GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / nios2-tdep.c
1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "target-descriptions.h"
44
45 /* To get entry_point_address. */
46 #include "objfiles.h"
47
48 /* Nios II specific header. */
49 #include "nios2-tdep.h"
50
51 #include "features/nios2.c"
52
53 /* Control debugging information emitted in this file. */
54
55 static int nios2_debug = 0;
56
57 /* The following structures are used in the cache for prologue
58 analysis; see the reg_value and reg_saved tables in
59 struct nios2_unwind_cache, respectively. */
60
61 /* struct reg_value is used to record that a register has the same value
62 as reg at the given offset from the start of a function. */
63
64 struct reg_value
65 {
66 int reg;
67 unsigned int offset;
68 };
69
70 /* struct reg_saved is used to record that a register value has been saved at
71 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
72 that the register is not known to have been saved. Note that when
73 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
74 addr is an absolute address. */
75
76 struct reg_saved
77 {
78 int basereg;
79 CORE_ADDR addr;
80 };
81
82 struct nios2_unwind_cache
83 {
84 /* The frame's base, optionally used by the high-level debug info. */
85 CORE_ADDR base;
86
87 /* The previous frame's inner most stack address. Used as this
88 frame ID's stack_addr. */
89 CORE_ADDR cfa;
90
91 /* The address of the first instruction in this function. */
92 CORE_ADDR pc;
93
94 /* Which register holds the return address for the frame. */
95 int return_regnum;
96
97 /* Table indicating what changes have been made to each register. */
98 struct reg_value reg_value[NIOS2_NUM_REGS];
99
100 /* Table indicating where each register has been saved. */
101 struct reg_saved reg_saved[NIOS2_NUM_REGS];
102 };
103
104
105 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
106
107 static int nios2_dwarf2gdb_regno_map[] =
108 {
109 0, 1, 2, 3,
110 4, 5, 6, 7,
111 8, 9, 10, 11,
112 12, 13, 14, 15,
113 16, 17, 18, 19,
114 20, 21, 22, 23,
115 24, 25,
116 NIOS2_GP_REGNUM, /* 26 */
117 NIOS2_SP_REGNUM, /* 27 */
118 NIOS2_FP_REGNUM, /* 28 */
119 NIOS2_EA_REGNUM, /* 29 */
120 NIOS2_BA_REGNUM, /* 30 */
121 NIOS2_RA_REGNUM, /* 31 */
122 NIOS2_PC_REGNUM, /* 32 */
123 NIOS2_STATUS_REGNUM, /* 33 */
124 NIOS2_ESTATUS_REGNUM, /* 34 */
125 NIOS2_BSTATUS_REGNUM, /* 35 */
126 NIOS2_IENABLE_REGNUM, /* 36 */
127 NIOS2_IPENDING_REGNUM, /* 37 */
128 NIOS2_CPUID_REGNUM, /* 38 */
129 39, /* CTL6 */ /* 39 */
130 NIOS2_EXCEPTION_REGNUM, /* 40 */
131 NIOS2_PTEADDR_REGNUM, /* 41 */
132 NIOS2_TLBACC_REGNUM, /* 42 */
133 NIOS2_TLBMISC_REGNUM, /* 43 */
134 NIOS2_ECCINJ_REGNUM, /* 44 */
135 NIOS2_BADADDR_REGNUM, /* 45 */
136 NIOS2_CONFIG_REGNUM, /* 46 */
137 NIOS2_MPUBASE_REGNUM, /* 47 */
138 NIOS2_MPUACC_REGNUM /* 48 */
139 };
140
141 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
142
143 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
144
145 static int
146 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
147 {
148 if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
149 return -1;
150
151 return nios2_dwarf2gdb_regno_map[dw_reg];
152 }
153
154 /* Canonical names for the 49 registers. */
155
156 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
157 {
158 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
161 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
162 "pc",
163 "status", "estatus", "bstatus", "ienable",
164 "ipending", "cpuid", "ctl6", "exception",
165 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
166 "badaddr", "config", "mpubase", "mpuacc"
167 };
168
169 /* Implement the register_name gdbarch method. */
170
171 static const char *
172 nios2_register_name (struct gdbarch *gdbarch, int regno)
173 {
174 /* Use mnemonic aliases for GPRs. */
175 if (regno >= 0 && regno < NIOS2_NUM_REGS)
176 return nios2_reg_names[regno];
177 else
178 return tdesc_register_name (gdbarch, regno);
179 }
180
181 /* Implement the register_type gdbarch method. */
182
183 static struct type *
184 nios2_register_type (struct gdbarch *gdbarch, int regno)
185 {
186 /* If the XML description has register information, use that to
187 determine the register type. */
188 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
189 return tdesc_register_type (gdbarch, regno);
190
191 if (regno == NIOS2_PC_REGNUM)
192 return builtin_type (gdbarch)->builtin_func_ptr;
193 else if (regno == NIOS2_SP_REGNUM)
194 return builtin_type (gdbarch)->builtin_data_ptr;
195 else
196 return builtin_type (gdbarch)->builtin_uint32;
197 }
198
199 /* Given a return value in REGCACHE with a type VALTYPE,
200 extract and copy its value into VALBUF. */
201
202 static void
203 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
204 struct regcache *regcache, gdb_byte *valbuf)
205 {
206 int len = TYPE_LENGTH (valtype);
207
208 /* Return values of up to 8 bytes are returned in $r2 $r3. */
209 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
210 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
211 else
212 {
213 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
214 + register_size (gdbarch, NIOS2_R3_REGNUM)));
215 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
216 regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
217 }
218 }
219
220 /* Write into appropriate registers a function return value
221 of type TYPE, given in virtual format. */
222
223 static void
224 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
225 struct regcache *regcache, const gdb_byte *valbuf)
226 {
227 int len = TYPE_LENGTH (valtype);
228
229 /* Return values of up to 8 bytes are returned in $r2 $r3. */
230 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
231 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
232 else
233 {
234 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
235 + register_size (gdbarch, NIOS2_R3_REGNUM)));
236 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
237 regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
238 }
239 }
240
241
242 /* Set up the default values of the registers. */
243
244 static void
245 nios2_setup_default (struct nios2_unwind_cache *cache)
246 {
247 int i;
248
249 for (i = 0; i < NIOS2_NUM_REGS; i++)
250 {
251 /* All registers start off holding their previous values. */
252 cache->reg_value[i].reg = i;
253 cache->reg_value[i].offset = 0;
254
255 /* All registers start off not saved. */
256 cache->reg_saved[i].basereg = -1;
257 cache->reg_saved[i].addr = 0;
258 }
259 }
260
261 /* Initialize the unwind cache. */
262
263 static void
264 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
265 {
266 cache->base = 0;
267 cache->cfa = 0;
268 cache->pc = pc;
269 cache->return_regnum = NIOS2_RA_REGNUM;
270 nios2_setup_default (cache);
271 }
272
273 /* Read and identify an instruction at PC. If INSNP is non-null,
274 store the instruction word into that location. Return the opcode
275 pointer or NULL if the memory couldn't be read or disassembled. */
276
277 static const struct nios2_opcode *
278 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
279 unsigned int *insnp)
280 {
281 LONGEST memword;
282 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
283 unsigned int insn;
284
285 if (mach == bfd_mach_nios2r2)
286 {
287 if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
288 BFD_ENDIAN_LITTLE, &memword)
289 && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
290 BFD_ENDIAN_LITTLE, &memword))
291 return NULL;
292 }
293 else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
294 gdbarch_byte_order (gdbarch), &memword))
295 return NULL;
296
297 insn = (unsigned int) memword;
298 if (insnp)
299 *insnp = insn;
300 return nios2_find_opcode_hash (insn, mach);
301 }
302
303
304 /* Match and disassemble an ADD-type instruction, with 3 register operands.
305 Returns true on success, and fills in the operand pointers. */
306
307 static int
308 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
309 unsigned long mach, int *ra, int *rb, int *rc)
310 {
311 int is_r2 = (mach == bfd_mach_nios2r2);
312
313 if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
314 {
315 *ra = GET_IW_R_A (insn);
316 *rb = GET_IW_R_B (insn);
317 *rc = GET_IW_R_C (insn);
318 return 1;
319 }
320 else if (!is_r2)
321 return 0;
322 else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
323 {
324 *ra = GET_IW_F3X6L5_A (insn);
325 *rb = GET_IW_F3X6L5_B (insn);
326 *rc = GET_IW_F3X6L5_C (insn);
327 return 1;
328 }
329 else if (op->match == MATCH_R2_ADD_N)
330 {
331 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
332 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
333 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
334 return 1;
335 }
336 else if (op->match == MATCH_R2_MOV_N)
337 {
338 *ra = GET_IW_F2_A (insn);
339 *rb = 0;
340 *rc = GET_IW_F2_B (insn);
341 return 1;
342 }
343 return 0;
344 }
345
346 /* Match and disassemble a SUB-type instruction, with 3 register operands.
347 Returns true on success, and fills in the operand pointers. */
348
349 static int
350 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
351 unsigned long mach, int *ra, int *rb, int *rc)
352 {
353 int is_r2 = (mach == bfd_mach_nios2r2);
354
355 if (!is_r2 && op->match == MATCH_R1_SUB)
356 {
357 *ra = GET_IW_R_A (insn);
358 *rb = GET_IW_R_B (insn);
359 *rc = GET_IW_R_C (insn);
360 return 1;
361 }
362 else if (!is_r2)
363 return 0;
364 else if (op->match == MATCH_R2_SUB)
365 {
366 *ra = GET_IW_F3X6L5_A (insn);
367 *rb = GET_IW_F3X6L5_B (insn);
368 *rc = GET_IW_F3X6L5_C (insn);
369 return 1;
370 }
371 else if (op->match == MATCH_R2_SUB_N)
372 {
373 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
374 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
375 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
376 return 1;
377 }
378 return 0;
379 }
380
381 /* Match and disassemble an ADDI-type instruction, with 2 register operands
382 and one immediate operand.
383 Returns true on success, and fills in the operand pointers. */
384
385 static int
386 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
387 unsigned long mach, int *ra, int *rb, int *imm)
388 {
389 int is_r2 = (mach == bfd_mach_nios2r2);
390
391 if (!is_r2 && op->match == MATCH_R1_ADDI)
392 {
393 *ra = GET_IW_I_A (insn);
394 *rb = GET_IW_I_B (insn);
395 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
396 return 1;
397 }
398 else if (!is_r2)
399 return 0;
400 else if (op->match == MATCH_R2_ADDI)
401 {
402 *ra = GET_IW_F2I16_A (insn);
403 *rb = GET_IW_F2I16_B (insn);
404 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
405 return 1;
406 }
407 else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
408 {
409 *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
410 *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
411 *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
412 if (op->match == MATCH_R2_SUBI_N)
413 *imm = - (*imm);
414 return 1;
415 }
416 else if (op->match == MATCH_R2_SPADDI_N)
417 {
418 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
419 *rb = NIOS2_SP_REGNUM;
420 *imm = GET_IW_T1I7_IMM7 (insn) << 2;
421 return 1;
422 }
423 else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
424 {
425 *ra = NIOS2_SP_REGNUM;
426 *rb = NIOS2_SP_REGNUM;
427 *imm = GET_IW_X1I7_IMM7 (insn) << 2;
428 if (op->match == MATCH_R2_SPDECI_N)
429 *imm = - (*imm);
430 return 1;
431 }
432 return 0;
433 }
434
435 /* Match and disassemble an ORHI-type instruction, with 2 register operands
436 and one unsigned immediate operand.
437 Returns true on success, and fills in the operand pointers. */
438
439 static int
440 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
441 unsigned long mach, int *ra, int *rb, unsigned int *uimm)
442 {
443 int is_r2 = (mach == bfd_mach_nios2r2);
444
445 if (!is_r2 && op->match == MATCH_R1_ORHI)
446 {
447 *ra = GET_IW_I_A (insn);
448 *rb = GET_IW_I_B (insn);
449 *uimm = GET_IW_I_IMM16 (insn);
450 return 1;
451 }
452 else if (!is_r2)
453 return 0;
454 else if (op->match == MATCH_R2_ORHI)
455 {
456 *ra = GET_IW_F2I16_A (insn);
457 *rb = GET_IW_F2I16_B (insn);
458 *uimm = GET_IW_F2I16_IMM16 (insn);
459 return 1;
460 }
461 return 0;
462 }
463
464 /* Match and disassemble a STW-type instruction, with 2 register operands
465 and one immediate operand.
466 Returns true on success, and fills in the operand pointers. */
467
468 static int
469 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
470 unsigned long mach, int *ra, int *rb, int *imm)
471 {
472 int is_r2 = (mach == bfd_mach_nios2r2);
473
474 if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
475 {
476 *ra = GET_IW_I_A (insn);
477 *rb = GET_IW_I_B (insn);
478 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
479 return 1;
480 }
481 else if (!is_r2)
482 return 0;
483 else if (op->match == MATCH_R2_STW)
484 {
485 *ra = GET_IW_F2I16_A (insn);
486 *rb = GET_IW_F2I16_B (insn);
487 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
488 return 1;
489 }
490 else if (op->match == MATCH_R2_STWIO)
491 {
492 *ra = GET_IW_F2X4I12_A (insn);
493 *rb = GET_IW_F2X4I12_B (insn);
494 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
495 return 1;
496 }
497 else if (op->match == MATCH_R2_STW_N)
498 {
499 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
500 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
501 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
502 return 1;
503 }
504 else if (op->match == MATCH_R2_STWSP_N)
505 {
506 *ra = NIOS2_SP_REGNUM;
507 *rb = GET_IW_F1I5_B (insn);
508 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
509 return 1;
510 }
511 else if (op->match == MATCH_R2_STWZ_N)
512 {
513 *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
514 *rb = 0;
515 *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
516 return 1;
517 }
518 return 0;
519 }
520
521 /* Match and disassemble a LDW-type instruction, with 2 register operands
522 and one immediate operand.
523 Returns true on success, and fills in the operand pointers. */
524
525 static int
526 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
527 unsigned long mach, int *ra, int *rb, int *imm)
528 {
529 int is_r2 = (mach == bfd_mach_nios2r2);
530
531 if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
532 {
533 *ra = GET_IW_I_A (insn);
534 *rb = GET_IW_I_B (insn);
535 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
536 return 1;
537 }
538 else if (!is_r2)
539 return 0;
540 else if (op->match == MATCH_R2_LDW)
541 {
542 *ra = GET_IW_F2I16_A (insn);
543 *rb = GET_IW_F2I16_B (insn);
544 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
545 return 1;
546 }
547 else if (op->match == MATCH_R2_LDWIO)
548 {
549 *ra = GET_IW_F2X4I12_A (insn);
550 *rb = GET_IW_F2X4I12_B (insn);
551 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
552 return 1;
553 }
554 else if (op->match == MATCH_R2_LDW_N)
555 {
556 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
557 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
558 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
559 return 1;
560 }
561 else if (op->match == MATCH_R2_LDWSP_N)
562 {
563 *ra = NIOS2_SP_REGNUM;
564 *rb = GET_IW_F1I5_B (insn);
565 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
566 return 1;
567 }
568 return 0;
569 }
570
571 /* Match and disassemble a RDCTL instruction, with 2 register operands.
572 Returns true on success, and fills in the operand pointers. */
573
574 static int
575 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
576 unsigned long mach, int *ra, int *rc)
577 {
578 int is_r2 = (mach == bfd_mach_nios2r2);
579
580 if (!is_r2 && (op->match == MATCH_R1_RDCTL))
581 {
582 *ra = GET_IW_R_IMM5 (insn);
583 *rc = GET_IW_R_C (insn);
584 return 1;
585 }
586 else if (!is_r2)
587 return 0;
588 else if (op->match == MATCH_R2_RDCTL)
589 {
590 *ra = GET_IW_F3X6L5_IMM5 (insn);
591 *rc = GET_IW_F3X6L5_C (insn);
592 return 1;
593 }
594 return 0;
595 }
596
597 /* Match and disassemble a PUSH.N or STWM instruction.
598 Returns true on success, and fills in the operand pointers. */
599
600 static int
601 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
602 unsigned long mach, unsigned int *reglist,
603 int *ra, int *imm, int *wb, int *id)
604 {
605 int is_r2 = (mach == bfd_mach_nios2r2);
606
607 if (!is_r2)
608 return 0;
609 else if (op->match == MATCH_R2_PUSH_N)
610 {
611 *reglist = 1 << 31;
612 if (GET_IW_L5I4X1_FP (insn))
613 *reglist |= (1 << 28);
614 if (GET_IW_L5I4X1_CS (insn))
615 {
616 int val = GET_IW_L5I4X1_REGRANGE (insn);
617 *reglist |= nios2_r2_reg_range_mappings[val];
618 }
619 *ra = NIOS2_SP_REGNUM;
620 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
621 *wb = 1;
622 *id = 0;
623 return 1;
624 }
625 else if (op->match == MATCH_R2_STWM)
626 {
627 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
628 if (GET_IW_F1X4L17_RS (insn))
629 {
630 *reglist = ((rawmask << 14) & 0x00ffc000);
631 if (rawmask & (1 << 10))
632 *reglist |= (1 << 28);
633 if (rawmask & (1 << 11))
634 *reglist |= (1 << 31);
635 }
636 else
637 *reglist = rawmask << 2;
638 *ra = GET_IW_F1X4L17_A (insn);
639 *imm = 0;
640 *wb = GET_IW_F1X4L17_WB (insn);
641 *id = GET_IW_F1X4L17_ID (insn);
642 return 1;
643 }
644 return 0;
645 }
646
647 /* Match and disassemble a POP.N or LDWM instruction.
648 Returns true on success, and fills in the operand pointers. */
649
650 static int
651 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
652 unsigned long mach, unsigned int *reglist,
653 int *ra, int *imm, int *wb, int *id, int *ret)
654 {
655 int is_r2 = (mach == bfd_mach_nios2r2);
656
657 if (!is_r2)
658 return 0;
659 else if (op->match == MATCH_R2_POP_N)
660 {
661 *reglist = 1 << 31;
662 if (GET_IW_L5I4X1_FP (insn))
663 *reglist |= (1 << 28);
664 if (GET_IW_L5I4X1_CS (insn))
665 {
666 int val = GET_IW_L5I4X1_REGRANGE (insn);
667 *reglist |= nios2_r2_reg_range_mappings[val];
668 }
669 *ra = NIOS2_SP_REGNUM;
670 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
671 *wb = 1;
672 *id = 1;
673 *ret = 1;
674 return 1;
675 }
676 else if (op->match == MATCH_R2_LDWM)
677 {
678 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
679 if (GET_IW_F1X4L17_RS (insn))
680 {
681 *reglist = ((rawmask << 14) & 0x00ffc000);
682 if (rawmask & (1 << 10))
683 *reglist |= (1 << 28);
684 if (rawmask & (1 << 11))
685 *reglist |= (1 << 31);
686 }
687 else
688 *reglist = rawmask << 2;
689 *ra = GET_IW_F1X4L17_A (insn);
690 *imm = 0;
691 *wb = GET_IW_F1X4L17_WB (insn);
692 *id = GET_IW_F1X4L17_ID (insn);
693 *ret = GET_IW_F1X4L17_PC (insn);
694 return 1;
695 }
696 return 0;
697 }
698
699 /* Match and disassemble a branch instruction, with (potentially)
700 2 register operands and one immediate operand.
701 Returns true on success, and fills in the operand pointers. */
702
703 enum branch_condition {
704 branch_none,
705 branch_eq,
706 branch_ne,
707 branch_ge,
708 branch_geu,
709 branch_lt,
710 branch_ltu
711 };
712
713 static int
714 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
715 unsigned long mach, int *ra, int *rb, int *imm,
716 enum branch_condition *cond)
717 {
718 int is_r2 = (mach == bfd_mach_nios2r2);
719
720 if (!is_r2)
721 {
722 switch (op->match)
723 {
724 case MATCH_R1_BR:
725 *cond = branch_none;
726 break;
727 case MATCH_R1_BEQ:
728 *cond = branch_eq;
729 break;
730 case MATCH_R1_BNE:
731 *cond = branch_ne;
732 break;
733 case MATCH_R1_BGE:
734 *cond = branch_ge;
735 break;
736 case MATCH_R1_BGEU:
737 *cond = branch_geu;
738 break;
739 case MATCH_R1_BLT:
740 *cond = branch_lt;
741 break;
742 case MATCH_R1_BLTU:
743 *cond = branch_ltu;
744 break;
745 default:
746 return 0;
747 }
748 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
749 *ra = GET_IW_I_A (insn);
750 *rb = GET_IW_I_B (insn);
751 return 1;
752 }
753 else
754 {
755 switch (op->match)
756 {
757 case MATCH_R2_BR_N:
758 *cond = branch_none;
759 *ra = NIOS2_Z_REGNUM;
760 *rb = NIOS2_Z_REGNUM;
761 *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
762 return 1;
763 case MATCH_R2_BEQZ_N:
764 *cond = branch_eq;
765 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
766 *rb = NIOS2_Z_REGNUM;
767 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
768 return 1;
769 case MATCH_R2_BNEZ_N:
770 *cond = branch_ne;
771 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
772 *rb = NIOS2_Z_REGNUM;
773 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
774 return 1;
775 case MATCH_R2_BR:
776 *cond = branch_none;
777 break;
778 case MATCH_R2_BEQ:
779 *cond = branch_eq;
780 break;
781 case MATCH_R2_BNE:
782 *cond = branch_ne;
783 break;
784 case MATCH_R2_BGE:
785 *cond = branch_ge;
786 break;
787 case MATCH_R2_BGEU:
788 *cond = branch_geu;
789 break;
790 case MATCH_R2_BLT:
791 *cond = branch_lt;
792 break;
793 case MATCH_R2_BLTU:
794 *cond = branch_ltu;
795 break;
796 default:
797 return 0;
798 }
799 *ra = GET_IW_F2I16_A (insn);
800 *rb = GET_IW_F2I16_B (insn);
801 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
802 return 1;
803 }
804 return 0;
805 }
806
807 /* Match and disassemble a direct jump instruction, with an
808 unsigned operand. Returns true on success, and fills in the operand
809 pointer. */
810
811 static int
812 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
813 unsigned long mach, unsigned int *uimm)
814 {
815 int is_r2 = (mach == bfd_mach_nios2r2);
816
817 if (!is_r2 && op->match == MATCH_R1_JMPI)
818 {
819 *uimm = GET_IW_J_IMM26 (insn) << 2;
820 return 1;
821 }
822 else if (!is_r2)
823 return 0;
824 else if (op->match == MATCH_R2_JMPI)
825 {
826 *uimm = GET_IW_L26_IMM26 (insn) << 2;
827 return 1;
828 }
829 return 0;
830 }
831
832 /* Match and disassemble a direct call instruction, with an
833 unsigned operand. Returns true on success, and fills in the operand
834 pointer. */
835
836 static int
837 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
838 unsigned long mach, unsigned int *uimm)
839 {
840 int is_r2 = (mach == bfd_mach_nios2r2);
841
842 if (!is_r2 && op->match == MATCH_R1_CALL)
843 {
844 *uimm = GET_IW_J_IMM26 (insn) << 2;
845 return 1;
846 }
847 else if (!is_r2)
848 return 0;
849 else if (op->match == MATCH_R2_CALL)
850 {
851 *uimm = GET_IW_L26_IMM26 (insn) << 2;
852 return 1;
853 }
854 return 0;
855 }
856
857 /* Match and disassemble an indirect jump instruction, with a
858 (possibly implicit) register operand. Returns true on success, and fills
859 in the operand pointer. */
860
861 static int
862 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
863 unsigned long mach, int *ra)
864 {
865 int is_r2 = (mach == bfd_mach_nios2r2);
866
867 if (!is_r2)
868 switch (op->match)
869 {
870 case MATCH_R1_JMP:
871 *ra = GET_IW_I_A (insn);
872 return 1;
873 case MATCH_R1_RET:
874 *ra = NIOS2_RA_REGNUM;
875 return 1;
876 case MATCH_R1_ERET:
877 *ra = NIOS2_EA_REGNUM;
878 return 1;
879 case MATCH_R1_BRET:
880 *ra = NIOS2_BA_REGNUM;
881 return 1;
882 default:
883 return 0;
884 }
885 else
886 switch (op->match)
887 {
888 case MATCH_R2_JMP:
889 *ra = GET_IW_F2I16_A (insn);
890 return 1;
891 case MATCH_R2_JMPR_N:
892 *ra = GET_IW_F1X1_A (insn);
893 return 1;
894 case MATCH_R2_RET:
895 case MATCH_R2_RET_N:
896 *ra = NIOS2_RA_REGNUM;
897 return 1;
898 case MATCH_R2_ERET:
899 *ra = NIOS2_EA_REGNUM;
900 return 1;
901 case MATCH_R2_BRET:
902 *ra = NIOS2_BA_REGNUM;
903 return 1;
904 default:
905 return 0;
906 }
907 return 0;
908 }
909
910 /* Match and disassemble an indirect call instruction, with a register
911 operand. Returns true on success, and fills in the operand pointer. */
912
913 static int
914 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
915 unsigned long mach, int *ra)
916 {
917 int is_r2 = (mach == bfd_mach_nios2r2);
918
919 if (!is_r2 && op->match == MATCH_R1_CALLR)
920 {
921 *ra = GET_IW_I_A (insn);
922 return 1;
923 }
924 else if (!is_r2)
925 return 0;
926 else if (op->match == MATCH_R2_CALLR)
927 {
928 *ra = GET_IW_F2I16_A (insn);
929 return 1;
930 }
931 else if (op->match == MATCH_R2_CALLR_N)
932 {
933 *ra = GET_IW_F1X1_A (insn);
934 return 1;
935 }
936 return 0;
937 }
938
939 /* Match and disassemble a break instruction, with an unsigned operand.
940 Returns true on success, and fills in the operand pointer. */
941
942 static int
943 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
944 unsigned long mach, unsigned int *uimm)
945 {
946 int is_r2 = (mach == bfd_mach_nios2r2);
947
948 if (!is_r2 && op->match == MATCH_R1_BREAK)
949 {
950 *uimm = GET_IW_R_IMM5 (insn);
951 return 1;
952 }
953 else if (!is_r2)
954 return 0;
955 else if (op->match == MATCH_R2_BREAK)
956 {
957 *uimm = GET_IW_F3X6L5_IMM5 (insn);
958 return 1;
959 }
960 else if (op->match == MATCH_R2_BREAK_N)
961 {
962 *uimm = GET_IW_X2L5_IMM5 (insn);
963 return 1;
964 }
965 return 0;
966 }
967
968 /* Match and disassemble a trap instruction, with an unsigned operand.
969 Returns true on success, and fills in the operand pointer. */
970
971 static int
972 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
973 unsigned long mach, unsigned int *uimm)
974 {
975 int is_r2 = (mach == bfd_mach_nios2r2);
976
977 if (!is_r2 && op->match == MATCH_R1_TRAP)
978 {
979 *uimm = GET_IW_R_IMM5 (insn);
980 return 1;
981 }
982 else if (!is_r2)
983 return 0;
984 else if (op->match == MATCH_R2_TRAP)
985 {
986 *uimm = GET_IW_F3X6L5_IMM5 (insn);
987 return 1;
988 }
989 else if (op->match == MATCH_R2_TRAP_N)
990 {
991 *uimm = GET_IW_X2L5_IMM5 (insn);
992 return 1;
993 }
994 return 0;
995 }
996
997 /* Helper function to identify when we're in a function epilogue;
998 that is, the part of the function from the point at which the
999 stack adjustments are made, to the return or sibcall.
1000 Note that we may have several stack adjustment instructions, and
1001 this function needs to test whether the stack teardown has already
1002 started before current_pc, not whether it has completed. */
1003
1004 static int
1005 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1006 CORE_ADDR current_pc,
1007 CORE_ADDR start_pc)
1008 {
1009 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1010 int is_r2 = (mach == bfd_mach_nios2r2);
1011 /* Maximum number of possibly-epilogue instructions to check.
1012 Note that this number should not be too large, else we can
1013 potentially end up iterating through unmapped memory. */
1014 int ninsns, max_insns = 5;
1015 unsigned int insn;
1016 const struct nios2_opcode *op = NULL;
1017 unsigned int uimm;
1018 int imm;
1019 int wb, id, ret;
1020 int ra, rb, rc;
1021 enum branch_condition cond;
1022 CORE_ADDR pc;
1023
1024 /* There has to be a previous instruction in the function. */
1025 if (current_pc <= start_pc)
1026 return 0;
1027
1028 /* Find the previous instruction before current_pc. For R2, it might
1029 be either a 16-bit or 32-bit instruction; the only way to know for
1030 sure is to scan through from the beginning of the function,
1031 disassembling as we go. */
1032 if (is_r2)
1033 for (pc = start_pc; ; )
1034 {
1035 op = nios2_fetch_insn (gdbarch, pc, &insn);
1036 if (op == NULL)
1037 return 0;
1038 if (pc + op->size < current_pc)
1039 pc += op->size;
1040 else
1041 break;
1042 /* We can skip over insns to a forward branch target. Since
1043 the branch offset is relative to the next instruction,
1044 it's correct to do this after incrementing the pc above. */
1045 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1046 && imm > 0
1047 && pc + imm < current_pc)
1048 pc += imm;
1049 }
1050 /* Otherwise just go back to the previous 32-bit insn. */
1051 else
1052 pc = current_pc - NIOS2_OPCODE_SIZE;
1053
1054 /* Beginning with the previous instruction we just located, check whether
1055 we are in a sequence of at least one stack adjustment instruction.
1056 Possible instructions here include:
1057 ADDI sp, sp, n
1058 ADD sp, sp, rn
1059 LDW sp, n(sp)
1060 SPINCI.N n
1061 LDWSP.N sp, n(sp)
1062 LDWM {reglist}, (sp)++, wb */
1063 for (ninsns = 0; ninsns < max_insns; ninsns++)
1064 {
1065 int ok = 0;
1066
1067 /* Fetch the insn at pc. */
1068 op = nios2_fetch_insn (gdbarch, pc, &insn);
1069 if (op == NULL)
1070 return 0;
1071 pc += op->size;
1072
1073 /* Was it a stack adjustment? */
1074 if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1075 ok = (rb == NIOS2_SP_REGNUM);
1076 else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1077 ok = (rc == NIOS2_SP_REGNUM);
1078 else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1079 ok = (rb == NIOS2_SP_REGNUM);
1080 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1081 &imm, &wb, &ret, &id))
1082 ok = (ra == NIOS2_SP_REGNUM && wb && id);
1083 if (!ok)
1084 break;
1085 }
1086
1087 /* No stack adjustments found. */
1088 if (ninsns == 0)
1089 return 0;
1090
1091 /* We found more stack adjustments than we expect GCC to be generating.
1092 Since it looks like a stack unwind might be in progress tell GDB to
1093 treat it as such. */
1094 if (ninsns == max_insns)
1095 return 1;
1096
1097 /* The next instruction following the stack adjustments must be a
1098 return, jump, or unconditional branch, or a CDX pop.n or ldwm
1099 that does an implicit return. */
1100 if (nios2_match_jmpr (insn, op, mach, &ra)
1101 || nios2_match_jmpi (insn, op, mach, &uimm)
1102 || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1103 && ret)
1104 || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1105 && cond == branch_none))
1106 return 1;
1107
1108 return 0;
1109 }
1110
1111 /* Implement the stack_frame_destroyed_p gdbarch method. */
1112
1113 static int
1114 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116 CORE_ADDR func_addr;
1117
1118 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1119 return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1120
1121 return 0;
1122 }
1123
1124 /* Do prologue analysis, returning the PC of the first instruction
1125 after the function prologue. Assumes CACHE has already been
1126 initialized. THIS_FRAME can be null, in which case we are only
1127 interested in skipping the prologue. Otherwise CACHE is filled in
1128 from the frame information.
1129
1130 The prologue may consist of the following parts:
1131 1) Profiling instrumentation. For non-PIC code it looks like:
1132 mov r8, ra
1133 call mcount
1134 mov ra, r8
1135
1136 2) A stack adjustment and save of R4-R7 for varargs functions.
1137 For R2 CDX this is typically handled with a STWM, otherwise
1138 this is typically merged with item 3.
1139
1140 3) A stack adjustment and save of the callee-saved registers.
1141 For R2 CDX these are typically handled with a PUSH.N or STWM,
1142 otherwise as an explicit SP decrement and individual register
1143 saves.
1144
1145 There may also be a stack switch here in an exception handler
1146 in place of a stack adjustment. It looks like:
1147 movhi rx, %hiadj(newstack)
1148 addhi rx, rx, %lo(newstack)
1149 stw sp, constant(rx)
1150 mov sp, rx
1151
1152 4) A frame pointer save, which can be either a MOV or ADDI.
1153
1154 5) A further stack pointer adjustment. This is normally included
1155 adjustment in step 3 unless the total adjustment is too large
1156 to be done in one step.
1157
1158 7) A stack overflow check, which can take either of these forms:
1159 bgeu sp, rx, +8
1160 trap 3
1161 or
1162 bltu sp, rx, .Lstack_overflow
1163 ...
1164 .Lstack_overflow:
1165 trap 3
1166
1167 Older versions of GCC emitted "break 3" instead of "trap 3" here,
1168 so we check for both cases.
1169
1170 Older GCC versions emitted stack overflow checks after the SP
1171 adjustments in both steps 3 and 4. Starting with GCC 6, there is
1172 at most one overflow check, which is placed before the first
1173 stack adjustment for R2 CDX and after the first stack adjustment
1174 otherwise.
1175
1176 The prologue instructions may be combined or interleaved with other
1177 instructions.
1178
1179 To cope with all this variability we decode all the instructions
1180 from the start of the prologue until we hit an instruction that
1181 cannot possibly be a prologue instruction, such as a branch, call,
1182 return, or epilogue instruction. The prologue is considered to end
1183 at the last instruction that can definitely be considered a
1184 prologue instruction. */
1185
1186 static CORE_ADDR
1187 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1188 const CORE_ADDR current_pc,
1189 struct nios2_unwind_cache *cache,
1190 struct frame_info *this_frame)
1191 {
1192 /* Maximum number of possibly-prologue instructions to check.
1193 Note that this number should not be too large, else we can
1194 potentially end up iterating through unmapped memory. */
1195 int ninsns, max_insns = 50;
1196 int regno;
1197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1198 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1199 int is_r2 = (mach == bfd_mach_nios2r2);
1200
1201 /* Does the frame set up the FP register? */
1202 int base_reg = 0;
1203
1204 struct reg_value *value = cache->reg_value;
1205 struct reg_value temp_value[NIOS2_NUM_REGS];
1206
1207 int i;
1208
1209 /* Save the starting PC so we can correct the pc after running
1210 through the prolog, using symbol info. */
1211 CORE_ADDR pc = start_pc;
1212
1213 /* Is this an exception handler? */
1214 int exception_handler = 0;
1215
1216 /* What was the original value of SP (or fake original value for
1217 functions which switch stacks? */
1218 CORE_ADDR frame_high;
1219
1220 /* The last definitely-prologue instruction seen. */
1221 CORE_ADDR prologue_end;
1222
1223 /* Is this the innermost function? */
1224 int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1225
1226 if (nios2_debug)
1227 fprintf_unfiltered (gdb_stdlog,
1228 "{ nios2_analyze_prologue start=%s, current=%s ",
1229 paddress (gdbarch, start_pc),
1230 paddress (gdbarch, current_pc));
1231
1232 /* Set up the default values of the registers. */
1233 nios2_setup_default (cache);
1234
1235 /* Find the prologue instructions. */
1236 prologue_end = start_pc;
1237 for (ninsns = 0; ninsns < max_insns; ninsns++)
1238 {
1239 /* Present instruction. */
1240 uint32_t insn;
1241 const struct nios2_opcode *op;
1242 int ra, rb, rc, imm;
1243 unsigned int uimm;
1244 unsigned int reglist;
1245 int wb, id, ret;
1246 enum branch_condition cond;
1247
1248 if (pc == current_pc)
1249 {
1250 /* When we reach the current PC we must save the current
1251 register state (for the backtrace) but keep analysing
1252 because there might be more to find out (eg. is this an
1253 exception handler). */
1254 memcpy (temp_value, value, sizeof (temp_value));
1255 value = temp_value;
1256 if (nios2_debug)
1257 fprintf_unfiltered (gdb_stdlog, "*");
1258 }
1259
1260 op = nios2_fetch_insn (gdbarch, pc, &insn);
1261
1262 /* Unknown opcode? Stop scanning. */
1263 if (op == NULL)
1264 break;
1265 pc += op->size;
1266
1267 if (nios2_debug)
1268 {
1269 if (op->size == 2)
1270 fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1271 else
1272 fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1273 }
1274
1275 /* The following instructions can appear in the prologue. */
1276
1277 if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1278 {
1279 /* ADD rc, ra, rb (also used for MOV) */
1280 if (rc == NIOS2_SP_REGNUM
1281 && rb == 0
1282 && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1283 {
1284 /* If the previous value of SP is available somewhere
1285 near the new stack pointer value then this is a
1286 stack switch. */
1287
1288 /* If any registers were saved on the stack before then
1289 we can't backtrace into them now. */
1290 for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
1291 {
1292 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1293 cache->reg_saved[i].basereg = -1;
1294 if (value[i].reg == NIOS2_SP_REGNUM)
1295 value[i].reg = -1;
1296 }
1297
1298 /* Create a fake "high water mark" 4 bytes above where SP
1299 was stored and fake up the registers to be consistent
1300 with that. */
1301 value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1302 value[NIOS2_SP_REGNUM].offset
1303 = (value[ra].offset
1304 - cache->reg_saved[NIOS2_SP_REGNUM].addr
1305 - 4);
1306 cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1307 cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1308 }
1309
1310 else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1311 /* This is setting SP from FP. This only happens in the
1312 function epilogue. */
1313 break;
1314
1315 else if (rc != 0)
1316 {
1317 if (value[rb].reg == 0)
1318 value[rc].reg = value[ra].reg;
1319 else if (value[ra].reg == 0)
1320 value[rc].reg = value[rb].reg;
1321 else
1322 value[rc].reg = -1;
1323 value[rc].offset = value[ra].offset + value[rb].offset;
1324 }
1325
1326 /* The add/move is only considered a prologue instruction
1327 if the destination is SP or FP. */
1328 if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1329 prologue_end = pc;
1330 }
1331
1332 else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1333 {
1334 /* SUB rc, ra, rb */
1335 if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1336 && value[rc].reg != 0)
1337 /* If we are decrementing the SP by a non-constant amount,
1338 this is alloca, not part of the prologue. */
1339 break;
1340 else if (rc != 0)
1341 {
1342 if (value[rb].reg == 0)
1343 value[rc].reg = value[ra].reg;
1344 else
1345 value[rc].reg = -1;
1346 value[rc].offset = value[ra].offset - value[rb].offset;
1347 }
1348 }
1349
1350 else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1351 {
1352 /* ADDI rb, ra, imm */
1353
1354 /* A positive stack adjustment has to be part of the epilogue. */
1355 if (rb == NIOS2_SP_REGNUM
1356 && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1357 break;
1358
1359 /* Likewise restoring SP from FP. */
1360 else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1361 break;
1362
1363 if (rb != 0)
1364 {
1365 value[rb].reg = value[ra].reg;
1366 value[rb].offset = value[ra].offset + imm;
1367 }
1368
1369 /* The add is only considered a prologue instruction
1370 if the destination is SP or FP. */
1371 if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1372 prologue_end = pc;
1373 }
1374
1375 else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1376 {
1377 /* ORHI rb, ra, uimm (also used for MOVHI) */
1378 if (rb != 0)
1379 {
1380 value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
1381 value[rb].offset = value[ra].offset | (uimm << 16);
1382 }
1383 }
1384
1385 else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1386 {
1387 /* STW rb, imm(ra) */
1388
1389 /* Are we storing the original value of a register to the stack?
1390 For exception handlers the value of EA-4 (return
1391 address from interrupts etc) is sometimes stored. */
1392 int orig = value[rb].reg;
1393 if (orig > 0
1394 && (value[rb].offset == 0
1395 || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1396 && value[ra].reg == NIOS2_SP_REGNUM)
1397 {
1398 if (pc < current_pc)
1399 {
1400 /* Save off callee saved registers. */
1401 cache->reg_saved[orig].basereg = value[ra].reg;
1402 cache->reg_saved[orig].addr = value[ra].offset + imm;
1403 }
1404
1405 prologue_end = pc;
1406
1407 if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1408 exception_handler = 1;
1409 }
1410 else
1411 /* Non-stack memory writes cannot appear in the prologue. */
1412 break;
1413 }
1414
1415 else if (nios2_match_stwm (insn, op, mach,
1416 &reglist, &ra, &imm, &wb, &id))
1417 {
1418 /* PUSH.N {reglist}, adjust
1419 or
1420 STWM {reglist}, --(SP)[, writeback] */
1421 int i;
1422 int off = 0;
1423
1424 if (ra != NIOS2_SP_REGNUM || id != 0)
1425 /* This is a non-stack-push memory write and cannot be
1426 part of the prologue. */
1427 break;
1428
1429 for (i = 31; i >= 0; i--)
1430 if (reglist & (1 << i))
1431 {
1432 int orig = value[i].reg;
1433
1434 off += 4;
1435 if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1436 {
1437 cache->reg_saved[orig].basereg
1438 = value[NIOS2_SP_REGNUM].reg;
1439 cache->reg_saved[orig].addr
1440 = value[NIOS2_SP_REGNUM].offset - off;
1441 }
1442 }
1443
1444 if (wb)
1445 value[NIOS2_SP_REGNUM].offset -= off;
1446 value[NIOS2_SP_REGNUM].offset -= imm;
1447
1448 prologue_end = pc;
1449 }
1450
1451 else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1452 {
1453 /* RDCTL rC, ctlN
1454 This can appear in exception handlers in combination with
1455 a subsequent save to the stack frame. */
1456 if (rc != 0)
1457 {
1458 value[rc].reg = NIOS2_STATUS_REGNUM + ra;
1459 value[rc].offset = 0;
1460 }
1461 }
1462
1463 else if (nios2_match_calli (insn, op, mach, &uimm))
1464 {
1465 if (value[8].reg == NIOS2_RA_REGNUM
1466 && value[8].offset == 0
1467 && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1468 && value[NIOS2_SP_REGNUM].offset == 0)
1469 {
1470 /* A CALL instruction. This is treated as a call to mcount
1471 if ra has been stored into r8 beforehand and if it's
1472 before the stack adjust.
1473 Note mcount corrupts r2-r3, r9-r15 & ra. */
1474 for (i = 2 ; i <= 3 ; i++)
1475 value[i].reg = -1;
1476 for (i = 9 ; i <= 15 ; i++)
1477 value[i].reg = -1;
1478 value[NIOS2_RA_REGNUM].reg = -1;
1479
1480 prologue_end = pc;
1481 }
1482
1483 /* Other calls are not part of the prologue. */
1484 else
1485 break;
1486 }
1487
1488 else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1489 {
1490 /* Branches not involving a stack overflow check aren't part of
1491 the prologue. */
1492 if (ra != NIOS2_SP_REGNUM)
1493 break;
1494 else if (cond == branch_geu)
1495 {
1496 /* BGEU sp, rx, +8
1497 TRAP 3 (or BREAK 3)
1498 This instruction sequence is used in stack checking;
1499 we can ignore it. */
1500 unsigned int next_insn;
1501 const struct nios2_opcode *next_op
1502 = nios2_fetch_insn (gdbarch, pc, &next_insn);
1503 if (next_op != NULL
1504 && (nios2_match_trap (next_insn, op, mach, &uimm)
1505 || nios2_match_break (next_insn, op, mach, &uimm)))
1506 pc += next_op->size;
1507 else
1508 break;
1509 }
1510 else if (cond == branch_ltu)
1511 {
1512 /* BLTU sp, rx, .Lstackoverflow
1513 If the location branched to holds a TRAP or BREAK
1514 instruction then this is also stack overflow detection. */
1515 unsigned int next_insn;
1516 const struct nios2_opcode *next_op
1517 = nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1518 if (next_op != NULL
1519 && (nios2_match_trap (next_insn, op, mach, &uimm)
1520 || nios2_match_break (next_insn, op, mach, &uimm)))
1521 ;
1522 else
1523 break;
1524 }
1525 else
1526 break;
1527 }
1528
1529 /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1530 the prologue. */
1531 else if (nios2_match_callr (insn, op, mach, &ra)
1532 || nios2_match_jmpr (insn, op, mach, &ra)
1533 || nios2_match_jmpi (insn, op, mach, &uimm)
1534 || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1535 &imm, &wb, &id, &ret)
1536 && ret)
1537 || nios2_match_trap (insn, op, mach, &uimm)
1538 || nios2_match_break (insn, op, mach, &uimm))
1539 break;
1540 }
1541
1542 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1543 and are only interested in the PROLOGUE_END value, so just
1544 return that now and skip over the cache updates, which depend
1545 on having frame information. */
1546 if (this_frame == NULL)
1547 return prologue_end;
1548
1549 /* If we are in the function epilogue and have already popped
1550 registers off the stack in preparation for returning, then we
1551 want to go back to the original register values. */
1552 if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1553 nios2_setup_default (cache);
1554
1555 /* Exception handlers use a different return address register. */
1556 if (exception_handler)
1557 cache->return_regnum = NIOS2_EA_REGNUM;
1558
1559 if (nios2_debug)
1560 fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1561
1562 if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1563 /* If the FP now holds an offset from the CFA then this is a
1564 normal frame which uses the frame pointer. */
1565 base_reg = NIOS2_FP_REGNUM;
1566 else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1567 /* FP doesn't hold an offset from the CFA. If SP still holds an
1568 offset from the CFA then we might be in a function which omits
1569 the frame pointer, or we might be partway through the prologue.
1570 In both cases we can find the CFA using SP. */
1571 base_reg = NIOS2_SP_REGNUM;
1572 else
1573 {
1574 /* Somehow the stack pointer has been corrupted.
1575 We can't return. */
1576 if (nios2_debug)
1577 fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1578 return 0;
1579 }
1580
1581 if (cache->reg_value[base_reg].offset == 0
1582 || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1583 || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1584 {
1585 /* If the frame didn't adjust the stack, didn't save RA or
1586 didn't save EA in an exception handler then it must either
1587 be a leaf function (doesn't call any other functions) or it
1588 can't return. If it has called another function then it
1589 can't be a leaf, so set base == 0 to indicate that we can't
1590 backtrace past it. */
1591
1592 if (!innermost)
1593 {
1594 /* If it isn't the innermost function then it can't be a
1595 leaf, unless it was interrupted. Check whether RA for
1596 this frame is the same as PC. If so then it probably
1597 wasn't interrupted. */
1598 CORE_ADDR ra
1599 = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1600
1601 if (ra == current_pc)
1602 {
1603 if (nios2_debug)
1604 fprintf_unfiltered
1605 (gdb_stdlog,
1606 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1607 paddress (gdbarch, cache->reg_value[base_reg].offset),
1608 cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1609 cache->return_regnum,
1610 cache->reg_saved[cache->return_regnum].basereg);
1611 return 0;
1612 }
1613 }
1614 }
1615
1616 /* Get the value of whichever register we are using for the
1617 base. */
1618 cache->base = get_frame_register_unsigned (this_frame, base_reg);
1619
1620 /* What was the value of SP at the start of this function (or just
1621 after the stack switch). */
1622 frame_high = cache->base - cache->reg_value[base_reg].offset;
1623
1624 /* Adjust all the saved registers such that they contain addresses
1625 instead of offsets. */
1626 for (i = 0; i < NIOS2_NUM_REGS; i++)
1627 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1628 {
1629 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1630 cache->reg_saved[i].addr += frame_high;
1631 }
1632
1633 for (i = 0; i < NIOS2_NUM_REGS; i++)
1634 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1635 {
1636 CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1637 NIOS2_GP_REGNUM);
1638
1639 for ( ; i < NIOS2_NUM_REGS; i++)
1640 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1641 {
1642 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1643 cache->reg_saved[i].addr += gp;
1644 }
1645 }
1646
1647 /* Work out what the value of SP was on the first instruction of
1648 this function. If we didn't switch stacks then this can be
1649 trivially computed from the base address. */
1650 if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1651 cache->cfa
1652 = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1653 4, byte_order);
1654 else
1655 cache->cfa = frame_high;
1656
1657 /* Exception handlers restore ESTATUS into STATUS. */
1658 if (exception_handler)
1659 {
1660 cache->reg_saved[NIOS2_STATUS_REGNUM]
1661 = cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1662 cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1663 }
1664
1665 if (nios2_debug)
1666 fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1667 paddress (gdbarch, cache->cfa));
1668
1669 return prologue_end;
1670 }
1671
1672 /* Implement the skip_prologue gdbarch hook. */
1673
1674 static CORE_ADDR
1675 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1676 {
1677 CORE_ADDR func_addr;
1678
1679 struct nios2_unwind_cache cache;
1680
1681 /* See if we can determine the end of the prologue via the symbol
1682 table. If so, then return either PC, or the PC after the
1683 prologue, whichever is greater. */
1684 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1685 {
1686 CORE_ADDR post_prologue_pc
1687 = skip_prologue_using_sal (gdbarch, func_addr);
1688
1689 if (post_prologue_pc != 0)
1690 return max (start_pc, post_prologue_pc);
1691 }
1692
1693 /* Prologue analysis does the rest.... */
1694 nios2_init_cache (&cache, start_pc);
1695 return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1696 }
1697
1698 /* Implement the breakpoint_from_pc gdbarch hook.
1699
1700 The Nios II ABI for Linux says: "Userspace programs should not use
1701 the break instruction and userspace debuggers should not insert
1702 one." and "Userspace breakpoints are accomplished using the trap
1703 instruction with immediate operand 31 (all ones)."
1704
1705 So, we use "trap 31" consistently as the breakpoint on bare-metal
1706 as well as Linux targets. */
1707
1708 static const gdb_byte*
1709 nios2_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
1710 int *bp_size)
1711 {
1712 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1713 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1714
1715 if (mach == bfd_mach_nios2r2)
1716 {
1717 /* R2 trap encoding:
1718 ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1719 0xb7fd0020
1720 CDX trap.n encoding:
1721 ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1722 0xd7c9
1723 Note that code is always little-endian on R2. */
1724 static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1725 static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1726 unsigned int insn;
1727 const struct nios2_opcode *op
1728 = nios2_fetch_insn (gdbarch, *bp_addr, &insn);
1729
1730 if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1731 {
1732 *bp_size = NIOS2_CDX_OPCODE_SIZE;
1733 return cdx_breakpoint_le;
1734 }
1735 else
1736 {
1737 *bp_size = NIOS2_OPCODE_SIZE;
1738 return r2_breakpoint_le;
1739 }
1740 }
1741 else
1742 {
1743 /* R1 trap encoding:
1744 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1745 0x003b6ffa */
1746 static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1747 static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1748 *bp_size = NIOS2_OPCODE_SIZE;
1749 if (byte_order_for_code == BFD_ENDIAN_BIG)
1750 return r1_breakpoint_be;
1751 else
1752 return r1_breakpoint_le;
1753 }
1754 }
1755
1756 /* Implement the print_insn gdbarch method. */
1757
1758 static int
1759 nios2_print_insn (bfd_vma memaddr, disassemble_info *info)
1760 {
1761 if (info->endian == BFD_ENDIAN_BIG)
1762 return print_insn_big_nios2 (memaddr, info);
1763 else
1764 return print_insn_little_nios2 (memaddr, info);
1765 }
1766
1767
1768 /* Implement the frame_align gdbarch method. */
1769
1770 static CORE_ADDR
1771 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1772 {
1773 return align_down (addr, 4);
1774 }
1775
1776
1777 /* Implement the return_value gdbarch method. */
1778
1779 static enum return_value_convention
1780 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1781 struct type *type, struct regcache *regcache,
1782 gdb_byte *readbuf, const gdb_byte *writebuf)
1783 {
1784 if (TYPE_LENGTH (type) > 8)
1785 return RETURN_VALUE_STRUCT_CONVENTION;
1786
1787 if (readbuf)
1788 nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1789 if (writebuf)
1790 nios2_store_return_value (gdbarch, type, regcache, writebuf);
1791
1792 return RETURN_VALUE_REGISTER_CONVENTION;
1793 }
1794
1795 /* Implement the dummy_id gdbarch method. */
1796
1797 static struct frame_id
1798 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1799 {
1800 return frame_id_build
1801 (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1802 get_frame_pc (this_frame));
1803 }
1804
1805 /* Implement the push_dummy_call gdbarch method. */
1806
1807 static CORE_ADDR
1808 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1809 struct regcache *regcache, CORE_ADDR bp_addr,
1810 int nargs, struct value **args, CORE_ADDR sp,
1811 int struct_return, CORE_ADDR struct_addr)
1812 {
1813 int argreg;
1814 int float_argreg;
1815 int argnum;
1816 int len = 0;
1817 int stack_offset = 0;
1818 CORE_ADDR func_addr = find_function_addr (function, NULL);
1819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1820
1821 /* Set the return address register to point to the entry point of
1822 the program, where a breakpoint lies in wait. */
1823 regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1824
1825 /* Now make space on the stack for the args. */
1826 for (argnum = 0; argnum < nargs; argnum++)
1827 len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1828 sp -= len;
1829
1830 /* Initialize the register pointer. */
1831 argreg = NIOS2_FIRST_ARGREG;
1832
1833 /* The struct_return pointer occupies the first parameter-passing
1834 register. */
1835 if (struct_return)
1836 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1837
1838 /* Now load as many as possible of the first arguments into
1839 registers, and push the rest onto the stack. Loop through args
1840 from first to last. */
1841 for (argnum = 0; argnum < nargs; argnum++)
1842 {
1843 const gdb_byte *val;
1844 gdb_byte valbuf[MAX_REGISTER_SIZE];
1845 struct value *arg = args[argnum];
1846 struct type *arg_type = check_typedef (value_type (arg));
1847 int len = TYPE_LENGTH (arg_type);
1848 enum type_code typecode = TYPE_CODE (arg_type);
1849
1850 val = value_contents (arg);
1851
1852 /* Copy the argument to general registers or the stack in
1853 register-sized pieces. Large arguments are split between
1854 registers and stack. */
1855 while (len > 0)
1856 {
1857 int partial_len = (len < 4 ? len : 4);
1858
1859 if (argreg <= NIOS2_LAST_ARGREG)
1860 {
1861 /* The argument is being passed in a register. */
1862 CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1863 byte_order);
1864
1865 regcache_cooked_write_unsigned (regcache, argreg, regval);
1866 argreg++;
1867 }
1868 else
1869 {
1870 /* The argument is being passed on the stack. */
1871 CORE_ADDR addr = sp + stack_offset;
1872
1873 write_memory (addr, val, partial_len);
1874 stack_offset += align_up (partial_len, 4);
1875 }
1876
1877 len -= partial_len;
1878 val += partial_len;
1879 }
1880 }
1881
1882 regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1883
1884 /* Return adjusted stack pointer. */
1885 return sp;
1886 }
1887
1888 /* Implement the unwind_pc gdbarch method. */
1889
1890 static CORE_ADDR
1891 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1892 {
1893 gdb_byte buf[4];
1894
1895 frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1896 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1897 }
1898
1899 /* Implement the unwind_sp gdbarch method. */
1900
1901 static CORE_ADDR
1902 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1903 {
1904 return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1905 }
1906
1907 /* Use prologue analysis to fill in the register cache
1908 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1909 *THIS_PROLOGUE_CACHE first. */
1910
1911 static struct nios2_unwind_cache *
1912 nios2_frame_unwind_cache (struct frame_info *this_frame,
1913 void **this_prologue_cache)
1914 {
1915 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1916 CORE_ADDR current_pc;
1917 struct nios2_unwind_cache *cache;
1918 int i;
1919
1920 if (*this_prologue_cache)
1921 return (struct nios2_unwind_cache *) *this_prologue_cache;
1922
1923 cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1924 *this_prologue_cache = cache;
1925
1926 /* Zero all fields. */
1927 nios2_init_cache (cache, get_frame_func (this_frame));
1928
1929 /* Prologue analysis does the rest... */
1930 current_pc = get_frame_pc (this_frame);
1931 if (cache->pc != 0)
1932 nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1933
1934 return cache;
1935 }
1936
1937 /* Implement the this_id function for the normal unwinder. */
1938
1939 static void
1940 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1941 struct frame_id *this_id)
1942 {
1943 struct nios2_unwind_cache *cache =
1944 nios2_frame_unwind_cache (this_frame, this_cache);
1945
1946 /* This marks the outermost frame. */
1947 if (cache->base == 0)
1948 return;
1949
1950 *this_id = frame_id_build (cache->cfa, cache->pc);
1951 }
1952
1953 /* Implement the prev_register function for the normal unwinder. */
1954
1955 static struct value *
1956 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1957 int regnum)
1958 {
1959 struct nios2_unwind_cache *cache =
1960 nios2_frame_unwind_cache (this_frame, this_cache);
1961
1962 gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1963
1964 /* The PC of the previous frame is stored in the RA register of
1965 the current frame. Frob regnum so that we pull the value from
1966 the correct place. */
1967 if (regnum == NIOS2_PC_REGNUM)
1968 regnum = cache->return_regnum;
1969
1970 if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1971 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1972
1973 /* If we've worked out where a register is stored then load it from
1974 there. */
1975 if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1976 return frame_unwind_got_memory (this_frame, regnum,
1977 cache->reg_saved[regnum].addr);
1978
1979 return frame_unwind_got_register (this_frame, regnum, regnum);
1980 }
1981
1982 /* Implement the this_base, this_locals, and this_args hooks
1983 for the normal unwinder. */
1984
1985 static CORE_ADDR
1986 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1987 {
1988 struct nios2_unwind_cache *info
1989 = nios2_frame_unwind_cache (this_frame, this_cache);
1990
1991 return info->base;
1992 }
1993
1994 /* Data structures for the normal prologue-analysis-based
1995 unwinder. */
1996
1997 static const struct frame_unwind nios2_frame_unwind =
1998 {
1999 NORMAL_FRAME,
2000 default_frame_unwind_stop_reason,
2001 nios2_frame_this_id,
2002 nios2_frame_prev_register,
2003 NULL,
2004 default_frame_sniffer
2005 };
2006
2007 static const struct frame_base nios2_frame_base =
2008 {
2009 &nios2_frame_unwind,
2010 nios2_frame_base_address,
2011 nios2_frame_base_address,
2012 nios2_frame_base_address
2013 };
2014
2015 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2016 in the stub unwinder. */
2017
2018 static struct trad_frame_cache *
2019 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2020 {
2021 CORE_ADDR pc;
2022 CORE_ADDR start_addr;
2023 CORE_ADDR stack_addr;
2024 struct trad_frame_cache *this_trad_cache;
2025 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2026 int num_regs = gdbarch_num_regs (gdbarch);
2027
2028 if (*this_cache != NULL)
2029 return (struct trad_frame_cache *) *this_cache;
2030 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2031 *this_cache = this_trad_cache;
2032
2033 /* The return address is in the link register. */
2034 trad_frame_set_reg_realreg (this_trad_cache,
2035 gdbarch_pc_regnum (gdbarch),
2036 NIOS2_RA_REGNUM);
2037
2038 /* Frame ID, since it's a frameless / stackless function, no stack
2039 space is allocated and SP on entry is the current SP. */
2040 pc = get_frame_pc (this_frame);
2041 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2042 stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2043 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2044 /* Assume that the frame's base is the same as the stack pointer. */
2045 trad_frame_set_this_base (this_trad_cache, stack_addr);
2046
2047 return this_trad_cache;
2048 }
2049
2050 /* Implement the this_id function for the stub unwinder. */
2051
2052 static void
2053 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2054 struct frame_id *this_id)
2055 {
2056 struct trad_frame_cache *this_trad_cache
2057 = nios2_stub_frame_cache (this_frame, this_cache);
2058
2059 trad_frame_get_id (this_trad_cache, this_id);
2060 }
2061
2062 /* Implement the prev_register function for the stub unwinder. */
2063
2064 static struct value *
2065 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2066 void **this_cache, int regnum)
2067 {
2068 struct trad_frame_cache *this_trad_cache
2069 = nios2_stub_frame_cache (this_frame, this_cache);
2070
2071 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2072 }
2073
2074 /* Implement the sniffer function for the stub unwinder.
2075 This unwinder is used for cases where the normal
2076 prologue-analysis-based unwinder can't work,
2077 such as PLT stubs. */
2078
2079 static int
2080 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2081 struct frame_info *this_frame, void **cache)
2082 {
2083 gdb_byte dummy[4];
2084 struct obj_section *s;
2085 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2086
2087 /* Use the stub unwinder for unreadable code. */
2088 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2089 return 1;
2090
2091 if (in_plt_section (pc))
2092 return 1;
2093
2094 return 0;
2095 }
2096
2097 /* Define the data structures for the stub unwinder. */
2098
2099 static const struct frame_unwind nios2_stub_frame_unwind =
2100 {
2101 NORMAL_FRAME,
2102 default_frame_unwind_stop_reason,
2103 nios2_stub_frame_this_id,
2104 nios2_stub_frame_prev_register,
2105 NULL,
2106 nios2_stub_frame_sniffer
2107 };
2108
2109
2110
2111 /* Determine where to set a single step breakpoint while considering
2112 branch prediction. */
2113
2114 static CORE_ADDR
2115 nios2_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
2116 {
2117 struct gdbarch *gdbarch = get_frame_arch (frame);
2118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2119 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2120 unsigned int insn;
2121 const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2122 int ra;
2123 int rb;
2124 int imm;
2125 unsigned int uimm;
2126 int wb, id, ret;
2127 enum branch_condition cond;
2128
2129 /* Do something stupid if we can't disassemble the insn at pc. */
2130 if (op == NULL)
2131 return pc + NIOS2_OPCODE_SIZE;
2132
2133 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2134 {
2135 int ras = get_frame_register_signed (frame, ra);
2136 int rbs = get_frame_register_signed (frame, rb);
2137 unsigned int rau = get_frame_register_unsigned (frame, ra);
2138 unsigned int rbu = get_frame_register_unsigned (frame, rb);
2139
2140 pc += op->size;
2141 switch (cond)
2142 {
2143 case branch_none:
2144 pc += imm;
2145 break;
2146 case branch_eq:
2147 if (ras == rbs)
2148 pc += imm;
2149 break;
2150 case branch_ne:
2151 if (ras != rbs)
2152 pc += imm;
2153 break;
2154 case branch_ge:
2155 if (ras >= rbs)
2156 pc += imm;
2157 break;
2158 case branch_geu:
2159 if (rau >= rbu)
2160 pc += imm;
2161 break;
2162 case branch_lt:
2163 if (ras < rbs)
2164 pc += imm;
2165 break;
2166 case branch_ltu:
2167 if (rau < rbu)
2168 pc += imm;
2169 break;
2170 default:
2171 break;
2172 }
2173 }
2174
2175 else if (nios2_match_jmpi (insn, op, mach, &uimm)
2176 || nios2_match_calli (insn, op, mach, &uimm))
2177 pc = (pc & 0xf0000000) | uimm;
2178
2179 else if (nios2_match_jmpr (insn, op, mach, &ra)
2180 || nios2_match_callr (insn, op, mach, &ra))
2181 pc = get_frame_register_unsigned (frame, ra);
2182
2183 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2184 && ret)
2185 {
2186 /* If ra is in the reglist, we have to use the value saved in the
2187 stack frame rather than the current value. */
2188 if (uimm & (1 << NIOS2_RA_REGNUM))
2189 pc = nios2_unwind_pc (gdbarch, frame);
2190 else
2191 pc = get_frame_register_unsigned (frame, NIOS2_RA_REGNUM);
2192 }
2193
2194 else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2195 {
2196 if (tdep->syscall_next_pc != NULL)
2197 return tdep->syscall_next_pc (frame, op);
2198 }
2199
2200 else
2201 pc += op->size;
2202
2203 return pc;
2204 }
2205
2206 /* Implement the software_single_step gdbarch method. */
2207
2208 static int
2209 nios2_software_single_step (struct frame_info *frame)
2210 {
2211 struct gdbarch *gdbarch = get_frame_arch (frame);
2212 struct address_space *aspace = get_frame_address_space (frame);
2213 CORE_ADDR next_pc = nios2_get_next_pc (frame, get_frame_pc (frame));
2214
2215 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2216
2217 return 1;
2218 }
2219
2220 /* Implement the get_longjump_target gdbarch method. */
2221
2222 static int
2223 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2224 {
2225 struct gdbarch *gdbarch = get_frame_arch (frame);
2226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2227 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2228 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2229 gdb_byte buf[4];
2230
2231 if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2232 return 0;
2233
2234 *pc = extract_unsigned_integer (buf, 4, byte_order);
2235 return 1;
2236 }
2237
2238 /* Initialize the Nios II gdbarch. */
2239
2240 static struct gdbarch *
2241 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2242 {
2243 struct gdbarch *gdbarch;
2244 struct gdbarch_tdep *tdep;
2245 int register_bytes, i;
2246 struct tdesc_arch_data *tdesc_data = NULL;
2247 const struct target_desc *tdesc = info.target_desc;
2248
2249 if (!tdesc_has_registers (tdesc))
2250 /* Pick a default target description. */
2251 tdesc = tdesc_nios2;
2252
2253 /* Check any target description for validity. */
2254 if (tdesc_has_registers (tdesc))
2255 {
2256 const struct tdesc_feature *feature;
2257 int valid_p;
2258
2259 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2260 if (feature == NULL)
2261 return NULL;
2262
2263 tdesc_data = tdesc_data_alloc ();
2264
2265 valid_p = 1;
2266
2267 for (i = 0; i < NIOS2_NUM_REGS; i++)
2268 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2269 nios2_reg_names[i]);
2270
2271 if (!valid_p)
2272 {
2273 tdesc_data_cleanup (tdesc_data);
2274 return NULL;
2275 }
2276 }
2277
2278 /* Find a candidate among the list of pre-declared architectures. */
2279 arches = gdbarch_list_lookup_by_info (arches, &info);
2280 if (arches != NULL)
2281 return arches->gdbarch;
2282
2283 /* None found, create a new architecture from the information
2284 provided. */
2285 tdep = XCNEW (struct gdbarch_tdep);
2286 gdbarch = gdbarch_alloc (&info, tdep);
2287
2288 /* longjmp support not enabled by default. */
2289 tdep->jb_pc = -1;
2290
2291 /* Data type sizes. */
2292 set_gdbarch_ptr_bit (gdbarch, 32);
2293 set_gdbarch_addr_bit (gdbarch, 32);
2294 set_gdbarch_short_bit (gdbarch, 16);
2295 set_gdbarch_int_bit (gdbarch, 32);
2296 set_gdbarch_long_bit (gdbarch, 32);
2297 set_gdbarch_long_long_bit (gdbarch, 64);
2298 set_gdbarch_float_bit (gdbarch, 32);
2299 set_gdbarch_double_bit (gdbarch, 64);
2300
2301 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2302 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2303
2304 /* The register set. */
2305 set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2306 set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2307 set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */
2308
2309 set_gdbarch_register_name (gdbarch, nios2_register_name);
2310 set_gdbarch_register_type (gdbarch, nios2_register_type);
2311
2312 /* Provide register mappings for stabs and dwarf2. */
2313 set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2314 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2315
2316 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2317
2318 /* Call dummy code. */
2319 set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2320
2321 set_gdbarch_return_value (gdbarch, nios2_return_value);
2322
2323 set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2324 set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2325 set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc);
2326
2327 set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2328 set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2329 set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2330
2331 /* The dwarf2 unwinder will normally produce the best results if
2332 the debug information is available, so register it first. */
2333 dwarf2_append_unwinders (gdbarch);
2334 frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2335 frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2336
2337 /* Single stepping. */
2338 set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2339
2340 /* Hook in ABI-specific overrides, if they have been registered. */
2341 gdbarch_init_osabi (info, gdbarch);
2342
2343 if (tdep->jb_pc >= 0)
2344 set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2345
2346 frame_base_set_default (gdbarch, &nios2_frame_base);
2347
2348 set_gdbarch_print_insn (gdbarch, nios2_print_insn);
2349
2350 /* Enable inferior call support. */
2351 set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2352
2353 if (tdesc_data)
2354 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2355
2356 return gdbarch;
2357 }
2358
2359 extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */
2360
2361 void
2362 _initialize_nios2_tdep (void)
2363 {
2364 gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2365 initialize_tdesc_nios2 ();
2366
2367 /* Allow debugging this file's internals. */
2368 add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2369 _("Set Nios II debugging."),
2370 _("Show Nios II debugging."),
2371 _("When on, Nios II specific debugging is enabled."),
2372 NULL,
2373 NULL,
2374 &setdebuglist, &showdebuglist);
2375 }
This page took 0.077289 seconds and 5 git commands to generate.