* elfread.c (elf_symtab_read): Avoid use of SECT_OFF_MAX.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46
47 /* Prototypes for local functions */
48
49 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
50
51 #include "mmalloc.h"
52
53 static int open_existing_mapped_file (char *, long, int);
54
55 static int open_mapped_file (char *filename, long mtime, int flags);
56
57 static void *map_to_file (int);
58
59 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
60
61 static void add_to_objfile_sections (bfd *, sec_ptr, void *);
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *object_files; /* Linked list of all objfiles */
67 struct objfile *current_objfile; /* For symbol file being read in */
68 struct objfile *symfile_objfile; /* Main symbol table loaded from */
69 struct objfile *rt_common_objfile; /* For runtime common symbols */
70
71 int mapped_symbol_files; /* Try to use mapped symbol files */
72
73 /* Locate all mappable sections of a BFD file.
74 objfile_p_char is a char * to get it through
75 bfd_map_over_sections; we cast it back to its proper type. */
76
77 #ifndef TARGET_KEEP_SECTION
78 #define TARGET_KEEP_SECTION(ASECT) 0
79 #endif
80
81 /* Called via bfd_map_over_sections to build up the section table that
82 the objfile references. The objfile contains pointers to the start
83 of the table (objfile->sections) and to the first location after
84 the end of the table (objfile->sections_end). */
85
86 static void
87 add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
88 {
89 struct objfile *objfile = (struct objfile *) objfile_p_char;
90 struct obj_section section;
91 flagword aflag;
92
93 aflag = bfd_get_section_flags (abfd, asect);
94
95 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
96 return;
97
98 if (0 == bfd_section_size (abfd, asect))
99 return;
100 section.offset = 0;
101 section.objfile = objfile;
102 section.the_bfd_section = asect;
103 section.ovly_mapped = 0;
104 section.addr = bfd_section_vma (abfd, asect);
105 section.endaddr = section.addr + bfd_section_size (abfd, asect);
106 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
107 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
108 }
109
110 /* Builds a section table for OBJFILE.
111 Returns 0 if OK, 1 on error (in which case bfd_error contains the
112 error).
113
114 Note that while we are building the table, which goes into the
115 psymbol obstack, we hijack the sections_end pointer to instead hold
116 a count of the number of sections. When bfd_map_over_sections
117 returns, this count is used to compute the pointer to the end of
118 the sections table, which then overwrites the count.
119
120 Also note that the OFFSET and OVLY_MAPPED in each table entry
121 are initialized to zero.
122
123 Also note that if anything else writes to the psymbol obstack while
124 we are building the table, we're pretty much hosed. */
125
126 int
127 build_objfile_section_table (struct objfile *objfile)
128 {
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
140 return (0);
141 }
142
143 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
144 allocate a new objfile struct, fill it in as best we can, link it
145 into the list of all known objfiles, and return a pointer to the
146 new objfile struct.
147
148 The FLAGS word contains various bits (OBJF_*) that can be taken as
149 requests for specific operations, like trying to open a mapped
150 version of the objfile (OBJF_MAPPED). Other bits like
151 OBJF_SHARED are simply copied through to the new objfile flags
152 member. */
153
154 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
155 by jv-lang.c, to create an artificial objfile used to hold
156 information about dynamically-loaded Java classes. Unfortunately,
157 that branch of this function doesn't get tested very frequently, so
158 it's prone to breakage. (E.g. at one time the name was set to NULL
159 in that situation, which broke a loop over all names in the dynamic
160 library loader.) If you change this function, please try to leave
161 things in a consistent state even if abfd is NULL. */
162
163 struct objfile *
164 allocate_objfile (bfd *abfd, int flags)
165 {
166 struct objfile *objfile = NULL;
167 struct objfile *last_one = NULL;
168
169 if (mapped_symbol_files)
170 flags |= OBJF_MAPPED;
171
172 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
173 if (abfd != NULL)
174 {
175
176 /* If we can support mapped symbol files, try to open/reopen the
177 mapped file that corresponds to the file from which we wish to
178 read symbols. If the objfile is to be mapped, we must malloc
179 the structure itself using the mmap version, and arrange that
180 all memory allocation for the objfile uses the mmap routines.
181 If we are reusing an existing mapped file, from which we get
182 our objfile pointer, we have to make sure that we update the
183 pointers to the alloc/free functions in the obstack, in case
184 these functions have moved within the current gdb. */
185
186 int fd;
187
188 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
189 flags);
190 if (fd >= 0)
191 {
192 void *md;
193
194 if ((md = map_to_file (fd)) == NULL)
195 {
196 close (fd);
197 }
198 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
199 {
200 /* Update memory corruption handler function addresses. */
201 init_malloc (md);
202 objfile->md = md;
203 objfile->mmfd = fd;
204 /* Update pointers to functions to *our* copies */
205 if (objfile->demangled_names_hash)
206 htab_set_functions_ex
207 (objfile->demangled_names_hash, htab_hash_string,
208 (int (*) (const void *, const void *)) streq, NULL,
209 objfile->md, xmcalloc, xmfree);
210 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
211 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
212 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
213 obstack_freefun (&objfile->macro_cache.cache, xmfree);
214 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
215 obstack_freefun (&objfile->psymbol_obstack, xmfree);
216 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
217 obstack_freefun (&objfile->symbol_obstack, xmfree);
218 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
219 obstack_freefun (&objfile->type_obstack, xmfree);
220 /* If already in objfile list, unlink it. */
221 unlink_objfile (objfile);
222 /* Forget things specific to a particular gdb, may have changed. */
223 objfile->sf = NULL;
224 }
225 else
226 {
227
228 /* Set up to detect internal memory corruption. MUST be
229 done before the first malloc. See comments in
230 init_malloc() and mmcheck(). */
231
232 init_malloc (md);
233
234 objfile = (struct objfile *)
235 xmmalloc (md, sizeof (struct objfile));
236 memset (objfile, 0, sizeof (struct objfile));
237 objfile->md = md;
238 objfile->mmfd = fd;
239 objfile->flags |= OBJF_MAPPED;
240 mmalloc_setkey (objfile->md, 0, objfile);
241 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
242 0, 0, xmmalloc, xmfree,
243 objfile->md);
244 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
245 0, 0, xmmalloc, xmfree,
246 objfile->md);
247 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
248 0, 0, xmmalloc, xmfree,
249 objfile->md);
250 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
251 0, 0, xmmalloc, xmfree,
252 objfile->md);
253 obstack_specify_allocation_with_arg (&objfile->type_obstack,
254 0, 0, xmmalloc, xmfree,
255 objfile->md);
256 }
257 }
258
259 if ((flags & OBJF_MAPPED) && (objfile == NULL))
260 {
261 warning ("symbol table for '%s' will not be mapped",
262 bfd_get_filename (abfd));
263 flags &= ~OBJF_MAPPED;
264 }
265 }
266 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
267
268 if (flags & OBJF_MAPPED)
269 {
270 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
271
272 /* Turn off the global flag so we don't try to do mapped symbol tables
273 any more, which shuts up gdb unless the user specifically gives the
274 "mapped" keyword again. */
275
276 mapped_symbol_files = 0;
277 flags &= ~OBJF_MAPPED;
278 }
279
280 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
281
282 /* If we don't support mapped symbol files, didn't ask for the file to be
283 mapped, or failed to open the mapped file for some reason, then revert
284 back to an unmapped objfile. */
285
286 if (objfile == NULL)
287 {
288 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
289 memset (objfile, 0, sizeof (struct objfile));
290 objfile->md = NULL;
291 objfile->psymbol_cache = bcache_xmalloc ();
292 objfile->macro_cache = bcache_xmalloc ();
293 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
294 xfree);
295 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
296 xfree);
297 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
298 xfree);
299 flags &= ~OBJF_MAPPED;
300
301 terminate_minimal_symbol_table (objfile);
302 }
303
304 /* Update the per-objfile information that comes from the bfd, ensuring
305 that any data that is reference is saved in the per-objfile data
306 region. */
307
308 objfile->obfd = abfd;
309 if (objfile->name != NULL)
310 {
311 xmfree (objfile->md, objfile->name);
312 }
313 if (abfd != NULL)
314 {
315 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
316 objfile->mtime = bfd_get_mtime (abfd);
317
318 /* Build section table. */
319
320 if (build_objfile_section_table (objfile))
321 {
322 error ("Can't find the file sections in `%s': %s",
323 objfile->name, bfd_errmsg (bfd_get_error ()));
324 }
325 }
326 else
327 {
328 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
329 }
330
331 /* Initialize the section indexes for this objfile, so that we can
332 later detect if they are used w/o being properly assigned to. */
333
334 objfile->sect_index_text = -1;
335 objfile->sect_index_data = -1;
336 objfile->sect_index_bss = -1;
337 objfile->sect_index_rodata = -1;
338
339 /* Add this file onto the tail of the linked list of other such files. */
340
341 objfile->next = NULL;
342 if (object_files == NULL)
343 object_files = objfile;
344 else
345 {
346 for (last_one = object_files;
347 last_one->next;
348 last_one = last_one->next);
349 last_one->next = objfile;
350 }
351
352 /* Save passed in flag bits. */
353 objfile->flags |= flags;
354
355 return (objfile);
356 }
357
358
359 /* Create the terminating entry of OBJFILE's minimal symbol table.
360 If OBJFILE->msymbols is zero, allocate a single entry from
361 OBJFILE->symbol_obstack; otherwise, just initialize
362 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
363 void
364 terminate_minimal_symbol_table (struct objfile *objfile)
365 {
366 if (! objfile->msymbols)
367 objfile->msymbols = ((struct minimal_symbol *)
368 obstack_alloc (&objfile->symbol_obstack,
369 sizeof (objfile->msymbols[0])));
370
371 {
372 struct minimal_symbol *m
373 = &objfile->msymbols[objfile->minimal_symbol_count];
374
375 memset (m, 0, sizeof (*m));
376 DEPRECATED_SYMBOL_NAME (m) = NULL;
377 SYMBOL_VALUE_ADDRESS (m) = 0;
378 MSYMBOL_INFO (m) = NULL;
379 MSYMBOL_TYPE (m) = mst_unknown;
380 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
381 }
382 }
383
384
385 /* Put one object file before a specified on in the global list.
386 This can be used to make sure an object file is destroyed before
387 another when using ALL_OBJFILES_SAFE to free all objfiles. */
388 void
389 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
390 {
391 struct objfile **objp;
392
393 unlink_objfile (objfile);
394
395 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
396 {
397 if (*objp == before_this)
398 {
399 objfile->next = *objp;
400 *objp = objfile;
401 return;
402 }
403 }
404
405 internal_error (__FILE__, __LINE__,
406 "put_objfile_before: before objfile not in list");
407 }
408
409 /* Put OBJFILE at the front of the list. */
410
411 void
412 objfile_to_front (struct objfile *objfile)
413 {
414 struct objfile **objp;
415 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
416 {
417 if (*objp == objfile)
418 {
419 /* Unhook it from where it is. */
420 *objp = objfile->next;
421 /* Put it in the front. */
422 objfile->next = object_files;
423 object_files = objfile;
424 break;
425 }
426 }
427 }
428
429 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
430 list.
431
432 It is not a bug, or error, to call this function if OBJFILE is not known
433 to be in the current list. This is done in the case of mapped objfiles,
434 for example, just to ensure that the mapped objfile doesn't appear twice
435 in the list. Since the list is threaded, linking in a mapped objfile
436 twice would create a circular list.
437
438 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
439 unlinking it, just to ensure that we have completely severed any linkages
440 between the OBJFILE and the list. */
441
442 void
443 unlink_objfile (struct objfile *objfile)
444 {
445 struct objfile **objpp;
446
447 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
448 {
449 if (*objpp == objfile)
450 {
451 *objpp = (*objpp)->next;
452 objfile->next = NULL;
453 return;
454 }
455 }
456
457 internal_error (__FILE__, __LINE__,
458 "unlink_objfile: objfile already unlinked");
459 }
460
461
462 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
463 that as much as possible is allocated on the symbol_obstack and
464 psymbol_obstack, so that the memory can be efficiently freed.
465
466 Things which we do NOT free because they are not in malloc'd memory
467 or not in memory specific to the objfile include:
468
469 objfile -> sf
470
471 FIXME: If the objfile is using reusable symbol information (via mmalloc),
472 then we need to take into account the fact that more than one process
473 may be using the symbol information at the same time (when mmalloc is
474 extended to support cooperative locking). When more than one process
475 is using the mapped symbol info, we need to be more careful about when
476 we free objects in the reusable area. */
477
478 void
479 free_objfile (struct objfile *objfile)
480 {
481 if (objfile->separate_debug_objfile)
482 {
483 free_objfile (objfile->separate_debug_objfile);
484 }
485
486 if (objfile->separate_debug_objfile_backlink)
487 {
488 /* We freed the separate debug file, make sure the base objfile
489 doesn't reference it. */
490 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
491 }
492
493 /* First do any symbol file specific actions required when we are
494 finished with a particular symbol file. Note that if the objfile
495 is using reusable symbol information (via mmalloc) then each of
496 these routines is responsible for doing the correct thing, either
497 freeing things which are valid only during this particular gdb
498 execution, or leaving them to be reused during the next one. */
499
500 if (objfile->sf != NULL)
501 {
502 (*objfile->sf->sym_finish) (objfile);
503 }
504
505 /* We always close the bfd. */
506
507 if (objfile->obfd != NULL)
508 {
509 char *name = bfd_get_filename (objfile->obfd);
510 if (!bfd_close (objfile->obfd))
511 warning ("cannot close \"%s\": %s",
512 name, bfd_errmsg (bfd_get_error ()));
513 xfree (name);
514 }
515
516 /* Remove it from the chain of all objfiles. */
517
518 unlink_objfile (objfile);
519
520 /* If we are going to free the runtime common objfile, mark it
521 as unallocated. */
522
523 if (objfile == rt_common_objfile)
524 rt_common_objfile = NULL;
525
526 /* Before the symbol table code was redone to make it easier to
527 selectively load and remove information particular to a specific
528 linkage unit, gdb used to do these things whenever the monolithic
529 symbol table was blown away. How much still needs to be done
530 is unknown, but we play it safe for now and keep each action until
531 it is shown to be no longer needed. */
532
533 /* I *think* all our callers call clear_symtab_users. If so, no need
534 to call this here. */
535 clear_pc_function_cache ();
536
537 /* The last thing we do is free the objfile struct itself for the
538 non-reusable case, or detach from the mapped file for the
539 reusable case. Note that the mmalloc_detach or the xmfree() is
540 the last thing we can do with this objfile. */
541
542 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
543
544 if (objfile->flags & OBJF_MAPPED)
545 {
546 /* Remember the fd so we can close it. We can't close it before
547 doing the detach, and after the detach the objfile is gone. */
548 int mmfd;
549
550 mmfd = objfile->mmfd;
551 mmalloc_detach (objfile->md);
552 objfile = NULL;
553 close (mmfd);
554 }
555
556 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
557
558 /* If we still have an objfile, then either we don't support reusable
559 objfiles or this one was not reusable. So free it normally. */
560
561 if (objfile != NULL)
562 {
563 if (objfile->name != NULL)
564 {
565 xmfree (objfile->md, objfile->name);
566 }
567 if (objfile->global_psymbols.list)
568 xmfree (objfile->md, objfile->global_psymbols.list);
569 if (objfile->static_psymbols.list)
570 xmfree (objfile->md, objfile->static_psymbols.list);
571 /* Free the obstacks for non-reusable objfiles */
572 bcache_xfree (objfile->psymbol_cache);
573 bcache_xfree (objfile->macro_cache);
574 if (objfile->demangled_names_hash)
575 htab_delete (objfile->demangled_names_hash);
576 obstack_free (&objfile->psymbol_obstack, 0);
577 obstack_free (&objfile->symbol_obstack, 0);
578 obstack_free (&objfile->type_obstack, 0);
579 xmfree (objfile->md, objfile);
580 objfile = NULL;
581 }
582 }
583
584 static void
585 do_free_objfile_cleanup (void *obj)
586 {
587 free_objfile (obj);
588 }
589
590 struct cleanup *
591 make_cleanup_free_objfile (struct objfile *obj)
592 {
593 return make_cleanup (do_free_objfile_cleanup, obj);
594 }
595
596 /* Free all the object files at once and clean up their users. */
597
598 void
599 free_all_objfiles (void)
600 {
601 struct objfile *objfile, *temp;
602
603 ALL_OBJFILES_SAFE (objfile, temp)
604 {
605 free_objfile (objfile);
606 }
607 clear_symtab_users ();
608 }
609 \f
610 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
611 entries in new_offsets. */
612 void
613 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
614 {
615 struct section_offsets *delta =
616 ((struct section_offsets *)
617 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
618
619 {
620 int i;
621 int something_changed = 0;
622 for (i = 0; i < objfile->num_sections; ++i)
623 {
624 delta->offsets[i] =
625 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
626 if (ANOFFSET (delta, i) != 0)
627 something_changed = 1;
628 }
629 if (!something_changed)
630 return;
631 }
632
633 /* OK, get all the symtabs. */
634 {
635 struct symtab *s;
636
637 ALL_OBJFILE_SYMTABS (objfile, s)
638 {
639 struct linetable *l;
640 struct blockvector *bv;
641 int i;
642
643 /* First the line table. */
644 l = LINETABLE (s);
645 if (l)
646 {
647 for (i = 0; i < l->nitems; ++i)
648 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
649 }
650
651 /* Don't relocate a shared blockvector more than once. */
652 if (!s->primary)
653 continue;
654
655 bv = BLOCKVECTOR (s);
656 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
657 {
658 struct block *b;
659 struct symbol *sym;
660 int j;
661
662 b = BLOCKVECTOR_BLOCK (bv, i);
663 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
664 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
665
666 ALL_BLOCK_SYMBOLS (b, j, sym)
667 {
668 fixup_symbol_section (sym, objfile);
669
670 /* The RS6000 code from which this was taken skipped
671 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
672 But I'm leaving out that test, on the theory that
673 they can't possibly pass the tests below. */
674 if ((SYMBOL_CLASS (sym) == LOC_LABEL
675 || SYMBOL_CLASS (sym) == LOC_STATIC
676 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
677 && SYMBOL_SECTION (sym) >= 0)
678 {
679 SYMBOL_VALUE_ADDRESS (sym) +=
680 ANOFFSET (delta, SYMBOL_SECTION (sym));
681 }
682 #ifdef MIPS_EFI_SYMBOL_NAME
683 /* Relocate Extra Function Info for ecoff. */
684
685 else if (SYMBOL_CLASS (sym) == LOC_CONST
686 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
687 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
688 ecoff_relocate_efi (sym, ANOFFSET (delta,
689 s->block_line_section));
690 #endif
691 }
692 }
693 }
694 }
695
696 {
697 struct partial_symtab *p;
698
699 ALL_OBJFILE_PSYMTABS (objfile, p)
700 {
701 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
702 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
703 }
704 }
705
706 {
707 struct partial_symbol **psym;
708
709 for (psym = objfile->global_psymbols.list;
710 psym < objfile->global_psymbols.next;
711 psym++)
712 {
713 fixup_psymbol_section (*psym, objfile);
714 if (SYMBOL_SECTION (*psym) >= 0)
715 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
716 SYMBOL_SECTION (*psym));
717 }
718 for (psym = objfile->static_psymbols.list;
719 psym < objfile->static_psymbols.next;
720 psym++)
721 {
722 fixup_psymbol_section (*psym, objfile);
723 if (SYMBOL_SECTION (*psym) >= 0)
724 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
725 SYMBOL_SECTION (*psym));
726 }
727 }
728
729 {
730 struct minimal_symbol *msym;
731 ALL_OBJFILE_MSYMBOLS (objfile, msym)
732 if (SYMBOL_SECTION (msym) >= 0)
733 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
734 }
735 /* Relocating different sections by different amounts may cause the symbols
736 to be out of order. */
737 msymbols_sort (objfile);
738
739 {
740 int i;
741 for (i = 0; i < objfile->num_sections; ++i)
742 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
743 }
744
745 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
746 {
747 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
748 only as a fallback. */
749 struct obj_section *s;
750 s = find_pc_section (objfile->ei.entry_point);
751 if (s)
752 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
753 else
754 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
755 }
756
757 {
758 struct obj_section *s;
759 bfd *abfd;
760
761 abfd = objfile->obfd;
762
763 ALL_OBJFILE_OSECTIONS (objfile, s)
764 {
765 int idx = s->the_bfd_section->index;
766
767 s->addr += ANOFFSET (delta, idx);
768 s->endaddr += ANOFFSET (delta, idx);
769 }
770 }
771
772 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
773 {
774 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
775 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
776 }
777
778 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
779 {
780 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
781 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
782 }
783
784 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
785 {
786 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
787 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
788 }
789
790 /* Relocate breakpoints as necessary, after things are relocated. */
791 breakpoint_re_set ();
792 }
793 \f
794 /* Many places in gdb want to test just to see if we have any partial
795 symbols available. This function returns zero if none are currently
796 available, nonzero otherwise. */
797
798 int
799 have_partial_symbols (void)
800 {
801 struct objfile *ofp;
802
803 ALL_OBJFILES (ofp)
804 {
805 if (ofp->psymtabs != NULL)
806 {
807 return 1;
808 }
809 }
810 return 0;
811 }
812
813 /* Many places in gdb want to test just to see if we have any full
814 symbols available. This function returns zero if none are currently
815 available, nonzero otherwise. */
816
817 int
818 have_full_symbols (void)
819 {
820 struct objfile *ofp;
821
822 ALL_OBJFILES (ofp)
823 {
824 if (ofp->symtabs != NULL)
825 {
826 return 1;
827 }
828 }
829 return 0;
830 }
831
832
833 /* This operations deletes all objfile entries that represent solibs that
834 weren't explicitly loaded by the user, via e.g., the add-symbol-file
835 command.
836 */
837 void
838 objfile_purge_solibs (void)
839 {
840 struct objfile *objf;
841 struct objfile *temp;
842
843 ALL_OBJFILES_SAFE (objf, temp)
844 {
845 /* We assume that the solib package has been purged already, or will
846 be soon.
847 */
848 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
849 free_objfile (objf);
850 }
851 }
852
853
854 /* Many places in gdb want to test just to see if we have any minimal
855 symbols available. This function returns zero if none are currently
856 available, nonzero otherwise. */
857
858 int
859 have_minimal_symbols (void)
860 {
861 struct objfile *ofp;
862
863 ALL_OBJFILES (ofp)
864 {
865 if (ofp->minimal_symbol_count > 0)
866 {
867 return 1;
868 }
869 }
870 return 0;
871 }
872
873 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
874
875 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
876 of the corresponding symbol file in MTIME, try to open an existing file
877 with the name SYMSFILENAME and verify it is more recent than the base
878 file by checking it's timestamp against MTIME.
879
880 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
881
882 If SYMSFILENAME does exist, but is out of date, we check to see if the
883 user has specified creation of a mapped file. If so, we don't issue
884 any warning message because we will be creating a new mapped file anyway,
885 overwriting the old one. If not, then we issue a warning message so that
886 the user will know why we aren't using this existing mapped symbol file.
887 In either case, we return -1.
888
889 If SYMSFILENAME does exist and is not out of date, but can't be opened for
890 some reason, then prints an appropriate system error message and returns -1.
891
892 Otherwise, returns the open file descriptor. */
893
894 static int
895 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
896 {
897 int fd = -1;
898 struct stat sbuf;
899
900 if (stat (symsfilename, &sbuf) == 0)
901 {
902 if (sbuf.st_mtime < mtime)
903 {
904 if (!(flags & OBJF_MAPPED))
905 {
906 warning ("mapped symbol file `%s' is out of date, ignored it",
907 symsfilename);
908 }
909 }
910 else if ((fd = open (symsfilename, O_RDWR)) < 0)
911 {
912 if (error_pre_print)
913 {
914 printf_unfiltered (error_pre_print);
915 }
916 print_sys_errmsg (symsfilename, errno);
917 }
918 }
919 return (fd);
920 }
921
922 /* Look for a mapped symbol file that corresponds to FILENAME and is more
923 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
924 use a mapped symbol file for this file, so create a new one if one does
925 not currently exist.
926
927 If found, then return an open file descriptor for the file, otherwise
928 return -1.
929
930 This routine is responsible for implementing the policy that generates
931 the name of the mapped symbol file from the name of a file containing
932 symbols that gdb would like to read. Currently this policy is to append
933 ".syms" to the name of the file.
934
935 This routine is also responsible for implementing the policy that
936 determines where the mapped symbol file is found (the search path).
937 This policy is that when reading an existing mapped file, a file of
938 the correct name in the current directory takes precedence over a
939 file of the correct name in the same directory as the symbol file.
940 When creating a new mapped file, it is always created in the current
941 directory. This helps to minimize the chances of a user unknowingly
942 creating big mapped files in places like /bin and /usr/local/bin, and
943 allows a local copy to override a manually installed global copy (in
944 /bin for example). */
945
946 static int
947 open_mapped_file (char *filename, long mtime, int flags)
948 {
949 int fd;
950 char *symsfilename;
951
952 /* First try to open an existing file in the current directory, and
953 then try the directory where the symbol file is located. */
954
955 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
956 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
957 {
958 xfree (symsfilename);
959 symsfilename = concat (filename, ".syms", (char *) NULL);
960 fd = open_existing_mapped_file (symsfilename, mtime, flags);
961 }
962
963 /* If we don't have an open file by now, then either the file does not
964 already exist, or the base file has changed since it was created. In
965 either case, if the user has specified use of a mapped file, then
966 create a new mapped file, truncating any existing one. If we can't
967 create one, print a system error message saying why we can't.
968
969 By default the file is rw for everyone, with the user's umask taking
970 care of turning off the permissions the user wants off. */
971
972 if ((fd < 0) && (flags & OBJF_MAPPED))
973 {
974 xfree (symsfilename);
975 symsfilename = concat ("./", lbasename (filename), ".syms",
976 (char *) NULL);
977 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
978 {
979 if (error_pre_print)
980 {
981 printf_unfiltered (error_pre_print);
982 }
983 print_sys_errmsg (symsfilename, errno);
984 }
985 }
986
987 xfree (symsfilename);
988 return (fd);
989 }
990
991 static void *
992 map_to_file (int fd)
993 {
994 void *md;
995 CORE_ADDR mapto;
996
997 md = mmalloc_attach (fd, 0);
998 if (md != NULL)
999 {
1000 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
1001 md = mmalloc_detach (md);
1002 if (md != NULL)
1003 {
1004 /* FIXME: should figure out why detach failed */
1005 md = NULL;
1006 }
1007 else if (mapto != (CORE_ADDR) NULL)
1008 {
1009 /* This mapping file needs to be remapped at "mapto" */
1010 md = mmalloc_attach (fd, mapto);
1011 }
1012 else
1013 {
1014 /* This is a freshly created mapping file. */
1015 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1016 if (mapto != 0)
1017 {
1018 /* To avoid reusing the freshly created mapping file, at the
1019 address selected by mmap, we must truncate it before trying
1020 to do an attach at the address we want. */
1021 ftruncate (fd, 0);
1022 md = mmalloc_attach (fd, mapto);
1023 if (md != NULL)
1024 {
1025 mmalloc_setkey (md, 1, mapto);
1026 }
1027 }
1028 }
1029 }
1030 return (md);
1031 }
1032
1033 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1034
1035 /* Returns a section whose range includes PC and SECTION,
1036 or NULL if none found. Note the distinction between the return type,
1037 struct obj_section (which is defined in gdb), and the input type
1038 struct sec (which is a bfd-defined data type). The obj_section
1039 contains a pointer to the bfd struct sec section. */
1040
1041 struct obj_section *
1042 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
1043 {
1044 struct obj_section *s;
1045 struct objfile *objfile;
1046
1047 ALL_OBJSECTIONS (objfile, s)
1048 if ((section == 0 || section == s->the_bfd_section) &&
1049 s->addr <= pc && pc < s->endaddr)
1050 return (s);
1051
1052 return (NULL);
1053 }
1054
1055 /* Returns a section whose range includes PC or NULL if none found.
1056 Backward compatibility, no section. */
1057
1058 struct obj_section *
1059 find_pc_section (CORE_ADDR pc)
1060 {
1061 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1062 }
1063
1064
1065 /* In SVR4, we recognize a trampoline by it's section name.
1066 That is, if the pc is in a section named ".plt" then we are in
1067 a trampoline. */
1068
1069 int
1070 in_plt_section (CORE_ADDR pc, char *name)
1071 {
1072 struct obj_section *s;
1073 int retval = 0;
1074
1075 s = find_pc_section (pc);
1076
1077 retval = (s != NULL
1078 && s->the_bfd_section->name != NULL
1079 && STREQ (s->the_bfd_section->name, ".plt"));
1080 return (retval);
1081 }
1082
1083 /* Return nonzero if NAME is in the import list of OBJFILE. Else
1084 return zero. */
1085
1086 int
1087 is_in_import_list (char *name, struct objfile *objfile)
1088 {
1089 register int i;
1090
1091 if (!objfile || !name || !*name)
1092 return 0;
1093
1094 for (i = 0; i < objfile->import_list_size; i++)
1095 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1096 return 1;
1097 return 0;
1098 }
1099
This page took 0.076477 seconds and 4 git commands to generate.