2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56
57 /* Prototypes for local functions */
58
59 static void objfile_alloc_data (struct objfile *objfile);
60 static void objfile_free_data (struct objfile *objfile);
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Called via bfd_map_over_sections to build up the section table that
109 the objfile references. The objfile contains pointers to the start
110 of the table (objfile->sections) and to the first location after
111 the end of the table (objfile->sections_end). */
112
113 static void
114 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
115 void *objfilep)
116 {
117 struct objfile *objfile = (struct objfile *) objfilep;
118 struct obj_section section;
119 flagword aflag;
120
121 aflag = bfd_get_section_flags (abfd, asect);
122 if (!(aflag & SEC_ALLOC))
123 return;
124 if (bfd_section_size (abfd, asect) == 0)
125 return;
126
127 section.objfile = objfile;
128 section.the_bfd_section = asect;
129 section.ovly_mapped = 0;
130 obstack_grow (&objfile->objfile_obstack,
131 (char *) &section, sizeof (section));
132 objfile->sections_end
133 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
134 }
135
136 /* Builds a section table for OBJFILE.
137
138 Note that while we are building the table, which goes into the
139 objfile obstack, we hijack the sections_end pointer to instead hold
140 a count of the number of sections. When bfd_map_over_sections
141 returns, this count is used to compute the pointer to the end of
142 the sections table, which then overwrites the count.
143
144 Also note that the OFFSET and OVLY_MAPPED in each table entry
145 are initialized to zero.
146
147 Also note that if anything else writes to the objfile obstack while
148 we are building the table, we're pretty much hosed. */
149
150 void
151 build_objfile_section_table (struct objfile *objfile)
152 {
153 objfile->sections_end = 0;
154 bfd_map_over_sections (objfile->obfd,
155 add_to_objfile_sections, (void *) objfile);
156 objfile->sections = obstack_finish (&objfile->objfile_obstack);
157 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
158 }
159
160 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
161 allocate a new objfile struct, fill it in as best we can, link it
162 into the list of all known objfiles, and return a pointer to the
163 new objfile struct.
164
165 The FLAGS word contains various bits (OBJF_*) that can be taken as
166 requests for specific operations. Other bits like OBJF_SHARED are
167 simply copied through to the new objfile flags member. */
168
169 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
170 by jv-lang.c, to create an artificial objfile used to hold
171 information about dynamically-loaded Java classes. Unfortunately,
172 that branch of this function doesn't get tested very frequently, so
173 it's prone to breakage. (E.g. at one time the name was set to NULL
174 in that situation, which broke a loop over all names in the dynamic
175 library loader.) If you change this function, please try to leave
176 things in a consistent state even if abfd is NULL. */
177
178 struct objfile *
179 allocate_objfile (bfd *abfd, int flags)
180 {
181 struct objfile *objfile;
182
183 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
184 objfile->psymbol_cache = psymbol_bcache_init ();
185 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
186 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
187 /* We could use obstack_specify_allocation here instead, but
188 gdb_obstack.h specifies the alloc/dealloc functions. */
189 obstack_init (&objfile->objfile_obstack);
190 terminate_minimal_symbol_table (objfile);
191
192 objfile_alloc_data (objfile);
193
194 /* Update the per-objfile information that comes from the bfd, ensuring
195 that any data that is reference is saved in the per-objfile data
196 region. */
197
198 objfile->obfd = gdb_bfd_ref (abfd);
199 if (abfd != NULL)
200 {
201 /* Look up the gdbarch associated with the BFD. */
202 objfile->gdbarch = gdbarch_from_bfd (abfd);
203
204 objfile->name = xstrdup (bfd_get_filename (abfd));
205 objfile->mtime = bfd_get_mtime (abfd);
206
207 /* Build section table. */
208 build_objfile_section_table (objfile);
209 }
210 else
211 {
212 objfile->name = xstrdup ("<<anonymous objfile>>");
213 }
214
215 objfile->pspace = current_program_space;
216
217 /* Initialize the section indexes for this objfile, so that we can
218 later detect if they are used w/o being properly assigned to. */
219
220 objfile->sect_index_text = -1;
221 objfile->sect_index_data = -1;
222 objfile->sect_index_bss = -1;
223 objfile->sect_index_rodata = -1;
224
225 /* Add this file onto the tail of the linked list of other such files. */
226
227 objfile->next = NULL;
228 if (object_files == NULL)
229 object_files = objfile;
230 else
231 {
232 struct objfile *last_one;
233
234 for (last_one = object_files;
235 last_one->next;
236 last_one = last_one->next);
237 last_one->next = objfile;
238 }
239
240 /* Save passed in flag bits. */
241 objfile->flags |= flags;
242
243 /* Rebuild section map next time we need it. */
244 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
245
246 return objfile;
247 }
248
249 /* Retrieve the gdbarch associated with OBJFILE. */
250 struct gdbarch *
251 get_objfile_arch (struct objfile *objfile)
252 {
253 return objfile->gdbarch;
254 }
255
256 /* Initialize entry point information for this objfile. */
257
258 void
259 init_entry_point_info (struct objfile *objfile)
260 {
261 /* Save startup file's range of PC addresses to help blockframe.c
262 decide where the bottom of the stack is. */
263
264 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
265 {
266 /* Executable file -- record its entry point so we'll recognize
267 the startup file because it contains the entry point. */
268 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
269 objfile->ei.entry_point_p = 1;
270 }
271 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
272 && bfd_get_start_address (objfile->obfd) != 0)
273 {
274 /* Some shared libraries may have entry points set and be
275 runnable. There's no clear way to indicate this, so just check
276 for values other than zero. */
277 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
278 objfile->ei.entry_point_p = 1;
279 }
280 else
281 {
282 /* Examination of non-executable.o files. Short-circuit this stuff. */
283 objfile->ei.entry_point_p = 0;
284 }
285 }
286
287 /* If there is a valid and known entry point, function fills *ENTRY_P with it
288 and returns non-zero; otherwise it returns zero. */
289
290 int
291 entry_point_address_query (CORE_ADDR *entry_p)
292 {
293 struct gdbarch *gdbarch;
294 CORE_ADDR entry_point;
295
296 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
297 return 0;
298
299 gdbarch = get_objfile_arch (symfile_objfile);
300
301 entry_point = symfile_objfile->ei.entry_point;
302
303 /* Make certain that the address points at real code, and not a
304 function descriptor. */
305 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
306 &current_target);
307
308 /* Remove any ISA markers, so that this matches entries in the
309 symbol table. */
310 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
311
312 *entry_p = entry_point;
313 return 1;
314 }
315
316 /* Get current entry point address. Call error if it is not known. */
317
318 CORE_ADDR
319 entry_point_address (void)
320 {
321 CORE_ADDR retval;
322
323 if (!entry_point_address_query (&retval))
324 error (_("Entry point address is not known."));
325
326 return retval;
327 }
328
329 /* Iterator on PARENT and every separate debug objfile of PARENT.
330 The usage pattern is:
331 for (objfile = parent;
332 objfile;
333 objfile = objfile_separate_debug_iterate (parent, objfile))
334 ...
335 */
336
337 struct objfile *
338 objfile_separate_debug_iterate (const struct objfile *parent,
339 const struct objfile *objfile)
340 {
341 struct objfile *res;
342
343 /* If any, return the first child. */
344 res = objfile->separate_debug_objfile;
345 if (res)
346 return res;
347
348 /* Common case where there is no separate debug objfile. */
349 if (objfile == parent)
350 return NULL;
351
352 /* Return the brother if any. Note that we don't iterate on brothers of
353 the parents. */
354 res = objfile->separate_debug_objfile_link;
355 if (res)
356 return res;
357
358 for (res = objfile->separate_debug_objfile_backlink;
359 res != parent;
360 res = res->separate_debug_objfile_backlink)
361 {
362 gdb_assert (res != NULL);
363 if (res->separate_debug_objfile_link)
364 return res->separate_debug_objfile_link;
365 }
366 return NULL;
367 }
368
369 /* Put one object file before a specified on in the global list.
370 This can be used to make sure an object file is destroyed before
371 another when using ALL_OBJFILES_SAFE to free all objfiles. */
372 void
373 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
374 {
375 struct objfile **objp;
376
377 unlink_objfile (objfile);
378
379 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
380 {
381 if (*objp == before_this)
382 {
383 objfile->next = *objp;
384 *objp = objfile;
385 return;
386 }
387 }
388
389 internal_error (__FILE__, __LINE__,
390 _("put_objfile_before: before objfile not in list"));
391 }
392
393 /* Put OBJFILE at the front of the list. */
394
395 void
396 objfile_to_front (struct objfile *objfile)
397 {
398 struct objfile **objp;
399 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
400 {
401 if (*objp == objfile)
402 {
403 /* Unhook it from where it is. */
404 *objp = objfile->next;
405 /* Put it in the front. */
406 objfile->next = object_files;
407 object_files = objfile;
408 break;
409 }
410 }
411 }
412
413 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
414 list.
415
416 It is not a bug, or error, to call this function if OBJFILE is not known
417 to be in the current list. This is done in the case of mapped objfiles,
418 for example, just to ensure that the mapped objfile doesn't appear twice
419 in the list. Since the list is threaded, linking in a mapped objfile
420 twice would create a circular list.
421
422 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
423 unlinking it, just to ensure that we have completely severed any linkages
424 between the OBJFILE and the list. */
425
426 void
427 unlink_objfile (struct objfile *objfile)
428 {
429 struct objfile **objpp;
430
431 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
432 {
433 if (*objpp == objfile)
434 {
435 *objpp = (*objpp)->next;
436 objfile->next = NULL;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
442 _("unlink_objfile: objfile already unlinked"));
443 }
444
445 /* Add OBJFILE as a separate debug objfile of PARENT. */
446
447 void
448 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
449 {
450 gdb_assert (objfile && parent);
451
452 /* Must not be already in a list. */
453 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
454 gdb_assert (objfile->separate_debug_objfile_link == NULL);
455
456 objfile->separate_debug_objfile_backlink = parent;
457 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
458 parent->separate_debug_objfile = objfile;
459
460 /* Put the separate debug object before the normal one, this is so that
461 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
462 put_objfile_before (objfile, parent);
463 }
464
465 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
466 itself. */
467
468 void
469 free_objfile_separate_debug (struct objfile *objfile)
470 {
471 struct objfile *child;
472
473 for (child = objfile->separate_debug_objfile; child;)
474 {
475 struct objfile *next_child = child->separate_debug_objfile_link;
476 free_objfile (child);
477 child = next_child;
478 }
479 }
480
481 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
482 that as much as possible is allocated on the objfile_obstack
483 so that the memory can be efficiently freed.
484
485 Things which we do NOT free because they are not in malloc'd memory
486 or not in memory specific to the objfile include:
487
488 objfile -> sf
489
490 FIXME: If the objfile is using reusable symbol information (via mmalloc),
491 then we need to take into account the fact that more than one process
492 may be using the symbol information at the same time (when mmalloc is
493 extended to support cooperative locking). When more than one process
494 is using the mapped symbol info, we need to be more careful about when
495 we free objects in the reusable area. */
496
497 void
498 free_objfile (struct objfile *objfile)
499 {
500 /* Free all separate debug objfiles. */
501 free_objfile_separate_debug (objfile);
502
503 if (objfile->separate_debug_objfile_backlink)
504 {
505 /* We freed the separate debug file, make sure the base objfile
506 doesn't reference it. */
507 struct objfile *child;
508
509 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
510
511 if (child == objfile)
512 {
513 /* OBJFILE is the first child. */
514 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
515 objfile->separate_debug_objfile_link;
516 }
517 else
518 {
519 /* Find OBJFILE in the list. */
520 while (1)
521 {
522 if (child->separate_debug_objfile_link == objfile)
523 {
524 child->separate_debug_objfile_link =
525 objfile->separate_debug_objfile_link;
526 break;
527 }
528 child = child->separate_debug_objfile_link;
529 gdb_assert (child);
530 }
531 }
532 }
533
534 /* Remove any references to this objfile in the global value
535 lists. */
536 preserve_values (objfile);
537
538 /* It still may reference data modules have associated with the objfile and
539 the symbol file data. */
540 forget_cached_source_info_for_objfile (objfile);
541
542 /* First do any symbol file specific actions required when we are
543 finished with a particular symbol file. Note that if the objfile
544 is using reusable symbol information (via mmalloc) then each of
545 these routines is responsible for doing the correct thing, either
546 freeing things which are valid only during this particular gdb
547 execution, or leaving them to be reused during the next one. */
548
549 if (objfile->sf != NULL)
550 {
551 (*objfile->sf->sym_finish) (objfile);
552 }
553
554 /* Discard any data modules have associated with the objfile. The function
555 still may reference objfile->obfd. */
556 objfile_free_data (objfile);
557
558 gdb_bfd_unref (objfile->obfd);
559
560 /* Remove it from the chain of all objfiles. */
561
562 unlink_objfile (objfile);
563
564 if (objfile == symfile_objfile)
565 symfile_objfile = NULL;
566
567 if (objfile == rt_common_objfile)
568 rt_common_objfile = NULL;
569
570 /* Before the symbol table code was redone to make it easier to
571 selectively load and remove information particular to a specific
572 linkage unit, gdb used to do these things whenever the monolithic
573 symbol table was blown away. How much still needs to be done
574 is unknown, but we play it safe for now and keep each action until
575 it is shown to be no longer needed. */
576
577 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
578 for example), so we need to call this here. */
579 clear_pc_function_cache ();
580
581 /* Clear globals which might have pointed into a removed objfile.
582 FIXME: It's not clear which of these are supposed to persist
583 between expressions and which ought to be reset each time. */
584 expression_context_block = NULL;
585 innermost_block = NULL;
586
587 /* Check to see if the current_source_symtab belongs to this objfile,
588 and if so, call clear_current_source_symtab_and_line. */
589
590 {
591 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
592
593 if (cursal.symtab && cursal.symtab->objfile == objfile)
594 clear_current_source_symtab_and_line ();
595 }
596
597 /* The last thing we do is free the objfile struct itself. */
598
599 xfree (objfile->name);
600 if (objfile->global_psymbols.list)
601 xfree (objfile->global_psymbols.list);
602 if (objfile->static_psymbols.list)
603 xfree (objfile->static_psymbols.list);
604 /* Free the obstacks for non-reusable objfiles. */
605 psymbol_bcache_free (objfile->psymbol_cache);
606 bcache_xfree (objfile->macro_cache);
607 bcache_xfree (objfile->filename_cache);
608 if (objfile->demangled_names_hash)
609 htab_delete (objfile->demangled_names_hash);
610 obstack_free (&objfile->objfile_obstack, 0);
611
612 /* Rebuild section map next time we need it. */
613 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
614
615 xfree (objfile);
616 }
617
618 static void
619 do_free_objfile_cleanup (void *obj)
620 {
621 free_objfile (obj);
622 }
623
624 struct cleanup *
625 make_cleanup_free_objfile (struct objfile *obj)
626 {
627 return make_cleanup (do_free_objfile_cleanup, obj);
628 }
629
630 /* Free all the object files at once and clean up their users. */
631
632 void
633 free_all_objfiles (void)
634 {
635 struct objfile *objfile, *temp;
636 struct so_list *so;
637
638 /* Any objfile referencewould become stale. */
639 for (so = master_so_list (); so; so = so->next)
640 gdb_assert (so->objfile == NULL);
641
642 ALL_OBJFILES_SAFE (objfile, temp)
643 {
644 free_objfile (objfile);
645 }
646 clear_symtab_users (0);
647 }
648 \f
649 /* A helper function for objfile_relocate1 that relocates a single
650 symbol. */
651
652 static void
653 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
654 struct section_offsets *delta)
655 {
656 fixup_symbol_section (sym, objfile);
657
658 /* The RS6000 code from which this was taken skipped
659 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
660 But I'm leaving out that test, on the theory that
661 they can't possibly pass the tests below. */
662 if ((SYMBOL_CLASS (sym) == LOC_LABEL
663 || SYMBOL_CLASS (sym) == LOC_STATIC)
664 && SYMBOL_SECTION (sym) >= 0)
665 {
666 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
667 }
668 }
669
670 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
671 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
672 Return non-zero iff any change happened. */
673
674 static int
675 objfile_relocate1 (struct objfile *objfile,
676 struct section_offsets *new_offsets)
677 {
678 struct obj_section *s;
679 struct section_offsets *delta =
680 ((struct section_offsets *)
681 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
682
683 int i;
684 int something_changed = 0;
685
686 for (i = 0; i < objfile->num_sections; ++i)
687 {
688 delta->offsets[i] =
689 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
690 if (ANOFFSET (delta, i) != 0)
691 something_changed = 1;
692 }
693 if (!something_changed)
694 return 0;
695
696 /* OK, get all the symtabs. */
697 {
698 struct symtab *s;
699
700 ALL_OBJFILE_SYMTABS (objfile, s)
701 {
702 struct linetable *l;
703 struct blockvector *bv;
704 int i;
705
706 /* First the line table. */
707 l = LINETABLE (s);
708 if (l)
709 {
710 for (i = 0; i < l->nitems; ++i)
711 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
712 }
713
714 /* Don't relocate a shared blockvector more than once. */
715 if (!s->primary)
716 continue;
717
718 bv = BLOCKVECTOR (s);
719 if (BLOCKVECTOR_MAP (bv))
720 addrmap_relocate (BLOCKVECTOR_MAP (bv),
721 ANOFFSET (delta, s->block_line_section));
722
723 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
724 {
725 struct block *b;
726 struct symbol *sym;
727 struct dict_iterator iter;
728
729 b = BLOCKVECTOR_BLOCK (bv, i);
730 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
731 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
732
733 ALL_BLOCK_SYMBOLS (b, iter, sym)
734 {
735 relocate_one_symbol (sym, objfile, delta);
736 }
737 }
738 }
739 }
740
741 /* Relocate isolated symbols. */
742 {
743 struct symbol *iter;
744
745 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
746 relocate_one_symbol (iter, objfile, delta);
747 }
748
749 if (objfile->psymtabs_addrmap)
750 addrmap_relocate (objfile->psymtabs_addrmap,
751 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
752
753 if (objfile->sf)
754 objfile->sf->qf->relocate (objfile, new_offsets, delta);
755
756 {
757 struct minimal_symbol *msym;
758
759 ALL_OBJFILE_MSYMBOLS (objfile, msym)
760 if (SYMBOL_SECTION (msym) >= 0)
761 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
762 }
763 /* Relocating different sections by different amounts may cause the symbols
764 to be out of order. */
765 msymbols_sort (objfile);
766
767 if (objfile->ei.entry_point_p)
768 {
769 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
770 only as a fallback. */
771 struct obj_section *s;
772 s = find_pc_section (objfile->ei.entry_point);
773 if (s)
774 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
775 else
776 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
777 }
778
779 {
780 int i;
781
782 for (i = 0; i < objfile->num_sections; ++i)
783 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
784 }
785
786 /* Rebuild section map next time we need it. */
787 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
788
789 /* Update the table in exec_ops, used to read memory. */
790 ALL_OBJFILE_OSECTIONS (objfile, s)
791 {
792 int idx = s->the_bfd_section->index;
793
794 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
795 obj_section_addr (s));
796 }
797
798 /* Relocating probes. */
799 if (objfile->sf && objfile->sf->sym_probe_fns)
800 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
801 new_offsets, delta);
802
803 /* Data changed. */
804 return 1;
805 }
806
807 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
808 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
809
810 The number and ordering of sections does differ between the two objfiles.
811 Only their names match. Also the file offsets will differ (objfile being
812 possibly prelinked but separate_debug_objfile is probably not prelinked) but
813 the in-memory absolute address as specified by NEW_OFFSETS must match both
814 files. */
815
816 void
817 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
818 {
819 struct objfile *debug_objfile;
820 int changed = 0;
821
822 changed |= objfile_relocate1 (objfile, new_offsets);
823
824 for (debug_objfile = objfile->separate_debug_objfile;
825 debug_objfile;
826 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
827 {
828 struct section_addr_info *objfile_addrs;
829 struct section_offsets *new_debug_offsets;
830 struct cleanup *my_cleanups;
831
832 objfile_addrs = build_section_addr_info_from_objfile (objfile);
833 my_cleanups = make_cleanup (xfree, objfile_addrs);
834
835 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
836 relative ones must be already created according to debug_objfile. */
837
838 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
839
840 gdb_assert (debug_objfile->num_sections
841 == bfd_count_sections (debug_objfile->obfd));
842 new_debug_offsets =
843 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
844 make_cleanup (xfree, new_debug_offsets);
845 relative_addr_info_to_section_offsets (new_debug_offsets,
846 debug_objfile->num_sections,
847 objfile_addrs);
848
849 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
850
851 do_cleanups (my_cleanups);
852 }
853
854 /* Relocate breakpoints as necessary, after things are relocated. */
855 if (changed)
856 breakpoint_re_set ();
857 }
858 \f
859 /* Return non-zero if OBJFILE has partial symbols. */
860
861 int
862 objfile_has_partial_symbols (struct objfile *objfile)
863 {
864 if (!objfile->sf)
865 return 0;
866
867 /* If we have not read psymbols, but we have a function capable of reading
868 them, then that is an indication that they are in fact available. Without
869 this function the symbols may have been already read in but they also may
870 not be present in this objfile. */
871 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
872 && objfile->sf->sym_read_psymbols != NULL)
873 return 1;
874
875 return objfile->sf->qf->has_symbols (objfile);
876 }
877
878 /* Return non-zero if OBJFILE has full symbols. */
879
880 int
881 objfile_has_full_symbols (struct objfile *objfile)
882 {
883 return objfile->symtabs != NULL;
884 }
885
886 /* Return non-zero if OBJFILE has full or partial symbols, either directly
887 or through a separate debug file. */
888
889 int
890 objfile_has_symbols (struct objfile *objfile)
891 {
892 struct objfile *o;
893
894 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
895 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
896 return 1;
897 return 0;
898 }
899
900
901 /* Many places in gdb want to test just to see if we have any partial
902 symbols available. This function returns zero if none are currently
903 available, nonzero otherwise. */
904
905 int
906 have_partial_symbols (void)
907 {
908 struct objfile *ofp;
909
910 ALL_OBJFILES (ofp)
911 {
912 if (objfile_has_partial_symbols (ofp))
913 return 1;
914 }
915 return 0;
916 }
917
918 /* Many places in gdb want to test just to see if we have any full
919 symbols available. This function returns zero if none are currently
920 available, nonzero otherwise. */
921
922 int
923 have_full_symbols (void)
924 {
925 struct objfile *ofp;
926
927 ALL_OBJFILES (ofp)
928 {
929 if (objfile_has_full_symbols (ofp))
930 return 1;
931 }
932 return 0;
933 }
934
935
936 /* This operations deletes all objfile entries that represent solibs that
937 weren't explicitly loaded by the user, via e.g., the add-symbol-file
938 command. */
939
940 void
941 objfile_purge_solibs (void)
942 {
943 struct objfile *objf;
944 struct objfile *temp;
945
946 ALL_OBJFILES_SAFE (objf, temp)
947 {
948 /* We assume that the solib package has been purged already, or will
949 be soon. */
950
951 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
952 free_objfile (objf);
953 }
954 }
955
956
957 /* Many places in gdb want to test just to see if we have any minimal
958 symbols available. This function returns zero if none are currently
959 available, nonzero otherwise. */
960
961 int
962 have_minimal_symbols (void)
963 {
964 struct objfile *ofp;
965
966 ALL_OBJFILES (ofp)
967 {
968 if (ofp->minimal_symbol_count > 0)
969 {
970 return 1;
971 }
972 }
973 return 0;
974 }
975
976 /* Qsort comparison function. */
977
978 static int
979 qsort_cmp (const void *a, const void *b)
980 {
981 const struct obj_section *sect1 = *(const struct obj_section **) a;
982 const struct obj_section *sect2 = *(const struct obj_section **) b;
983 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
984 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
985
986 if (sect1_addr < sect2_addr)
987 return -1;
988 else if (sect1_addr > sect2_addr)
989 return 1;
990 else
991 {
992 /* Sections are at the same address. This could happen if
993 A) we have an objfile and a separate debuginfo.
994 B) we are confused, and have added sections without proper relocation,
995 or something like that. */
996
997 const struct objfile *const objfile1 = sect1->objfile;
998 const struct objfile *const objfile2 = sect2->objfile;
999
1000 if (objfile1->separate_debug_objfile == objfile2
1001 || objfile2->separate_debug_objfile == objfile1)
1002 {
1003 /* Case A. The ordering doesn't matter: separate debuginfo files
1004 will be filtered out later. */
1005
1006 return 0;
1007 }
1008
1009 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1010 triage. This section could be slow (since we iterate over all
1011 objfiles in each call to qsort_cmp), but this shouldn't happen
1012 very often (GDB is already in a confused state; one hopes this
1013 doesn't happen at all). If you discover that significant time is
1014 spent in the loops below, do 'set complaints 100' and examine the
1015 resulting complaints. */
1016
1017 if (objfile1 == objfile2)
1018 {
1019 /* Both sections came from the same objfile. We are really confused.
1020 Sort on sequence order of sections within the objfile. */
1021
1022 const struct obj_section *osect;
1023
1024 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1025 if (osect == sect1)
1026 return -1;
1027 else if (osect == sect2)
1028 return 1;
1029
1030 /* We should have found one of the sections before getting here. */
1031 gdb_assert_not_reached ("section not found");
1032 }
1033 else
1034 {
1035 /* Sort on sequence number of the objfile in the chain. */
1036
1037 const struct objfile *objfile;
1038
1039 ALL_OBJFILES (objfile)
1040 if (objfile == objfile1)
1041 return -1;
1042 else if (objfile == objfile2)
1043 return 1;
1044
1045 /* We should have found one of the objfiles before getting here. */
1046 gdb_assert_not_reached ("objfile not found");
1047 }
1048 }
1049
1050 /* Unreachable. */
1051 gdb_assert_not_reached ("unexpected code path");
1052 return 0;
1053 }
1054
1055 /* Select "better" obj_section to keep. We prefer the one that came from
1056 the real object, rather than the one from separate debuginfo.
1057 Most of the time the two sections are exactly identical, but with
1058 prelinking the .rel.dyn section in the real object may have different
1059 size. */
1060
1061 static struct obj_section *
1062 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1063 {
1064 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1065 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1066 || (b->objfile->separate_debug_objfile == a->objfile));
1067 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1068 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1069
1070 if (a->objfile->separate_debug_objfile != NULL)
1071 return a;
1072 return b;
1073 }
1074
1075 /* Return 1 if SECTION should be inserted into the section map.
1076 We want to insert only non-overlay and non-TLS section. */
1077
1078 static int
1079 insert_section_p (const struct bfd *abfd,
1080 const struct bfd_section *section)
1081 {
1082 const bfd_vma lma = bfd_section_lma (abfd, section);
1083
1084 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1085 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1086 /* This is an overlay section. IN_MEMORY check is needed to avoid
1087 discarding sections from the "system supplied DSO" (aka vdso)
1088 on some Linux systems (e.g. Fedora 11). */
1089 return 0;
1090 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1091 /* This is a TLS section. */
1092 return 0;
1093
1094 return 1;
1095 }
1096
1097 /* Filter out overlapping sections where one section came from the real
1098 objfile, and the other from a separate debuginfo file.
1099 Return the size of table after redundant sections have been eliminated. */
1100
1101 static int
1102 filter_debuginfo_sections (struct obj_section **map, int map_size)
1103 {
1104 int i, j;
1105
1106 for (i = 0, j = 0; i < map_size - 1; i++)
1107 {
1108 struct obj_section *const sect1 = map[i];
1109 struct obj_section *const sect2 = map[i + 1];
1110 const struct objfile *const objfile1 = sect1->objfile;
1111 const struct objfile *const objfile2 = sect2->objfile;
1112 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1113 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1114
1115 if (sect1_addr == sect2_addr
1116 && (objfile1->separate_debug_objfile == objfile2
1117 || objfile2->separate_debug_objfile == objfile1))
1118 {
1119 map[j++] = preferred_obj_section (sect1, sect2);
1120 ++i;
1121 }
1122 else
1123 map[j++] = sect1;
1124 }
1125
1126 if (i < map_size)
1127 {
1128 gdb_assert (i == map_size - 1);
1129 map[j++] = map[i];
1130 }
1131
1132 /* The map should not have shrunk to less than half the original size. */
1133 gdb_assert (map_size / 2 <= j);
1134
1135 return j;
1136 }
1137
1138 /* Filter out overlapping sections, issuing a warning if any are found.
1139 Overlapping sections could really be overlay sections which we didn't
1140 classify as such in insert_section_p, or we could be dealing with a
1141 corrupt binary. */
1142
1143 static int
1144 filter_overlapping_sections (struct obj_section **map, int map_size)
1145 {
1146 int i, j;
1147
1148 for (i = 0, j = 0; i < map_size - 1; )
1149 {
1150 int k;
1151
1152 map[j++] = map[i];
1153 for (k = i + 1; k < map_size; k++)
1154 {
1155 struct obj_section *const sect1 = map[i];
1156 struct obj_section *const sect2 = map[k];
1157 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1158 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1159 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1160
1161 gdb_assert (sect1_addr <= sect2_addr);
1162
1163 if (sect1_endaddr <= sect2_addr)
1164 break;
1165 else
1166 {
1167 /* We have an overlap. Report it. */
1168
1169 struct objfile *const objf1 = sect1->objfile;
1170 struct objfile *const objf2 = sect2->objfile;
1171
1172 const struct bfd *const abfd1 = objf1->obfd;
1173 const struct bfd *const abfd2 = objf2->obfd;
1174
1175 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1176 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1177
1178 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1179
1180 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1181
1182 complaint (&symfile_complaints,
1183 _("unexpected overlap between:\n"
1184 " (A) section `%s' from `%s' [%s, %s)\n"
1185 " (B) section `%s' from `%s' [%s, %s).\n"
1186 "Will ignore section B"),
1187 bfd_section_name (abfd1, bfds1), objf1->name,
1188 paddress (gdbarch, sect1_addr),
1189 paddress (gdbarch, sect1_endaddr),
1190 bfd_section_name (abfd2, bfds2), objf2->name,
1191 paddress (gdbarch, sect2_addr),
1192 paddress (gdbarch, sect2_endaddr));
1193 }
1194 }
1195 i = k;
1196 }
1197
1198 if (i < map_size)
1199 {
1200 gdb_assert (i == map_size - 1);
1201 map[j++] = map[i];
1202 }
1203
1204 return j;
1205 }
1206
1207
1208 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1209 TLS, overlay and overlapping sections. */
1210
1211 static void
1212 update_section_map (struct program_space *pspace,
1213 struct obj_section ***pmap, int *pmap_size)
1214 {
1215 int alloc_size, map_size, i;
1216 struct obj_section *s, **map;
1217 struct objfile *objfile;
1218
1219 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1220
1221 map = *pmap;
1222 xfree (map);
1223
1224 alloc_size = 0;
1225 ALL_PSPACE_OBJFILES (pspace, objfile)
1226 ALL_OBJFILE_OSECTIONS (objfile, s)
1227 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1228 alloc_size += 1;
1229
1230 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1231 if (alloc_size == 0)
1232 {
1233 *pmap = NULL;
1234 *pmap_size = 0;
1235 return;
1236 }
1237
1238 map = xmalloc (alloc_size * sizeof (*map));
1239
1240 i = 0;
1241 ALL_PSPACE_OBJFILES (pspace, objfile)
1242 ALL_OBJFILE_OSECTIONS (objfile, s)
1243 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1244 map[i++] = s;
1245
1246 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1247 map_size = filter_debuginfo_sections(map, alloc_size);
1248 map_size = filter_overlapping_sections(map, map_size);
1249
1250 if (map_size < alloc_size)
1251 /* Some sections were eliminated. Trim excess space. */
1252 map = xrealloc (map, map_size * sizeof (*map));
1253 else
1254 gdb_assert (alloc_size == map_size);
1255
1256 *pmap = map;
1257 *pmap_size = map_size;
1258 }
1259
1260 /* Bsearch comparison function. */
1261
1262 static int
1263 bsearch_cmp (const void *key, const void *elt)
1264 {
1265 const CORE_ADDR pc = *(CORE_ADDR *) key;
1266 const struct obj_section *section = *(const struct obj_section **) elt;
1267
1268 if (pc < obj_section_addr (section))
1269 return -1;
1270 if (pc < obj_section_endaddr (section))
1271 return 0;
1272 return 1;
1273 }
1274
1275 /* Returns a section whose range includes PC or NULL if none found. */
1276
1277 struct obj_section *
1278 find_pc_section (CORE_ADDR pc)
1279 {
1280 struct objfile_pspace_info *pspace_info;
1281 struct obj_section *s, **sp;
1282
1283 /* Check for mapped overlay section first. */
1284 s = find_pc_mapped_section (pc);
1285 if (s)
1286 return s;
1287
1288 pspace_info = get_objfile_pspace_data (current_program_space);
1289 if (pspace_info->objfiles_changed_p != 0)
1290 {
1291 update_section_map (current_program_space,
1292 &pspace_info->sections,
1293 &pspace_info->num_sections);
1294
1295 /* Don't need updates to section map until objfiles are added,
1296 removed or relocated. */
1297 pspace_info->objfiles_changed_p = 0;
1298 }
1299
1300 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1301 bsearch be non-NULL. */
1302 if (pspace_info->sections == NULL)
1303 {
1304 gdb_assert (pspace_info->num_sections == 0);
1305 return NULL;
1306 }
1307
1308 sp = (struct obj_section **) bsearch (&pc,
1309 pspace_info->sections,
1310 pspace_info->num_sections,
1311 sizeof (*pspace_info->sections),
1312 bsearch_cmp);
1313 if (sp != NULL)
1314 return *sp;
1315 return NULL;
1316 }
1317
1318
1319 /* In SVR4, we recognize a trampoline by it's section name.
1320 That is, if the pc is in a section named ".plt" then we are in
1321 a trampoline. */
1322
1323 int
1324 in_plt_section (CORE_ADDR pc, char *name)
1325 {
1326 struct obj_section *s;
1327 int retval = 0;
1328
1329 s = find_pc_section (pc);
1330
1331 retval = (s != NULL
1332 && s->the_bfd_section->name != NULL
1333 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1334 return (retval);
1335 }
1336 \f
1337
1338 /* Keep a registry of per-objfile data-pointers required by other GDB
1339 modules. */
1340
1341 struct objfile_data
1342 {
1343 unsigned index;
1344 void (*save) (struct objfile *, void *);
1345 void (*free) (struct objfile *, void *);
1346 };
1347
1348 struct objfile_data_registration
1349 {
1350 struct objfile_data *data;
1351 struct objfile_data_registration *next;
1352 };
1353
1354 struct objfile_data_registry
1355 {
1356 struct objfile_data_registration *registrations;
1357 unsigned num_registrations;
1358 };
1359
1360 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1361
1362 const struct objfile_data *
1363 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1364 void (*free) (struct objfile *, void *))
1365 {
1366 struct objfile_data_registration **curr;
1367
1368 /* Append new registration. */
1369 for (curr = &objfile_data_registry.registrations;
1370 *curr != NULL; curr = &(*curr)->next);
1371
1372 *curr = XMALLOC (struct objfile_data_registration);
1373 (*curr)->next = NULL;
1374 (*curr)->data = XMALLOC (struct objfile_data);
1375 (*curr)->data->index = objfile_data_registry.num_registrations++;
1376 (*curr)->data->save = save;
1377 (*curr)->data->free = free;
1378
1379 return (*curr)->data;
1380 }
1381
1382 const struct objfile_data *
1383 register_objfile_data (void)
1384 {
1385 return register_objfile_data_with_cleanup (NULL, NULL);
1386 }
1387
1388 static void
1389 objfile_alloc_data (struct objfile *objfile)
1390 {
1391 gdb_assert (objfile->data == NULL);
1392 objfile->num_data = objfile_data_registry.num_registrations;
1393 objfile->data = XCALLOC (objfile->num_data, void *);
1394 }
1395
1396 static void
1397 objfile_free_data (struct objfile *objfile)
1398 {
1399 gdb_assert (objfile->data != NULL);
1400 clear_objfile_data (objfile);
1401 xfree (objfile->data);
1402 objfile->data = NULL;
1403 }
1404
1405 void
1406 clear_objfile_data (struct objfile *objfile)
1407 {
1408 struct objfile_data_registration *registration;
1409 int i;
1410
1411 gdb_assert (objfile->data != NULL);
1412
1413 /* Process all the save handlers. */
1414
1415 for (registration = objfile_data_registry.registrations, i = 0;
1416 i < objfile->num_data;
1417 registration = registration->next, i++)
1418 if (objfile->data[i] != NULL && registration->data->save != NULL)
1419 registration->data->save (objfile, objfile->data[i]);
1420
1421 /* Now process all the free handlers. */
1422
1423 for (registration = objfile_data_registry.registrations, i = 0;
1424 i < objfile->num_data;
1425 registration = registration->next, i++)
1426 if (objfile->data[i] != NULL && registration->data->free != NULL)
1427 registration->data->free (objfile, objfile->data[i]);
1428
1429 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1430 }
1431
1432 void
1433 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1434 void *value)
1435 {
1436 gdb_assert (data->index < objfile->num_data);
1437 objfile->data[data->index] = value;
1438 }
1439
1440 void *
1441 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1442 {
1443 gdb_assert (data->index < objfile->num_data);
1444 return objfile->data[data->index];
1445 }
1446
1447 /* Set objfiles_changed_p so section map will be rebuilt next time it
1448 is used. Called by reread_symbols. */
1449
1450 void
1451 objfiles_changed (void)
1452 {
1453 /* Rebuild section map next time we need it. */
1454 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1455 }
1456
1457 /* Close ABFD, and warn if that fails. */
1458
1459 int
1460 gdb_bfd_close_or_warn (struct bfd *abfd)
1461 {
1462 int ret;
1463 char *name = bfd_get_filename (abfd);
1464
1465 ret = bfd_close (abfd);
1466
1467 if (!ret)
1468 warning (_("cannot close \"%s\": %s"),
1469 name, bfd_errmsg (bfd_get_error ()));
1470
1471 return ret;
1472 }
1473
1474 /* Add reference to ABFD. Returns ABFD. */
1475 struct bfd *
1476 gdb_bfd_ref (struct bfd *abfd)
1477 {
1478 int *p_refcount;
1479
1480 if (abfd == NULL)
1481 return NULL;
1482
1483 p_refcount = bfd_usrdata (abfd);
1484
1485 if (p_refcount != NULL)
1486 {
1487 *p_refcount += 1;
1488 return abfd;
1489 }
1490
1491 p_refcount = xmalloc (sizeof (*p_refcount));
1492 *p_refcount = 1;
1493 bfd_usrdata (abfd) = p_refcount;
1494
1495 return abfd;
1496 }
1497
1498 /* Unreference and possibly close ABFD. */
1499 void
1500 gdb_bfd_unref (struct bfd *abfd)
1501 {
1502 int *p_refcount;
1503 char *name;
1504
1505 if (abfd == NULL)
1506 return;
1507
1508 p_refcount = bfd_usrdata (abfd);
1509
1510 /* Valid range for p_refcount: a pointer to int counter, which has a
1511 value of 1 (single owner) or 2 (shared). */
1512 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1513
1514 *p_refcount -= 1;
1515 if (*p_refcount > 0)
1516 return;
1517
1518 xfree (p_refcount);
1519 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1520
1521 name = bfd_get_filename (abfd);
1522 gdb_bfd_close_or_warn (abfd);
1523 xfree (name);
1524 }
1525
1526 /* Provide a prototype to silence -Wmissing-prototypes. */
1527 extern initialize_file_ftype _initialize_objfiles;
1528
1529 void
1530 _initialize_objfiles (void)
1531 {
1532 objfiles_pspace_data
1533 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1534 }
This page took 0.084272 seconds and 4 git commands to generate.