-Wwrite-strings: The Rest
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 #include <vector>
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = ((struct objfile_pspace_info *)
103 program_space_data (pspace, objfiles_pspace_data));
104 if (info == NULL)
105 {
106 info = XCNEW (struct objfile_pspace_info);
107 set_program_space_data (pspace, objfiles_pspace_data, info);
108 }
109
110 return info;
111 }
112
113 \f
114
115 /* Per-BFD data key. */
116
117 static const struct bfd_data *objfiles_bfd_data;
118
119 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
120 NULL, and it already has a per-BFD storage object, use that.
121 Otherwise, allocate a new per-BFD storage object. If ABFD is not
122 NULL, the object is allocated on the BFD; otherwise it is allocated
123 on OBJFILE's obstack. Note that it is not safe to call this
124 multiple times for a given OBJFILE -- it can only be called when
125 allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = ((struct objfile_per_bfd_storage *)
134 bfd_data (abfd, objfiles_bfd_data));
135
136 if (storage == NULL)
137 {
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 {
143 storage
144 = ((struct objfile_per_bfd_storage *)
145 bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage)));
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147 }
148 else
149 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
150 struct objfile_per_bfd_storage);
151
152 /* Look up the gdbarch associated with the BFD. */
153 if (abfd != NULL)
154 storage->gdbarch = gdbarch_from_bfd (abfd);
155
156 obstack_init (&storage->storage_obstack);
157 storage->filename_cache = bcache_xmalloc (NULL, NULL);
158 storage->macro_cache = bcache_xmalloc (NULL, NULL);
159 storage->language_of_main = language_unknown;
160 }
161
162 return storage;
163 }
164
165 /* Free STORAGE. */
166
167 static void
168 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
169 {
170 bcache_xfree (storage->filename_cache);
171 bcache_xfree (storage->macro_cache);
172 if (storage->demangled_names_hash)
173 htab_delete (storage->demangled_names_hash);
174 obstack_free (&storage->storage_obstack, 0);
175 }
176
177 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
178 cleanup function to the BFD registry. */
179
180 static void
181 objfile_bfd_data_free (struct bfd *unused, void *d)
182 {
183 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
184 }
185
186 /* See objfiles.h. */
187
188 void
189 set_objfile_per_bfd (struct objfile *objfile)
190 {
191 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
192 }
193
194 /* Set the objfile's per-BFD notion of the "main" name and
195 language. */
196
197 void
198 set_objfile_main_name (struct objfile *objfile,
199 const char *name, enum language lang)
200 {
201 if (objfile->per_bfd->name_of_main == NULL
202 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
203 objfile->per_bfd->name_of_main
204 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
205 strlen (name));
206 objfile->per_bfd->language_of_main = lang;
207 }
208
209 /* Helper structure to map blocks to static link properties in hash tables. */
210
211 struct static_link_htab_entry
212 {
213 const struct block *block;
214 const struct dynamic_prop *static_link;
215 };
216
217 /* Return a hash code for struct static_link_htab_entry *P. */
218
219 static hashval_t
220 static_link_htab_entry_hash (const void *p)
221 {
222 const struct static_link_htab_entry *e
223 = (const struct static_link_htab_entry *) p;
224
225 return htab_hash_pointer (e->block);
226 }
227
228 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
229 mappings for the same block. */
230
231 static int
232 static_link_htab_entry_eq (const void *p1, const void *p2)
233 {
234 const struct static_link_htab_entry *e1
235 = (const struct static_link_htab_entry *) p1;
236 const struct static_link_htab_entry *e2
237 = (const struct static_link_htab_entry *) p2;
238
239 return e1->block == e2->block;
240 }
241
242 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
243 Must not be called more than once for each BLOCK. */
244
245 void
246 objfile_register_static_link (struct objfile *objfile,
247 const struct block *block,
248 const struct dynamic_prop *static_link)
249 {
250 void **slot;
251 struct static_link_htab_entry lookup_entry;
252 struct static_link_htab_entry *entry;
253
254 if (objfile->static_links == NULL)
255 objfile->static_links = htab_create_alloc
256 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
257 xcalloc, xfree);
258
259 /* Create a slot for the mapping, make sure it's the first mapping for this
260 block and then create the mapping itself. */
261 lookup_entry.block = block;
262 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
263 gdb_assert (*slot == NULL);
264
265 entry = (struct static_link_htab_entry *) obstack_alloc
266 (&objfile->objfile_obstack, sizeof (*entry));
267 entry->block = block;
268 entry->static_link = static_link;
269 *slot = (void *) entry;
270 }
271
272 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
273 none was found. */
274
275 const struct dynamic_prop *
276 objfile_lookup_static_link (struct objfile *objfile,
277 const struct block *block)
278 {
279 struct static_link_htab_entry *entry;
280 struct static_link_htab_entry lookup_entry;
281
282 if (objfile->static_links == NULL)
283 return NULL;
284 lookup_entry.block = block;
285 entry
286 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
287 &lookup_entry);
288 if (entry == NULL)
289 return NULL;
290
291 gdb_assert (entry->block == block);
292 return entry->static_link;
293 }
294
295 \f
296
297 /* Called via bfd_map_over_sections to build up the section table that
298 the objfile references. The objfile contains pointers to the start
299 of the table (objfile->sections) and to the first location after
300 the end of the table (objfile->sections_end). */
301
302 static void
303 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
304 struct objfile *objfile, int force)
305 {
306 struct obj_section *section;
307
308 if (!force)
309 {
310 flagword aflag;
311
312 aflag = bfd_get_section_flags (abfd, asect);
313 if (!(aflag & SEC_ALLOC))
314 return;
315 }
316
317 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
318 section->objfile = objfile;
319 section->the_bfd_section = asect;
320 section->ovly_mapped = 0;
321 }
322
323 static void
324 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
325 void *objfilep)
326 {
327 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
328 }
329
330 /* Builds a section table for OBJFILE.
331
332 Note that the OFFSET and OVLY_MAPPED in each table entry are
333 initialized to zero. */
334
335 void
336 build_objfile_section_table (struct objfile *objfile)
337 {
338 int count = gdb_bfd_count_sections (objfile->obfd);
339
340 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
341 count,
342 struct obj_section);
343 objfile->sections_end = (objfile->sections + count);
344 bfd_map_over_sections (objfile->obfd,
345 add_to_objfile_sections, (void *) objfile);
346
347 /* See gdb_bfd_section_index. */
348 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
349 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
350 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
352 }
353
354 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
355 allocate a new objfile struct, fill it in as best we can, link it
356 into the list of all known objfiles, and return a pointer to the
357 new objfile struct.
358
359 NAME should contain original non-canonicalized filename or other
360 identifier as entered by user. If there is no better source use
361 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
362 NAME content is copied into returned objfile.
363
364 The FLAGS word contains various bits (OBJF_*) that can be taken as
365 requests for specific operations. Other bits like OBJF_SHARED are
366 simply copied through to the new objfile flags member. */
367
368 struct objfile *
369 allocate_objfile (bfd *abfd, const char *name, objfile_flags flags)
370 {
371 struct objfile *objfile;
372 char *expanded_name;
373
374 objfile = XCNEW (struct objfile);
375 objfile->psymbol_cache = psymbol_bcache_init ();
376 /* We could use obstack_specify_allocation here instead, but
377 gdb_obstack.h specifies the alloc/dealloc functions. */
378 obstack_init (&objfile->objfile_obstack);
379
380 objfile_alloc_data (objfile);
381
382 if (name == NULL)
383 {
384 gdb_assert (abfd == NULL);
385 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
386 expanded_name = xstrdup ("<<anonymous objfile>>");
387 }
388 else if ((flags & OBJF_NOT_FILENAME) != 0
389 || is_target_filename (name))
390 expanded_name = xstrdup (name);
391 else
392 expanded_name = gdb_abspath (name);
393 objfile->original_name
394 = (char *) obstack_copy0 (&objfile->objfile_obstack,
395 expanded_name,
396 strlen (expanded_name));
397 xfree (expanded_name);
398
399 /* Update the per-objfile information that comes from the bfd, ensuring
400 that any data that is reference is saved in the per-objfile data
401 region. */
402
403 objfile->obfd = abfd;
404 gdb_bfd_ref (abfd);
405 if (abfd != NULL)
406 {
407 objfile->mtime = bfd_get_mtime (abfd);
408
409 /* Build section table. */
410 build_objfile_section_table (objfile);
411 }
412
413 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
414 objfile->pspace = current_program_space;
415
416 terminate_minimal_symbol_table (objfile);
417
418 /* Initialize the section indexes for this objfile, so that we can
419 later detect if they are used w/o being properly assigned to. */
420
421 objfile->sect_index_text = -1;
422 objfile->sect_index_data = -1;
423 objfile->sect_index_bss = -1;
424 objfile->sect_index_rodata = -1;
425
426 /* Add this file onto the tail of the linked list of other such files. */
427
428 objfile->next = NULL;
429 if (object_files == NULL)
430 object_files = objfile;
431 else
432 {
433 struct objfile *last_one;
434
435 for (last_one = object_files;
436 last_one->next;
437 last_one = last_one->next);
438 last_one->next = objfile;
439 }
440
441 /* Save passed in flag bits. */
442 objfile->flags |= flags;
443
444 /* Rebuild section map next time we need it. */
445 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
446
447 return objfile;
448 }
449
450 /* Retrieve the gdbarch associated with OBJFILE. */
451
452 struct gdbarch *
453 get_objfile_arch (const struct objfile *objfile)
454 {
455 return objfile->per_bfd->gdbarch;
456 }
457
458 /* If there is a valid and known entry point, function fills *ENTRY_P with it
459 and returns non-zero; otherwise it returns zero. */
460
461 int
462 entry_point_address_query (CORE_ADDR *entry_p)
463 {
464 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
465 return 0;
466
467 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
468 + ANOFFSET (symfile_objfile->section_offsets,
469 symfile_objfile->per_bfd->ei.the_bfd_section_index));
470
471 return 1;
472 }
473
474 /* Get current entry point address. Call error if it is not known. */
475
476 CORE_ADDR
477 entry_point_address (void)
478 {
479 CORE_ADDR retval;
480
481 if (!entry_point_address_query (&retval))
482 error (_("Entry point address is not known."));
483
484 return retval;
485 }
486
487 /* Iterator on PARENT and every separate debug objfile of PARENT.
488 The usage pattern is:
489 for (objfile = parent;
490 objfile;
491 objfile = objfile_separate_debug_iterate (parent, objfile))
492 ...
493 */
494
495 struct objfile *
496 objfile_separate_debug_iterate (const struct objfile *parent,
497 const struct objfile *objfile)
498 {
499 struct objfile *res;
500
501 /* If any, return the first child. */
502 res = objfile->separate_debug_objfile;
503 if (res)
504 return res;
505
506 /* Common case where there is no separate debug objfile. */
507 if (objfile == parent)
508 return NULL;
509
510 /* Return the brother if any. Note that we don't iterate on brothers of
511 the parents. */
512 res = objfile->separate_debug_objfile_link;
513 if (res)
514 return res;
515
516 for (res = objfile->separate_debug_objfile_backlink;
517 res != parent;
518 res = res->separate_debug_objfile_backlink)
519 {
520 gdb_assert (res != NULL);
521 if (res->separate_debug_objfile_link)
522 return res->separate_debug_objfile_link;
523 }
524 return NULL;
525 }
526
527 /* Put one object file before a specified on in the global list.
528 This can be used to make sure an object file is destroyed before
529 another when using ALL_OBJFILES_SAFE to free all objfiles. */
530 void
531 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
532 {
533 struct objfile **objp;
534
535 unlink_objfile (objfile);
536
537 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
538 {
539 if (*objp == before_this)
540 {
541 objfile->next = *objp;
542 *objp = objfile;
543 return;
544 }
545 }
546
547 internal_error (__FILE__, __LINE__,
548 _("put_objfile_before: before objfile not in list"));
549 }
550
551 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
552 list.
553
554 It is not a bug, or error, to call this function if OBJFILE is not known
555 to be in the current list. This is done in the case of mapped objfiles,
556 for example, just to ensure that the mapped objfile doesn't appear twice
557 in the list. Since the list is threaded, linking in a mapped objfile
558 twice would create a circular list.
559
560 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
561 unlinking it, just to ensure that we have completely severed any linkages
562 between the OBJFILE and the list. */
563
564 void
565 unlink_objfile (struct objfile *objfile)
566 {
567 struct objfile **objpp;
568
569 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
570 {
571 if (*objpp == objfile)
572 {
573 *objpp = (*objpp)->next;
574 objfile->next = NULL;
575 return;
576 }
577 }
578
579 internal_error (__FILE__, __LINE__,
580 _("unlink_objfile: objfile already unlinked"));
581 }
582
583 /* Add OBJFILE as a separate debug objfile of PARENT. */
584
585 void
586 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
587 {
588 gdb_assert (objfile && parent);
589
590 /* Must not be already in a list. */
591 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
592 gdb_assert (objfile->separate_debug_objfile_link == NULL);
593 gdb_assert (objfile->separate_debug_objfile == NULL);
594 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
595 gdb_assert (parent->separate_debug_objfile_link == NULL);
596
597 objfile->separate_debug_objfile_backlink = parent;
598 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
599 parent->separate_debug_objfile = objfile;
600
601 /* Put the separate debug object before the normal one, this is so that
602 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
603 put_objfile_before (objfile, parent);
604 }
605
606 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
607 itself. */
608
609 void
610 free_objfile_separate_debug (struct objfile *objfile)
611 {
612 struct objfile *child;
613
614 for (child = objfile->separate_debug_objfile; child;)
615 {
616 struct objfile *next_child = child->separate_debug_objfile_link;
617 free_objfile (child);
618 child = next_child;
619 }
620 }
621
622 /* Destroy an objfile and all the symtabs and psymtabs under it. */
623
624 void
625 free_objfile (struct objfile *objfile)
626 {
627 /* First notify observers that this objfile is about to be freed. */
628 observer_notify_free_objfile (objfile);
629
630 /* Free all separate debug objfiles. */
631 free_objfile_separate_debug (objfile);
632
633 if (objfile->separate_debug_objfile_backlink)
634 {
635 /* We freed the separate debug file, make sure the base objfile
636 doesn't reference it. */
637 struct objfile *child;
638
639 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
640
641 if (child == objfile)
642 {
643 /* OBJFILE is the first child. */
644 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
645 objfile->separate_debug_objfile_link;
646 }
647 else
648 {
649 /* Find OBJFILE in the list. */
650 while (1)
651 {
652 if (child->separate_debug_objfile_link == objfile)
653 {
654 child->separate_debug_objfile_link =
655 objfile->separate_debug_objfile_link;
656 break;
657 }
658 child = child->separate_debug_objfile_link;
659 gdb_assert (child);
660 }
661 }
662 }
663
664 /* Remove any references to this objfile in the global value
665 lists. */
666 preserve_values (objfile);
667
668 /* It still may reference data modules have associated with the objfile and
669 the symbol file data. */
670 forget_cached_source_info_for_objfile (objfile);
671
672 breakpoint_free_objfile (objfile);
673 btrace_free_objfile (objfile);
674
675 /* First do any symbol file specific actions required when we are
676 finished with a particular symbol file. Note that if the objfile
677 is using reusable symbol information (via mmalloc) then each of
678 these routines is responsible for doing the correct thing, either
679 freeing things which are valid only during this particular gdb
680 execution, or leaving them to be reused during the next one. */
681
682 if (objfile->sf != NULL)
683 {
684 (*objfile->sf->sym_finish) (objfile);
685 }
686
687 /* Discard any data modules have associated with the objfile. The function
688 still may reference objfile->obfd. */
689 objfile_free_data (objfile);
690
691 if (objfile->obfd)
692 gdb_bfd_unref (objfile->obfd);
693 else
694 free_objfile_per_bfd_storage (objfile->per_bfd);
695
696 /* Remove it from the chain of all objfiles. */
697
698 unlink_objfile (objfile);
699
700 if (objfile == symfile_objfile)
701 symfile_objfile = NULL;
702
703 /* Before the symbol table code was redone to make it easier to
704 selectively load and remove information particular to a specific
705 linkage unit, gdb used to do these things whenever the monolithic
706 symbol table was blown away. How much still needs to be done
707 is unknown, but we play it safe for now and keep each action until
708 it is shown to be no longer needed. */
709
710 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
711 for example), so we need to call this here. */
712 clear_pc_function_cache ();
713
714 /* Clear globals which might have pointed into a removed objfile.
715 FIXME: It's not clear which of these are supposed to persist
716 between expressions and which ought to be reset each time. */
717 expression_context_block = NULL;
718 innermost_block = NULL;
719
720 /* Check to see if the current_source_symtab belongs to this objfile,
721 and if so, call clear_current_source_symtab_and_line. */
722
723 {
724 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
725
726 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
727 clear_current_source_symtab_and_line ();
728 }
729
730 if (objfile->global_psymbols.list)
731 xfree (objfile->global_psymbols.list);
732 if (objfile->static_psymbols.list)
733 xfree (objfile->static_psymbols.list);
734 /* Free the obstacks for non-reusable objfiles. */
735 psymbol_bcache_free (objfile->psymbol_cache);
736 obstack_free (&objfile->objfile_obstack, 0);
737
738 /* Rebuild section map next time we need it. */
739 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
740
741 /* Free the map for static links. There's no need to free static link
742 themselves since they were allocated on the objstack. */
743 if (objfile->static_links != NULL)
744 htab_delete (objfile->static_links);
745
746 /* The last thing we do is free the objfile struct itself. */
747 xfree (objfile);
748 }
749
750 static void
751 do_free_objfile_cleanup (void *obj)
752 {
753 free_objfile ((struct objfile *) obj);
754 }
755
756 struct cleanup *
757 make_cleanup_free_objfile (struct objfile *obj)
758 {
759 return make_cleanup (do_free_objfile_cleanup, obj);
760 }
761
762 /* Free all the object files at once and clean up their users. */
763
764 void
765 free_all_objfiles (void)
766 {
767 struct objfile *objfile, *temp;
768 struct so_list *so;
769
770 /* Any objfile referencewould become stale. */
771 for (so = master_so_list (); so; so = so->next)
772 gdb_assert (so->objfile == NULL);
773
774 ALL_OBJFILES_SAFE (objfile, temp)
775 {
776 free_objfile (objfile);
777 }
778 clear_symtab_users (0);
779 }
780 \f
781 /* A helper function for objfile_relocate1 that relocates a single
782 symbol. */
783
784 static void
785 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
786 struct section_offsets *delta)
787 {
788 fixup_symbol_section (sym, objfile);
789
790 /* The RS6000 code from which this was taken skipped
791 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
792 But I'm leaving out that test, on the theory that
793 they can't possibly pass the tests below. */
794 if ((SYMBOL_CLASS (sym) == LOC_LABEL
795 || SYMBOL_CLASS (sym) == LOC_STATIC)
796 && SYMBOL_SECTION (sym) >= 0)
797 {
798 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
799 }
800 }
801
802 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
803 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
804 Return non-zero iff any change happened. */
805
806 static int
807 objfile_relocate1 (struct objfile *objfile,
808 const struct section_offsets *new_offsets)
809 {
810 struct obj_section *s;
811 struct section_offsets *delta =
812 ((struct section_offsets *)
813 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
814
815 int i;
816 int something_changed = 0;
817
818 for (i = 0; i < objfile->num_sections; ++i)
819 {
820 delta->offsets[i] =
821 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
822 if (ANOFFSET (delta, i) != 0)
823 something_changed = 1;
824 }
825 if (!something_changed)
826 return 0;
827
828 /* OK, get all the symtabs. */
829 {
830 struct compunit_symtab *cust;
831 struct symtab *s;
832
833 ALL_OBJFILE_FILETABS (objfile, cust, s)
834 {
835 struct linetable *l;
836 int i;
837
838 /* First the line table. */
839 l = SYMTAB_LINETABLE (s);
840 if (l)
841 {
842 for (i = 0; i < l->nitems; ++i)
843 l->item[i].pc += ANOFFSET (delta,
844 COMPUNIT_BLOCK_LINE_SECTION
845 (cust));
846 }
847 }
848
849 ALL_OBJFILE_COMPUNITS (objfile, cust)
850 {
851 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
852 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
853
854 if (BLOCKVECTOR_MAP (bv))
855 addrmap_relocate (BLOCKVECTOR_MAP (bv),
856 ANOFFSET (delta, block_line_section));
857
858 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
859 {
860 struct block *b;
861 struct symbol *sym;
862 struct dict_iterator iter;
863
864 b = BLOCKVECTOR_BLOCK (bv, i);
865 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
866 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
867
868 /* We only want to iterate over the local symbols, not any
869 symbols in included symtabs. */
870 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
871 {
872 relocate_one_symbol (sym, objfile, delta);
873 }
874 }
875 }
876 }
877
878 /* Relocate isolated symbols. */
879 {
880 struct symbol *iter;
881
882 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
883 relocate_one_symbol (iter, objfile, delta);
884 }
885
886 if (objfile->psymtabs_addrmap)
887 addrmap_relocate (objfile->psymtabs_addrmap,
888 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
889
890 if (objfile->sf)
891 objfile->sf->qf->relocate (objfile, new_offsets, delta);
892
893 {
894 int i;
895
896 for (i = 0; i < objfile->num_sections; ++i)
897 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
898 }
899
900 /* Rebuild section map next time we need it. */
901 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
902
903 /* Update the table in exec_ops, used to read memory. */
904 ALL_OBJFILE_OSECTIONS (objfile, s)
905 {
906 int idx = s - objfile->sections;
907
908 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
909 obj_section_addr (s));
910 }
911
912 /* Data changed. */
913 return 1;
914 }
915
916 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
917 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
918
919 The number and ordering of sections does differ between the two objfiles.
920 Only their names match. Also the file offsets will differ (objfile being
921 possibly prelinked but separate_debug_objfile is probably not prelinked) but
922 the in-memory absolute address as specified by NEW_OFFSETS must match both
923 files. */
924
925 void
926 objfile_relocate (struct objfile *objfile,
927 const struct section_offsets *new_offsets)
928 {
929 struct objfile *debug_objfile;
930 int changed = 0;
931
932 changed |= objfile_relocate1 (objfile, new_offsets);
933
934 for (debug_objfile = objfile->separate_debug_objfile;
935 debug_objfile;
936 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
937 {
938 struct section_addr_info *objfile_addrs;
939 struct cleanup *my_cleanups;
940
941 objfile_addrs = build_section_addr_info_from_objfile (objfile);
942 my_cleanups = make_cleanup (xfree, objfile_addrs);
943
944 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
945 relative ones must be already created according to debug_objfile. */
946
947 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
948
949 gdb_assert (debug_objfile->num_sections
950 == gdb_bfd_count_sections (debug_objfile->obfd));
951 std::vector<struct section_offsets>
952 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
953 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
954 debug_objfile->num_sections,
955 objfile_addrs);
956
957 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
958
959 do_cleanups (my_cleanups);
960 }
961
962 /* Relocate breakpoints as necessary, after things are relocated. */
963 if (changed)
964 breakpoint_re_set ();
965 }
966
967 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
968 not touched here.
969 Return non-zero iff any change happened. */
970
971 static int
972 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
973 {
974 struct section_offsets *new_offsets =
975 ((struct section_offsets *)
976 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
977 int i;
978
979 for (i = 0; i < objfile->num_sections; ++i)
980 new_offsets->offsets[i] = slide;
981
982 return objfile_relocate1 (objfile, new_offsets);
983 }
984
985 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
986 SEPARATE_DEBUG_OBJFILEs. */
987
988 void
989 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
990 {
991 struct objfile *debug_objfile;
992 int changed = 0;
993
994 changed |= objfile_rebase1 (objfile, slide);
995
996 for (debug_objfile = objfile->separate_debug_objfile;
997 debug_objfile;
998 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
999 changed |= objfile_rebase1 (debug_objfile, slide);
1000
1001 /* Relocate breakpoints as necessary, after things are relocated. */
1002 if (changed)
1003 breakpoint_re_set ();
1004 }
1005 \f
1006 /* Return non-zero if OBJFILE has partial symbols. */
1007
1008 int
1009 objfile_has_partial_symbols (struct objfile *objfile)
1010 {
1011 if (!objfile->sf)
1012 return 0;
1013
1014 /* If we have not read psymbols, but we have a function capable of reading
1015 them, then that is an indication that they are in fact available. Without
1016 this function the symbols may have been already read in but they also may
1017 not be present in this objfile. */
1018 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1019 && objfile->sf->sym_read_psymbols != NULL)
1020 return 1;
1021
1022 return objfile->sf->qf->has_symbols (objfile);
1023 }
1024
1025 /* Return non-zero if OBJFILE has full symbols. */
1026
1027 int
1028 objfile_has_full_symbols (struct objfile *objfile)
1029 {
1030 return objfile->compunit_symtabs != NULL;
1031 }
1032
1033 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1034 or through a separate debug file. */
1035
1036 int
1037 objfile_has_symbols (struct objfile *objfile)
1038 {
1039 struct objfile *o;
1040
1041 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1042 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1043 return 1;
1044 return 0;
1045 }
1046
1047
1048 /* Many places in gdb want to test just to see if we have any partial
1049 symbols available. This function returns zero if none are currently
1050 available, nonzero otherwise. */
1051
1052 int
1053 have_partial_symbols (void)
1054 {
1055 struct objfile *ofp;
1056
1057 ALL_OBJFILES (ofp)
1058 {
1059 if (objfile_has_partial_symbols (ofp))
1060 return 1;
1061 }
1062 return 0;
1063 }
1064
1065 /* Many places in gdb want to test just to see if we have any full
1066 symbols available. This function returns zero if none are currently
1067 available, nonzero otherwise. */
1068
1069 int
1070 have_full_symbols (void)
1071 {
1072 struct objfile *ofp;
1073
1074 ALL_OBJFILES (ofp)
1075 {
1076 if (objfile_has_full_symbols (ofp))
1077 return 1;
1078 }
1079 return 0;
1080 }
1081
1082
1083 /* This operations deletes all objfile entries that represent solibs that
1084 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1085 command. */
1086
1087 void
1088 objfile_purge_solibs (void)
1089 {
1090 struct objfile *objf;
1091 struct objfile *temp;
1092
1093 ALL_OBJFILES_SAFE (objf, temp)
1094 {
1095 /* We assume that the solib package has been purged already, or will
1096 be soon. */
1097
1098 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1099 free_objfile (objf);
1100 }
1101 }
1102
1103
1104 /* Many places in gdb want to test just to see if we have any minimal
1105 symbols available. This function returns zero if none are currently
1106 available, nonzero otherwise. */
1107
1108 int
1109 have_minimal_symbols (void)
1110 {
1111 struct objfile *ofp;
1112
1113 ALL_OBJFILES (ofp)
1114 {
1115 if (ofp->per_bfd->minimal_symbol_count > 0)
1116 {
1117 return 1;
1118 }
1119 }
1120 return 0;
1121 }
1122
1123 /* Qsort comparison function. */
1124
1125 static int
1126 qsort_cmp (const void *a, const void *b)
1127 {
1128 const struct obj_section *sect1 = *(const struct obj_section **) a;
1129 const struct obj_section *sect2 = *(const struct obj_section **) b;
1130 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1131 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1132
1133 if (sect1_addr < sect2_addr)
1134 return -1;
1135 else if (sect1_addr > sect2_addr)
1136 return 1;
1137 else
1138 {
1139 /* Sections are at the same address. This could happen if
1140 A) we have an objfile and a separate debuginfo.
1141 B) we are confused, and have added sections without proper relocation,
1142 or something like that. */
1143
1144 const struct objfile *const objfile1 = sect1->objfile;
1145 const struct objfile *const objfile2 = sect2->objfile;
1146
1147 if (objfile1->separate_debug_objfile == objfile2
1148 || objfile2->separate_debug_objfile == objfile1)
1149 {
1150 /* Case A. The ordering doesn't matter: separate debuginfo files
1151 will be filtered out later. */
1152
1153 return 0;
1154 }
1155
1156 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1157 triage. This section could be slow (since we iterate over all
1158 objfiles in each call to qsort_cmp), but this shouldn't happen
1159 very often (GDB is already in a confused state; one hopes this
1160 doesn't happen at all). If you discover that significant time is
1161 spent in the loops below, do 'set complaints 100' and examine the
1162 resulting complaints. */
1163
1164 if (objfile1 == objfile2)
1165 {
1166 /* Both sections came from the same objfile. We are really confused.
1167 Sort on sequence order of sections within the objfile. */
1168
1169 const struct obj_section *osect;
1170
1171 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1172 if (osect == sect1)
1173 return -1;
1174 else if (osect == sect2)
1175 return 1;
1176
1177 /* We should have found one of the sections before getting here. */
1178 gdb_assert_not_reached ("section not found");
1179 }
1180 else
1181 {
1182 /* Sort on sequence number of the objfile in the chain. */
1183
1184 const struct objfile *objfile;
1185
1186 ALL_OBJFILES (objfile)
1187 if (objfile == objfile1)
1188 return -1;
1189 else if (objfile == objfile2)
1190 return 1;
1191
1192 /* We should have found one of the objfiles before getting here. */
1193 gdb_assert_not_reached ("objfile not found");
1194 }
1195 }
1196
1197 /* Unreachable. */
1198 gdb_assert_not_reached ("unexpected code path");
1199 return 0;
1200 }
1201
1202 /* Select "better" obj_section to keep. We prefer the one that came from
1203 the real object, rather than the one from separate debuginfo.
1204 Most of the time the two sections are exactly identical, but with
1205 prelinking the .rel.dyn section in the real object may have different
1206 size. */
1207
1208 static struct obj_section *
1209 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1210 {
1211 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1212 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1213 || (b->objfile->separate_debug_objfile == a->objfile));
1214 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1215 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1216
1217 if (a->objfile->separate_debug_objfile != NULL)
1218 return a;
1219 return b;
1220 }
1221
1222 /* Return 1 if SECTION should be inserted into the section map.
1223 We want to insert only non-overlay and non-TLS section. */
1224
1225 static int
1226 insert_section_p (const struct bfd *abfd,
1227 const struct bfd_section *section)
1228 {
1229 const bfd_vma lma = bfd_section_lma (abfd, section);
1230
1231 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1232 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1233 /* This is an overlay section. IN_MEMORY check is needed to avoid
1234 discarding sections from the "system supplied DSO" (aka vdso)
1235 on some Linux systems (e.g. Fedora 11). */
1236 return 0;
1237 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1238 /* This is a TLS section. */
1239 return 0;
1240
1241 return 1;
1242 }
1243
1244 /* Filter out overlapping sections where one section came from the real
1245 objfile, and the other from a separate debuginfo file.
1246 Return the size of table after redundant sections have been eliminated. */
1247
1248 static int
1249 filter_debuginfo_sections (struct obj_section **map, int map_size)
1250 {
1251 int i, j;
1252
1253 for (i = 0, j = 0; i < map_size - 1; i++)
1254 {
1255 struct obj_section *const sect1 = map[i];
1256 struct obj_section *const sect2 = map[i + 1];
1257 const struct objfile *const objfile1 = sect1->objfile;
1258 const struct objfile *const objfile2 = sect2->objfile;
1259 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1260 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1261
1262 if (sect1_addr == sect2_addr
1263 && (objfile1->separate_debug_objfile == objfile2
1264 || objfile2->separate_debug_objfile == objfile1))
1265 {
1266 map[j++] = preferred_obj_section (sect1, sect2);
1267 ++i;
1268 }
1269 else
1270 map[j++] = sect1;
1271 }
1272
1273 if (i < map_size)
1274 {
1275 gdb_assert (i == map_size - 1);
1276 map[j++] = map[i];
1277 }
1278
1279 /* The map should not have shrunk to less than half the original size. */
1280 gdb_assert (map_size / 2 <= j);
1281
1282 return j;
1283 }
1284
1285 /* Filter out overlapping sections, issuing a warning if any are found.
1286 Overlapping sections could really be overlay sections which we didn't
1287 classify as such in insert_section_p, or we could be dealing with a
1288 corrupt binary. */
1289
1290 static int
1291 filter_overlapping_sections (struct obj_section **map, int map_size)
1292 {
1293 int i, j;
1294
1295 for (i = 0, j = 0; i < map_size - 1; )
1296 {
1297 int k;
1298
1299 map[j++] = map[i];
1300 for (k = i + 1; k < map_size; k++)
1301 {
1302 struct obj_section *const sect1 = map[i];
1303 struct obj_section *const sect2 = map[k];
1304 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1305 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1306 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1307
1308 gdb_assert (sect1_addr <= sect2_addr);
1309
1310 if (sect1_endaddr <= sect2_addr)
1311 break;
1312 else
1313 {
1314 /* We have an overlap. Report it. */
1315
1316 struct objfile *const objf1 = sect1->objfile;
1317 struct objfile *const objf2 = sect2->objfile;
1318
1319 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1320 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1321
1322 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1323
1324 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1325
1326 complaint (&symfile_complaints,
1327 _("unexpected overlap between:\n"
1328 " (A) section `%s' from `%s' [%s, %s)\n"
1329 " (B) section `%s' from `%s' [%s, %s).\n"
1330 "Will ignore section B"),
1331 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1332 paddress (gdbarch, sect1_addr),
1333 paddress (gdbarch, sect1_endaddr),
1334 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1335 paddress (gdbarch, sect2_addr),
1336 paddress (gdbarch, sect2_endaddr));
1337 }
1338 }
1339 i = k;
1340 }
1341
1342 if (i < map_size)
1343 {
1344 gdb_assert (i == map_size - 1);
1345 map[j++] = map[i];
1346 }
1347
1348 return j;
1349 }
1350
1351
1352 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1353 TLS, overlay and overlapping sections. */
1354
1355 static void
1356 update_section_map (struct program_space *pspace,
1357 struct obj_section ***pmap, int *pmap_size)
1358 {
1359 struct objfile_pspace_info *pspace_info;
1360 int alloc_size, map_size, i;
1361 struct obj_section *s, **map;
1362 struct objfile *objfile;
1363
1364 pspace_info = get_objfile_pspace_data (pspace);
1365 gdb_assert (pspace_info->section_map_dirty != 0
1366 || pspace_info->new_objfiles_available != 0);
1367
1368 map = *pmap;
1369 xfree (map);
1370
1371 alloc_size = 0;
1372 ALL_PSPACE_OBJFILES (pspace, objfile)
1373 ALL_OBJFILE_OSECTIONS (objfile, s)
1374 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1375 alloc_size += 1;
1376
1377 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1378 if (alloc_size == 0)
1379 {
1380 *pmap = NULL;
1381 *pmap_size = 0;
1382 return;
1383 }
1384
1385 map = XNEWVEC (struct obj_section *, alloc_size);
1386
1387 i = 0;
1388 ALL_PSPACE_OBJFILES (pspace, objfile)
1389 ALL_OBJFILE_OSECTIONS (objfile, s)
1390 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1391 map[i++] = s;
1392
1393 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1394 map_size = filter_debuginfo_sections(map, alloc_size);
1395 map_size = filter_overlapping_sections(map, map_size);
1396
1397 if (map_size < alloc_size)
1398 /* Some sections were eliminated. Trim excess space. */
1399 map = XRESIZEVEC (struct obj_section *, map, map_size);
1400 else
1401 gdb_assert (alloc_size == map_size);
1402
1403 *pmap = map;
1404 *pmap_size = map_size;
1405 }
1406
1407 /* Bsearch comparison function. */
1408
1409 static int
1410 bsearch_cmp (const void *key, const void *elt)
1411 {
1412 const CORE_ADDR pc = *(CORE_ADDR *) key;
1413 const struct obj_section *section = *(const struct obj_section **) elt;
1414
1415 if (pc < obj_section_addr (section))
1416 return -1;
1417 if (pc < obj_section_endaddr (section))
1418 return 0;
1419 return 1;
1420 }
1421
1422 /* Returns a section whose range includes PC or NULL if none found. */
1423
1424 struct obj_section *
1425 find_pc_section (CORE_ADDR pc)
1426 {
1427 struct objfile_pspace_info *pspace_info;
1428 struct obj_section *s, **sp;
1429
1430 /* Check for mapped overlay section first. */
1431 s = find_pc_mapped_section (pc);
1432 if (s)
1433 return s;
1434
1435 pspace_info = get_objfile_pspace_data (current_program_space);
1436 if (pspace_info->section_map_dirty
1437 || (pspace_info->new_objfiles_available
1438 && !pspace_info->inhibit_updates))
1439 {
1440 update_section_map (current_program_space,
1441 &pspace_info->sections,
1442 &pspace_info->num_sections);
1443
1444 /* Don't need updates to section map until objfiles are added,
1445 removed or relocated. */
1446 pspace_info->new_objfiles_available = 0;
1447 pspace_info->section_map_dirty = 0;
1448 }
1449
1450 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1451 bsearch be non-NULL. */
1452 if (pspace_info->sections == NULL)
1453 {
1454 gdb_assert (pspace_info->num_sections == 0);
1455 return NULL;
1456 }
1457
1458 sp = (struct obj_section **) bsearch (&pc,
1459 pspace_info->sections,
1460 pspace_info->num_sections,
1461 sizeof (*pspace_info->sections),
1462 bsearch_cmp);
1463 if (sp != NULL)
1464 return *sp;
1465 return NULL;
1466 }
1467
1468
1469 /* Return non-zero if PC is in a section called NAME. */
1470
1471 int
1472 pc_in_section (CORE_ADDR pc, const char *name)
1473 {
1474 struct obj_section *s;
1475 int retval = 0;
1476
1477 s = find_pc_section (pc);
1478
1479 retval = (s != NULL
1480 && s->the_bfd_section->name != NULL
1481 && strcmp (s->the_bfd_section->name, name) == 0);
1482 return (retval);
1483 }
1484 \f
1485
1486 /* Set section_map_dirty so section map will be rebuilt next time it
1487 is used. Called by reread_symbols. */
1488
1489 void
1490 objfiles_changed (void)
1491 {
1492 /* Rebuild section map next time we need it. */
1493 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1494 }
1495
1496 /* See comments in objfiles.h. */
1497
1498 void
1499 inhibit_section_map_updates (struct program_space *pspace)
1500 {
1501 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1502 }
1503
1504 /* See comments in objfiles.h. */
1505
1506 void
1507 resume_section_map_updates (struct program_space *pspace)
1508 {
1509 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1510 }
1511
1512 /* See comments in objfiles.h. */
1513
1514 void
1515 resume_section_map_updates_cleanup (void *arg)
1516 {
1517 resume_section_map_updates ((struct program_space *) arg);
1518 }
1519
1520 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1521 otherwise. */
1522
1523 int
1524 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1525 {
1526 struct obj_section *osect;
1527
1528 if (objfile == NULL)
1529 return 0;
1530
1531 ALL_OBJFILE_OSECTIONS (objfile, osect)
1532 {
1533 if (section_is_overlay (osect) && !section_is_mapped (osect))
1534 continue;
1535
1536 if (obj_section_addr (osect) <= addr
1537 && addr < obj_section_endaddr (osect))
1538 return 1;
1539 }
1540 return 0;
1541 }
1542
1543 int
1544 shared_objfile_contains_address_p (struct program_space *pspace,
1545 CORE_ADDR address)
1546 {
1547 struct objfile *objfile;
1548
1549 ALL_PSPACE_OBJFILES (pspace, objfile)
1550 {
1551 if ((objfile->flags & OBJF_SHARED) != 0
1552 && is_addr_in_objfile (address, objfile))
1553 return 1;
1554 }
1555
1556 return 0;
1557 }
1558
1559 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1560 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1561 searching the objfiles in the order they are stored internally,
1562 ignoring CURRENT_OBJFILE.
1563
1564 On most platorms, it should be close enough to doing the best
1565 we can without some knowledge specific to the architecture. */
1566
1567 void
1568 default_iterate_over_objfiles_in_search_order
1569 (struct gdbarch *gdbarch,
1570 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1571 void *cb_data, struct objfile *current_objfile)
1572 {
1573 int stop = 0;
1574 struct objfile *objfile;
1575
1576 ALL_OBJFILES (objfile)
1577 {
1578 stop = cb (objfile, cb_data);
1579 if (stop)
1580 return;
1581 }
1582 }
1583
1584 /* See objfiles.h. */
1585
1586 const char *
1587 objfile_name (const struct objfile *objfile)
1588 {
1589 if (objfile->obfd != NULL)
1590 return bfd_get_filename (objfile->obfd);
1591
1592 return objfile->original_name;
1593 }
1594
1595 /* See objfiles.h. */
1596
1597 const char *
1598 objfile_filename (const struct objfile *objfile)
1599 {
1600 if (objfile->obfd != NULL)
1601 return bfd_get_filename (objfile->obfd);
1602
1603 return NULL;
1604 }
1605
1606 /* See objfiles.h. */
1607
1608 const char *
1609 objfile_debug_name (const struct objfile *objfile)
1610 {
1611 return lbasename (objfile->original_name);
1612 }
1613
1614 /* See objfiles.h. */
1615
1616 const char *
1617 objfile_flavour_name (struct objfile *objfile)
1618 {
1619 if (objfile->obfd != NULL)
1620 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1621 return NULL;
1622 }
1623
1624 /* Provide a prototype to silence -Wmissing-prototypes. */
1625 extern initialize_file_ftype _initialize_objfiles;
1626
1627 void
1628 _initialize_objfiles (void)
1629 {
1630 objfiles_pspace_data
1631 = register_program_space_data_with_cleanup (NULL,
1632 objfiles_pspace_data_cleanup);
1633
1634 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1635 objfile_bfd_data_free);
1636 }
This page took 0.061454 seconds and 4 git commands to generate.