2009-10-19 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile = NULL;
198 struct objfile *last_one = NULL;
199
200 /* If we don't support mapped symbol files, didn't ask for the file to be
201 mapped, or failed to open the mapped file for some reason, then revert
202 back to an unmapped objfile. */
203
204 if (objfile == NULL)
205 {
206 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
207 memset (objfile, 0, sizeof (struct objfile));
208 objfile->psymbol_cache = bcache_xmalloc ();
209 objfile->macro_cache = bcache_xmalloc ();
210 /* We could use obstack_specify_allocation here instead, but
211 gdb_obstack.h specifies the alloc/dealloc functions. */
212 obstack_init (&objfile->objfile_obstack);
213 terminate_minimal_symbol_table (objfile);
214 }
215
216 objfile_alloc_data (objfile);
217
218 /* Update the per-objfile information that comes from the bfd, ensuring
219 that any data that is reference is saved in the per-objfile data
220 region. */
221
222 objfile->obfd = gdb_bfd_ref (abfd);
223 if (objfile->name != NULL)
224 {
225 xfree (objfile->name);
226 }
227 if (abfd != NULL)
228 {
229 /* Look up the gdbarch associated with the BFD. */
230 objfile->gdbarch = gdbarch_from_bfd (abfd);
231
232 objfile->name = xstrdup (bfd_get_filename (abfd));
233 objfile->mtime = bfd_get_mtime (abfd);
234
235 /* Build section table. */
236
237 if (build_objfile_section_table (objfile))
238 {
239 error (_("Can't find the file sections in `%s': %s"),
240 objfile->name, bfd_errmsg (bfd_get_error ()));
241 }
242 }
243 else
244 {
245 objfile->name = xstrdup ("<<anonymous objfile>>");
246 }
247
248 objfile->pspace = current_program_space;
249
250 /* Initialize the section indexes for this objfile, so that we can
251 later detect if they are used w/o being properly assigned to. */
252
253 objfile->sect_index_text = -1;
254 objfile->sect_index_data = -1;
255 objfile->sect_index_bss = -1;
256 objfile->sect_index_rodata = -1;
257
258 /* We don't yet have a C++-specific namespace symtab. */
259
260 objfile->cp_namespace_symtab = NULL;
261
262 /* Add this file onto the tail of the linked list of other such files. */
263
264 objfile->next = NULL;
265 if (object_files == NULL)
266 object_files = objfile;
267 else
268 {
269 for (last_one = object_files;
270 last_one->next;
271 last_one = last_one->next);
272 last_one->next = objfile;
273 }
274
275 /* Save passed in flag bits. */
276 objfile->flags |= flags;
277
278 /* Rebuild section map next time we need it. */
279 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
280
281 return objfile;
282 }
283
284 /* Retrieve the gdbarch associated with OBJFILE. */
285 struct gdbarch *
286 get_objfile_arch (struct objfile *objfile)
287 {
288 return objfile->gdbarch;
289 }
290
291 /* Initialize entry point information for this objfile. */
292
293 void
294 init_entry_point_info (struct objfile *objfile)
295 {
296 /* Save startup file's range of PC addresses to help blockframe.c
297 decide where the bottom of the stack is. */
298
299 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
300 {
301 /* Executable file -- record its entry point so we'll recognize
302 the startup file because it contains the entry point. */
303 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
304 }
305 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
306 && bfd_get_start_address (objfile->obfd) != 0)
307 /* Some shared libraries may have entry points set and be
308 runnable. There's no clear way to indicate this, so just check
309 for values other than zero. */
310 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
311 else
312 {
313 /* Examination of non-executable.o files. Short-circuit this stuff. */
314 objfile->ei.entry_point = INVALID_ENTRY_POINT;
315 }
316 }
317
318 /* Get current entry point address. */
319
320 CORE_ADDR
321 entry_point_address (void)
322 {
323 struct gdbarch *gdbarch;
324 CORE_ADDR entry_point;
325
326 if (symfile_objfile == NULL)
327 return 0;
328
329 gdbarch = get_objfile_arch (symfile_objfile);
330
331 entry_point = symfile_objfile->ei.entry_point;
332
333 /* Make certain that the address points at real code, and not a
334 function descriptor. */
335 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
336 &current_target);
337
338 /* Remove any ISA markers, so that this matches entries in the
339 symbol table. */
340 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
341
342 return entry_point;
343 }
344
345 /* Create the terminating entry of OBJFILE's minimal symbol table.
346 If OBJFILE->msymbols is zero, allocate a single entry from
347 OBJFILE->objfile_obstack; otherwise, just initialize
348 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
349 void
350 terminate_minimal_symbol_table (struct objfile *objfile)
351 {
352 if (! objfile->msymbols)
353 objfile->msymbols = ((struct minimal_symbol *)
354 obstack_alloc (&objfile->objfile_obstack,
355 sizeof (objfile->msymbols[0])));
356
357 {
358 struct minimal_symbol *m
359 = &objfile->msymbols[objfile->minimal_symbol_count];
360
361 memset (m, 0, sizeof (*m));
362 /* Don't rely on these enumeration values being 0's. */
363 MSYMBOL_TYPE (m) = mst_unknown;
364 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
365 }
366 }
367
368
369 /* Put one object file before a specified on in the global list.
370 This can be used to make sure an object file is destroyed before
371 another when using ALL_OBJFILES_SAFE to free all objfiles. */
372 void
373 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
374 {
375 struct objfile **objp;
376
377 unlink_objfile (objfile);
378
379 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
380 {
381 if (*objp == before_this)
382 {
383 objfile->next = *objp;
384 *objp = objfile;
385 return;
386 }
387 }
388
389 internal_error (__FILE__, __LINE__,
390 _("put_objfile_before: before objfile not in list"));
391 }
392
393 /* Put OBJFILE at the front of the list. */
394
395 void
396 objfile_to_front (struct objfile *objfile)
397 {
398 struct objfile **objp;
399 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
400 {
401 if (*objp == objfile)
402 {
403 /* Unhook it from where it is. */
404 *objp = objfile->next;
405 /* Put it in the front. */
406 objfile->next = object_files;
407 object_files = objfile;
408 break;
409 }
410 }
411 }
412
413 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
414 list.
415
416 It is not a bug, or error, to call this function if OBJFILE is not known
417 to be in the current list. This is done in the case of mapped objfiles,
418 for example, just to ensure that the mapped objfile doesn't appear twice
419 in the list. Since the list is threaded, linking in a mapped objfile
420 twice would create a circular list.
421
422 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
423 unlinking it, just to ensure that we have completely severed any linkages
424 between the OBJFILE and the list. */
425
426 void
427 unlink_objfile (struct objfile *objfile)
428 {
429 struct objfile **objpp;
430
431 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
432 {
433 if (*objpp == objfile)
434 {
435 *objpp = (*objpp)->next;
436 objfile->next = NULL;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
442 _("unlink_objfile: objfile already unlinked"));
443 }
444
445
446 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
447 that as much as possible is allocated on the objfile_obstack
448 so that the memory can be efficiently freed.
449
450 Things which we do NOT free because they are not in malloc'd memory
451 or not in memory specific to the objfile include:
452
453 objfile -> sf
454
455 FIXME: If the objfile is using reusable symbol information (via mmalloc),
456 then we need to take into account the fact that more than one process
457 may be using the symbol information at the same time (when mmalloc is
458 extended to support cooperative locking). When more than one process
459 is using the mapped symbol info, we need to be more careful about when
460 we free objects in the reusable area. */
461
462 void
463 free_objfile (struct objfile *objfile)
464 {
465 if (objfile->separate_debug_objfile)
466 {
467 free_objfile (objfile->separate_debug_objfile);
468 }
469
470 if (objfile->separate_debug_objfile_backlink)
471 {
472 /* We freed the separate debug file, make sure the base objfile
473 doesn't reference it. */
474 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
475 }
476
477 /* Remove any references to this objfile in the global value
478 lists. */
479 preserve_values (objfile);
480
481 /* First do any symbol file specific actions required when we are
482 finished with a particular symbol file. Note that if the objfile
483 is using reusable symbol information (via mmalloc) then each of
484 these routines is responsible for doing the correct thing, either
485 freeing things which are valid only during this particular gdb
486 execution, or leaving them to be reused during the next one. */
487
488 if (objfile->sf != NULL)
489 {
490 (*objfile->sf->sym_finish) (objfile);
491 }
492
493 /* Discard any data modules have associated with the objfile. */
494 objfile_free_data (objfile);
495
496 gdb_bfd_unref (objfile->obfd);
497
498 /* Remove it from the chain of all objfiles. */
499
500 unlink_objfile (objfile);
501
502 if (objfile == symfile_objfile)
503 symfile_objfile = NULL;
504
505 if (objfile == rt_common_objfile)
506 rt_common_objfile = NULL;
507
508 /* Before the symbol table code was redone to make it easier to
509 selectively load and remove information particular to a specific
510 linkage unit, gdb used to do these things whenever the monolithic
511 symbol table was blown away. How much still needs to be done
512 is unknown, but we play it safe for now and keep each action until
513 it is shown to be no longer needed. */
514
515 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
516 for example), so we need to call this here. */
517 clear_pc_function_cache ();
518
519 /* Clear globals which might have pointed into a removed objfile.
520 FIXME: It's not clear which of these are supposed to persist
521 between expressions and which ought to be reset each time. */
522 expression_context_block = NULL;
523 innermost_block = NULL;
524
525 /* Check to see if the current_source_symtab belongs to this objfile,
526 and if so, call clear_current_source_symtab_and_line. */
527
528 {
529 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
530 struct symtab *s;
531
532 ALL_OBJFILE_SYMTABS (objfile, s)
533 {
534 if (s == cursal.symtab)
535 clear_current_source_symtab_and_line ();
536 }
537 }
538
539 /* The last thing we do is free the objfile struct itself. */
540
541 if (objfile->name != NULL)
542 {
543 xfree (objfile->name);
544 }
545 if (objfile->global_psymbols.list)
546 xfree (objfile->global_psymbols.list);
547 if (objfile->static_psymbols.list)
548 xfree (objfile->static_psymbols.list);
549 /* Free the obstacks for non-reusable objfiles */
550 bcache_xfree (objfile->psymbol_cache);
551 bcache_xfree (objfile->macro_cache);
552 if (objfile->demangled_names_hash)
553 htab_delete (objfile->demangled_names_hash);
554 obstack_free (&objfile->objfile_obstack, 0);
555
556 /* Rebuild section map next time we need it. */
557 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
558
559 xfree (objfile);
560 }
561
562 static void
563 do_free_objfile_cleanup (void *obj)
564 {
565 free_objfile (obj);
566 }
567
568 struct cleanup *
569 make_cleanup_free_objfile (struct objfile *obj)
570 {
571 return make_cleanup (do_free_objfile_cleanup, obj);
572 }
573
574 /* Free all the object files at once and clean up their users. */
575
576 void
577 free_all_objfiles (void)
578 {
579 struct objfile *objfile, *temp;
580
581 ALL_OBJFILES_SAFE (objfile, temp)
582 {
583 free_objfile (objfile);
584 }
585 clear_symtab_users ();
586 }
587 \f
588 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
589 entries in new_offsets. */
590 void
591 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
592 {
593 struct obj_section *s;
594 struct section_offsets *delta =
595 ((struct section_offsets *)
596 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
597
598 {
599 int i;
600 int something_changed = 0;
601 for (i = 0; i < objfile->num_sections; ++i)
602 {
603 delta->offsets[i] =
604 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
605 if (ANOFFSET (delta, i) != 0)
606 something_changed = 1;
607 }
608 if (!something_changed)
609 return;
610 }
611
612 /* OK, get all the symtabs. */
613 {
614 struct symtab *s;
615
616 ALL_OBJFILE_SYMTABS (objfile, s)
617 {
618 struct linetable *l;
619 struct blockvector *bv;
620 int i;
621
622 /* First the line table. */
623 l = LINETABLE (s);
624 if (l)
625 {
626 for (i = 0; i < l->nitems; ++i)
627 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
628 }
629
630 /* Don't relocate a shared blockvector more than once. */
631 if (!s->primary)
632 continue;
633
634 bv = BLOCKVECTOR (s);
635 if (BLOCKVECTOR_MAP (bv))
636 addrmap_relocate (BLOCKVECTOR_MAP (bv),
637 ANOFFSET (delta, s->block_line_section));
638
639 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
640 {
641 struct block *b;
642 struct symbol *sym;
643 struct dict_iterator iter;
644
645 b = BLOCKVECTOR_BLOCK (bv, i);
646 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
647 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
648
649 ALL_BLOCK_SYMBOLS (b, iter, sym)
650 {
651 fixup_symbol_section (sym, objfile);
652
653 /* The RS6000 code from which this was taken skipped
654 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
655 But I'm leaving out that test, on the theory that
656 they can't possibly pass the tests below. */
657 if ((SYMBOL_CLASS (sym) == LOC_LABEL
658 || SYMBOL_CLASS (sym) == LOC_STATIC)
659 && SYMBOL_SECTION (sym) >= 0)
660 {
661 SYMBOL_VALUE_ADDRESS (sym) +=
662 ANOFFSET (delta, SYMBOL_SECTION (sym));
663 }
664 }
665 }
666 }
667 }
668
669 {
670 struct partial_symtab *p;
671
672 ALL_OBJFILE_PSYMTABS (objfile, p)
673 {
674 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
675 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
676 }
677 }
678
679 {
680 struct partial_symbol **psym;
681
682 for (psym = objfile->global_psymbols.list;
683 psym < objfile->global_psymbols.next;
684 psym++)
685 {
686 fixup_psymbol_section (*psym, objfile);
687 if (SYMBOL_SECTION (*psym) >= 0)
688 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
689 SYMBOL_SECTION (*psym));
690 }
691 for (psym = objfile->static_psymbols.list;
692 psym < objfile->static_psymbols.next;
693 psym++)
694 {
695 fixup_psymbol_section (*psym, objfile);
696 if (SYMBOL_SECTION (*psym) >= 0)
697 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
698 SYMBOL_SECTION (*psym));
699 }
700 }
701
702 {
703 struct minimal_symbol *msym;
704 ALL_OBJFILE_MSYMBOLS (objfile, msym)
705 if (SYMBOL_SECTION (msym) >= 0)
706 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
707 }
708 /* Relocating different sections by different amounts may cause the symbols
709 to be out of order. */
710 msymbols_sort (objfile);
711
712 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
713 {
714 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
715 only as a fallback. */
716 struct obj_section *s;
717 s = find_pc_section (objfile->ei.entry_point);
718 if (s)
719 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
720 else
721 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
722 }
723
724 {
725 int i;
726 for (i = 0; i < objfile->num_sections; ++i)
727 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
728 }
729
730 /* Rebuild section map next time we need it. */
731 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
732
733 /* Update the table in exec_ops, used to read memory. */
734 ALL_OBJFILE_OSECTIONS (objfile, s)
735 {
736 int idx = s->the_bfd_section->index;
737
738 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
739 obj_section_addr (s));
740 }
741
742 /* Relocate breakpoints as necessary, after things are relocated. */
743 breakpoint_re_set ();
744 }
745 \f
746 /* Return non-zero if OBJFILE has partial symbols. */
747
748 int
749 objfile_has_partial_symbols (struct objfile *objfile)
750 {
751 return objfile->psymtabs != NULL;
752 }
753
754 /* Return non-zero if OBJFILE has full symbols. */
755
756 int
757 objfile_has_full_symbols (struct objfile *objfile)
758 {
759 return objfile->symtabs != NULL;
760 }
761
762 /* Return non-zero if OBJFILE has full or partial symbols, either directly
763 or throught its separate debug file. */
764
765 int
766 objfile_has_symbols (struct objfile *objfile)
767 {
768 struct objfile *separate_objfile;
769
770 if (objfile_has_partial_symbols (objfile)
771 || objfile_has_full_symbols (objfile))
772 return 1;
773
774 separate_objfile = objfile->separate_debug_objfile;
775 if (separate_objfile == NULL)
776 return 0;
777
778 if (objfile_has_partial_symbols (separate_objfile)
779 || objfile_has_full_symbols (separate_objfile))
780 return 1;
781
782 return 0;
783 }
784
785
786 /* Many places in gdb want to test just to see if we have any partial
787 symbols available. This function returns zero if none are currently
788 available, nonzero otherwise. */
789
790 int
791 have_partial_symbols (void)
792 {
793 struct objfile *ofp;
794
795 ALL_OBJFILES (ofp)
796 {
797 if (objfile_has_partial_symbols (ofp))
798 return 1;
799 }
800 return 0;
801 }
802
803 /* Many places in gdb want to test just to see if we have any full
804 symbols available. This function returns zero if none are currently
805 available, nonzero otherwise. */
806
807 int
808 have_full_symbols (void)
809 {
810 struct objfile *ofp;
811
812 ALL_OBJFILES (ofp)
813 {
814 if (objfile_has_full_symbols (ofp))
815 return 1;
816 }
817 return 0;
818 }
819
820
821 /* This operations deletes all objfile entries that represent solibs that
822 weren't explicitly loaded by the user, via e.g., the add-symbol-file
823 command.
824 */
825 void
826 objfile_purge_solibs (void)
827 {
828 struct objfile *objf;
829 struct objfile *temp;
830
831 ALL_OBJFILES_SAFE (objf, temp)
832 {
833 /* We assume that the solib package has been purged already, or will
834 be soon.
835 */
836 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
837 free_objfile (objf);
838 }
839 }
840
841
842 /* Many places in gdb want to test just to see if we have any minimal
843 symbols available. This function returns zero if none are currently
844 available, nonzero otherwise. */
845
846 int
847 have_minimal_symbols (void)
848 {
849 struct objfile *ofp;
850
851 ALL_OBJFILES (ofp)
852 {
853 if (ofp->minimal_symbol_count > 0)
854 {
855 return 1;
856 }
857 }
858 return 0;
859 }
860
861 /* Qsort comparison function. */
862
863 static int
864 qsort_cmp (const void *a, const void *b)
865 {
866 const struct obj_section *sect1 = *(const struct obj_section **) a;
867 const struct obj_section *sect2 = *(const struct obj_section **) b;
868 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
869 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
870
871 if (sect1_addr < sect2_addr)
872 return -1;
873 else if (sect1_addr > sect2_addr)
874 return 1;
875 else
876 {
877 /* Sections are at the same address. This could happen if
878 A) we have an objfile and a separate debuginfo.
879 B) we are confused, and have added sections without proper relocation,
880 or something like that. */
881
882 const struct objfile *const objfile1 = sect1->objfile;
883 const struct objfile *const objfile2 = sect2->objfile;
884
885 if (objfile1->separate_debug_objfile == objfile2
886 || objfile2->separate_debug_objfile == objfile1)
887 {
888 /* Case A. The ordering doesn't matter: separate debuginfo files
889 will be filtered out later. */
890
891 return 0;
892 }
893
894 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
895 triage. This section could be slow (since we iterate over all
896 objfiles in each call to qsort_cmp), but this shouldn't happen
897 very often (GDB is already in a confused state; one hopes this
898 doesn't happen at all). If you discover that significant time is
899 spent in the loops below, do 'set complaints 100' and examine the
900 resulting complaints. */
901
902 if (objfile1 == objfile2)
903 {
904 /* Both sections came from the same objfile. We are really confused.
905 Sort on sequence order of sections within the objfile. */
906
907 const struct obj_section *osect;
908
909 ALL_OBJFILE_OSECTIONS (objfile1, osect)
910 if (osect == sect1)
911 return -1;
912 else if (osect == sect2)
913 return 1;
914
915 /* We should have found one of the sections before getting here. */
916 gdb_assert (0);
917 }
918 else
919 {
920 /* Sort on sequence number of the objfile in the chain. */
921
922 const struct objfile *objfile;
923
924 ALL_OBJFILES (objfile)
925 if (objfile == objfile1)
926 return -1;
927 else if (objfile == objfile2)
928 return 1;
929
930 /* We should have found one of the objfiles before getting here. */
931 gdb_assert (0);
932 }
933
934 }
935
936 /* Unreachable. */
937 gdb_assert (0);
938 return 0;
939 }
940
941 /* Select "better" obj_section to keep. We prefer the one that came from
942 the real object, rather than the one from separate debuginfo.
943 Most of the time the two sections are exactly identical, but with
944 prelinking the .rel.dyn section in the real object may have different
945 size. */
946
947 static struct obj_section *
948 preferred_obj_section (struct obj_section *a, struct obj_section *b)
949 {
950 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
951 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
952 || (b->objfile->separate_debug_objfile == a->objfile));
953 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
954 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
955
956 if (a->objfile->separate_debug_objfile != NULL)
957 return a;
958 return b;
959 }
960
961 /* Return 1 if SECTION should be inserted into the section map.
962 We want to insert only non-overlay and non-TLS section. */
963
964 static int
965 insert_section_p (const struct bfd *abfd,
966 const struct bfd_section *section)
967 {
968 const bfd_vma lma = bfd_section_lma (abfd, section);
969
970 if (lma != 0 && lma != bfd_section_vma (abfd, section)
971 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
972 /* This is an overlay section. IN_MEMORY check is needed to avoid
973 discarding sections from the "system supplied DSO" (aka vdso)
974 on some Linux systems (e.g. Fedora 11). */
975 return 0;
976 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
977 /* This is a TLS section. */
978 return 0;
979
980 return 1;
981 }
982
983 /* Filter out overlapping sections where one section came from the real
984 objfile, and the other from a separate debuginfo file.
985 Return the size of table after redundant sections have been eliminated. */
986
987 static int
988 filter_debuginfo_sections (struct obj_section **map, int map_size)
989 {
990 int i, j;
991
992 for (i = 0, j = 0; i < map_size - 1; i++)
993 {
994 struct obj_section *const sect1 = map[i];
995 struct obj_section *const sect2 = map[i + 1];
996 const struct objfile *const objfile1 = sect1->objfile;
997 const struct objfile *const objfile2 = sect2->objfile;
998 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
999 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1000
1001 if (sect1_addr == sect2_addr
1002 && (objfile1->separate_debug_objfile == objfile2
1003 || objfile2->separate_debug_objfile == objfile1))
1004 {
1005 map[j++] = preferred_obj_section (sect1, sect2);
1006 ++i;
1007 }
1008 else
1009 map[j++] = sect1;
1010 }
1011
1012 if (i < map_size)
1013 {
1014 gdb_assert (i == map_size - 1);
1015 map[j++] = map[i];
1016 }
1017
1018 /* The map should not have shrunk to less than half the original size. */
1019 gdb_assert (map_size / 2 <= j);
1020
1021 return j;
1022 }
1023
1024 /* Filter out overlapping sections, issuing a warning if any are found.
1025 Overlapping sections could really be overlay sections which we didn't
1026 classify as such in insert_section_p, or we could be dealing with a
1027 corrupt binary. */
1028
1029 static int
1030 filter_overlapping_sections (struct obj_section **map, int map_size)
1031 {
1032 int i, j;
1033
1034 for (i = 0, j = 0; i < map_size - 1; )
1035 {
1036 int k;
1037
1038 map[j++] = map[i];
1039 for (k = i + 1; k < map_size; k++)
1040 {
1041 struct obj_section *const sect1 = map[i];
1042 struct obj_section *const sect2 = map[k];
1043 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1044 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1045 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1046
1047 gdb_assert (sect1_addr <= sect2_addr);
1048
1049 if (sect1_endaddr <= sect2_addr)
1050 break;
1051 else
1052 {
1053 /* We have an overlap. Report it. */
1054
1055 struct objfile *const objf1 = sect1->objfile;
1056 struct objfile *const objf2 = sect2->objfile;
1057
1058 const struct bfd *const abfd1 = objf1->obfd;
1059 const struct bfd *const abfd2 = objf2->obfd;
1060
1061 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1062 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1063
1064 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1065
1066 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1067
1068 complaint (&symfile_complaints,
1069 _("unexpected overlap between:\n"
1070 " (A) section `%s' from `%s' [%s, %s)\n"
1071 " (B) section `%s' from `%s' [%s, %s).\n"
1072 "Will ignore section B"),
1073 bfd_section_name (abfd1, bfds1), objf1->name,
1074 paddress (gdbarch, sect1_addr),
1075 paddress (gdbarch, sect1_endaddr),
1076 bfd_section_name (abfd2, bfds2), objf2->name,
1077 paddress (gdbarch, sect2_addr),
1078 paddress (gdbarch, sect2_endaddr));
1079 }
1080 }
1081 i = k;
1082 }
1083
1084 if (i < map_size)
1085 {
1086 gdb_assert (i == map_size - 1);
1087 map[j++] = map[i];
1088 }
1089
1090 return j;
1091 }
1092
1093
1094 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1095 TLS, overlay and overlapping sections. */
1096
1097 static void
1098 update_section_map (struct program_space *pspace,
1099 struct obj_section ***pmap, int *pmap_size)
1100 {
1101 int alloc_size, map_size, i;
1102 struct obj_section *s, **map;
1103 struct objfile *objfile;
1104
1105 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1106
1107 map = *pmap;
1108 xfree (map);
1109
1110 alloc_size = 0;
1111 ALL_PSPACE_OBJFILES (pspace, objfile)
1112 ALL_OBJFILE_OSECTIONS (objfile, s)
1113 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1114 alloc_size += 1;
1115
1116 map = xmalloc (alloc_size * sizeof (*map));
1117
1118 i = 0;
1119 ALL_PSPACE_OBJFILES (pspace, objfile)
1120 ALL_OBJFILE_OSECTIONS (objfile, s)
1121 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1122 map[i++] = s;
1123
1124 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1125 map_size = filter_debuginfo_sections(map, alloc_size);
1126 map_size = filter_overlapping_sections(map, map_size);
1127
1128 if (map_size < alloc_size)
1129 /* Some sections were eliminated. Trim excess space. */
1130 map = xrealloc (map, map_size * sizeof (*map));
1131 else
1132 gdb_assert (alloc_size == map_size);
1133
1134 *pmap = map;
1135 *pmap_size = map_size;
1136 }
1137
1138 /* Bsearch comparison function. */
1139
1140 static int
1141 bsearch_cmp (const void *key, const void *elt)
1142 {
1143 const CORE_ADDR pc = *(CORE_ADDR *) key;
1144 const struct obj_section *section = *(const struct obj_section **) elt;
1145
1146 if (pc < obj_section_addr (section))
1147 return -1;
1148 if (pc < obj_section_endaddr (section))
1149 return 0;
1150 return 1;
1151 }
1152
1153 /* Returns a section whose range includes PC or NULL if none found. */
1154
1155 struct obj_section *
1156 find_pc_section (CORE_ADDR pc)
1157 {
1158 struct objfile_pspace_info *pspace_info;
1159 struct obj_section *s, **sp;
1160
1161 /* Check for mapped overlay section first. */
1162 s = find_pc_mapped_section (pc);
1163 if (s)
1164 return s;
1165
1166 pspace_info = get_objfile_pspace_data (current_program_space);
1167 if (pspace_info->objfiles_changed_p != 0)
1168 {
1169 update_section_map (current_program_space,
1170 &pspace_info->sections,
1171 &pspace_info->num_sections);
1172
1173 /* Don't need updates to section map until objfiles are added,
1174 removed or relocated. */
1175 pspace_info->objfiles_changed_p = 0;
1176 }
1177
1178 sp = (struct obj_section **) bsearch (&pc,
1179 pspace_info->sections,
1180 pspace_info->num_sections,
1181 sizeof (*pspace_info->sections),
1182 bsearch_cmp);
1183 if (sp != NULL)
1184 return *sp;
1185 return NULL;
1186 }
1187
1188
1189 /* In SVR4, we recognize a trampoline by it's section name.
1190 That is, if the pc is in a section named ".plt" then we are in
1191 a trampoline. */
1192
1193 int
1194 in_plt_section (CORE_ADDR pc, char *name)
1195 {
1196 struct obj_section *s;
1197 int retval = 0;
1198
1199 s = find_pc_section (pc);
1200
1201 retval = (s != NULL
1202 && s->the_bfd_section->name != NULL
1203 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1204 return (retval);
1205 }
1206 \f
1207
1208 /* Keep a registry of per-objfile data-pointers required by other GDB
1209 modules. */
1210
1211 struct objfile_data
1212 {
1213 unsigned index;
1214 void (*save) (struct objfile *, void *);
1215 void (*free) (struct objfile *, void *);
1216 };
1217
1218 struct objfile_data_registration
1219 {
1220 struct objfile_data *data;
1221 struct objfile_data_registration *next;
1222 };
1223
1224 struct objfile_data_registry
1225 {
1226 struct objfile_data_registration *registrations;
1227 unsigned num_registrations;
1228 };
1229
1230 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1231
1232 const struct objfile_data *
1233 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1234 void (*free) (struct objfile *, void *))
1235 {
1236 struct objfile_data_registration **curr;
1237
1238 /* Append new registration. */
1239 for (curr = &objfile_data_registry.registrations;
1240 *curr != NULL; curr = &(*curr)->next);
1241
1242 *curr = XMALLOC (struct objfile_data_registration);
1243 (*curr)->next = NULL;
1244 (*curr)->data = XMALLOC (struct objfile_data);
1245 (*curr)->data->index = objfile_data_registry.num_registrations++;
1246 (*curr)->data->save = save;
1247 (*curr)->data->free = free;
1248
1249 return (*curr)->data;
1250 }
1251
1252 const struct objfile_data *
1253 register_objfile_data (void)
1254 {
1255 return register_objfile_data_with_cleanup (NULL, NULL);
1256 }
1257
1258 static void
1259 objfile_alloc_data (struct objfile *objfile)
1260 {
1261 gdb_assert (objfile->data == NULL);
1262 objfile->num_data = objfile_data_registry.num_registrations;
1263 objfile->data = XCALLOC (objfile->num_data, void *);
1264 }
1265
1266 static void
1267 objfile_free_data (struct objfile *objfile)
1268 {
1269 gdb_assert (objfile->data != NULL);
1270 clear_objfile_data (objfile);
1271 xfree (objfile->data);
1272 objfile->data = NULL;
1273 }
1274
1275 void
1276 clear_objfile_data (struct objfile *objfile)
1277 {
1278 struct objfile_data_registration *registration;
1279 int i;
1280
1281 gdb_assert (objfile->data != NULL);
1282
1283 /* Process all the save handlers. */
1284
1285 for (registration = objfile_data_registry.registrations, i = 0;
1286 i < objfile->num_data;
1287 registration = registration->next, i++)
1288 if (objfile->data[i] != NULL && registration->data->save != NULL)
1289 registration->data->save (objfile, objfile->data[i]);
1290
1291 /* Now process all the free handlers. */
1292
1293 for (registration = objfile_data_registry.registrations, i = 0;
1294 i < objfile->num_data;
1295 registration = registration->next, i++)
1296 if (objfile->data[i] != NULL && registration->data->free != NULL)
1297 registration->data->free (objfile, objfile->data[i]);
1298
1299 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1300 }
1301
1302 void
1303 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1304 void *value)
1305 {
1306 gdb_assert (data->index < objfile->num_data);
1307 objfile->data[data->index] = value;
1308 }
1309
1310 void *
1311 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1312 {
1313 gdb_assert (data->index < objfile->num_data);
1314 return objfile->data[data->index];
1315 }
1316
1317 /* Set objfiles_changed_p so section map will be rebuilt next time it
1318 is used. Called by reread_symbols. */
1319
1320 void
1321 objfiles_changed (void)
1322 {
1323 /* Rebuild section map next time we need it. */
1324 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1325 }
1326
1327 /* Add reference to ABFD. Returns ABFD. */
1328 struct bfd *
1329 gdb_bfd_ref (struct bfd *abfd)
1330 {
1331 int *p_refcount = bfd_usrdata (abfd);
1332
1333 if (p_refcount != NULL)
1334 {
1335 *p_refcount += 1;
1336 return abfd;
1337 }
1338
1339 p_refcount = xmalloc (sizeof (*p_refcount));
1340 *p_refcount = 1;
1341 bfd_usrdata (abfd) = p_refcount;
1342
1343 return abfd;
1344 }
1345
1346 /* Unreference and possibly close ABFD. */
1347 void
1348 gdb_bfd_unref (struct bfd *abfd)
1349 {
1350 int *p_refcount;
1351 char *name;
1352
1353 if (abfd == NULL)
1354 return;
1355
1356 p_refcount = bfd_usrdata (abfd);
1357
1358 /* Valid range for p_refcount: a pointer to int counter, which has a
1359 value of 1 (single owner) or 2 (shared). */
1360 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1361
1362 *p_refcount -= 1;
1363 if (*p_refcount > 0)
1364 return;
1365
1366 xfree (p_refcount);
1367 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1368
1369 name = bfd_get_filename (abfd);
1370 if (!bfd_close (abfd))
1371 warning (_("cannot close \"%s\": %s"),
1372 name, bfd_errmsg (bfd_get_error ()));
1373 xfree (name);
1374 }
1375
1376 /* Provide a prototype to silence -Wmissing-prototypes. */
1377 extern initialize_file_ftype _initialize_objfiles;
1378
1379 void
1380 _initialize_objfiles (void)
1381 {
1382 objfiles_pspace_data
1383 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1384 }
This page took 0.077521 seconds and 4 git commands to generate.