2003-10-19 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48
49 /* Prototypes for local functions */
50
51 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
52
53 #include "mmalloc.h"
54
55 static int open_existing_mapped_file (char *, long, int);
56
57 static int open_mapped_file (char *filename, long mtime, int flags);
58
59 static void *map_to_file (int);
60
61 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
62
63 static void add_to_objfile_sections (bfd *, sec_ptr, void *);
64
65 static void objfile_alloc_data (struct objfile *objfile);
66 static void objfile_free_data (struct objfile *objfile);
67
68 /* Externally visible variables that are owned by this module.
69 See declarations in objfile.h for more info. */
70
71 struct objfile *object_files; /* Linked list of all objfiles */
72 struct objfile *current_objfile; /* For symbol file being read in */
73 struct objfile *symfile_objfile; /* Main symbol table loaded from */
74 struct objfile *rt_common_objfile; /* For runtime common symbols */
75
76 int mapped_symbol_files; /* Try to use mapped symbol files */
77
78 /* Locate all mappable sections of a BFD file.
79 objfile_p_char is a char * to get it through
80 bfd_map_over_sections; we cast it back to its proper type. */
81
82 #ifndef TARGET_KEEP_SECTION
83 #define TARGET_KEEP_SECTION(ASECT) 0
84 #endif
85
86 /* Called via bfd_map_over_sections to build up the section table that
87 the objfile references. The objfile contains pointers to the start
88 of the table (objfile->sections) and to the first location after
89 the end of the table (objfile->sections_end). */
90
91 static void
92 add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
93 {
94 struct objfile *objfile = (struct objfile *) objfile_p_char;
95 struct obj_section section;
96 flagword aflag;
97
98 aflag = bfd_get_section_flags (abfd, asect);
99
100 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
101 return;
102
103 if (0 == bfd_section_size (abfd, asect))
104 return;
105 section.offset = 0;
106 section.objfile = objfile;
107 section.the_bfd_section = asect;
108 section.ovly_mapped = 0;
109 section.addr = bfd_section_vma (abfd, asect);
110 section.endaddr = section.addr + bfd_section_size (abfd, asect);
111 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
112 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
113 }
114
115 /* Builds a section table for OBJFILE.
116 Returns 0 if OK, 1 on error (in which case bfd_error contains the
117 error).
118
119 Note that while we are building the table, which goes into the
120 psymbol obstack, we hijack the sections_end pointer to instead hold
121 a count of the number of sections. When bfd_map_over_sections
122 returns, this count is used to compute the pointer to the end of
123 the sections table, which then overwrites the count.
124
125 Also note that the OFFSET and OVLY_MAPPED in each table entry
126 are initialized to zero.
127
128 Also note that if anything else writes to the psymbol obstack while
129 we are building the table, we're pretty much hosed. */
130
131 int
132 build_objfile_section_table (struct objfile *objfile)
133 {
134 /* objfile->sections can be already set when reading a mapped symbol
135 file. I believe that we do need to rebuild the section table in
136 this case (we rebuild other things derived from the bfd), but we
137 can't free the old one (it's in the psymbol_obstack). So we just
138 waste some memory. */
139
140 objfile->sections_end = 0;
141 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
142 objfile->sections = (struct obj_section *)
143 obstack_finish (&objfile->psymbol_obstack);
144 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
145 return (0);
146 }
147
148 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
149 allocate a new objfile struct, fill it in as best we can, link it
150 into the list of all known objfiles, and return a pointer to the
151 new objfile struct.
152
153 The FLAGS word contains various bits (OBJF_*) that can be taken as
154 requests for specific operations, like trying to open a mapped
155 version of the objfile (OBJF_MAPPED). Other bits like
156 OBJF_SHARED are simply copied through to the new objfile flags
157 member. */
158
159 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
160 by jv-lang.c, to create an artificial objfile used to hold
161 information about dynamically-loaded Java classes. Unfortunately,
162 that branch of this function doesn't get tested very frequently, so
163 it's prone to breakage. (E.g. at one time the name was set to NULL
164 in that situation, which broke a loop over all names in the dynamic
165 library loader.) If you change this function, please try to leave
166 things in a consistent state even if abfd is NULL. */
167
168 struct objfile *
169 allocate_objfile (bfd *abfd, int flags)
170 {
171 struct objfile *objfile = NULL;
172 struct objfile *last_one = NULL;
173
174 if (mapped_symbol_files)
175 flags |= OBJF_MAPPED;
176
177 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
178 if (abfd != NULL)
179 {
180
181 /* If we can support mapped symbol files, try to open/reopen the
182 mapped file that corresponds to the file from which we wish to
183 read symbols. If the objfile is to be mapped, we must malloc
184 the structure itself using the mmap version, and arrange that
185 all memory allocation for the objfile uses the mmap routines.
186 If we are reusing an existing mapped file, from which we get
187 our objfile pointer, we have to make sure that we update the
188 pointers to the alloc/free functions in the obstack, in case
189 these functions have moved within the current gdb. */
190
191 int fd;
192
193 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
194 flags);
195 if (fd >= 0)
196 {
197 void *md;
198
199 if ((md = map_to_file (fd)) == NULL)
200 {
201 close (fd);
202 }
203 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
204 {
205 /* Update memory corruption handler function addresses. */
206 init_malloc (md);
207 objfile->md = md;
208 objfile->mmfd = fd;
209 /* Update pointers to functions to *our* copies */
210 if (objfile->demangled_names_hash)
211 htab_set_functions_ex
212 (objfile->demangled_names_hash, htab_hash_string,
213 (int (*) (const void *, const void *)) streq, NULL,
214 objfile->md, xmcalloc, xmfree);
215 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
216 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
217 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
218 obstack_freefun (&objfile->macro_cache.cache, xmfree);
219 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
220 obstack_freefun (&objfile->psymbol_obstack, xmfree);
221 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
222 obstack_freefun (&objfile->symbol_obstack, xmfree);
223 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
224 obstack_freefun (&objfile->type_obstack, xmfree);
225 /* If already in objfile list, unlink it. */
226 unlink_objfile (objfile);
227 /* Forget things specific to a particular gdb, may have changed. */
228 objfile->sf = NULL;
229 }
230 else
231 {
232
233 /* Set up to detect internal memory corruption. MUST be
234 done before the first malloc. See comments in
235 init_malloc() and mmcheck(). */
236
237 init_malloc (md);
238
239 objfile = (struct objfile *)
240 xmmalloc (md, sizeof (struct objfile));
241 memset (objfile, 0, sizeof (struct objfile));
242 objfile->md = md;
243 objfile->mmfd = fd;
244 objfile->flags |= OBJF_MAPPED;
245 mmalloc_setkey (objfile->md, 0, objfile);
246 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
247 0, 0, xmmalloc, xmfree,
248 objfile->md);
249 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
250 0, 0, xmmalloc, xmfree,
251 objfile->md);
252 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
253 0, 0, xmmalloc, xmfree,
254 objfile->md);
255 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
256 0, 0, xmmalloc, xmfree,
257 objfile->md);
258 obstack_specify_allocation_with_arg (&objfile->type_obstack,
259 0, 0, xmmalloc, xmfree,
260 objfile->md);
261 }
262 }
263
264 if ((flags & OBJF_MAPPED) && (objfile == NULL))
265 {
266 warning ("symbol table for '%s' will not be mapped",
267 bfd_get_filename (abfd));
268 flags &= ~OBJF_MAPPED;
269 }
270 }
271 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
272
273 if (flags & OBJF_MAPPED)
274 {
275 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
276
277 /* Turn off the global flag so we don't try to do mapped symbol tables
278 any more, which shuts up gdb unless the user specifically gives the
279 "mapped" keyword again. */
280
281 mapped_symbol_files = 0;
282 flags &= ~OBJF_MAPPED;
283 }
284
285 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
286
287 /* If we don't support mapped symbol files, didn't ask for the file to be
288 mapped, or failed to open the mapped file for some reason, then revert
289 back to an unmapped objfile. */
290
291 if (objfile == NULL)
292 {
293 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
294 memset (objfile, 0, sizeof (struct objfile));
295 objfile->md = NULL;
296 objfile->psymbol_cache = bcache_xmalloc ();
297 objfile->macro_cache = bcache_xmalloc ();
298 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
299 xfree);
300 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
301 xfree);
302 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
303 xfree);
304 flags &= ~OBJF_MAPPED;
305
306 terminate_minimal_symbol_table (objfile);
307 }
308
309 objfile_alloc_data (objfile);
310
311 /* Update the per-objfile information that comes from the bfd, ensuring
312 that any data that is reference is saved in the per-objfile data
313 region. */
314
315 objfile->obfd = abfd;
316 if (objfile->name != NULL)
317 {
318 xmfree (objfile->md, objfile->name);
319 }
320 if (abfd != NULL)
321 {
322 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
323 objfile->mtime = bfd_get_mtime (abfd);
324
325 /* Build section table. */
326
327 if (build_objfile_section_table (objfile))
328 {
329 error ("Can't find the file sections in `%s': %s",
330 objfile->name, bfd_errmsg (bfd_get_error ()));
331 }
332 }
333 else
334 {
335 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
336 }
337
338 /* Initialize the section indexes for this objfile, so that we can
339 later detect if they are used w/o being properly assigned to. */
340
341 objfile->sect_index_text = -1;
342 objfile->sect_index_data = -1;
343 objfile->sect_index_bss = -1;
344 objfile->sect_index_rodata = -1;
345
346 /* We don't yet have a C++-specific namespace symtab. */
347
348 objfile->cp_namespace_symtab = NULL;
349
350 /* Add this file onto the tail of the linked list of other such files. */
351
352 objfile->next = NULL;
353 if (object_files == NULL)
354 object_files = objfile;
355 else
356 {
357 for (last_one = object_files;
358 last_one->next;
359 last_one = last_one->next);
360 last_one->next = objfile;
361 }
362
363 /* Save passed in flag bits. */
364 objfile->flags |= flags;
365
366 return (objfile);
367 }
368
369
370 /* Create the terminating entry of OBJFILE's minimal symbol table.
371 If OBJFILE->msymbols is zero, allocate a single entry from
372 OBJFILE->symbol_obstack; otherwise, just initialize
373 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
374 void
375 terminate_minimal_symbol_table (struct objfile *objfile)
376 {
377 if (! objfile->msymbols)
378 objfile->msymbols = ((struct minimal_symbol *)
379 obstack_alloc (&objfile->symbol_obstack,
380 sizeof (objfile->msymbols[0])));
381
382 {
383 struct minimal_symbol *m
384 = &objfile->msymbols[objfile->minimal_symbol_count];
385
386 memset (m, 0, sizeof (*m));
387 DEPRECATED_SYMBOL_NAME (m) = NULL;
388 SYMBOL_VALUE_ADDRESS (m) = 0;
389 MSYMBOL_INFO (m) = NULL;
390 MSYMBOL_TYPE (m) = mst_unknown;
391 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
392 }
393 }
394
395
396 /* Put one object file before a specified on in the global list.
397 This can be used to make sure an object file is destroyed before
398 another when using ALL_OBJFILES_SAFE to free all objfiles. */
399 void
400 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
401 {
402 struct objfile **objp;
403
404 unlink_objfile (objfile);
405
406 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
407 {
408 if (*objp == before_this)
409 {
410 objfile->next = *objp;
411 *objp = objfile;
412 return;
413 }
414 }
415
416 internal_error (__FILE__, __LINE__,
417 "put_objfile_before: before objfile not in list");
418 }
419
420 /* Put OBJFILE at the front of the list. */
421
422 void
423 objfile_to_front (struct objfile *objfile)
424 {
425 struct objfile **objp;
426 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
427 {
428 if (*objp == objfile)
429 {
430 /* Unhook it from where it is. */
431 *objp = objfile->next;
432 /* Put it in the front. */
433 objfile->next = object_files;
434 object_files = objfile;
435 break;
436 }
437 }
438 }
439
440 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
441 list.
442
443 It is not a bug, or error, to call this function if OBJFILE is not known
444 to be in the current list. This is done in the case of mapped objfiles,
445 for example, just to ensure that the mapped objfile doesn't appear twice
446 in the list. Since the list is threaded, linking in a mapped objfile
447 twice would create a circular list.
448
449 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
450 unlinking it, just to ensure that we have completely severed any linkages
451 between the OBJFILE and the list. */
452
453 void
454 unlink_objfile (struct objfile *objfile)
455 {
456 struct objfile **objpp;
457
458 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
459 {
460 if (*objpp == objfile)
461 {
462 *objpp = (*objpp)->next;
463 objfile->next = NULL;
464 return;
465 }
466 }
467
468 internal_error (__FILE__, __LINE__,
469 "unlink_objfile: objfile already unlinked");
470 }
471
472
473 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
474 that as much as possible is allocated on the symbol_obstack and
475 psymbol_obstack, so that the memory can be efficiently freed.
476
477 Things which we do NOT free because they are not in malloc'd memory
478 or not in memory specific to the objfile include:
479
480 objfile -> sf
481
482 FIXME: If the objfile is using reusable symbol information (via mmalloc),
483 then we need to take into account the fact that more than one process
484 may be using the symbol information at the same time (when mmalloc is
485 extended to support cooperative locking). When more than one process
486 is using the mapped symbol info, we need to be more careful about when
487 we free objects in the reusable area. */
488
489 void
490 free_objfile (struct objfile *objfile)
491 {
492 if (objfile->separate_debug_objfile)
493 {
494 free_objfile (objfile->separate_debug_objfile);
495 }
496
497 if (objfile->separate_debug_objfile_backlink)
498 {
499 /* We freed the separate debug file, make sure the base objfile
500 doesn't reference it. */
501 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
502 }
503
504 /* First do any symbol file specific actions required when we are
505 finished with a particular symbol file. Note that if the objfile
506 is using reusable symbol information (via mmalloc) then each of
507 these routines is responsible for doing the correct thing, either
508 freeing things which are valid only during this particular gdb
509 execution, or leaving them to be reused during the next one. */
510
511 if (objfile->sf != NULL)
512 {
513 (*objfile->sf->sym_finish) (objfile);
514 }
515
516 /* We always close the bfd. */
517
518 if (objfile->obfd != NULL)
519 {
520 char *name = bfd_get_filename (objfile->obfd);
521 if (!bfd_close (objfile->obfd))
522 warning ("cannot close \"%s\": %s",
523 name, bfd_errmsg (bfd_get_error ()));
524 xfree (name);
525 }
526
527 /* Remove it from the chain of all objfiles. */
528
529 unlink_objfile (objfile);
530
531 /* If we are going to free the runtime common objfile, mark it
532 as unallocated. */
533
534 if (objfile == rt_common_objfile)
535 rt_common_objfile = NULL;
536
537 /* Before the symbol table code was redone to make it easier to
538 selectively load and remove information particular to a specific
539 linkage unit, gdb used to do these things whenever the monolithic
540 symbol table was blown away. How much still needs to be done
541 is unknown, but we play it safe for now and keep each action until
542 it is shown to be no longer needed. */
543
544 /* I *think* all our callers call clear_symtab_users. If so, no need
545 to call this here. */
546 clear_pc_function_cache ();
547
548 /* The last thing we do is free the objfile struct itself for the
549 non-reusable case, or detach from the mapped file for the
550 reusable case. Note that the mmalloc_detach or the xmfree() is
551 the last thing we can do with this objfile. */
552
553 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
554
555 if (objfile->flags & OBJF_MAPPED)
556 {
557 /* Remember the fd so we can close it. We can't close it before
558 doing the detach, and after the detach the objfile is gone. */
559 int mmfd;
560
561 mmfd = objfile->mmfd;
562 mmalloc_detach (objfile->md);
563 objfile = NULL;
564 close (mmfd);
565 }
566
567 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
568
569 /* If we still have an objfile, then either we don't support reusable
570 objfiles or this one was not reusable. So free it normally. */
571
572 if (objfile != NULL)
573 {
574 objfile_free_data (objfile);
575 if (objfile->name != NULL)
576 {
577 xmfree (objfile->md, objfile->name);
578 }
579 if (objfile->global_psymbols.list)
580 xmfree (objfile->md, objfile->global_psymbols.list);
581 if (objfile->static_psymbols.list)
582 xmfree (objfile->md, objfile->static_psymbols.list);
583 /* Free the obstacks for non-reusable objfiles */
584 bcache_xfree (objfile->psymbol_cache);
585 bcache_xfree (objfile->macro_cache);
586 if (objfile->demangled_names_hash)
587 htab_delete (objfile->demangled_names_hash);
588 obstack_free (&objfile->psymbol_obstack, 0);
589 obstack_free (&objfile->symbol_obstack, 0);
590 obstack_free (&objfile->type_obstack, 0);
591 xmfree (objfile->md, objfile);
592 objfile = NULL;
593 }
594 }
595
596 static void
597 do_free_objfile_cleanup (void *obj)
598 {
599 free_objfile (obj);
600 }
601
602 struct cleanup *
603 make_cleanup_free_objfile (struct objfile *obj)
604 {
605 return make_cleanup (do_free_objfile_cleanup, obj);
606 }
607
608 /* Free all the object files at once and clean up their users. */
609
610 void
611 free_all_objfiles (void)
612 {
613 struct objfile *objfile, *temp;
614
615 ALL_OBJFILES_SAFE (objfile, temp)
616 {
617 free_objfile (objfile);
618 }
619 clear_symtab_users ();
620 }
621 \f
622 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
623 entries in new_offsets. */
624 void
625 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
626 {
627 struct section_offsets *delta =
628 ((struct section_offsets *)
629 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
630
631 {
632 int i;
633 int something_changed = 0;
634 for (i = 0; i < objfile->num_sections; ++i)
635 {
636 delta->offsets[i] =
637 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
638 if (ANOFFSET (delta, i) != 0)
639 something_changed = 1;
640 }
641 if (!something_changed)
642 return;
643 }
644
645 /* OK, get all the symtabs. */
646 {
647 struct symtab *s;
648
649 ALL_OBJFILE_SYMTABS (objfile, s)
650 {
651 struct linetable *l;
652 struct blockvector *bv;
653 int i;
654
655 /* First the line table. */
656 l = LINETABLE (s);
657 if (l)
658 {
659 for (i = 0; i < l->nitems; ++i)
660 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
661 }
662
663 /* Don't relocate a shared blockvector more than once. */
664 if (!s->primary)
665 continue;
666
667 bv = BLOCKVECTOR (s);
668 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
669 {
670 struct block *b;
671 struct symbol *sym;
672 struct dict_iterator iter;
673
674 b = BLOCKVECTOR_BLOCK (bv, i);
675 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
676 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
677
678 ALL_BLOCK_SYMBOLS (b, iter, sym)
679 {
680 fixup_symbol_section (sym, objfile);
681
682 /* The RS6000 code from which this was taken skipped
683 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
684 But I'm leaving out that test, on the theory that
685 they can't possibly pass the tests below. */
686 if ((SYMBOL_CLASS (sym) == LOC_LABEL
687 || SYMBOL_CLASS (sym) == LOC_STATIC
688 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
689 && SYMBOL_SECTION (sym) >= 0)
690 {
691 SYMBOL_VALUE_ADDRESS (sym) +=
692 ANOFFSET (delta, SYMBOL_SECTION (sym));
693 }
694 #ifdef MIPS_EFI_SYMBOL_NAME
695 /* Relocate Extra Function Info for ecoff. */
696
697 else if (SYMBOL_CLASS (sym) == LOC_CONST
698 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
699 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
700 ecoff_relocate_efi (sym, ANOFFSET (delta,
701 s->block_line_section));
702 #endif
703 }
704 }
705 }
706 }
707
708 {
709 struct partial_symtab *p;
710
711 ALL_OBJFILE_PSYMTABS (objfile, p)
712 {
713 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
714 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
715 }
716 }
717
718 {
719 struct partial_symbol **psym;
720
721 for (psym = objfile->global_psymbols.list;
722 psym < objfile->global_psymbols.next;
723 psym++)
724 {
725 fixup_psymbol_section (*psym, objfile);
726 if (SYMBOL_SECTION (*psym) >= 0)
727 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
728 SYMBOL_SECTION (*psym));
729 }
730 for (psym = objfile->static_psymbols.list;
731 psym < objfile->static_psymbols.next;
732 psym++)
733 {
734 fixup_psymbol_section (*psym, objfile);
735 if (SYMBOL_SECTION (*psym) >= 0)
736 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
737 SYMBOL_SECTION (*psym));
738 }
739 }
740
741 {
742 struct minimal_symbol *msym;
743 ALL_OBJFILE_MSYMBOLS (objfile, msym)
744 if (SYMBOL_SECTION (msym) >= 0)
745 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
746 }
747 /* Relocating different sections by different amounts may cause the symbols
748 to be out of order. */
749 msymbols_sort (objfile);
750
751 {
752 int i;
753 for (i = 0; i < objfile->num_sections; ++i)
754 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
755 }
756
757 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
758 {
759 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
760 only as a fallback. */
761 struct obj_section *s;
762 s = find_pc_section (objfile->ei.entry_point);
763 if (s)
764 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
765 else
766 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
767 }
768
769 {
770 struct obj_section *s;
771 bfd *abfd;
772
773 abfd = objfile->obfd;
774
775 ALL_OBJFILE_OSECTIONS (objfile, s)
776 {
777 int idx = s->the_bfd_section->index;
778
779 s->addr += ANOFFSET (delta, idx);
780 s->endaddr += ANOFFSET (delta, idx);
781 }
782 }
783
784 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
785 {
786 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
787 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
788 }
789
790 if (objfile->ei.deprecated_entry_file_lowpc != INVALID_ENTRY_LOWPC)
791 {
792 objfile->ei.deprecated_entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
793 objfile->ei.deprecated_entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
794 }
795
796 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
797 {
798 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
799 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
800 }
801
802 /* Relocate breakpoints as necessary, after things are relocated. */
803 breakpoint_re_set ();
804 }
805 \f
806 /* Many places in gdb want to test just to see if we have any partial
807 symbols available. This function returns zero if none are currently
808 available, nonzero otherwise. */
809
810 int
811 have_partial_symbols (void)
812 {
813 struct objfile *ofp;
814
815 ALL_OBJFILES (ofp)
816 {
817 if (ofp->psymtabs != NULL)
818 {
819 return 1;
820 }
821 }
822 return 0;
823 }
824
825 /* Many places in gdb want to test just to see if we have any full
826 symbols available. This function returns zero if none are currently
827 available, nonzero otherwise. */
828
829 int
830 have_full_symbols (void)
831 {
832 struct objfile *ofp;
833
834 ALL_OBJFILES (ofp)
835 {
836 if (ofp->symtabs != NULL)
837 {
838 return 1;
839 }
840 }
841 return 0;
842 }
843
844
845 /* This operations deletes all objfile entries that represent solibs that
846 weren't explicitly loaded by the user, via e.g., the add-symbol-file
847 command.
848 */
849 void
850 objfile_purge_solibs (void)
851 {
852 struct objfile *objf;
853 struct objfile *temp;
854
855 ALL_OBJFILES_SAFE (objf, temp)
856 {
857 /* We assume that the solib package has been purged already, or will
858 be soon.
859 */
860 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
861 free_objfile (objf);
862 }
863 }
864
865
866 /* Many places in gdb want to test just to see if we have any minimal
867 symbols available. This function returns zero if none are currently
868 available, nonzero otherwise. */
869
870 int
871 have_minimal_symbols (void)
872 {
873 struct objfile *ofp;
874
875 ALL_OBJFILES (ofp)
876 {
877 if (ofp->minimal_symbol_count > 0)
878 {
879 return 1;
880 }
881 }
882 return 0;
883 }
884
885 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
886
887 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
888 of the corresponding symbol file in MTIME, try to open an existing file
889 with the name SYMSFILENAME and verify it is more recent than the base
890 file by checking it's timestamp against MTIME.
891
892 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
893
894 If SYMSFILENAME does exist, but is out of date, we check to see if the
895 user has specified creation of a mapped file. If so, we don't issue
896 any warning message because we will be creating a new mapped file anyway,
897 overwriting the old one. If not, then we issue a warning message so that
898 the user will know why we aren't using this existing mapped symbol file.
899 In either case, we return -1.
900
901 If SYMSFILENAME does exist and is not out of date, but can't be opened for
902 some reason, then prints an appropriate system error message and returns -1.
903
904 Otherwise, returns the open file descriptor. */
905
906 static int
907 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
908 {
909 int fd = -1;
910 struct stat sbuf;
911
912 if (stat (symsfilename, &sbuf) == 0)
913 {
914 if (sbuf.st_mtime < mtime)
915 {
916 if (!(flags & OBJF_MAPPED))
917 {
918 warning ("mapped symbol file `%s' is out of date, ignored it",
919 symsfilename);
920 }
921 }
922 else if ((fd = open (symsfilename, O_RDWR)) < 0)
923 {
924 if (error_pre_print)
925 {
926 printf_unfiltered (error_pre_print);
927 }
928 print_sys_errmsg (symsfilename, errno);
929 }
930 }
931 return (fd);
932 }
933
934 /* Look for a mapped symbol file that corresponds to FILENAME and is more
935 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
936 use a mapped symbol file for this file, so create a new one if one does
937 not currently exist.
938
939 If found, then return an open file descriptor for the file, otherwise
940 return -1.
941
942 This routine is responsible for implementing the policy that generates
943 the name of the mapped symbol file from the name of a file containing
944 symbols that gdb would like to read. Currently this policy is to append
945 ".syms" to the name of the file.
946
947 This routine is also responsible for implementing the policy that
948 determines where the mapped symbol file is found (the search path).
949 This policy is that when reading an existing mapped file, a file of
950 the correct name in the current directory takes precedence over a
951 file of the correct name in the same directory as the symbol file.
952 When creating a new mapped file, it is always created in the current
953 directory. This helps to minimize the chances of a user unknowingly
954 creating big mapped files in places like /bin and /usr/local/bin, and
955 allows a local copy to override a manually installed global copy (in
956 /bin for example). */
957
958 static int
959 open_mapped_file (char *filename, long mtime, int flags)
960 {
961 int fd;
962 char *symsfilename;
963
964 /* First try to open an existing file in the current directory, and
965 then try the directory where the symbol file is located. */
966
967 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
968 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
969 {
970 xfree (symsfilename);
971 symsfilename = concat (filename, ".syms", (char *) NULL);
972 fd = open_existing_mapped_file (symsfilename, mtime, flags);
973 }
974
975 /* If we don't have an open file by now, then either the file does not
976 already exist, or the base file has changed since it was created. In
977 either case, if the user has specified use of a mapped file, then
978 create a new mapped file, truncating any existing one. If we can't
979 create one, print a system error message saying why we can't.
980
981 By default the file is rw for everyone, with the user's umask taking
982 care of turning off the permissions the user wants off. */
983
984 if ((fd < 0) && (flags & OBJF_MAPPED))
985 {
986 xfree (symsfilename);
987 symsfilename = concat ("./", lbasename (filename), ".syms",
988 (char *) NULL);
989 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
990 {
991 if (error_pre_print)
992 {
993 printf_unfiltered (error_pre_print);
994 }
995 print_sys_errmsg (symsfilename, errno);
996 }
997 }
998
999 xfree (symsfilename);
1000 return (fd);
1001 }
1002
1003 static void *
1004 map_to_file (int fd)
1005 {
1006 void *md;
1007 CORE_ADDR mapto;
1008
1009 md = mmalloc_attach (fd, 0);
1010 if (md != NULL)
1011 {
1012 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
1013 md = mmalloc_detach (md);
1014 if (md != NULL)
1015 {
1016 /* FIXME: should figure out why detach failed */
1017 md = NULL;
1018 }
1019 else if (mapto != (CORE_ADDR) NULL)
1020 {
1021 /* This mapping file needs to be remapped at "mapto" */
1022 md = mmalloc_attach (fd, mapto);
1023 }
1024 else
1025 {
1026 /* This is a freshly created mapping file. */
1027 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1028 if (mapto != 0)
1029 {
1030 /* To avoid reusing the freshly created mapping file, at the
1031 address selected by mmap, we must truncate it before trying
1032 to do an attach at the address we want. */
1033 ftruncate (fd, 0);
1034 md = mmalloc_attach (fd, mapto);
1035 if (md != NULL)
1036 {
1037 mmalloc_setkey (md, 1, mapto);
1038 }
1039 }
1040 }
1041 }
1042 return (md);
1043 }
1044
1045 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1046
1047 /* Returns a section whose range includes PC and SECTION, or NULL if
1048 none found. Note the distinction between the return type, struct
1049 obj_section (which is defined in gdb), and the input type "struct
1050 bfd_section" (which is a bfd-defined data type). The obj_section
1051 contains a pointer to the "struct bfd_section". */
1052
1053 struct obj_section *
1054 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
1055 {
1056 struct obj_section *s;
1057 struct objfile *objfile;
1058
1059 ALL_OBJSECTIONS (objfile, s)
1060 if ((section == 0 || section == s->the_bfd_section) &&
1061 s->addr <= pc && pc < s->endaddr)
1062 return (s);
1063
1064 return (NULL);
1065 }
1066
1067 /* Returns a section whose range includes PC or NULL if none found.
1068 Backward compatibility, no section. */
1069
1070 struct obj_section *
1071 find_pc_section (CORE_ADDR pc)
1072 {
1073 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1074 }
1075
1076
1077 /* In SVR4, we recognize a trampoline by it's section name.
1078 That is, if the pc is in a section named ".plt" then we are in
1079 a trampoline. */
1080
1081 int
1082 in_plt_section (CORE_ADDR pc, char *name)
1083 {
1084 struct obj_section *s;
1085 int retval = 0;
1086
1087 s = find_pc_section (pc);
1088
1089 retval = (s != NULL
1090 && s->the_bfd_section->name != NULL
1091 && STREQ (s->the_bfd_section->name, ".plt"));
1092 return (retval);
1093 }
1094
1095 /* Return nonzero if NAME is in the import list of OBJFILE. Else
1096 return zero. */
1097
1098 int
1099 is_in_import_list (char *name, struct objfile *objfile)
1100 {
1101 int i;
1102
1103 if (!objfile || !name || !*name)
1104 return 0;
1105
1106 for (i = 0; i < objfile->import_list_size; i++)
1107 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1108 return 1;
1109 return 0;
1110 }
1111 \f
1112
1113 /* Keep a registry of per-objfile data-pointers required by other GDB
1114 modules. */
1115
1116 struct objfile_data
1117 {
1118 unsigned index;
1119 };
1120
1121 struct objfile_data_registration
1122 {
1123 struct objfile_data *data;
1124 struct objfile_data_registration *next;
1125 };
1126
1127 struct objfile_data_registry
1128 {
1129 struct objfile_data_registration *registrations;
1130 unsigned num_registrations;
1131 };
1132
1133 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1134
1135 const struct objfile_data *
1136 register_objfile_data (void)
1137 {
1138 struct objfile_data_registration **curr;
1139
1140 /* Append new registration. */
1141 for (curr = &objfile_data_registry.registrations;
1142 *curr != NULL; curr = &(*curr)->next);
1143
1144 *curr = XMALLOC (struct objfile_data_registration);
1145 (*curr)->next = NULL;
1146 (*curr)->data = XMALLOC (struct objfile_data);
1147 (*curr)->data->index = objfile_data_registry.num_registrations++;
1148
1149 return (*curr)->data;
1150 }
1151
1152 static void
1153 objfile_alloc_data (struct objfile *objfile)
1154 {
1155 gdb_assert (objfile->data == NULL);
1156 objfile->num_data = objfile_data_registry.num_registrations;
1157 objfile->data = XCALLOC (objfile->num_data, void *);
1158 }
1159
1160 static void
1161 objfile_free_data (struct objfile *objfile)
1162 {
1163 gdb_assert (objfile->data != NULL);
1164 xfree (objfile->data);
1165 objfile->data = NULL;
1166 }
1167
1168 void
1169 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1170 void *value)
1171 {
1172 gdb_assert (data->index < objfile->num_data);
1173 objfile->data[data->index] = value;
1174 }
1175
1176 void *
1177 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1178 {
1179 gdb_assert (data->index < objfile->num_data);
1180 return objfile->data[data->index];
1181 }
This page took 0.057164 seconds and 4 git commands to generate.