cmd)
1267 {
1268 monitor_debug ("EMIT getreg.term.cmd\n");
1269 monitor_printf (current_monitor->getreg.term_cmd);
1270 }
1271 if (!current_monitor->getreg.term || /* Already expected or */
1272 current_monitor->getreg.term_cmd) /* ack expected */
1273 monitor_expect_prompt (NULL, 0); /* get response */
1274
1275 monitor_supply_register (regno, regbuf);
1276 }
1277
1278 /* Sometimes, it takes several commands to dump the registers */
1279 /* This is a primitive for use by variations of monitor interfaces in
1280 case they need to compose the operation.
1281 */
1282 int
1283 monitor_dump_reg_block (char *block_cmd)
1284 {
1285 char buf[TARGET_BUF_SIZE];
1286 int resp_len;
1287 monitor_printf (block_cmd);
1288 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1289 parse_register_dump (buf, resp_len);
1290 return 1;
1291 }
1292
1293
1294 /* Read the remote registers into the block regs. */
1295 /* Call the specific function if it has been provided */
1296
1297 static void
1298 monitor_dump_regs (void)
1299 {
1300 char buf[TARGET_BUF_SIZE];
1301 int resp_len;
1302 if (current_monitor->dumpregs)
1303 (*(current_monitor->dumpregs)) (); /* call supplied function */
1304 else if (current_monitor->dump_registers) /* default version */
1305 {
1306 monitor_printf (current_monitor->dump_registers);
1307 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1308 parse_register_dump (buf, resp_len);
1309 }
1310 else
1311 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
1312 }
1313
1314 static void
1315 monitor_fetch_registers (int regno)
1316 {
1317 monitor_debug ("MON fetchregs\n");
1318 if (current_monitor->getreg.cmd)
1319 {
1320 if (regno >= 0)
1321 {
1322 monitor_fetch_register (regno);
1323 return;
1324 }
1325
1326 for (regno = 0; regno < NUM_REGS; regno++)
1327 monitor_fetch_register (regno);
1328 }
1329 else
1330 {
1331 monitor_dump_regs ();
1332 }
1333 }
1334
1335 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1336
1337 static void
1338 monitor_store_register (int regno)
1339 {
1340 const char *name;
1341 ULONGEST val;
1342
1343 if (current_monitor->regname != NULL)
1344 name = current_monitor->regname (regno);
1345 else
1346 name = current_monitor->regnames[regno];
1347
1348 if (!name || (*name == '\0'))
1349 {
1350 monitor_debug ("MON Cannot store unknown register\n");
1351 return;
1352 }
1353
1354 val = read_register (regno);
1355 monitor_debug ("MON storeg %d %s\n", regno,
1356 phex (val, REGISTER_RAW_SIZE (regno)));
1357
1358 /* send the register deposit command */
1359
1360 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1361 monitor_printf (current_monitor->setreg.cmd, val, name);
1362 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1363 monitor_printf (current_monitor->setreg.cmd, name);
1364 else
1365 monitor_printf (current_monitor->setreg.cmd, name, val);
1366
1367 if (current_monitor->setreg.resp_delim)
1368 {
1369 monitor_debug ("EXP setreg.resp_delim\n");
1370 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1371 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1372 monitor_printf ("%s\r", paddr_nz (val));
1373 }
1374 if (current_monitor->setreg.term)
1375 {
1376 monitor_debug ("EXP setreg.term\n");
1377 monitor_expect (current_monitor->setreg.term, NULL, 0);
1378 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1379 monitor_printf ("%s\r", paddr_nz (val));
1380 monitor_expect_prompt (NULL, 0);
1381 }
1382 else
1383 monitor_expect_prompt (NULL, 0);
1384 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1385 {
1386 monitor_debug ("EXP setreg_termcmd\n");
1387 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1388 monitor_expect_prompt (NULL, 0);
1389 }
1390 } /* monitor_store_register */
1391
1392 /* Store the remote registers. */
1393
1394 static void
1395 monitor_store_registers (int regno)
1396 {
1397 if (regno >= 0)
1398 {
1399 monitor_store_register (regno);
1400 return;
1401 }
1402
1403 for (regno = 0; regno < NUM_REGS; regno++)
1404 monitor_store_register (regno);
1405 }
1406
1407 /* Get ready to modify the registers array. On machines which store
1408 individual registers, this doesn't need to do anything. On machines
1409 which store all the registers in one fell swoop, this makes sure
1410 that registers contains all the registers from the program being
1411 debugged. */
1412
1413 static void
1414 monitor_prepare_to_store (void)
1415 {
1416 /* Do nothing, since we can store individual regs */
1417 }
1418
1419 static void
1420 monitor_files_info (struct target_ops *ops)
1421 {
1422 printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
1423 }
1424
1425 static int
1426 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1427 {
1428 unsigned int val, hostval;
1429 char *cmd;
1430 int i;
1431
1432 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1433
1434 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1435 memaddr = ADDR_BITS_REMOVE (memaddr);
1436
1437 /* Use memory fill command for leading 0 bytes. */
1438
1439 if (current_monitor->fill)
1440 {
1441 for (i = 0; i < len; i++)
1442 if (myaddr[i] != 0)
1443 break;
1444
1445 if (i > 4) /* More than 4 zeros is worth doing */
1446 {
1447 monitor_debug ("MON FILL %d\n", i);
1448 if (current_monitor->flags & MO_FILL_USES_ADDR)
1449 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1450 else
1451 monitor_printf (current_monitor->fill, memaddr, i, 0);
1452
1453 monitor_expect_prompt (NULL, 0);
1454
1455 return i;
1456 }
1457 }
1458
1459 #if 0
1460 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1461 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1462 {
1463 len = 8;
1464 cmd = current_monitor->setmem.cmdll;
1465 }
1466 else
1467 #endif
1468 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1469 {
1470 len = 4;
1471 cmd = current_monitor->setmem.cmdl;
1472 }
1473 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1474 {
1475 len = 2;
1476 cmd = current_monitor->setmem.cmdw;
1477 }
1478 else
1479 {
1480 len = 1;
1481 cmd = current_monitor->setmem.cmdb;
1482 }
1483
1484 val = extract_unsigned_integer (myaddr, len);
1485
1486 if (len == 4)
1487 {
1488 hostval = *(unsigned int *) myaddr;
1489 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1490 }
1491
1492
1493 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1494 monitor_printf_noecho (cmd, memaddr, val);
1495 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1496 {
1497
1498 monitor_printf_noecho (cmd, memaddr);
1499
1500 if (current_monitor->setmem.resp_delim)
1501 {
1502 monitor_debug ("EXP setmem.resp_delim");
1503 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1504 monitor_printf ("%x\r", val);
1505 }
1506 if (current_monitor->setmem.term)
1507 {
1508 monitor_debug ("EXP setmem.term");
1509 monitor_expect (current_monitor->setmem.term, NULL, 0);
1510 monitor_printf ("%x\r", val);
1511 }
1512 if (current_monitor->setmem.term_cmd)
1513 { /* Emit this to get out of the memory editing state */
1514 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1515 /* Drop through to expecting a prompt */
1516 }
1517 }
1518 else
1519 monitor_printf (cmd, memaddr, val);
1520
1521 monitor_expect_prompt (NULL, 0);
1522
1523 return len;
1524 }
1525
1526
1527 static int
1528 monitor_write_even_block (CORE_ADDR memaddr, char *myaddr, int len)
1529 {
1530 unsigned int val;
1531 int written = 0;;
1532 /* Enter the sub mode */
1533 monitor_printf (current_monitor->setmem.cmdl, memaddr);
1534 monitor_expect_prompt (NULL, 0);
1535
1536 while (len)
1537 {
1538 val = extract_unsigned_integer (myaddr, 4); /* REALLY */
1539 monitor_printf ("%x\r", val);
1540 myaddr += 4;
1541 memaddr += 4;
1542 written += 4;
1543 monitor_debug (" @ %s\n", paddr (memaddr));
1544 /* If we wanted to, here we could validate the address */
1545 monitor_expect_prompt (NULL, 0);
1546 }
1547 /* Now exit the sub mode */
1548 monitor_printf (current_monitor->getreg.term_cmd);
1549 monitor_expect_prompt (NULL, 0);
1550 return written;
1551 }
1552
1553
1554 static int
1555 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1556 {
1557 unsigned char val;
1558 int written = 0;
1559 if (len == 0)
1560 return 0;
1561 /* Enter the sub mode */
1562 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1563 monitor_expect_prompt (NULL, 0);
1564 while (len)
1565 {
1566 val = *myaddr;
1567 monitor_printf ("%x\r", val);
1568 myaddr++;
1569 memaddr++;
1570 written++;
1571 /* If we wanted to, here we could validate the address */
1572 monitor_expect_prompt (NULL, 0);
1573 len--;
1574 }
1575 /* Now exit the sub mode */
1576 monitor_printf (current_monitor->getreg.term_cmd);
1577 monitor_expect_prompt (NULL, 0);
1578 return written;
1579 }
1580
1581
1582 static void
1583 longlongendswap (unsigned char *a)
1584 {
1585 int i, j;
1586 unsigned char x;
1587 i = 0;
1588 j = 7;
1589 while (i < 4)
1590 {
1591 x = *(a + i);
1592 *(a + i) = *(a + j);
1593 *(a + j) = x;
1594 i++, j--;
1595 }
1596 }
1597 /* Format 32 chars of long long value, advance the pointer */
1598 static char *hexlate = "0123456789abcdef";
1599 static char *
1600 longlong_hexchars (unsigned long long value,
1601 char *outbuff)
1602 {
1603 if (value == 0)
1604 {
1605 *outbuff++ = '0';
1606 return outbuff;
1607 }
1608 else
1609 {
1610 static unsigned char disbuf[8]; /* disassembly buffer */
1611 unsigned char *scan, *limit; /* loop controls */
1612 unsigned char c, nib;
1613 int leadzero = 1;
1614 scan = disbuf;
1615 limit = scan + 8;
1616 {
1617 unsigned long long *dp;
1618 dp = (unsigned long long *) scan;
1619 *dp = value;
1620 }
1621 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1622 while (scan < limit)
1623 {
1624 c = *scan++; /* a byte of our long long value */
1625 if (leadzero)
1626 {
1627 if (c == 0)
1628 continue;
1629 else
1630 leadzero = 0; /* henceforth we print even zeroes */
1631 }
1632 nib = c >> 4; /* high nibble bits */
1633 *outbuff++ = hexlate[nib];
1634 nib = c & 0x0f; /* low nibble bits */
1635 *outbuff++ = hexlate[nib];
1636 }
1637 return outbuff;
1638 }
1639 } /* longlong_hexchars */
1640
1641
1642
1643 /* I am only going to call this when writing virtual byte streams.
1644 Which possably entails endian conversions
1645 */
1646 static int
1647 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1648 {
1649 static char hexstage[20]; /* At least 16 digits required, plus null */
1650 char *endstring;
1651 long long *llptr;
1652 long long value;
1653 int written = 0;
1654 llptr = (unsigned long long *) myaddr;
1655 if (len == 0)
1656 return 0;
1657 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1658 monitor_expect_prompt (NULL, 0);
1659 while (len >= 8)
1660 {
1661 value = *llptr;
1662 endstring = longlong_hexchars (*llptr, hexstage);
1663 *endstring = '\0'; /* NUll terminate for printf */
1664 monitor_printf ("%s\r", hexstage);
1665 llptr++;
1666 memaddr += 8;
1667 written += 8;
1668 /* If we wanted to, here we could validate the address */
1669 monitor_expect_prompt (NULL, 0);
1670 len -= 8;
1671 }
1672 /* Now exit the sub mode */
1673 monitor_printf (current_monitor->getreg.term_cmd);
1674 monitor_expect_prompt (NULL, 0);
1675 return written;
1676 } /* */
1677
1678
1679
1680 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1681 /* This is for the large blocks of memory which may occur in downloading.
1682 And for monitors which use interactive entry,
1683 And for monitors which do not have other downloading methods.
1684 Without this, we will end up calling monitor_write_memory many times
1685 and do the entry and exit of the sub mode many times
1686 This currently assumes...
1687 MO_SETMEM_INTERACTIVE
1688 ! MO_NO_ECHO_ON_SETMEM
1689 To use this, the you have to patch the monitor_cmds block with
1690 this function. Otherwise, its not tuned up for use by all
1691 monitor variations.
1692 */
1693
1694 static int
1695 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1696 {
1697 int written;
1698 written = 0;
1699 /* FIXME: This would be a good place to put the zero test */
1700 #if 1
1701 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1702 {
1703 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1704 }
1705 #endif
1706 #if 0
1707 if (len > 4)
1708 {
1709 int sublen;
1710 written = monitor_write_even_block (memaddr, myaddr, len);
1711 /* Adjust calling parameters by written amount */
1712 memaddr += written;
1713 myaddr += written;
1714 len -= written;
1715 }
1716 #endif
1717 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1718 return written;
1719 }
1720
1721 /* This is an alternate form of monitor_read_memory which is used for monitors
1722 which can only read a single byte/word/etc. at a time. */
1723
1724 static int
1725 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1726 {
1727 unsigned int val;
1728 char membuf[sizeof (int) * 2 + 1];
1729 char *p;
1730 char *cmd;
1731
1732 monitor_debug ("MON read single\n");
1733 #if 0
1734 /* Can't actually use long longs (nice idea, though). In fact, the
1735 call to strtoul below will fail if it tries to convert a value
1736 that's too big to fit in a long. */
1737 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1738 {
1739 len = 8;
1740 cmd = current_monitor->getmem.cmdll;
1741 }
1742 else
1743 #endif
1744 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1745 {
1746 len = 4;
1747 cmd = current_monitor->getmem.cmdl;
1748 }
1749 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1750 {
1751 len = 2;
1752 cmd = current_monitor->getmem.cmdw;
1753 }
1754 else
1755 {
1756 len = 1;
1757 cmd = current_monitor->getmem.cmdb;
1758 }
1759
1760 /* Send the examine command. */
1761
1762 monitor_printf (cmd, memaddr);
1763
1764 /* If RESP_DELIM is specified, we search for that as a leading
1765 delimiter for the memory value. Otherwise, we just start
1766 searching from the start of the buf. */
1767
1768 if (current_monitor->getmem.resp_delim)
1769 {
1770 monitor_debug ("EXP getmem.resp_delim\n");
1771 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1772 }
1773
1774 /* Now, read the appropriate number of hex digits for this loc,
1775 skipping spaces. */
1776
1777 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1778 if (current_monitor->flags & MO_HEX_PREFIX)
1779 {
1780 int c;
1781
1782 c = readchar (timeout);
1783 while (c == ' ')
1784 c = readchar (timeout);
1785 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1786 ;
1787 else
1788 monitor_error ("monitor_read_memory_single",
1789 "bad response from monitor",
1790 memaddr, 0, NULL, 0);
1791 }
1792
1793 {
1794 int i;
1795 for (i = 0; i < len * 2; i++)
1796 {
1797 int c;
1798
1799 while (1)
1800 {
1801 c = readchar (timeout);
1802 if (isxdigit (c))
1803 break;
1804 if (c == ' ')
1805 continue;
1806
1807 monitor_error ("monitor_read_memory_single",
1808 "bad response from monitor",
1809 memaddr, i, membuf, 0);
1810 }
1811 membuf[i] = c;
1812 }
1813 membuf[i] = '\000'; /* terminate the number */
1814 }
1815
1816 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1817 present), we will send TERM_CMD if that is present. In any case, we collect
1818 all of the output into buf, and then wait for the normal prompt. */
1819
1820 if (current_monitor->getmem.term)
1821 {
1822 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1823
1824 if (current_monitor->getmem.term_cmd)
1825 {
1826 monitor_printf (current_monitor->getmem.term_cmd);
1827 monitor_expect_prompt (NULL, 0);
1828 }
1829 }
1830 else
1831 monitor_expect_prompt (NULL, 0); /* get response */
1832
1833 p = membuf;
1834 val = strtoul (membuf, &p, 16);
1835
1836 if (val == 0 && membuf == p)
1837 monitor_error ("monitor_read_memory_single",
1838 "bad value from monitor",
1839 memaddr, 0, membuf, 0);
1840
1841 /* supply register stores in target byte order, so swap here */
1842
1843 store_unsigned_integer (myaddr, len, val);
1844
1845 return len;
1846 }
1847
1848 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1849 memory at MEMADDR. Returns length moved. Currently, we do no more
1850 than 16 bytes at a time. */
1851
1852 static int
1853 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1854 {
1855 unsigned int val;
1856 char buf[512];
1857 char *p, *p1;
1858 int resp_len;
1859 int i;
1860 CORE_ADDR dumpaddr;
1861
1862 if (len <= 0)
1863 {
1864 monitor_debug ("Zero length call to monitor_read_memory\n");
1865 return 0;
1866 }
1867
1868 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1869 paddr_nz (memaddr), (long) myaddr, len);
1870
1871 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1872 memaddr = ADDR_BITS_REMOVE (memaddr);
1873
1874 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1875 return monitor_read_memory_single (memaddr, myaddr, len);
1876
1877 len = min (len, 16);
1878
1879 /* Some dumpers align the first data with the preceeding 16
1880 byte boundary. Some print blanks and start at the
1881 requested boundary. EXACT_DUMPADDR
1882 */
1883
1884 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1885 ? memaddr : memaddr & ~0x0f;
1886
1887 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1888 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1889 len = ((memaddr + len) & ~0xf) - memaddr;
1890
1891 /* send the memory examine command */
1892
1893 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1894 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1895 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1896 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1897 else
1898 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1899
1900 /* If TERM is present, we wait for that to show up. Also, (if TERM
1901 is present), we will send TERM_CMD if that is present. In any
1902 case, we collect all of the output into buf, and then wait for
1903 the normal prompt. */
1904
1905 if (current_monitor->getmem.term)
1906 {
1907 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1908
1909 if (resp_len <= 0)
1910 monitor_error ("monitor_read_memory",
1911 "excessive response from monitor",
1912 memaddr, resp_len, buf, 0);
1913
1914 if (current_monitor->getmem.term_cmd)
1915 {
1916 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1917 strlen (current_monitor->getmem.term_cmd));
1918 monitor_expect_prompt (NULL, 0);
1919 }
1920 }
1921 else
1922 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1923
1924 p = buf;
1925
1926 /* If RESP_DELIM is specified, we search for that as a leading
1927 delimiter for the values. Otherwise, we just start searching
1928 from the start of the buf. */
1929
1930 if (current_monitor->getmem.resp_delim)
1931 {
1932 int retval, tmp;
1933 struct re_registers resp_strings;
1934 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1935
1936 memset (&resp_strings, 0, sizeof (struct re_registers));
1937 tmp = strlen (p);
1938 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1939 &resp_strings);
1940
1941 if (retval < 0)
1942 monitor_error ("monitor_read_memory",
1943 "bad response from monitor",
1944 memaddr, resp_len, buf, 0);
1945
1946 p += resp_strings.end[0];
1947 #if 0
1948 p = strstr (p, current_monitor->getmem.resp_delim);
1949 if (!p)
1950 monitor_error ("monitor_read_memory",
1951 "bad response from monitor",
1952 memaddr, resp_len, buf, 0);
1953 p += strlen (current_monitor->getmem.resp_delim);
1954 #endif
1955 }
1956 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1957 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1958 {
1959 char c;
1960 int fetched = 0;
1961 i = len;
1962 c = *p;
1963
1964
1965 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1966 {
1967 if (isxdigit (c))
1968 {
1969 if ((dumpaddr >= memaddr) && (i > 0))
1970 {
1971 val = fromhex (c) * 16 + fromhex (*(p + 1));
1972 *myaddr++ = val;
1973 if (monitor_debug_p || remote_debug)
1974 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1975 --i;
1976 fetched++;
1977 }
1978 ++dumpaddr;
1979 ++p;
1980 }
1981 ++p; /* skip a blank or other non hex char */
1982 c = *p;
1983 }
1984 if (fetched == 0)
1985 error ("Failed to read via monitor");
1986 if (monitor_debug_p || remote_debug)
1987 fprintf_unfiltered (gdb_stdlog, "\n");
1988 return fetched; /* Return the number of bytes actually read */
1989 }
1990 monitor_debug ("MON scanning bytes\n");
1991
1992 for (i = len; i > 0; i--)
1993 {
1994 /* Skip non-hex chars, but bomb on end of string and newlines */
1995
1996 while (1)
1997 {
1998 if (isxdigit (*p))
1999 break;
2000
2001 if (*p == '\000' || *p == '\n' || *p == '\r')
2002 monitor_error ("monitor_read_memory",
2003 "badly terminated response from monitor",
2004 memaddr, resp_len, buf, 0);
2005 p++;
2006 }
2007
2008 val = strtoul (p, &p1, 16);
2009
2010 if (val == 0 && p == p1)
2011 monitor_error ("monitor_read_memory",
2012 "bad value from monitor",
2013 memaddr, resp_len, buf, 0);
2014
2015 *myaddr++ = val;
2016
2017 if (i == 1)
2018 break;
2019
2020 p = p1;
2021 }
2022
2023 return len;
2024 }
2025
2026 /* Transfer LEN bytes between target address MEMADDR and GDB address
2027 MYADDR. Returns 0 for success, errno code for failure. TARGET is
2028 unused. */
2029
2030 static int
2031 monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
2032 struct mem_attrib *attrib, struct target_ops *target)
2033 {
2034 int res;
2035
2036 if (write)
2037 {
2038 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2039 res = monitor_write_memory_block(memaddr, myaddr, len);
2040 else
2041 res = monitor_write_memory(memaddr, myaddr, len);
2042 }
2043 else
2044 {
2045 res = monitor_read_memory(memaddr, myaddr, len);
2046 }
2047
2048 return res;
2049 }
2050
2051 static void
2052 monitor_kill (void)
2053 {
2054 return; /* ignore attempts to kill target system */
2055 }
2056
2057 /* All we actually do is set the PC to the start address of exec_bfd, and start
2058 the program at that point. */
2059
2060 static void
2061 monitor_create_inferior (char *exec_file, char *args, char **env)
2062 {
2063 if (args && (*args != '\000'))
2064 error ("Args are not supported by the monitor.");
2065
2066 first_time = 1;
2067 clear_proceed_status ();
2068 proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
2069 }
2070
2071 /* Clean up when a program exits.
2072 The program actually lives on in the remote processor's RAM, and may be
2073 run again without a download. Don't leave it full of breakpoint
2074 instructions. */
2075
2076 static void
2077 monitor_mourn_inferior (void)
2078 {
2079 unpush_target (targ_ops);
2080 generic_mourn_inferior (); /* Do all the proper things now */
2081 }
2082
2083 /* Tell the monitor to add a breakpoint. */
2084
2085 static int
2086 monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
2087 {
2088 int i;
2089 const unsigned char *bp;
2090 int bplen;
2091
2092 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2093 if (current_monitor->set_break == NULL)
2094 error ("No set_break defined for this monitor");
2095
2096 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2097 addr = ADDR_BITS_REMOVE (addr);
2098
2099 /* Determine appropriate breakpoint size for this address. */
2100 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2101
2102 for (i = 0; i < current_monitor->num_breakpoints; i++)
2103 {
2104 if (breakaddr[i] == 0)
2105 {
2106 breakaddr[i] = addr;
2107 monitor_read_memory (addr, shadow, bplen);
2108 monitor_printf (current_monitor->set_break, addr);
2109 monitor_expect_prompt (NULL, 0);
2110 return 0;
2111 }
2112 }
2113
2114 error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
2115 }
2116
2117 /* Tell the monitor to remove a breakpoint. */
2118
2119 static int
2120 monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
2121 {
2122 int i;
2123
2124 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2125 if (current_monitor->clr_break == NULL)
2126 error ("No clr_break defined for this monitor");
2127
2128 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2129 addr = ADDR_BITS_REMOVE (addr);
2130
2131 for (i = 0; i < current_monitor->num_breakpoints; i++)
2132 {
2133 if (breakaddr[i] == addr)
2134 {
2135 breakaddr[i] = 0;
2136 /* some monitors remove breakpoints based on the address */
2137 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2138 monitor_printf (current_monitor->clr_break, addr);
2139 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2140 monitor_printf (current_monitor->clr_break, i + 1);
2141 else
2142 monitor_printf (current_monitor->clr_break, i);
2143 monitor_expect_prompt (NULL, 0);
2144 return 0;
2145 }
2146 }
2147 fprintf_unfiltered (gdb_stderr,
2148 "Can't find breakpoint associated with 0x%s\n",
2149 paddr_nz (addr));
2150 return 1;
2151 }
2152
2153 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2154 an S-record. Return non-zero if the ACK is received properly. */
2155
2156 static int
2157 monitor_wait_srec_ack (void)
2158 {
2159 int ch;
2160
2161 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2162 {
2163 return (readchar (timeout) == '+');
2164 }
2165 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2166 {
2167 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2168 if ((ch = readchar (1)) < 0)
2169 return 0;
2170 if ((ch = readchar (1)) < 0)
2171 return 0;
2172 if ((ch = readchar (1)) < 0)
2173 return 0;
2174 if ((ch = readchar (1)) < 0)
2175 return 0;
2176 }
2177 return 1;
2178 }
2179
2180 /* monitor_load -- download a file. */
2181
2182 static void
2183 monitor_load (char *file, int from_tty)
2184 {
2185 monitor_debug ("MON load\n");
2186
2187 if (current_monitor->load_routine)
2188 current_monitor->load_routine (monitor_desc, file, hashmark);
2189 else
2190 { /* The default is ascii S-records */
2191 int n;
2192 unsigned long load_offset;
2193 char buf[128];
2194
2195 /* enable user to specify address for downloading as 2nd arg to load */
2196 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2197 if (n > 1)
2198 file = buf;
2199 else
2200 load_offset = 0;
2201
2202 monitor_printf (current_monitor->load);
2203 if (current_monitor->loadresp)
2204 monitor_expect (current_monitor->loadresp, NULL, 0);
2205
2206 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2207 32, SREC_ALL, hashmark,
2208 current_monitor->flags & MO_SREC_ACK ?
2209 monitor_wait_srec_ack : NULL);
2210
2211 monitor_expect_prompt (NULL, 0);
2212 }
2213
2214 /* Finally, make the PC point at the start address */
2215 if (exec_bfd)
2216 write_pc (bfd_get_start_address (exec_bfd));
2217
2218 /* There used to be code here which would clear inferior_ptid and
2219 call clear_symtab_users. None of that should be necessary:
2220 monitor targets should behave like remote protocol targets, and
2221 since generic_load does none of those things, this function
2222 shouldn't either.
2223
2224 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2225 a load, we still have a valid connection to the monitor, with a
2226 live processor state to fiddle with. The user can type
2227 `continue' or `jump *start' and make the program run. If they do
2228 these things, however, GDB will be talking to a running program
2229 while inferior_ptid is null_ptid; this makes things like
2230 reinit_frame_cache very confused. */
2231 }
2232
2233 static void
2234 monitor_stop (void)
2235 {
2236 monitor_debug ("MON stop\n");
2237 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2238 serial_send_break (monitor_desc);
2239 if (current_monitor->stop)
2240 monitor_printf_noecho (current_monitor->stop);
2241 }
2242
2243 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2244 in OUTPUT until the prompt is seen. FIXME: We read the characters
2245 ourseleves here cause of a nasty echo. */
2246
2247 static void
2248 monitor_rcmd (char *command,
2249 struct ui_file *outbuf)
2250 {
2251 char *p;
2252 int resp_len;
2253 char buf[1000];
2254
2255 if (monitor_desc == NULL)
2256 error ("monitor target not open.");
2257
2258 p = current_monitor->prompt;
2259
2260 /* Send the command. Note that if no args were supplied, then we're
2261 just sending the monitor a newline, which is sometimes useful. */
2262
2263 monitor_printf ("%s\r", (command ? command : ""));
2264
2265 resp_len = monitor_expect_prompt (buf, sizeof buf);
2266
2267 fputs_unfiltered (buf, outbuf); /* Output the response */
2268 }
2269
2270 /* Convert hex digit A to a number. */
2271
2272 #if 0
2273 static int
2274 from_hex (int a)
2275 {
2276 if (a >= '0' && a <= '9')
2277 return a - '0';
2278 if (a >= 'a' && a <= 'f')
2279 return a - 'a' + 10;
2280 if (a >= 'A' && a <= 'F')
2281 return a - 'A' + 10;
2282
2283 error ("Reply contains invalid hex digit 0x%x", a);
2284 }
2285 #endif
2286
2287 char *
2288 monitor_get_dev_name (void)
2289 {
2290 return dev_name;
2291 }
2292
2293 static struct target_ops monitor_ops;
2294
2295 static void
2296 init_base_monitor_ops (void)
2297 {
2298 monitor_ops.to_close = monitor_close;
2299 monitor_ops.to_detach = monitor_detach;
2300 monitor_ops.to_resume = monitor_resume;
2301 monitor_ops.to_wait = monitor_wait;
2302 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2303 monitor_ops.to_store_registers = monitor_store_registers;
2304 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2305 monitor_ops.to_xfer_memory = monitor_xfer_memory;
2306 monitor_ops.to_files_info = monitor_files_info;
2307 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2308 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2309 monitor_ops.to_kill = monitor_kill;
2310 monitor_ops.to_load = monitor_load;
2311 monitor_ops.to_create_inferior = monitor_create_inferior;
2312 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2313 monitor_ops.to_stop = monitor_stop;
2314 monitor_ops.to_rcmd = monitor_rcmd;
2315 monitor_ops.to_stratum = process_stratum;
2316 monitor_ops.to_has_all_memory = 1;
2317 monitor_ops.to_has_memory = 1;
2318 monitor_ops.to_has_stack = 1;
2319 monitor_ops.to_has_registers = 1;
2320 monitor_ops.to_has_execution = 1;
2321 monitor_ops.to_magic = OPS_MAGIC;
2322 } /* init_base_monitor_ops */
2323
2324 /* Init the target_ops structure pointed at by OPS */
2325
2326 void
2327 init_monitor_ops (struct target_ops *ops)
2328 {
2329 if (monitor_ops.to_magic != OPS_MAGIC)
2330 init_base_monitor_ops ();
2331
2332 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2333 }
2334
2335 /* Define additional commands that are usually only used by monitors. */
2336
2337 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2338
2339 void
2340 _initialize_remote_monitors (void)
2341 {
2342 init_base_monitor_ops ();
2343 add_show_from_set (add_set_cmd ("hash", no_class, var_boolean,
2344 (char *) &hashmark,
2345 "Set display of activity while downloading a file.\n\
2346 When enabled, a hashmark \'#\' is displayed.",
2347 &setlist),
2348 &showlist);
2349
2350 add_show_from_set
2351 (add_set_cmd ("monitor", no_class, var_zinteger,
2352 (char *) &monitor_debug_p,
2353 "Set debugging of remote monitor communication.\n\
2354 When enabled, communication between GDB and the remote monitor\n\
2355 is displayed.", &setdebuglist),
2356 &showdebuglist);
2357 }
This page took 0.078437 seconds and 3 git commands to generate.