2004-05-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48
49 /* Prototypes for local functions */
50
51 static void objfile_alloc_data (struct objfile *objfile);
52 static void objfile_free_data (struct objfile *objfile);
53
54 /* Externally visible variables that are owned by this module.
55 See declarations in objfile.h for more info. */
56
57 struct objfile *object_files; /* Linked list of all objfiles */
58 struct objfile *current_objfile; /* For symbol file being read in */
59 struct objfile *symfile_objfile; /* Main symbol table loaded from */
60 struct objfile *rt_common_objfile; /* For runtime common symbols */
61
62 /* Locate all mappable sections of a BFD file.
63 objfile_p_char is a char * to get it through
64 bfd_map_over_sections; we cast it back to its proper type. */
65
66 #ifndef TARGET_KEEP_SECTION
67 #define TARGET_KEEP_SECTION(ASECT) 0
68 #endif
69
70 /* Called via bfd_map_over_sections to build up the section table that
71 the objfile references. The objfile contains pointers to the start
72 of the table (objfile->sections) and to the first location after
73 the end of the table (objfile->sections_end). */
74
75 static void
76 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
77 void *objfile_p_char)
78 {
79 struct objfile *objfile = (struct objfile *) objfile_p_char;
80 struct obj_section section;
81 flagword aflag;
82
83 aflag = bfd_get_section_flags (abfd, asect);
84
85 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
86 return;
87
88 if (0 == bfd_section_size (abfd, asect))
89 return;
90 section.offset = 0;
91 section.objfile = objfile;
92 section.the_bfd_section = asect;
93 section.ovly_mapped = 0;
94 section.addr = bfd_section_vma (abfd, asect);
95 section.endaddr = section.addr + bfd_section_size (abfd, asect);
96 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
97 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
98 }
99
100 /* Builds a section table for OBJFILE.
101 Returns 0 if OK, 1 on error (in which case bfd_error contains the
102 error).
103
104 Note that while we are building the table, which goes into the
105 psymbol obstack, we hijack the sections_end pointer to instead hold
106 a count of the number of sections. When bfd_map_over_sections
107 returns, this count is used to compute the pointer to the end of
108 the sections table, which then overwrites the count.
109
110 Also note that the OFFSET and OVLY_MAPPED in each table entry
111 are initialized to zero.
112
113 Also note that if anything else writes to the psymbol obstack while
114 we are building the table, we're pretty much hosed. */
115
116 int
117 build_objfile_section_table (struct objfile *objfile)
118 {
119 /* objfile->sections can be already set when reading a mapped symbol
120 file. I believe that we do need to rebuild the section table in
121 this case (we rebuild other things derived from the bfd), but we
122 can't free the old one (it's in the objfile_obstack). So we just
123 waste some memory. */
124
125 objfile->sections_end = 0;
126 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
127 objfile->sections = (struct obj_section *)
128 obstack_finish (&objfile->objfile_obstack);
129 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
130 return (0);
131 }
132
133 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
134 allocate a new objfile struct, fill it in as best we can, link it
135 into the list of all known objfiles, and return a pointer to the
136 new objfile struct.
137
138 The FLAGS word contains various bits (OBJF_*) that can be taken as
139 requests for specific operations. Other bits like OBJF_SHARED are
140 simply copied through to the new objfile flags member. */
141
142 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
143 by jv-lang.c, to create an artificial objfile used to hold
144 information about dynamically-loaded Java classes. Unfortunately,
145 that branch of this function doesn't get tested very frequently, so
146 it's prone to breakage. (E.g. at one time the name was set to NULL
147 in that situation, which broke a loop over all names in the dynamic
148 library loader.) If you change this function, please try to leave
149 things in a consistent state even if abfd is NULL. */
150
151 struct objfile *
152 allocate_objfile (bfd *abfd, int flags)
153 {
154 struct objfile *objfile = NULL;
155 struct objfile *last_one = NULL;
156
157 /* If we don't support mapped symbol files, didn't ask for the file to be
158 mapped, or failed to open the mapped file for some reason, then revert
159 back to an unmapped objfile. */
160
161 if (objfile == NULL)
162 {
163 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
164 memset (objfile, 0, sizeof (struct objfile));
165 objfile->md = NULL;
166 objfile->psymbol_cache = bcache_xmalloc ();
167 objfile->macro_cache = bcache_xmalloc ();
168 /* We could use obstack_specify_allocation here instead, but
169 gdb_obstack.h specifies the alloc/dealloc functions. */
170 obstack_init (&objfile->objfile_obstack);
171 terminate_minimal_symbol_table (objfile);
172 }
173
174 objfile_alloc_data (objfile);
175
176 /* Update the per-objfile information that comes from the bfd, ensuring
177 that any data that is reference is saved in the per-objfile data
178 region. */
179
180 objfile->obfd = abfd;
181 if (objfile->name != NULL)
182 {
183 xmfree (objfile->md, objfile->name);
184 }
185 if (abfd != NULL)
186 {
187 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
188 objfile->mtime = bfd_get_mtime (abfd);
189
190 /* Build section table. */
191
192 if (build_objfile_section_table (objfile))
193 {
194 error ("Can't find the file sections in `%s': %s",
195 objfile->name, bfd_errmsg (bfd_get_error ()));
196 }
197 }
198 else
199 {
200 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
201 }
202
203 /* Initialize the section indexes for this objfile, so that we can
204 later detect if they are used w/o being properly assigned to. */
205
206 objfile->sect_index_text = -1;
207 objfile->sect_index_data = -1;
208 objfile->sect_index_bss = -1;
209 objfile->sect_index_rodata = -1;
210
211 /* We don't yet have a C++-specific namespace symtab. */
212
213 objfile->cp_namespace_symtab = NULL;
214
215 /* Add this file onto the tail of the linked list of other such files. */
216
217 objfile->next = NULL;
218 if (object_files == NULL)
219 object_files = objfile;
220 else
221 {
222 for (last_one = object_files;
223 last_one->next;
224 last_one = last_one->next);
225 last_one->next = objfile;
226 }
227
228 /* Save passed in flag bits. */
229 objfile->flags |= flags;
230
231 return (objfile);
232 }
233
234 /* Initialize entry point information for this objfile. */
235
236 void
237 init_entry_point_info (struct objfile *objfile)
238 {
239 /* Save startup file's range of PC addresses to help blockframe.c
240 decide where the bottom of the stack is. */
241
242 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
243 {
244 /* Executable file -- record its entry point so we'll recognize
245 the startup file because it contains the entry point. */
246 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
247 }
248 else
249 {
250 /* Examination of non-executable.o files. Short-circuit this stuff. */
251 objfile->ei.entry_point = INVALID_ENTRY_POINT;
252 }
253 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
254 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
255 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
256 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
257 }
258
259 /* Get current entry point address. */
260
261 CORE_ADDR
262 entry_point_address (void)
263 {
264 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
265 }
266
267 /* Create the terminating entry of OBJFILE's minimal symbol table.
268 If OBJFILE->msymbols is zero, allocate a single entry from
269 OBJFILE->objfile_obstack; otherwise, just initialize
270 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
271 void
272 terminate_minimal_symbol_table (struct objfile *objfile)
273 {
274 if (! objfile->msymbols)
275 objfile->msymbols = ((struct minimal_symbol *)
276 obstack_alloc (&objfile->objfile_obstack,
277 sizeof (objfile->msymbols[0])));
278
279 {
280 struct minimal_symbol *m
281 = &objfile->msymbols[objfile->minimal_symbol_count];
282
283 memset (m, 0, sizeof (*m));
284 /* Don't rely on these enumeration values being 0's. */
285 MSYMBOL_TYPE (m) = mst_unknown;
286 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
287 }
288 }
289
290
291 /* Put one object file before a specified on in the global list.
292 This can be used to make sure an object file is destroyed before
293 another when using ALL_OBJFILES_SAFE to free all objfiles. */
294 void
295 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
296 {
297 struct objfile **objp;
298
299 unlink_objfile (objfile);
300
301 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
302 {
303 if (*objp == before_this)
304 {
305 objfile->next = *objp;
306 *objp = objfile;
307 return;
308 }
309 }
310
311 internal_error (__FILE__, __LINE__,
312 "put_objfile_before: before objfile not in list");
313 }
314
315 /* Put OBJFILE at the front of the list. */
316
317 void
318 objfile_to_front (struct objfile *objfile)
319 {
320 struct objfile **objp;
321 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
322 {
323 if (*objp == objfile)
324 {
325 /* Unhook it from where it is. */
326 *objp = objfile->next;
327 /* Put it in the front. */
328 objfile->next = object_files;
329 object_files = objfile;
330 break;
331 }
332 }
333 }
334
335 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
336 list.
337
338 It is not a bug, or error, to call this function if OBJFILE is not known
339 to be in the current list. This is done in the case of mapped objfiles,
340 for example, just to ensure that the mapped objfile doesn't appear twice
341 in the list. Since the list is threaded, linking in a mapped objfile
342 twice would create a circular list.
343
344 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
345 unlinking it, just to ensure that we have completely severed any linkages
346 between the OBJFILE and the list. */
347
348 void
349 unlink_objfile (struct objfile *objfile)
350 {
351 struct objfile **objpp;
352
353 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
354 {
355 if (*objpp == objfile)
356 {
357 *objpp = (*objpp)->next;
358 objfile->next = NULL;
359 return;
360 }
361 }
362
363 internal_error (__FILE__, __LINE__,
364 "unlink_objfile: objfile already unlinked");
365 }
366
367
368 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
369 that as much as possible is allocated on the objfile_obstack
370 so that the memory can be efficiently freed.
371
372 Things which we do NOT free because they are not in malloc'd memory
373 or not in memory specific to the objfile include:
374
375 objfile -> sf
376
377 FIXME: If the objfile is using reusable symbol information (via mmalloc),
378 then we need to take into account the fact that more than one process
379 may be using the symbol information at the same time (when mmalloc is
380 extended to support cooperative locking). When more than one process
381 is using the mapped symbol info, we need to be more careful about when
382 we free objects in the reusable area. */
383
384 void
385 free_objfile (struct objfile *objfile)
386 {
387 if (objfile->separate_debug_objfile)
388 {
389 free_objfile (objfile->separate_debug_objfile);
390 }
391
392 if (objfile->separate_debug_objfile_backlink)
393 {
394 /* We freed the separate debug file, make sure the base objfile
395 doesn't reference it. */
396 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
397 }
398
399 /* First do any symbol file specific actions required when we are
400 finished with a particular symbol file. Note that if the objfile
401 is using reusable symbol information (via mmalloc) then each of
402 these routines is responsible for doing the correct thing, either
403 freeing things which are valid only during this particular gdb
404 execution, or leaving them to be reused during the next one. */
405
406 if (objfile->sf != NULL)
407 {
408 (*objfile->sf->sym_finish) (objfile);
409 }
410
411 /* We always close the bfd. */
412
413 if (objfile->obfd != NULL)
414 {
415 char *name = bfd_get_filename (objfile->obfd);
416 if (!bfd_close (objfile->obfd))
417 warning ("cannot close \"%s\": %s",
418 name, bfd_errmsg (bfd_get_error ()));
419 xfree (name);
420 }
421
422 /* Remove it from the chain of all objfiles. */
423
424 unlink_objfile (objfile);
425
426 /* If we are going to free the runtime common objfile, mark it
427 as unallocated. */
428
429 if (objfile == rt_common_objfile)
430 rt_common_objfile = NULL;
431
432 /* Before the symbol table code was redone to make it easier to
433 selectively load and remove information particular to a specific
434 linkage unit, gdb used to do these things whenever the monolithic
435 symbol table was blown away. How much still needs to be done
436 is unknown, but we play it safe for now and keep each action until
437 it is shown to be no longer needed. */
438
439 /* I *think* all our callers call clear_symtab_users. If so, no need
440 to call this here. */
441 clear_pc_function_cache ();
442
443 /* The last thing we do is free the objfile struct itself. */
444
445 objfile_free_data (objfile);
446 if (objfile->name != NULL)
447 {
448 xmfree (objfile->md, objfile->name);
449 }
450 if (objfile->global_psymbols.list)
451 xmfree (objfile->md, objfile->global_psymbols.list);
452 if (objfile->static_psymbols.list)
453 xmfree (objfile->md, objfile->static_psymbols.list);
454 /* Free the obstacks for non-reusable objfiles */
455 bcache_xfree (objfile->psymbol_cache);
456 bcache_xfree (objfile->macro_cache);
457 if (objfile->demangled_names_hash)
458 htab_delete (objfile->demangled_names_hash);
459 obstack_free (&objfile->objfile_obstack, 0);
460 xmfree (objfile->md, objfile);
461 objfile = NULL;
462 }
463
464 static void
465 do_free_objfile_cleanup (void *obj)
466 {
467 free_objfile (obj);
468 }
469
470 struct cleanup *
471 make_cleanup_free_objfile (struct objfile *obj)
472 {
473 return make_cleanup (do_free_objfile_cleanup, obj);
474 }
475
476 /* Free all the object files at once and clean up their users. */
477
478 void
479 free_all_objfiles (void)
480 {
481 struct objfile *objfile, *temp;
482
483 ALL_OBJFILES_SAFE (objfile, temp)
484 {
485 free_objfile (objfile);
486 }
487 clear_symtab_users ();
488 }
489 \f
490 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
491 entries in new_offsets. */
492 void
493 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
494 {
495 struct section_offsets *delta =
496 ((struct section_offsets *)
497 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
498
499 {
500 int i;
501 int something_changed = 0;
502 for (i = 0; i < objfile->num_sections; ++i)
503 {
504 delta->offsets[i] =
505 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
506 if (ANOFFSET (delta, i) != 0)
507 something_changed = 1;
508 }
509 if (!something_changed)
510 return;
511 }
512
513 /* OK, get all the symtabs. */
514 {
515 struct symtab *s;
516
517 ALL_OBJFILE_SYMTABS (objfile, s)
518 {
519 struct linetable *l;
520 struct blockvector *bv;
521 int i;
522
523 /* First the line table. */
524 l = LINETABLE (s);
525 if (l)
526 {
527 for (i = 0; i < l->nitems; ++i)
528 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
529 }
530
531 /* Don't relocate a shared blockvector more than once. */
532 if (!s->primary)
533 continue;
534
535 bv = BLOCKVECTOR (s);
536 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
537 {
538 struct block *b;
539 struct symbol *sym;
540 struct dict_iterator iter;
541
542 b = BLOCKVECTOR_BLOCK (bv, i);
543 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
544 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
545
546 ALL_BLOCK_SYMBOLS (b, iter, sym)
547 {
548 fixup_symbol_section (sym, objfile);
549
550 /* The RS6000 code from which this was taken skipped
551 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
552 But I'm leaving out that test, on the theory that
553 they can't possibly pass the tests below. */
554 if ((SYMBOL_CLASS (sym) == LOC_LABEL
555 || SYMBOL_CLASS (sym) == LOC_STATIC
556 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
557 && SYMBOL_SECTION (sym) >= 0)
558 {
559 SYMBOL_VALUE_ADDRESS (sym) +=
560 ANOFFSET (delta, SYMBOL_SECTION (sym));
561 }
562 #ifdef MIPS_EFI_SYMBOL_NAME
563 /* Relocate Extra Function Info for ecoff. */
564
565 else if (SYMBOL_CLASS (sym) == LOC_CONST
566 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
567 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
568 ecoff_relocate_efi (sym, ANOFFSET (delta,
569 s->block_line_section));
570 #endif
571 }
572 }
573 }
574 }
575
576 {
577 struct partial_symtab *p;
578
579 ALL_OBJFILE_PSYMTABS (objfile, p)
580 {
581 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
582 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
583 }
584 }
585
586 {
587 struct partial_symbol **psym;
588
589 for (psym = objfile->global_psymbols.list;
590 psym < objfile->global_psymbols.next;
591 psym++)
592 {
593 fixup_psymbol_section (*psym, objfile);
594 if (SYMBOL_SECTION (*psym) >= 0)
595 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
596 SYMBOL_SECTION (*psym));
597 }
598 for (psym = objfile->static_psymbols.list;
599 psym < objfile->static_psymbols.next;
600 psym++)
601 {
602 fixup_psymbol_section (*psym, objfile);
603 if (SYMBOL_SECTION (*psym) >= 0)
604 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
605 SYMBOL_SECTION (*psym));
606 }
607 }
608
609 {
610 struct minimal_symbol *msym;
611 ALL_OBJFILE_MSYMBOLS (objfile, msym)
612 if (SYMBOL_SECTION (msym) >= 0)
613 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
614 }
615 /* Relocating different sections by different amounts may cause the symbols
616 to be out of order. */
617 msymbols_sort (objfile);
618
619 {
620 int i;
621 for (i = 0; i < objfile->num_sections; ++i)
622 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
623 }
624
625 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
626 {
627 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
628 only as a fallback. */
629 struct obj_section *s;
630 s = find_pc_section (objfile->ei.entry_point);
631 if (s)
632 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
633 else
634 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
635 }
636
637 {
638 struct obj_section *s;
639 bfd *abfd;
640
641 abfd = objfile->obfd;
642
643 ALL_OBJFILE_OSECTIONS (objfile, s)
644 {
645 int idx = s->the_bfd_section->index;
646
647 s->addr += ANOFFSET (delta, idx);
648 s->endaddr += ANOFFSET (delta, idx);
649 }
650 }
651
652 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
653 {
654 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
655 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
656 }
657
658 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
659 {
660 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
661 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
662 }
663
664 /* Relocate breakpoints as necessary, after things are relocated. */
665 breakpoint_re_set ();
666 }
667 \f
668 /* Many places in gdb want to test just to see if we have any partial
669 symbols available. This function returns zero if none are currently
670 available, nonzero otherwise. */
671
672 int
673 have_partial_symbols (void)
674 {
675 struct objfile *ofp;
676
677 ALL_OBJFILES (ofp)
678 {
679 if (ofp->psymtabs != NULL)
680 {
681 return 1;
682 }
683 }
684 return 0;
685 }
686
687 /* Many places in gdb want to test just to see if we have any full
688 symbols available. This function returns zero if none are currently
689 available, nonzero otherwise. */
690
691 int
692 have_full_symbols (void)
693 {
694 struct objfile *ofp;
695
696 ALL_OBJFILES (ofp)
697 {
698 if (ofp->symtabs != NULL)
699 {
700 return 1;
701 }
702 }
703 return 0;
704 }
705
706
707 /* This operations deletes all objfile entries that represent solibs that
708 weren't explicitly loaded by the user, via e.g., the add-symbol-file
709 command.
710 */
711 void
712 objfile_purge_solibs (void)
713 {
714 struct objfile *objf;
715 struct objfile *temp;
716
717 ALL_OBJFILES_SAFE (objf, temp)
718 {
719 /* We assume that the solib package has been purged already, or will
720 be soon.
721 */
722 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
723 free_objfile (objf);
724 }
725 }
726
727
728 /* Many places in gdb want to test just to see if we have any minimal
729 symbols available. This function returns zero if none are currently
730 available, nonzero otherwise. */
731
732 int
733 have_minimal_symbols (void)
734 {
735 struct objfile *ofp;
736
737 ALL_OBJFILES (ofp)
738 {
739 if (ofp->minimal_symbol_count > 0)
740 {
741 return 1;
742 }
743 }
744 return 0;
745 }
746
747 /* Returns a section whose range includes PC and SECTION, or NULL if
748 none found. Note the distinction between the return type, struct
749 obj_section (which is defined in gdb), and the input type "struct
750 bfd_section" (which is a bfd-defined data type). The obj_section
751 contains a pointer to the "struct bfd_section". */
752
753 struct obj_section *
754 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
755 {
756 struct obj_section *s;
757 struct objfile *objfile;
758
759 ALL_OBJSECTIONS (objfile, s)
760 if ((section == 0 || section == s->the_bfd_section) &&
761 s->addr <= pc && pc < s->endaddr)
762 return (s);
763
764 return (NULL);
765 }
766
767 /* Returns a section whose range includes PC or NULL if none found.
768 Backward compatibility, no section. */
769
770 struct obj_section *
771 find_pc_section (CORE_ADDR pc)
772 {
773 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
774 }
775
776
777 /* In SVR4, we recognize a trampoline by it's section name.
778 That is, if the pc is in a section named ".plt" then we are in
779 a trampoline. */
780
781 int
782 in_plt_section (CORE_ADDR pc, char *name)
783 {
784 struct obj_section *s;
785 int retval = 0;
786
787 s = find_pc_section (pc);
788
789 retval = (s != NULL
790 && s->the_bfd_section->name != NULL
791 && strcmp (s->the_bfd_section->name, ".plt") == 0);
792 return (retval);
793 }
794
795 /* Return nonzero if NAME is in the import list of OBJFILE. Else
796 return zero. */
797
798 int
799 is_in_import_list (char *name, struct objfile *objfile)
800 {
801 int i;
802
803 if (!objfile || !name || !*name)
804 return 0;
805
806 for (i = 0; i < objfile->import_list_size; i++)
807 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
808 return 1;
809 return 0;
810 }
811 \f
812
813 /* Keep a registry of per-objfile data-pointers required by other GDB
814 modules. */
815
816 struct objfile_data
817 {
818 unsigned index;
819 };
820
821 struct objfile_data_registration
822 {
823 struct objfile_data *data;
824 struct objfile_data_registration *next;
825 };
826
827 struct objfile_data_registry
828 {
829 struct objfile_data_registration *registrations;
830 unsigned num_registrations;
831 };
832
833 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
834
835 const struct objfile_data *
836 register_objfile_data (void)
837 {
838 struct objfile_data_registration **curr;
839
840 /* Append new registration. */
841 for (curr = &objfile_data_registry.registrations;
842 *curr != NULL; curr = &(*curr)->next);
843
844 *curr = XMALLOC (struct objfile_data_registration);
845 (*curr)->next = NULL;
846 (*curr)->data = XMALLOC (struct objfile_data);
847 (*curr)->data->index = objfile_data_registry.num_registrations++;
848
849 return (*curr)->data;
850 }
851
852 static void
853 objfile_alloc_data (struct objfile *objfile)
854 {
855 gdb_assert (objfile->data == NULL);
856 objfile->num_data = objfile_data_registry.num_registrations;
857 objfile->data = XCALLOC (objfile->num_data, void *);
858 }
859
860 static void
861 objfile_free_data (struct objfile *objfile)
862 {
863 gdb_assert (objfile->data != NULL);
864 xfree (objfile->data);
865 objfile->data = NULL;
866 }
867
868 void
869 clear_objfile_data (struct objfile *objfile)
870 {
871 gdb_assert (objfile->data != NULL);
872 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
873 }
874
875 void
876 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
877 void *value)
878 {
879 gdb_assert (data->index < objfile->num_data);
880 objfile->data[data->index] = value;
881 }
882
883 void *
884 objfile_data (struct objfile *objfile, const struct objfile_data *data)
885 {
886 gdb_assert (data->index < objfile->num_data);
887 return objfile->data[data->index];
888 }
This page took 0.059535 seconds and 4 git commands to generate.