659998a565e52921d6d3e2a49e85df0d024428d1
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 /* objfile_per_bfd_storage is not trivially constructible, must
148 call the ctor manually. */
149 storage = new (storage) objfile_per_bfd_storage ();
150 set_bfd_data (abfd, objfiles_bfd_data, storage);
151 }
152 else
153 storage
154 = obstack_new<objfile_per_bfd_storage> (&objfile->objfile_obstack);
155
156 /* Look up the gdbarch associated with the BFD. */
157 if (abfd != NULL)
158 storage->gdbarch = gdbarch_from_bfd (abfd);
159
160 storage->filename_cache = bcache_xmalloc (NULL, NULL);
161 storage->macro_cache = bcache_xmalloc (NULL, NULL);
162 storage->language_of_main = language_unknown;
163 }
164
165 return storage;
166 }
167
168 /* Free STORAGE. */
169
170 static void
171 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
172 {
173 bcache_xfree (storage->filename_cache);
174 bcache_xfree (storage->macro_cache);
175 if (storage->demangled_names_hash)
176 htab_delete (storage->demangled_names_hash);
177 storage->~objfile_per_bfd_storage ();
178 }
179
180 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
181 cleanup function to the BFD registry. */
182
183 static void
184 objfile_bfd_data_free (struct bfd *unused, void *d)
185 {
186 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
187 }
188
189 /* See objfiles.h. */
190
191 void
192 set_objfile_per_bfd (struct objfile *objfile)
193 {
194 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
195 }
196
197 /* Set the objfile's per-BFD notion of the "main" name and
198 language. */
199
200 void
201 set_objfile_main_name (struct objfile *objfile,
202 const char *name, enum language lang)
203 {
204 if (objfile->per_bfd->name_of_main == NULL
205 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
206 objfile->per_bfd->name_of_main
207 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
208 strlen (name));
209 objfile->per_bfd->language_of_main = lang;
210 }
211
212 /* Helper structure to map blocks to static link properties in hash tables. */
213
214 struct static_link_htab_entry
215 {
216 const struct block *block;
217 const struct dynamic_prop *static_link;
218 };
219
220 /* Return a hash code for struct static_link_htab_entry *P. */
221
222 static hashval_t
223 static_link_htab_entry_hash (const void *p)
224 {
225 const struct static_link_htab_entry *e
226 = (const struct static_link_htab_entry *) p;
227
228 return htab_hash_pointer (e->block);
229 }
230
231 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
232 mappings for the same block. */
233
234 static int
235 static_link_htab_entry_eq (const void *p1, const void *p2)
236 {
237 const struct static_link_htab_entry *e1
238 = (const struct static_link_htab_entry *) p1;
239 const struct static_link_htab_entry *e2
240 = (const struct static_link_htab_entry *) p2;
241
242 return e1->block == e2->block;
243 }
244
245 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
246 Must not be called more than once for each BLOCK. */
247
248 void
249 objfile_register_static_link (struct objfile *objfile,
250 const struct block *block,
251 const struct dynamic_prop *static_link)
252 {
253 void **slot;
254 struct static_link_htab_entry lookup_entry;
255 struct static_link_htab_entry *entry;
256
257 if (objfile->static_links == NULL)
258 objfile->static_links = htab_create_alloc
259 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
260 xcalloc, xfree);
261
262 /* Create a slot for the mapping, make sure it's the first mapping for this
263 block and then create the mapping itself. */
264 lookup_entry.block = block;
265 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
266 gdb_assert (*slot == NULL);
267
268 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
269 entry->block = block;
270 entry->static_link = static_link;
271 *slot = (void *) entry;
272 }
273
274 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
275 none was found. */
276
277 const struct dynamic_prop *
278 objfile_lookup_static_link (struct objfile *objfile,
279 const struct block *block)
280 {
281 struct static_link_htab_entry *entry;
282 struct static_link_htab_entry lookup_entry;
283
284 if (objfile->static_links == NULL)
285 return NULL;
286 lookup_entry.block = block;
287 entry
288 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
289 &lookup_entry);
290 if (entry == NULL)
291 return NULL;
292
293 gdb_assert (entry->block == block);
294 return entry->static_link;
295 }
296
297 \f
298
299 /* Called via bfd_map_over_sections to build up the section table that
300 the objfile references. The objfile contains pointers to the start
301 of the table (objfile->sections) and to the first location after
302 the end of the table (objfile->sections_end). */
303
304 static void
305 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
306 struct objfile *objfile, int force)
307 {
308 struct obj_section *section;
309
310 if (!force)
311 {
312 flagword aflag;
313
314 aflag = bfd_get_section_flags (abfd, asect);
315 if (!(aflag & SEC_ALLOC))
316 return;
317 }
318
319 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
320 section->objfile = objfile;
321 section->the_bfd_section = asect;
322 section->ovly_mapped = 0;
323 }
324
325 static void
326 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
327 void *objfilep)
328 {
329 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
330 }
331
332 /* Builds a section table for OBJFILE.
333
334 Note that the OFFSET and OVLY_MAPPED in each table entry are
335 initialized to zero. */
336
337 void
338 build_objfile_section_table (struct objfile *objfile)
339 {
340 int count = gdb_bfd_count_sections (objfile->obfd);
341
342 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
343 count,
344 struct obj_section);
345 objfile->sections_end = (objfile->sections + count);
346 bfd_map_over_sections (objfile->obfd,
347 add_to_objfile_sections, (void *) objfile);
348
349 /* See gdb_bfd_section_index. */
350 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
352 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
353 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
354 }
355
356 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
357 initialize the new objfile as best we can and link it into the list
358 of all known objfiles.
359
360 NAME should contain original non-canonicalized filename or other
361 identifier as entered by user. If there is no better source use
362 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
363 NAME content is copied into returned objfile.
364
365 The FLAGS word contains various bits (OBJF_*) that can be taken as
366 requests for specific operations. Other bits like OBJF_SHARED are
367 simply copied through to the new objfile flags member. */
368
369 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
370 : flags (flags_),
371 pspace (current_program_space),
372 obfd (abfd),
373 psymbol_cache (psymbol_bcache_init ())
374 {
375 const char *expanded_name;
376
377 /* We could use obstack_specify_allocation here instead, but
378 gdb_obstack.h specifies the alloc/dealloc functions. */
379 obstack_init (&objfile_obstack);
380
381 objfile_alloc_data (this);
382
383 gdb::unique_xmalloc_ptr<char> name_holder;
384 if (name == NULL)
385 {
386 gdb_assert (abfd == NULL);
387 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
388 expanded_name = "<<anonymous objfile>>";
389 }
390 else if ((flags & OBJF_NOT_FILENAME) != 0
391 || is_target_filename (name))
392 expanded_name = name;
393 else
394 {
395 name_holder = gdb_abspath (name);
396 expanded_name = name_holder.get ();
397 }
398 original_name
399 = (char *) obstack_copy0 (&objfile_obstack,
400 expanded_name,
401 strlen (expanded_name));
402
403 /* Update the per-objfile information that comes from the bfd, ensuring
404 that any data that is reference is saved in the per-objfile data
405 region. */
406
407 gdb_bfd_ref (abfd);
408 if (abfd != NULL)
409 {
410 mtime = bfd_get_mtime (abfd);
411
412 /* Build section table. */
413 build_objfile_section_table (this);
414 }
415
416 per_bfd = get_objfile_bfd_data (this, abfd);
417
418 terminate_minimal_symbol_table (this);
419
420 /* Add this file onto the tail of the linked list of other such files. */
421
422 if (object_files == NULL)
423 object_files = this;
424 else
425 {
426 struct objfile *last_one;
427
428 for (last_one = object_files;
429 last_one->next;
430 last_one = last_one->next);
431 last_one->next = this;
432 }
433
434 /* Rebuild section map next time we need it. */
435 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
436 }
437
438 /* Retrieve the gdbarch associated with OBJFILE. */
439
440 struct gdbarch *
441 get_objfile_arch (const struct objfile *objfile)
442 {
443 return objfile->per_bfd->gdbarch;
444 }
445
446 /* If there is a valid and known entry point, function fills *ENTRY_P with it
447 and returns non-zero; otherwise it returns zero. */
448
449 int
450 entry_point_address_query (CORE_ADDR *entry_p)
451 {
452 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
453 return 0;
454
455 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
456 + ANOFFSET (symfile_objfile->section_offsets,
457 symfile_objfile->per_bfd->ei.the_bfd_section_index));
458
459 return 1;
460 }
461
462 /* Get current entry point address. Call error if it is not known. */
463
464 CORE_ADDR
465 entry_point_address (void)
466 {
467 CORE_ADDR retval;
468
469 if (!entry_point_address_query (&retval))
470 error (_("Entry point address is not known."));
471
472 return retval;
473 }
474
475 /* Iterator on PARENT and every separate debug objfile of PARENT.
476 The usage pattern is:
477 for (objfile = parent;
478 objfile;
479 objfile = objfile_separate_debug_iterate (parent, objfile))
480 ...
481 */
482
483 struct objfile *
484 objfile_separate_debug_iterate (const struct objfile *parent,
485 const struct objfile *objfile)
486 {
487 struct objfile *res;
488
489 /* If any, return the first child. */
490 res = objfile->separate_debug_objfile;
491 if (res)
492 return res;
493
494 /* Common case where there is no separate debug objfile. */
495 if (objfile == parent)
496 return NULL;
497
498 /* Return the brother if any. Note that we don't iterate on brothers of
499 the parents. */
500 res = objfile->separate_debug_objfile_link;
501 if (res)
502 return res;
503
504 for (res = objfile->separate_debug_objfile_backlink;
505 res != parent;
506 res = res->separate_debug_objfile_backlink)
507 {
508 gdb_assert (res != NULL);
509 if (res->separate_debug_objfile_link)
510 return res->separate_debug_objfile_link;
511 }
512 return NULL;
513 }
514
515 /* Put one object file before a specified on in the global list.
516 This can be used to make sure an object file is destroyed before
517 another when using all_objfiles_safe to free all objfiles. */
518 void
519 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
520 {
521 struct objfile **objp;
522
523 unlink_objfile (objfile);
524
525 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
526 {
527 if (*objp == before_this)
528 {
529 objfile->next = *objp;
530 *objp = objfile;
531 return;
532 }
533 }
534
535 internal_error (__FILE__, __LINE__,
536 _("put_objfile_before: before objfile not in list"));
537 }
538
539 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
540 list.
541
542 It is not a bug, or error, to call this function if OBJFILE is not known
543 to be in the current list. This is done in the case of mapped objfiles,
544 for example, just to ensure that the mapped objfile doesn't appear twice
545 in the list. Since the list is threaded, linking in a mapped objfile
546 twice would create a circular list.
547
548 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
549 unlinking it, just to ensure that we have completely severed any linkages
550 between the OBJFILE and the list. */
551
552 void
553 unlink_objfile (struct objfile *objfile)
554 {
555 struct objfile **objpp;
556
557 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
558 {
559 if (*objpp == objfile)
560 {
561 *objpp = (*objpp)->next;
562 objfile->next = NULL;
563 return;
564 }
565 }
566
567 internal_error (__FILE__, __LINE__,
568 _("unlink_objfile: objfile already unlinked"));
569 }
570
571 /* Add OBJFILE as a separate debug objfile of PARENT. */
572
573 void
574 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
575 {
576 gdb_assert (objfile && parent);
577
578 /* Must not be already in a list. */
579 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
580 gdb_assert (objfile->separate_debug_objfile_link == NULL);
581 gdb_assert (objfile->separate_debug_objfile == NULL);
582 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
583 gdb_assert (parent->separate_debug_objfile_link == NULL);
584
585 objfile->separate_debug_objfile_backlink = parent;
586 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
587 parent->separate_debug_objfile = objfile;
588
589 /* Put the separate debug object before the normal one, this is so that
590 usage of all_objfiles_safe will stay safe. */
591 put_objfile_before (objfile, parent);
592 }
593
594 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
595 itself. */
596
597 void
598 free_objfile_separate_debug (struct objfile *objfile)
599 {
600 struct objfile *child;
601
602 for (child = objfile->separate_debug_objfile; child;)
603 {
604 struct objfile *next_child = child->separate_debug_objfile_link;
605 delete child;
606 child = next_child;
607 }
608 }
609
610 /* Destroy an objfile and all the symtabs and psymtabs under it. */
611
612 objfile::~objfile ()
613 {
614 /* First notify observers that this objfile is about to be freed. */
615 gdb::observers::free_objfile.notify (this);
616
617 /* Free all separate debug objfiles. */
618 free_objfile_separate_debug (this);
619
620 if (separate_debug_objfile_backlink)
621 {
622 /* We freed the separate debug file, make sure the base objfile
623 doesn't reference it. */
624 struct objfile *child;
625
626 child = separate_debug_objfile_backlink->separate_debug_objfile;
627
628 if (child == this)
629 {
630 /* THIS is the first child. */
631 separate_debug_objfile_backlink->separate_debug_objfile =
632 separate_debug_objfile_link;
633 }
634 else
635 {
636 /* Find THIS in the list. */
637 while (1)
638 {
639 if (child->separate_debug_objfile_link == this)
640 {
641 child->separate_debug_objfile_link =
642 separate_debug_objfile_link;
643 break;
644 }
645 child = child->separate_debug_objfile_link;
646 gdb_assert (child);
647 }
648 }
649 }
650
651 /* Remove any references to this objfile in the global value
652 lists. */
653 preserve_values (this);
654
655 /* It still may reference data modules have associated with the objfile and
656 the symbol file data. */
657 forget_cached_source_info_for_objfile (this);
658
659 breakpoint_free_objfile (this);
660 btrace_free_objfile (this);
661
662 /* First do any symbol file specific actions required when we are
663 finished with a particular symbol file. Note that if the objfile
664 is using reusable symbol information (via mmalloc) then each of
665 these routines is responsible for doing the correct thing, either
666 freeing things which are valid only during this particular gdb
667 execution, or leaving them to be reused during the next one. */
668
669 if (sf != NULL)
670 (*sf->sym_finish) (this);
671
672 /* Discard any data modules have associated with the objfile. The function
673 still may reference obfd. */
674 objfile_free_data (this);
675
676 if (obfd)
677 gdb_bfd_unref (obfd);
678 else
679 free_objfile_per_bfd_storage (per_bfd);
680
681 /* Remove it from the chain of all objfiles. */
682
683 unlink_objfile (this);
684
685 if (this == symfile_objfile)
686 symfile_objfile = NULL;
687
688 /* Before the symbol table code was redone to make it easier to
689 selectively load and remove information particular to a specific
690 linkage unit, gdb used to do these things whenever the monolithic
691 symbol table was blown away. How much still needs to be done
692 is unknown, but we play it safe for now and keep each action until
693 it is shown to be no longer needed. */
694
695 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
696 for example), so we need to call this here. */
697 clear_pc_function_cache ();
698
699 /* Clear globals which might have pointed into a removed objfile.
700 FIXME: It's not clear which of these are supposed to persist
701 between expressions and which ought to be reset each time. */
702 expression_context_block = NULL;
703 innermost_block.reset ();
704
705 /* Check to see if the current_source_symtab belongs to this objfile,
706 and if so, call clear_current_source_symtab_and_line. */
707
708 {
709 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
710
711 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
712 clear_current_source_symtab_and_line ();
713 }
714
715 /* Free the obstacks for non-reusable objfiles. */
716 psymbol_bcache_free (psymbol_cache);
717 obstack_free (&objfile_obstack, 0);
718
719 /* Rebuild section map next time we need it. */
720 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
721
722 /* Free the map for static links. There's no need to free static link
723 themselves since they were allocated on the objstack. */
724 if (static_links != NULL)
725 htab_delete (static_links);
726 }
727
728 /* Free all the object files at once and clean up their users. */
729
730 void
731 free_all_objfiles (void)
732 {
733 struct so_list *so;
734
735 /* Any objfile referencewould become stale. */
736 for (so = master_so_list (); so; so = so->next)
737 gdb_assert (so->objfile == NULL);
738
739 for (objfile *objfile : all_objfiles_safe (current_program_space))
740 delete objfile;
741 clear_symtab_users (0);
742 }
743 \f
744 /* A helper function for objfile_relocate1 that relocates a single
745 symbol. */
746
747 static void
748 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
749 struct section_offsets *delta)
750 {
751 fixup_symbol_section (sym, objfile);
752
753 /* The RS6000 code from which this was taken skipped
754 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
755 But I'm leaving out that test, on the theory that
756 they can't possibly pass the tests below. */
757 if ((SYMBOL_CLASS (sym) == LOC_LABEL
758 || SYMBOL_CLASS (sym) == LOC_STATIC)
759 && SYMBOL_SECTION (sym) >= 0)
760 {
761 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
762 }
763 }
764
765 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
766 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
767 Return non-zero iff any change happened. */
768
769 static int
770 objfile_relocate1 (struct objfile *objfile,
771 const struct section_offsets *new_offsets)
772 {
773 struct section_offsets *delta =
774 ((struct section_offsets *)
775 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
776
777 int something_changed = 0;
778
779 for (int i = 0; i < objfile->num_sections; ++i)
780 {
781 delta->offsets[i] =
782 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
783 if (ANOFFSET (delta, i) != 0)
784 something_changed = 1;
785 }
786 if (!something_changed)
787 return 0;
788
789 /* OK, get all the symtabs. */
790 {
791 ALL_OBJFILE_FILETABS (objfile, cust, s)
792 {
793 struct linetable *l;
794
795 /* First the line table. */
796 l = SYMTAB_LINETABLE (s);
797 if (l)
798 {
799 for (int i = 0; i < l->nitems; ++i)
800 l->item[i].pc += ANOFFSET (delta,
801 COMPUNIT_BLOCK_LINE_SECTION
802 (cust));
803 }
804 }
805
806 for (compunit_symtab *cust : objfile_compunits (objfile))
807 {
808 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
809 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
810
811 if (BLOCKVECTOR_MAP (bv))
812 addrmap_relocate (BLOCKVECTOR_MAP (bv),
813 ANOFFSET (delta, block_line_section));
814
815 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
816 {
817 struct block *b;
818 struct symbol *sym;
819 struct dict_iterator iter;
820
821 b = BLOCKVECTOR_BLOCK (bv, i);
822 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
823 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
824
825 if (BLOCK_RANGES (b) != nullptr)
826 for (int j = 0; j < BLOCK_NRANGES (b); j++)
827 {
828 BLOCK_RANGE_START (b, j)
829 += ANOFFSET (delta, block_line_section);
830 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
831 block_line_section);
832 }
833
834 /* We only want to iterate over the local symbols, not any
835 symbols in included symtabs. */
836 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
837 {
838 relocate_one_symbol (sym, objfile, delta);
839 }
840 }
841 }
842 }
843
844 /* This stores relocated addresses and so must be cleared. This
845 will cause it to be recreated on demand. */
846 objfile->psymbol_map.clear ();
847
848 /* Relocate isolated symbols. */
849 {
850 struct symbol *iter;
851
852 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
853 relocate_one_symbol (iter, objfile, delta);
854 }
855
856 {
857 int i;
858
859 for (i = 0; i < objfile->num_sections; ++i)
860 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
861 }
862
863 /* Rebuild section map next time we need it. */
864 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
865
866 /* Update the table in exec_ops, used to read memory. */
867 struct obj_section *s;
868 ALL_OBJFILE_OSECTIONS (objfile, s)
869 {
870 int idx = s - objfile->sections;
871
872 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
873 obj_section_addr (s));
874 }
875
876 /* Data changed. */
877 return 1;
878 }
879
880 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
881 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
882
883 The number and ordering of sections does differ between the two objfiles.
884 Only their names match. Also the file offsets will differ (objfile being
885 possibly prelinked but separate_debug_objfile is probably not prelinked) but
886 the in-memory absolute address as specified by NEW_OFFSETS must match both
887 files. */
888
889 void
890 objfile_relocate (struct objfile *objfile,
891 const struct section_offsets *new_offsets)
892 {
893 struct objfile *debug_objfile;
894 int changed = 0;
895
896 changed |= objfile_relocate1 (objfile, new_offsets);
897
898 for (debug_objfile = objfile->separate_debug_objfile;
899 debug_objfile;
900 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
901 {
902 section_addr_info objfile_addrs
903 = build_section_addr_info_from_objfile (objfile);
904
905 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
906 relative ones must be already created according to debug_objfile. */
907
908 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
909
910 gdb_assert (debug_objfile->num_sections
911 == gdb_bfd_count_sections (debug_objfile->obfd));
912 std::vector<struct section_offsets>
913 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
914 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
915 debug_objfile->num_sections,
916 objfile_addrs);
917
918 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
919 }
920
921 /* Relocate breakpoints as necessary, after things are relocated. */
922 if (changed)
923 breakpoint_re_set ();
924 }
925
926 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
927 not touched here.
928 Return non-zero iff any change happened. */
929
930 static int
931 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
932 {
933 struct section_offsets *new_offsets =
934 ((struct section_offsets *)
935 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
936 int i;
937
938 for (i = 0; i < objfile->num_sections; ++i)
939 new_offsets->offsets[i] = slide;
940
941 return objfile_relocate1 (objfile, new_offsets);
942 }
943
944 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
945 SEPARATE_DEBUG_OBJFILEs. */
946
947 void
948 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
949 {
950 struct objfile *debug_objfile;
951 int changed = 0;
952
953 changed |= objfile_rebase1 (objfile, slide);
954
955 for (debug_objfile = objfile->separate_debug_objfile;
956 debug_objfile;
957 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
958 changed |= objfile_rebase1 (debug_objfile, slide);
959
960 /* Relocate breakpoints as necessary, after things are relocated. */
961 if (changed)
962 breakpoint_re_set ();
963 }
964 \f
965 /* Return non-zero if OBJFILE has partial symbols. */
966
967 int
968 objfile_has_partial_symbols (struct objfile *objfile)
969 {
970 if (!objfile->sf)
971 return 0;
972
973 /* If we have not read psymbols, but we have a function capable of reading
974 them, then that is an indication that they are in fact available. Without
975 this function the symbols may have been already read in but they also may
976 not be present in this objfile. */
977 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
978 && objfile->sf->sym_read_psymbols != NULL)
979 return 1;
980
981 return objfile->sf->qf->has_symbols (objfile);
982 }
983
984 /* Return non-zero if OBJFILE has full symbols. */
985
986 int
987 objfile_has_full_symbols (struct objfile *objfile)
988 {
989 return objfile->compunit_symtabs != NULL;
990 }
991
992 /* Return non-zero if OBJFILE has full or partial symbols, either directly
993 or through a separate debug file. */
994
995 int
996 objfile_has_symbols (struct objfile *objfile)
997 {
998 struct objfile *o;
999
1000 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1001 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1002 return 1;
1003 return 0;
1004 }
1005
1006
1007 /* Many places in gdb want to test just to see if we have any partial
1008 symbols available. This function returns zero if none are currently
1009 available, nonzero otherwise. */
1010
1011 int
1012 have_partial_symbols (void)
1013 {
1014 for (objfile *ofp : all_objfiles (current_program_space))
1015 {
1016 if (objfile_has_partial_symbols (ofp))
1017 return 1;
1018 }
1019 return 0;
1020 }
1021
1022 /* Many places in gdb want to test just to see if we have any full
1023 symbols available. This function returns zero if none are currently
1024 available, nonzero otherwise. */
1025
1026 int
1027 have_full_symbols (void)
1028 {
1029 for (objfile *ofp : all_objfiles (current_program_space))
1030 {
1031 if (objfile_has_full_symbols (ofp))
1032 return 1;
1033 }
1034 return 0;
1035 }
1036
1037
1038 /* This operations deletes all objfile entries that represent solibs that
1039 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1040 command. */
1041
1042 void
1043 objfile_purge_solibs (void)
1044 {
1045 for (objfile *objf : all_objfiles_safe (current_program_space))
1046 {
1047 /* We assume that the solib package has been purged already, or will
1048 be soon. */
1049
1050 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1051 delete objf;
1052 }
1053 }
1054
1055
1056 /* Many places in gdb want to test just to see if we have any minimal
1057 symbols available. This function returns zero if none are currently
1058 available, nonzero otherwise. */
1059
1060 int
1061 have_minimal_symbols (void)
1062 {
1063 for (objfile *ofp : all_objfiles (current_program_space))
1064 {
1065 if (ofp->per_bfd->minimal_symbol_count > 0)
1066 {
1067 return 1;
1068 }
1069 }
1070 return 0;
1071 }
1072
1073 /* Qsort comparison function. */
1074
1075 static int
1076 qsort_cmp (const void *a, const void *b)
1077 {
1078 const struct obj_section *sect1 = *(const struct obj_section **) a;
1079 const struct obj_section *sect2 = *(const struct obj_section **) b;
1080 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1081 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1082
1083 if (sect1_addr < sect2_addr)
1084 return -1;
1085 else if (sect1_addr > sect2_addr)
1086 return 1;
1087 else
1088 {
1089 /* Sections are at the same address. This could happen if
1090 A) we have an objfile and a separate debuginfo.
1091 B) we are confused, and have added sections without proper relocation,
1092 or something like that. */
1093
1094 const struct objfile *const objfile1 = sect1->objfile;
1095 const struct objfile *const objfile2 = sect2->objfile;
1096
1097 if (objfile1->separate_debug_objfile == objfile2
1098 || objfile2->separate_debug_objfile == objfile1)
1099 {
1100 /* Case A. The ordering doesn't matter: separate debuginfo files
1101 will be filtered out later. */
1102
1103 return 0;
1104 }
1105
1106 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1107 triage. This section could be slow (since we iterate over all
1108 objfiles in each call to qsort_cmp), but this shouldn't happen
1109 very often (GDB is already in a confused state; one hopes this
1110 doesn't happen at all). If you discover that significant time is
1111 spent in the loops below, do 'set complaints 100' and examine the
1112 resulting complaints. */
1113
1114 if (objfile1 == objfile2)
1115 {
1116 /* Both sections came from the same objfile. We are really confused.
1117 Sort on sequence order of sections within the objfile. */
1118
1119 const struct obj_section *osect;
1120
1121 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1122 if (osect == sect1)
1123 return -1;
1124 else if (osect == sect2)
1125 return 1;
1126
1127 /* We should have found one of the sections before getting here. */
1128 gdb_assert_not_reached ("section not found");
1129 }
1130 else
1131 {
1132 /* Sort on sequence number of the objfile in the chain. */
1133
1134 for (objfile *objfile : all_objfiles (current_program_space))
1135 if (objfile == objfile1)
1136 return -1;
1137 else if (objfile == objfile2)
1138 return 1;
1139
1140 /* We should have found one of the objfiles before getting here. */
1141 gdb_assert_not_reached ("objfile not found");
1142 }
1143 }
1144
1145 /* Unreachable. */
1146 gdb_assert_not_reached ("unexpected code path");
1147 return 0;
1148 }
1149
1150 /* Select "better" obj_section to keep. We prefer the one that came from
1151 the real object, rather than the one from separate debuginfo.
1152 Most of the time the two sections are exactly identical, but with
1153 prelinking the .rel.dyn section in the real object may have different
1154 size. */
1155
1156 static struct obj_section *
1157 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1158 {
1159 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1160 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1161 || (b->objfile->separate_debug_objfile == a->objfile));
1162 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1163 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1164
1165 if (a->objfile->separate_debug_objfile != NULL)
1166 return a;
1167 return b;
1168 }
1169
1170 /* Return 1 if SECTION should be inserted into the section map.
1171 We want to insert only non-overlay and non-TLS section. */
1172
1173 static int
1174 insert_section_p (const struct bfd *abfd,
1175 const struct bfd_section *section)
1176 {
1177 const bfd_vma lma = bfd_section_lma (abfd, section);
1178
1179 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1180 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1181 /* This is an overlay section. IN_MEMORY check is needed to avoid
1182 discarding sections from the "system supplied DSO" (aka vdso)
1183 on some Linux systems (e.g. Fedora 11). */
1184 return 0;
1185 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1186 /* This is a TLS section. */
1187 return 0;
1188
1189 return 1;
1190 }
1191
1192 /* Filter out overlapping sections where one section came from the real
1193 objfile, and the other from a separate debuginfo file.
1194 Return the size of table after redundant sections have been eliminated. */
1195
1196 static int
1197 filter_debuginfo_sections (struct obj_section **map, int map_size)
1198 {
1199 int i, j;
1200
1201 for (i = 0, j = 0; i < map_size - 1; i++)
1202 {
1203 struct obj_section *const sect1 = map[i];
1204 struct obj_section *const sect2 = map[i + 1];
1205 const struct objfile *const objfile1 = sect1->objfile;
1206 const struct objfile *const objfile2 = sect2->objfile;
1207 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1208 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1209
1210 if (sect1_addr == sect2_addr
1211 && (objfile1->separate_debug_objfile == objfile2
1212 || objfile2->separate_debug_objfile == objfile1))
1213 {
1214 map[j++] = preferred_obj_section (sect1, sect2);
1215 ++i;
1216 }
1217 else
1218 map[j++] = sect1;
1219 }
1220
1221 if (i < map_size)
1222 {
1223 gdb_assert (i == map_size - 1);
1224 map[j++] = map[i];
1225 }
1226
1227 /* The map should not have shrunk to less than half the original size. */
1228 gdb_assert (map_size / 2 <= j);
1229
1230 return j;
1231 }
1232
1233 /* Filter out overlapping sections, issuing a warning if any are found.
1234 Overlapping sections could really be overlay sections which we didn't
1235 classify as such in insert_section_p, or we could be dealing with a
1236 corrupt binary. */
1237
1238 static int
1239 filter_overlapping_sections (struct obj_section **map, int map_size)
1240 {
1241 int i, j;
1242
1243 for (i = 0, j = 0; i < map_size - 1; )
1244 {
1245 int k;
1246
1247 map[j++] = map[i];
1248 for (k = i + 1; k < map_size; k++)
1249 {
1250 struct obj_section *const sect1 = map[i];
1251 struct obj_section *const sect2 = map[k];
1252 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1253 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1254 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1255
1256 gdb_assert (sect1_addr <= sect2_addr);
1257
1258 if (sect1_endaddr <= sect2_addr)
1259 break;
1260 else
1261 {
1262 /* We have an overlap. Report it. */
1263
1264 struct objfile *const objf1 = sect1->objfile;
1265 struct objfile *const objf2 = sect2->objfile;
1266
1267 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1268 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1269
1270 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1271
1272 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1273
1274 complaint (_("unexpected overlap between:\n"
1275 " (A) section `%s' from `%s' [%s, %s)\n"
1276 " (B) section `%s' from `%s' [%s, %s).\n"
1277 "Will ignore section B"),
1278 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1279 paddress (gdbarch, sect1_addr),
1280 paddress (gdbarch, sect1_endaddr),
1281 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1282 paddress (gdbarch, sect2_addr),
1283 paddress (gdbarch, sect2_endaddr));
1284 }
1285 }
1286 i = k;
1287 }
1288
1289 if (i < map_size)
1290 {
1291 gdb_assert (i == map_size - 1);
1292 map[j++] = map[i];
1293 }
1294
1295 return j;
1296 }
1297
1298
1299 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1300 TLS, overlay and overlapping sections. */
1301
1302 static void
1303 update_section_map (struct program_space *pspace,
1304 struct obj_section ***pmap, int *pmap_size)
1305 {
1306 struct objfile_pspace_info *pspace_info;
1307 int alloc_size, map_size, i;
1308 struct obj_section *s, **map;
1309
1310 pspace_info = get_objfile_pspace_data (pspace);
1311 gdb_assert (pspace_info->section_map_dirty != 0
1312 || pspace_info->new_objfiles_available != 0);
1313
1314 map = *pmap;
1315 xfree (map);
1316
1317 alloc_size = 0;
1318 for (objfile *objfile : all_objfiles (pspace))
1319 ALL_OBJFILE_OSECTIONS (objfile, s)
1320 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1321 alloc_size += 1;
1322
1323 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1324 if (alloc_size == 0)
1325 {
1326 *pmap = NULL;
1327 *pmap_size = 0;
1328 return;
1329 }
1330
1331 map = XNEWVEC (struct obj_section *, alloc_size);
1332
1333 i = 0;
1334 for (objfile *objfile : all_objfiles (pspace))
1335 ALL_OBJFILE_OSECTIONS (objfile, s)
1336 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1337 map[i++] = s;
1338
1339 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1340 map_size = filter_debuginfo_sections(map, alloc_size);
1341 map_size = filter_overlapping_sections(map, map_size);
1342
1343 if (map_size < alloc_size)
1344 /* Some sections were eliminated. Trim excess space. */
1345 map = XRESIZEVEC (struct obj_section *, map, map_size);
1346 else
1347 gdb_assert (alloc_size == map_size);
1348
1349 *pmap = map;
1350 *pmap_size = map_size;
1351 }
1352
1353 /* Bsearch comparison function. */
1354
1355 static int
1356 bsearch_cmp (const void *key, const void *elt)
1357 {
1358 const CORE_ADDR pc = *(CORE_ADDR *) key;
1359 const struct obj_section *section = *(const struct obj_section **) elt;
1360
1361 if (pc < obj_section_addr (section))
1362 return -1;
1363 if (pc < obj_section_endaddr (section))
1364 return 0;
1365 return 1;
1366 }
1367
1368 /* Returns a section whose range includes PC or NULL if none found. */
1369
1370 struct obj_section *
1371 find_pc_section (CORE_ADDR pc)
1372 {
1373 struct objfile_pspace_info *pspace_info;
1374 struct obj_section *s, **sp;
1375
1376 /* Check for mapped overlay section first. */
1377 s = find_pc_mapped_section (pc);
1378 if (s)
1379 return s;
1380
1381 pspace_info = get_objfile_pspace_data (current_program_space);
1382 if (pspace_info->section_map_dirty
1383 || (pspace_info->new_objfiles_available
1384 && !pspace_info->inhibit_updates))
1385 {
1386 update_section_map (current_program_space,
1387 &pspace_info->sections,
1388 &pspace_info->num_sections);
1389
1390 /* Don't need updates to section map until objfiles are added,
1391 removed or relocated. */
1392 pspace_info->new_objfiles_available = 0;
1393 pspace_info->section_map_dirty = 0;
1394 }
1395
1396 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1397 bsearch be non-NULL. */
1398 if (pspace_info->sections == NULL)
1399 {
1400 gdb_assert (pspace_info->num_sections == 0);
1401 return NULL;
1402 }
1403
1404 sp = (struct obj_section **) bsearch (&pc,
1405 pspace_info->sections,
1406 pspace_info->num_sections,
1407 sizeof (*pspace_info->sections),
1408 bsearch_cmp);
1409 if (sp != NULL)
1410 return *sp;
1411 return NULL;
1412 }
1413
1414
1415 /* Return non-zero if PC is in a section called NAME. */
1416
1417 int
1418 pc_in_section (CORE_ADDR pc, const char *name)
1419 {
1420 struct obj_section *s;
1421 int retval = 0;
1422
1423 s = find_pc_section (pc);
1424
1425 retval = (s != NULL
1426 && s->the_bfd_section->name != NULL
1427 && strcmp (s->the_bfd_section->name, name) == 0);
1428 return (retval);
1429 }
1430 \f
1431
1432 /* Set section_map_dirty so section map will be rebuilt next time it
1433 is used. Called by reread_symbols. */
1434
1435 void
1436 objfiles_changed (void)
1437 {
1438 /* Rebuild section map next time we need it. */
1439 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1440 }
1441
1442 /* See comments in objfiles.h. */
1443
1444 scoped_restore_tmpl<int>
1445 inhibit_section_map_updates (struct program_space *pspace)
1446 {
1447 return scoped_restore_tmpl<int>
1448 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1449 }
1450
1451 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1452 otherwise. */
1453
1454 int
1455 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1456 {
1457 struct obj_section *osect;
1458
1459 if (objfile == NULL)
1460 return 0;
1461
1462 ALL_OBJFILE_OSECTIONS (objfile, osect)
1463 {
1464 if (section_is_overlay (osect) && !section_is_mapped (osect))
1465 continue;
1466
1467 if (obj_section_addr (osect) <= addr
1468 && addr < obj_section_endaddr (osect))
1469 return 1;
1470 }
1471 return 0;
1472 }
1473
1474 int
1475 shared_objfile_contains_address_p (struct program_space *pspace,
1476 CORE_ADDR address)
1477 {
1478 for (objfile *objfile : all_objfiles (pspace))
1479 {
1480 if ((objfile->flags & OBJF_SHARED) != 0
1481 && is_addr_in_objfile (address, objfile))
1482 return 1;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1489 gdbarch method. It is equivalent to use the all_objfiles iterable,
1490 searching the objfiles in the order they are stored internally,
1491 ignoring CURRENT_OBJFILE.
1492
1493 On most platorms, it should be close enough to doing the best
1494 we can without some knowledge specific to the architecture. */
1495
1496 void
1497 default_iterate_over_objfiles_in_search_order
1498 (struct gdbarch *gdbarch,
1499 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1500 void *cb_data, struct objfile *current_objfile)
1501 {
1502 int stop = 0;
1503
1504 for (objfile *objfile : all_objfiles (current_program_space))
1505 {
1506 stop = cb (objfile, cb_data);
1507 if (stop)
1508 return;
1509 }
1510 }
1511
1512 /* See objfiles.h. */
1513
1514 const char *
1515 objfile_name (const struct objfile *objfile)
1516 {
1517 if (objfile->obfd != NULL)
1518 return bfd_get_filename (objfile->obfd);
1519
1520 return objfile->original_name;
1521 }
1522
1523 /* See objfiles.h. */
1524
1525 const char *
1526 objfile_filename (const struct objfile *objfile)
1527 {
1528 if (objfile->obfd != NULL)
1529 return bfd_get_filename (objfile->obfd);
1530
1531 return NULL;
1532 }
1533
1534 /* See objfiles.h. */
1535
1536 const char *
1537 objfile_debug_name (const struct objfile *objfile)
1538 {
1539 return lbasename (objfile->original_name);
1540 }
1541
1542 /* See objfiles.h. */
1543
1544 const char *
1545 objfile_flavour_name (struct objfile *objfile)
1546 {
1547 if (objfile->obfd != NULL)
1548 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1549 return NULL;
1550 }
1551
1552 void
1553 _initialize_objfiles (void)
1554 {
1555 objfiles_pspace_data
1556 = register_program_space_data_with_cleanup (NULL,
1557 objfiles_pspace_data_cleanup);
1558
1559 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1560 objfile_bfd_data_free);
1561 }
This page took 0.060878 seconds and 4 git commands to generate.