2011-01-10 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file contains support routines for creating, manipulating, and
25 destroying objfile structures. */
26
27 #include "defs.h"
28 #include "bfd.h" /* Binary File Description */
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb-stabs.h"
33 #include "target.h"
34 #include "bcache.h"
35 #include "mdebugread.h"
36 #include "expression.h"
37 #include "parser-defs.h"
38
39 #include "gdb_assert.h"
40 #include <sys/types.h>
41 #include "gdb_stat.h"
42 #include <fcntl.h>
43 #include "gdb_obstack.h"
44 #include "gdb_string.h"
45 #include "hashtab.h"
46
47 #include "breakpoint.h"
48 #include "block.h"
49 #include "dictionary.h"
50 #include "source.h"
51 #include "addrmap.h"
52 #include "arch-utils.h"
53 #include "exec.h"
54 #include "observer.h"
55 #include "complaints.h"
56 #include "psymtab.h"
57 #include "solist.h"
58
59 /* Prototypes for local functions */
60
61 static void objfile_alloc_data (struct objfile *objfile);
62 static void objfile_free_data (struct objfile *objfile);
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile *current_objfile; /* For symbol file being read in */
68 struct objfile *rt_common_objfile; /* For runtime common symbols */
69
70 struct objfile_pspace_info
71 {
72 int objfiles_changed_p;
73 struct obj_section **sections;
74 int num_sections;
75 };
76
77 /* Per-program-space data key. */
78 static const struct program_space_data *objfiles_pspace_data;
79
80 static void
81 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
82 {
83 struct objfile_pspace_info *info;
84
85 info = program_space_data (pspace, objfiles_pspace_data);
86 if (info != NULL)
87 {
88 xfree (info->sections);
89 xfree (info);
90 }
91 }
92
93 /* Get the current svr4 data. If none is found yet, add it now. This
94 function always returns a valid object. */
95
96 static struct objfile_pspace_info *
97 get_objfile_pspace_data (struct program_space *pspace)
98 {
99 struct objfile_pspace_info *info;
100
101 info = program_space_data (pspace, objfiles_pspace_data);
102 if (info == NULL)
103 {
104 info = XZALLOC (struct objfile_pspace_info);
105 set_program_space_data (pspace, objfiles_pspace_data, info);
106 }
107
108 return info;
109 }
110
111 /* Records whether any objfiles appeared or disappeared since we last updated
112 address to obj section map. */
113
114 /* Locate all mappable sections of a BFD file.
115 objfile_p_char is a char * to get it through
116 bfd_map_over_sections; we cast it back to its proper type. */
117
118 /* Called via bfd_map_over_sections to build up the section table that
119 the objfile references. The objfile contains pointers to the start
120 of the table (objfile->sections) and to the first location after
121 the end of the table (objfile->sections_end). */
122
123 static void
124 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
125 void *objfile_p_char)
126 {
127 struct objfile *objfile = (struct objfile *) objfile_p_char;
128 struct obj_section section;
129 flagword aflag;
130
131 aflag = bfd_get_section_flags (abfd, asect);
132
133 if (!(aflag & SEC_ALLOC))
134 return;
135
136 if (0 == bfd_section_size (abfd, asect))
137 return;
138 section.objfile = objfile;
139 section.the_bfd_section = asect;
140 section.ovly_mapped = 0;
141 obstack_grow (&objfile->objfile_obstack,
142 (char *) &section, sizeof (section));
143 objfile->sections_end
144 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
145 }
146
147 /* Builds a section table for OBJFILE.
148 Returns 0 if OK, 1 on error (in which case bfd_error contains the
149 error).
150
151 Note that while we are building the table, which goes into the
152 psymbol obstack, we hijack the sections_end pointer to instead hold
153 a count of the number of sections. When bfd_map_over_sections
154 returns, this count is used to compute the pointer to the end of
155 the sections table, which then overwrites the count.
156
157 Also note that the OFFSET and OVLY_MAPPED in each table entry
158 are initialized to zero.
159
160 Also note that if anything else writes to the psymbol obstack while
161 we are building the table, we're pretty much hosed. */
162
163 int
164 build_objfile_section_table (struct objfile *objfile)
165 {
166 /* objfile->sections can be already set when reading a mapped symbol
167 file. I believe that we do need to rebuild the section table in
168 this case (we rebuild other things derived from the bfd), but we
169 can't free the old one (it's in the objfile_obstack). So we just
170 waste some memory. */
171
172 objfile->sections_end = 0;
173 bfd_map_over_sections (objfile->obfd,
174 add_to_objfile_sections, (void *) objfile);
175 objfile->sections = obstack_finish (&objfile->objfile_obstack);
176 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
177 return (0);
178 }
179
180 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
181 allocate a new objfile struct, fill it in as best we can, link it
182 into the list of all known objfiles, and return a pointer to the
183 new objfile struct.
184
185 The FLAGS word contains various bits (OBJF_*) that can be taken as
186 requests for specific operations. Other bits like OBJF_SHARED are
187 simply copied through to the new objfile flags member. */
188
189 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
190 by jv-lang.c, to create an artificial objfile used to hold
191 information about dynamically-loaded Java classes. Unfortunately,
192 that branch of this function doesn't get tested very frequently, so
193 it's prone to breakage. (E.g. at one time the name was set to NULL
194 in that situation, which broke a loop over all names in the dynamic
195 library loader.) If you change this function, please try to leave
196 things in a consistent state even if abfd is NULL. */
197
198 struct objfile *
199 allocate_objfile (bfd *abfd, int flags)
200 {
201 struct objfile *objfile;
202
203 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
204 objfile->psymbol_cache = psymbol_bcache_init ();
205 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
206 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
207 /* We could use obstack_specify_allocation here instead, but
208 gdb_obstack.h specifies the alloc/dealloc functions. */
209 obstack_init (&objfile->objfile_obstack);
210 terminate_minimal_symbol_table (objfile);
211
212 objfile_alloc_data (objfile);
213
214 /* Update the per-objfile information that comes from the bfd, ensuring
215 that any data that is reference is saved in the per-objfile data
216 region. */
217
218 objfile->obfd = gdb_bfd_ref (abfd);
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_SET_LANGUAGE (m, language_unknown);
378 }
379 }
380
381 /* Iterator on PARENT and every separate debug objfile of PARENT.
382 The usage pattern is:
383 for (objfile = parent;
384 objfile;
385 objfile = objfile_separate_debug_iterate (parent, objfile))
386 ...
387 */
388
389 struct objfile *
390 objfile_separate_debug_iterate (const struct objfile *parent,
391 const struct objfile *objfile)
392 {
393 struct objfile *res;
394
395 /* If any, return the first child. */
396 res = objfile->separate_debug_objfile;
397 if (res)
398 return res;
399
400 /* Common case where there is no separate debug objfile. */
401 if (objfile == parent)
402 return NULL;
403
404 /* Return the brother if any. Note that we don't iterate on brothers of
405 the parents. */
406 res = objfile->separate_debug_objfile_link;
407 if (res)
408 return res;
409
410 for (res = objfile->separate_debug_objfile_backlink;
411 res != parent;
412 res = res->separate_debug_objfile_backlink)
413 {
414 gdb_assert (res != NULL);
415 if (res->separate_debug_objfile_link)
416 return res->separate_debug_objfile_link;
417 }
418 return NULL;
419 }
420
421 /* Put one object file before a specified on in the global list.
422 This can be used to make sure an object file is destroyed before
423 another when using ALL_OBJFILES_SAFE to free all objfiles. */
424 void
425 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
426 {
427 struct objfile **objp;
428
429 unlink_objfile (objfile);
430
431 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
432 {
433 if (*objp == before_this)
434 {
435 objfile->next = *objp;
436 *objp = objfile;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
442 _("put_objfile_before: before objfile not in list"));
443 }
444
445 /* Put OBJFILE at the front of the list. */
446
447 void
448 objfile_to_front (struct objfile *objfile)
449 {
450 struct objfile **objp;
451 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
452 {
453 if (*objp == objfile)
454 {
455 /* Unhook it from where it is. */
456 *objp = objfile->next;
457 /* Put it in the front. */
458 objfile->next = object_files;
459 object_files = objfile;
460 break;
461 }
462 }
463 }
464
465 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
466 list.
467
468 It is not a bug, or error, to call this function if OBJFILE is not known
469 to be in the current list. This is done in the case of mapped objfiles,
470 for example, just to ensure that the mapped objfile doesn't appear twice
471 in the list. Since the list is threaded, linking in a mapped objfile
472 twice would create a circular list.
473
474 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
475 unlinking it, just to ensure that we have completely severed any linkages
476 between the OBJFILE and the list. */
477
478 void
479 unlink_objfile (struct objfile *objfile)
480 {
481 struct objfile **objpp;
482
483 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
484 {
485 if (*objpp == objfile)
486 {
487 *objpp = (*objpp)->next;
488 objfile->next = NULL;
489 return;
490 }
491 }
492
493 internal_error (__FILE__, __LINE__,
494 _("unlink_objfile: objfile already unlinked"));
495 }
496
497 /* Add OBJFILE as a separate debug objfile of PARENT. */
498
499 void
500 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
501 {
502 gdb_assert (objfile && parent);
503
504 /* Must not be already in a list. */
505 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
506 gdb_assert (objfile->separate_debug_objfile_link == NULL);
507
508 objfile->separate_debug_objfile_backlink = parent;
509 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
510 parent->separate_debug_objfile = objfile;
511
512 /* Put the separate debug object before the normal one, this is so that
513 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
514 put_objfile_before (objfile, parent);
515 }
516
517 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
518 itself. */
519
520 void
521 free_objfile_separate_debug (struct objfile *objfile)
522 {
523 struct objfile *child;
524
525 for (child = objfile->separate_debug_objfile; child;)
526 {
527 struct objfile *next_child = child->separate_debug_objfile_link;
528 free_objfile (child);
529 child = next_child;
530 }
531 }
532
533 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
534 that as much as possible is allocated on the objfile_obstack
535 so that the memory can be efficiently freed.
536
537 Things which we do NOT free because they are not in malloc'd memory
538 or not in memory specific to the objfile include:
539
540 objfile -> sf
541
542 FIXME: If the objfile is using reusable symbol information (via mmalloc),
543 then we need to take into account the fact that more than one process
544 may be using the symbol information at the same time (when mmalloc is
545 extended to support cooperative locking). When more than one process
546 is using the mapped symbol info, we need to be more careful about when
547 we free objects in the reusable area. */
548
549 void
550 free_objfile (struct objfile *objfile)
551 {
552 /* Free all separate debug objfiles. */
553 free_objfile_separate_debug (objfile);
554
555 if (objfile->separate_debug_objfile_backlink)
556 {
557 /* We freed the separate debug file, make sure the base objfile
558 doesn't reference it. */
559 struct objfile *child;
560
561 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
562
563 if (child == objfile)
564 {
565 /* OBJFILE is the first child. */
566 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
567 objfile->separate_debug_objfile_link;
568 }
569 else
570 {
571 /* Find OBJFILE in the list. */
572 while (1)
573 {
574 if (child->separate_debug_objfile_link == objfile)
575 {
576 child->separate_debug_objfile_link =
577 objfile->separate_debug_objfile_link;
578 break;
579 }
580 child = child->separate_debug_objfile_link;
581 gdb_assert (child);
582 }
583 }
584 }
585
586 /* Remove any references to this objfile in the global value
587 lists. */
588 preserve_values (objfile);
589
590 /* First do any symbol file specific actions required when we are
591 finished with a particular symbol file. Note that if the objfile
592 is using reusable symbol information (via mmalloc) then each of
593 these routines is responsible for doing the correct thing, either
594 freeing things which are valid only during this particular gdb
595 execution, or leaving them to be reused during the next one. */
596
597 if (objfile->sf != NULL)
598 {
599 (*objfile->sf->sym_finish) (objfile);
600 }
601
602 /* Discard any data modules have associated with the objfile. */
603 objfile_free_data (objfile);
604
605 gdb_bfd_unref (objfile->obfd);
606
607 /* Remove it from the chain of all objfiles. */
608
609 unlink_objfile (objfile);
610
611 if (objfile == symfile_objfile)
612 symfile_objfile = NULL;
613
614 if (objfile == rt_common_objfile)
615 rt_common_objfile = NULL;
616
617 /* Before the symbol table code was redone to make it easier to
618 selectively load and remove information particular to a specific
619 linkage unit, gdb used to do these things whenever the monolithic
620 symbol table was blown away. How much still needs to be done
621 is unknown, but we play it safe for now and keep each action until
622 it is shown to be no longer needed. */
623
624 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
625 for example), so we need to call this here. */
626 clear_pc_function_cache ();
627
628 /* Clear globals which might have pointed into a removed objfile.
629 FIXME: It's not clear which of these are supposed to persist
630 between expressions and which ought to be reset each time. */
631 expression_context_block = NULL;
632 innermost_block = NULL;
633
634 /* Check to see if the current_source_symtab belongs to this objfile,
635 and if so, call clear_current_source_symtab_and_line. */
636
637 {
638 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
639 struct symtab *s;
640
641 ALL_OBJFILE_SYMTABS (objfile, s)
642 {
643 if (s == cursal.symtab)
644 clear_current_source_symtab_and_line ();
645 }
646 }
647
648 /* The last thing we do is free the objfile struct itself. */
649
650 xfree (objfile->name);
651 if (objfile->global_psymbols.list)
652 xfree (objfile->global_psymbols.list);
653 if (objfile->static_psymbols.list)
654 xfree (objfile->static_psymbols.list);
655 /* Free the obstacks for non-reusable objfiles. */
656 psymbol_bcache_free (objfile->psymbol_cache);
657 bcache_xfree (objfile->macro_cache);
658 bcache_xfree (objfile->filename_cache);
659 if (objfile->demangled_names_hash)
660 htab_delete (objfile->demangled_names_hash);
661 obstack_free (&objfile->objfile_obstack, 0);
662
663 /* Rebuild section map next time we need it. */
664 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
665
666 xfree (objfile);
667 }
668
669 static void
670 do_free_objfile_cleanup (void *obj)
671 {
672 free_objfile (obj);
673 }
674
675 struct cleanup *
676 make_cleanup_free_objfile (struct objfile *obj)
677 {
678 return make_cleanup (do_free_objfile_cleanup, obj);
679 }
680
681 /* Free all the object files at once and clean up their users. */
682
683 void
684 free_all_objfiles (void)
685 {
686 struct objfile *objfile, *temp;
687 struct so_list *so;
688
689 /* Any objfile referencewould become stale. */
690 for (so = master_so_list (); so; so = so->next)
691 gdb_assert (so->objfile == NULL);
692
693 ALL_OBJFILES_SAFE (objfile, temp)
694 {
695 free_objfile (objfile);
696 }
697 clear_symtab_users (0);
698 }
699 \f
700 /* A helper function for objfile_relocate1 that relocates a single
701 symbol. */
702
703 static void
704 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
705 struct section_offsets *delta)
706 {
707 fixup_symbol_section (sym, objfile);
708
709 /* The RS6000 code from which this was taken skipped
710 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
711 But I'm leaving out that test, on the theory that
712 they can't possibly pass the tests below. */
713 if ((SYMBOL_CLASS (sym) == LOC_LABEL
714 || SYMBOL_CLASS (sym) == LOC_STATIC)
715 && SYMBOL_SECTION (sym) >= 0)
716 {
717 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
718 }
719 }
720
721 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
722 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
723 Return non-zero iff any change happened. */
724
725 static int
726 objfile_relocate1 (struct objfile *objfile,
727 struct section_offsets *new_offsets)
728 {
729 struct obj_section *s;
730 struct section_offsets *delta =
731 ((struct section_offsets *)
732 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
733
734 int i;
735 int something_changed = 0;
736
737 for (i = 0; i < objfile->num_sections; ++i)
738 {
739 delta->offsets[i] =
740 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
741 if (ANOFFSET (delta, i) != 0)
742 something_changed = 1;
743 }
744 if (!something_changed)
745 return 0;
746
747 /* OK, get all the symtabs. */
748 {
749 struct symtab *s;
750
751 ALL_OBJFILE_SYMTABS (objfile, s)
752 {
753 struct linetable *l;
754 struct blockvector *bv;
755 int i;
756
757 /* First the line table. */
758 l = LINETABLE (s);
759 if (l)
760 {
761 for (i = 0; i < l->nitems; ++i)
762 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
763 }
764
765 /* Don't relocate a shared blockvector more than once. */
766 if (!s->primary)
767 continue;
768
769 bv = BLOCKVECTOR (s);
770 if (BLOCKVECTOR_MAP (bv))
771 addrmap_relocate (BLOCKVECTOR_MAP (bv),
772 ANOFFSET (delta, s->block_line_section));
773
774 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
775 {
776 struct block *b;
777 struct symbol *sym;
778 struct dict_iterator iter;
779
780 b = BLOCKVECTOR_BLOCK (bv, i);
781 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
782 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
783
784 ALL_BLOCK_SYMBOLS (b, iter, sym)
785 {
786 relocate_one_symbol (sym, objfile, delta);
787 }
788 }
789 }
790 }
791
792 /* Relocate isolated symbols. */
793 {
794 struct symbol *iter;
795
796 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
797 relocate_one_symbol (iter, objfile, delta);
798 }
799
800 if (objfile->psymtabs_addrmap)
801 addrmap_relocate (objfile->psymtabs_addrmap,
802 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
803
804 if (objfile->sf)
805 objfile->sf->qf->relocate (objfile, new_offsets, delta);
806
807 {
808 struct minimal_symbol *msym;
809
810 ALL_OBJFILE_MSYMBOLS (objfile, msym)
811 if (SYMBOL_SECTION (msym) >= 0)
812 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
813 }
814 /* Relocating different sections by different amounts may cause the symbols
815 to be out of order. */
816 msymbols_sort (objfile);
817
818 if (objfile->ei.entry_point_p)
819 {
820 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
821 only as a fallback. */
822 struct obj_section *s;
823 s = find_pc_section (objfile->ei.entry_point);
824 if (s)
825 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
826 else
827 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
828 }
829
830 {
831 int i;
832
833 for (i = 0; i < objfile->num_sections; ++i)
834 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
835 }
836
837 /* Rebuild section map next time we need it. */
838 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
839
840 /* Update the table in exec_ops, used to read memory. */
841 ALL_OBJFILE_OSECTIONS (objfile, s)
842 {
843 int idx = s->the_bfd_section->index;
844
845 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
846 obj_section_addr (s));
847 }
848
849 /* Data changed. */
850 return 1;
851 }
852
853 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
854 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
855
856 The number and ordering of sections does differ between the two objfiles.
857 Only their names match. Also the file offsets will differ (objfile being
858 possibly prelinked but separate_debug_objfile is probably not prelinked) but
859 the in-memory absolute address as specified by NEW_OFFSETS must match both
860 files. */
861
862 void
863 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
864 {
865 struct objfile *debug_objfile;
866 int changed = 0;
867
868 changed |= objfile_relocate1 (objfile, new_offsets);
869
870 for (debug_objfile = objfile->separate_debug_objfile;
871 debug_objfile;
872 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
873 {
874 struct section_addr_info *objfile_addrs;
875 struct section_offsets *new_debug_offsets;
876 struct cleanup *my_cleanups;
877
878 objfile_addrs = build_section_addr_info_from_objfile (objfile);
879 my_cleanups = make_cleanup (xfree, objfile_addrs);
880
881 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
882 relative ones must be already created according to debug_objfile. */
883
884 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
885
886 gdb_assert (debug_objfile->num_sections
887 == bfd_count_sections (debug_objfile->obfd));
888 new_debug_offsets =
889 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
890 make_cleanup (xfree, new_debug_offsets);
891 relative_addr_info_to_section_offsets (new_debug_offsets,
892 debug_objfile->num_sections,
893 objfile_addrs);
894
895 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
896
897 do_cleanups (my_cleanups);
898 }
899
900 /* Relocate breakpoints as necessary, after things are relocated. */
901 if (changed)
902 breakpoint_re_set ();
903 }
904 \f
905 /* Return non-zero if OBJFILE has partial symbols. */
906
907 int
908 objfile_has_partial_symbols (struct objfile *objfile)
909 {
910 return objfile->sf ? objfile->sf->qf->has_symbols (objfile) : 0;
911 }
912
913 /* Return non-zero if OBJFILE has full symbols. */
914
915 int
916 objfile_has_full_symbols (struct objfile *objfile)
917 {
918 return objfile->symtabs != NULL;
919 }
920
921 /* Return non-zero if OBJFILE has full or partial symbols, either directly
922 or through a separate debug file. */
923
924 int
925 objfile_has_symbols (struct objfile *objfile)
926 {
927 struct objfile *o;
928
929 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
930 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
931 return 1;
932 return 0;
933 }
934
935
936 /* Many places in gdb want to test just to see if we have any partial
937 symbols available. This function returns zero if none are currently
938 available, nonzero otherwise. */
939
940 int
941 have_partial_symbols (void)
942 {
943 struct objfile *ofp;
944
945 ALL_OBJFILES (ofp)
946 {
947 if (objfile_has_partial_symbols (ofp))
948 return 1;
949 }
950 return 0;
951 }
952
953 /* Many places in gdb want to test just to see if we have any full
954 symbols available. This function returns zero if none are currently
955 available, nonzero otherwise. */
956
957 int
958 have_full_symbols (void)
959 {
960 struct objfile *ofp;
961
962 ALL_OBJFILES (ofp)
963 {
964 if (objfile_has_full_symbols (ofp))
965 return 1;
966 }
967 return 0;
968 }
969
970
971 /* This operations deletes all objfile entries that represent solibs that
972 weren't explicitly loaded by the user, via e.g., the add-symbol-file
973 command. */
974
975 void
976 objfile_purge_solibs (void)
977 {
978 struct objfile *objf;
979 struct objfile *temp;
980
981 ALL_OBJFILES_SAFE (objf, temp)
982 {
983 /* We assume that the solib package has been purged already, or will
984 be soon. */
985
986 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
987 free_objfile (objf);
988 }
989 }
990
991
992 /* Many places in gdb want to test just to see if we have any minimal
993 symbols available. This function returns zero if none are currently
994 available, nonzero otherwise. */
995
996 int
997 have_minimal_symbols (void)
998 {
999 struct objfile *ofp;
1000
1001 ALL_OBJFILES (ofp)
1002 {
1003 if (ofp->minimal_symbol_count > 0)
1004 {
1005 return 1;
1006 }
1007 }
1008 return 0;
1009 }
1010
1011 /* Qsort comparison function. */
1012
1013 static int
1014 qsort_cmp (const void *a, const void *b)
1015 {
1016 const struct obj_section *sect1 = *(const struct obj_section **) a;
1017 const struct obj_section *sect2 = *(const struct obj_section **) b;
1018 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1019 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1020
1021 if (sect1_addr < sect2_addr)
1022 return -1;
1023 else if (sect1_addr > sect2_addr)
1024 return 1;
1025 else
1026 {
1027 /* Sections are at the same address. This could happen if
1028 A) we have an objfile and a separate debuginfo.
1029 B) we are confused, and have added sections without proper relocation,
1030 or something like that. */
1031
1032 const struct objfile *const objfile1 = sect1->objfile;
1033 const struct objfile *const objfile2 = sect2->objfile;
1034
1035 if (objfile1->separate_debug_objfile == objfile2
1036 || objfile2->separate_debug_objfile == objfile1)
1037 {
1038 /* Case A. The ordering doesn't matter: separate debuginfo files
1039 will be filtered out later. */
1040
1041 return 0;
1042 }
1043
1044 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1045 triage. This section could be slow (since we iterate over all
1046 objfiles in each call to qsort_cmp), but this shouldn't happen
1047 very often (GDB is already in a confused state; one hopes this
1048 doesn't happen at all). If you discover that significant time is
1049 spent in the loops below, do 'set complaints 100' and examine the
1050 resulting complaints. */
1051
1052 if (objfile1 == objfile2)
1053 {
1054 /* Both sections came from the same objfile. We are really confused.
1055 Sort on sequence order of sections within the objfile. */
1056
1057 const struct obj_section *osect;
1058
1059 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1060 if (osect == sect1)
1061 return -1;
1062 else if (osect == sect2)
1063 return 1;
1064
1065 /* We should have found one of the sections before getting here. */
1066 gdb_assert_not_reached ("section not found");
1067 }
1068 else
1069 {
1070 /* Sort on sequence number of the objfile in the chain. */
1071
1072 const struct objfile *objfile;
1073
1074 ALL_OBJFILES (objfile)
1075 if (objfile == objfile1)
1076 return -1;
1077 else if (objfile == objfile2)
1078 return 1;
1079
1080 /* We should have found one of the objfiles before getting here. */
1081 gdb_assert_not_reached ("objfile not found");
1082 }
1083 }
1084
1085 /* Unreachable. */
1086 gdb_assert_not_reached ("unexpected code path");
1087 return 0;
1088 }
1089
1090 /* Select "better" obj_section to keep. We prefer the one that came from
1091 the real object, rather than the one from separate debuginfo.
1092 Most of the time the two sections are exactly identical, but with
1093 prelinking the .rel.dyn section in the real object may have different
1094 size. */
1095
1096 static struct obj_section *
1097 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1098 {
1099 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1100 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1101 || (b->objfile->separate_debug_objfile == a->objfile));
1102 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1103 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1104
1105 if (a->objfile->separate_debug_objfile != NULL)
1106 return a;
1107 return b;
1108 }
1109
1110 /* Return 1 if SECTION should be inserted into the section map.
1111 We want to insert only non-overlay and non-TLS section. */
1112
1113 static int
1114 insert_section_p (const struct bfd *abfd,
1115 const struct bfd_section *section)
1116 {
1117 const bfd_vma lma = bfd_section_lma (abfd, section);
1118
1119 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1120 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1121 /* This is an overlay section. IN_MEMORY check is needed to avoid
1122 discarding sections from the "system supplied DSO" (aka vdso)
1123 on some Linux systems (e.g. Fedora 11). */
1124 return 0;
1125 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1126 /* This is a TLS section. */
1127 return 0;
1128
1129 return 1;
1130 }
1131
1132 /* Filter out overlapping sections where one section came from the real
1133 objfile, and the other from a separate debuginfo file.
1134 Return the size of table after redundant sections have been eliminated. */
1135
1136 static int
1137 filter_debuginfo_sections (struct obj_section **map, int map_size)
1138 {
1139 int i, j;
1140
1141 for (i = 0, j = 0; i < map_size - 1; i++)
1142 {
1143 struct obj_section *const sect1 = map[i];
1144 struct obj_section *const sect2 = map[i + 1];
1145 const struct objfile *const objfile1 = sect1->objfile;
1146 const struct objfile *const objfile2 = sect2->objfile;
1147 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1148 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1149
1150 if (sect1_addr == sect2_addr
1151 && (objfile1->separate_debug_objfile == objfile2
1152 || objfile2->separate_debug_objfile == objfile1))
1153 {
1154 map[j++] = preferred_obj_section (sect1, sect2);
1155 ++i;
1156 }
1157 else
1158 map[j++] = sect1;
1159 }
1160
1161 if (i < map_size)
1162 {
1163 gdb_assert (i == map_size - 1);
1164 map[j++] = map[i];
1165 }
1166
1167 /* The map should not have shrunk to less than half the original size. */
1168 gdb_assert (map_size / 2 <= j);
1169
1170 return j;
1171 }
1172
1173 /* Filter out overlapping sections, issuing a warning if any are found.
1174 Overlapping sections could really be overlay sections which we didn't
1175 classify as such in insert_section_p, or we could be dealing with a
1176 corrupt binary. */
1177
1178 static int
1179 filter_overlapping_sections (struct obj_section **map, int map_size)
1180 {
1181 int i, j;
1182
1183 for (i = 0, j = 0; i < map_size - 1; )
1184 {
1185 int k;
1186
1187 map[j++] = map[i];
1188 for (k = i + 1; k < map_size; k++)
1189 {
1190 struct obj_section *const sect1 = map[i];
1191 struct obj_section *const sect2 = map[k];
1192 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1193 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1194 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1195
1196 gdb_assert (sect1_addr <= sect2_addr);
1197
1198 if (sect1_endaddr <= sect2_addr)
1199 break;
1200 else
1201 {
1202 /* We have an overlap. Report it. */
1203
1204 struct objfile *const objf1 = sect1->objfile;
1205 struct objfile *const objf2 = sect2->objfile;
1206
1207 const struct bfd *const abfd1 = objf1->obfd;
1208 const struct bfd *const abfd2 = objf2->obfd;
1209
1210 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1211 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1212
1213 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1214
1215 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1216
1217 complaint (&symfile_complaints,
1218 _("unexpected overlap between:\n"
1219 " (A) section `%s' from `%s' [%s, %s)\n"
1220 " (B) section `%s' from `%s' [%s, %s).\n"
1221 "Will ignore section B"),
1222 bfd_section_name (abfd1, bfds1), objf1->name,
1223 paddress (gdbarch, sect1_addr),
1224 paddress (gdbarch, sect1_endaddr),
1225 bfd_section_name (abfd2, bfds2), objf2->name,
1226 paddress (gdbarch, sect2_addr),
1227 paddress (gdbarch, sect2_endaddr));
1228 }
1229 }
1230 i = k;
1231 }
1232
1233 if (i < map_size)
1234 {
1235 gdb_assert (i == map_size - 1);
1236 map[j++] = map[i];
1237 }
1238
1239 return j;
1240 }
1241
1242
1243 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1244 TLS, overlay and overlapping sections. */
1245
1246 static void
1247 update_section_map (struct program_space *pspace,
1248 struct obj_section ***pmap, int *pmap_size)
1249 {
1250 int alloc_size, map_size, i;
1251 struct obj_section *s, **map;
1252 struct objfile *objfile;
1253
1254 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1255
1256 map = *pmap;
1257 xfree (map);
1258
1259 alloc_size = 0;
1260 ALL_PSPACE_OBJFILES (pspace, objfile)
1261 ALL_OBJFILE_OSECTIONS (objfile, s)
1262 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1263 alloc_size += 1;
1264
1265 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1266 if (alloc_size == 0)
1267 {
1268 *pmap = NULL;
1269 *pmap_size = 0;
1270 return;
1271 }
1272
1273 map = xmalloc (alloc_size * sizeof (*map));
1274
1275 i = 0;
1276 ALL_PSPACE_OBJFILES (pspace, objfile)
1277 ALL_OBJFILE_OSECTIONS (objfile, s)
1278 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1279 map[i++] = s;
1280
1281 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1282 map_size = filter_debuginfo_sections(map, alloc_size);
1283 map_size = filter_overlapping_sections(map, map_size);
1284
1285 if (map_size < alloc_size)
1286 /* Some sections were eliminated. Trim excess space. */
1287 map = xrealloc (map, map_size * sizeof (*map));
1288 else
1289 gdb_assert (alloc_size == map_size);
1290
1291 *pmap = map;
1292 *pmap_size = map_size;
1293 }
1294
1295 /* Bsearch comparison function. */
1296
1297 static int
1298 bsearch_cmp (const void *key, const void *elt)
1299 {
1300 const CORE_ADDR pc = *(CORE_ADDR *) key;
1301 const struct obj_section *section = *(const struct obj_section **) elt;
1302
1303 if (pc < obj_section_addr (section))
1304 return -1;
1305 if (pc < obj_section_endaddr (section))
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Returns a section whose range includes PC or NULL if none found. */
1311
1312 struct obj_section *
1313 find_pc_section (CORE_ADDR pc)
1314 {
1315 struct objfile_pspace_info *pspace_info;
1316 struct obj_section *s, **sp;
1317
1318 /* Check for mapped overlay section first. */
1319 s = find_pc_mapped_section (pc);
1320 if (s)
1321 return s;
1322
1323 pspace_info = get_objfile_pspace_data (current_program_space);
1324 if (pspace_info->objfiles_changed_p != 0)
1325 {
1326 update_section_map (current_program_space,
1327 &pspace_info->sections,
1328 &pspace_info->num_sections);
1329
1330 /* Don't need updates to section map until objfiles are added,
1331 removed or relocated. */
1332 pspace_info->objfiles_changed_p = 0;
1333 }
1334
1335 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1336 bsearch be non-NULL. */
1337 if (pspace_info->sections == NULL)
1338 {
1339 gdb_assert (pspace_info->num_sections == 0);
1340 return NULL;
1341 }
1342
1343 sp = (struct obj_section **) bsearch (&pc,
1344 pspace_info->sections,
1345 pspace_info->num_sections,
1346 sizeof (*pspace_info->sections),
1347 bsearch_cmp);
1348 if (sp != NULL)
1349 return *sp;
1350 return NULL;
1351 }
1352
1353
1354 /* In SVR4, we recognize a trampoline by it's section name.
1355 That is, if the pc is in a section named ".plt" then we are in
1356 a trampoline. */
1357
1358 int
1359 in_plt_section (CORE_ADDR pc, char *name)
1360 {
1361 struct obj_section *s;
1362 int retval = 0;
1363
1364 s = find_pc_section (pc);
1365
1366 retval = (s != NULL
1367 && s->the_bfd_section->name != NULL
1368 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1369 return (retval);
1370 }
1371 \f
1372
1373 /* Keep a registry of per-objfile data-pointers required by other GDB
1374 modules. */
1375
1376 struct objfile_data
1377 {
1378 unsigned index;
1379 void (*save) (struct objfile *, void *);
1380 void (*free) (struct objfile *, void *);
1381 };
1382
1383 struct objfile_data_registration
1384 {
1385 struct objfile_data *data;
1386 struct objfile_data_registration *next;
1387 };
1388
1389 struct objfile_data_registry
1390 {
1391 struct objfile_data_registration *registrations;
1392 unsigned num_registrations;
1393 };
1394
1395 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1396
1397 const struct objfile_data *
1398 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1399 void (*free) (struct objfile *, void *))
1400 {
1401 struct objfile_data_registration **curr;
1402
1403 /* Append new registration. */
1404 for (curr = &objfile_data_registry.registrations;
1405 *curr != NULL; curr = &(*curr)->next);
1406
1407 *curr = XMALLOC (struct objfile_data_registration);
1408 (*curr)->next = NULL;
1409 (*curr)->data = XMALLOC (struct objfile_data);
1410 (*curr)->data->index = objfile_data_registry.num_registrations++;
1411 (*curr)->data->save = save;
1412 (*curr)->data->free = free;
1413
1414 return (*curr)->data;
1415 }
1416
1417 const struct objfile_data *
1418 register_objfile_data (void)
1419 {
1420 return register_objfile_data_with_cleanup (NULL, NULL);
1421 }
1422
1423 static void
1424 objfile_alloc_data (struct objfile *objfile)
1425 {
1426 gdb_assert (objfile->data == NULL);
1427 objfile->num_data = objfile_data_registry.num_registrations;
1428 objfile->data = XCALLOC (objfile->num_data, void *);
1429 }
1430
1431 static void
1432 objfile_free_data (struct objfile *objfile)
1433 {
1434 gdb_assert (objfile->data != NULL);
1435 clear_objfile_data (objfile);
1436 xfree (objfile->data);
1437 objfile->data = NULL;
1438 }
1439
1440 void
1441 clear_objfile_data (struct objfile *objfile)
1442 {
1443 struct objfile_data_registration *registration;
1444 int i;
1445
1446 gdb_assert (objfile->data != NULL);
1447
1448 /* Process all the save handlers. */
1449
1450 for (registration = objfile_data_registry.registrations, i = 0;
1451 i < objfile->num_data;
1452 registration = registration->next, i++)
1453 if (objfile->data[i] != NULL && registration->data->save != NULL)
1454 registration->data->save (objfile, objfile->data[i]);
1455
1456 /* Now process all the free handlers. */
1457
1458 for (registration = objfile_data_registry.registrations, i = 0;
1459 i < objfile->num_data;
1460 registration = registration->next, i++)
1461 if (objfile->data[i] != NULL && registration->data->free != NULL)
1462 registration->data->free (objfile, objfile->data[i]);
1463
1464 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1465 }
1466
1467 void
1468 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1469 void *value)
1470 {
1471 gdb_assert (data->index < objfile->num_data);
1472 objfile->data[data->index] = value;
1473 }
1474
1475 void *
1476 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1477 {
1478 gdb_assert (data->index < objfile->num_data);
1479 return objfile->data[data->index];
1480 }
1481
1482 /* Set objfiles_changed_p so section map will be rebuilt next time it
1483 is used. Called by reread_symbols. */
1484
1485 void
1486 objfiles_changed (void)
1487 {
1488 /* Rebuild section map next time we need it. */
1489 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1490 }
1491
1492 /* Close ABFD, and warn if that fails. */
1493
1494 int
1495 gdb_bfd_close_or_warn (struct bfd *abfd)
1496 {
1497 int ret;
1498 char *name = bfd_get_filename (abfd);
1499
1500 ret = bfd_close (abfd);
1501
1502 if (!ret)
1503 warning (_("cannot close \"%s\": %s"),
1504 name, bfd_errmsg (bfd_get_error ()));
1505
1506 return ret;
1507 }
1508
1509 /* Add reference to ABFD. Returns ABFD. */
1510 struct bfd *
1511 gdb_bfd_ref (struct bfd *abfd)
1512 {
1513 int *p_refcount;
1514
1515 if (abfd == NULL)
1516 return NULL;
1517
1518 p_refcount = bfd_usrdata (abfd);
1519
1520 if (p_refcount != NULL)
1521 {
1522 *p_refcount += 1;
1523 return abfd;
1524 }
1525
1526 p_refcount = xmalloc (sizeof (*p_refcount));
1527 *p_refcount = 1;
1528 bfd_usrdata (abfd) = p_refcount;
1529
1530 return abfd;
1531 }
1532
1533 /* Unreference and possibly close ABFD. */
1534 void
1535 gdb_bfd_unref (struct bfd *abfd)
1536 {
1537 int *p_refcount;
1538 char *name;
1539
1540 if (abfd == NULL)
1541 return;
1542
1543 p_refcount = bfd_usrdata (abfd);
1544
1545 /* Valid range for p_refcount: a pointer to int counter, which has a
1546 value of 1 (single owner) or 2 (shared). */
1547 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1548
1549 *p_refcount -= 1;
1550 if (*p_refcount > 0)
1551 return;
1552
1553 xfree (p_refcount);
1554 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1555
1556 name = bfd_get_filename (abfd);
1557 gdb_bfd_close_or_warn (abfd);
1558 xfree (name);
1559 }
1560
1561 /* Provide a prototype to silence -Wmissing-prototypes. */
1562 extern initialize_file_ftype _initialize_objfiles;
1563
1564 void
1565 _initialize_objfiles (void)
1566 {
1567 objfiles_pspace_data
1568 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1569 }
This page took 0.06408 seconds and 4 git commands to generate.