"$ gdb PROGRAM" vs "(gdb) file PROGRAM" difference; warn on failure to remove breakpoint.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include <string.h>
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = program_space_data (pspace, objfiles_pspace_data);
103 if (info == NULL)
104 {
105 info = XCNEW (struct objfile_pspace_info);
106 set_program_space_data (pspace, objfiles_pspace_data, info);
107 }
108
109 return info;
110 }
111
112 \f
113
114 /* Per-BFD data key. */
115
116 static const struct bfd_data *objfiles_bfd_data;
117
118 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
119 NULL, and it already has a per-BFD storage object, use that.
120 Otherwise, allocate a new per-BFD storage object. If ABFD is not
121 NULL, the object is allocated on the BFD; otherwise it is allocated
122 on OBJFILE's obstack. Note that it is not safe to call this
123 multiple times for a given OBJFILE -- it can only be called when
124 allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = bfd_data (abfd, objfiles_bfd_data);
133
134 if (storage == NULL)
135 {
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 {
141 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
142 set_bfd_data (abfd, objfiles_bfd_data, storage);
143 }
144 else
145 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
146 struct objfile_per_bfd_storage);
147
148 /* Look up the gdbarch associated with the BFD. */
149 if (abfd != NULL)
150 storage->gdbarch = gdbarch_from_bfd (abfd);
151
152 obstack_init (&storage->storage_obstack);
153 storage->filename_cache = bcache_xmalloc (NULL, NULL);
154 storage->macro_cache = bcache_xmalloc (NULL, NULL);
155 storage->language_of_main = language_unknown;
156 }
157
158 return storage;
159 }
160
161 /* Free STORAGE. */
162
163 static void
164 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
165 {
166 bcache_xfree (storage->filename_cache);
167 bcache_xfree (storage->macro_cache);
168 if (storage->demangled_names_hash)
169 htab_delete (storage->demangled_names_hash);
170 obstack_free (&storage->storage_obstack, 0);
171 }
172
173 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
174 cleanup function to the BFD registry. */
175
176 static void
177 objfile_bfd_data_free (struct bfd *unused, void *d)
178 {
179 free_objfile_per_bfd_storage (d);
180 }
181
182 /* See objfiles.h. */
183
184 void
185 set_objfile_per_bfd (struct objfile *objfile)
186 {
187 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
188 }
189
190 /* Set the objfile's per-BFD notion of the "main" name and
191 language. */
192
193 void
194 set_objfile_main_name (struct objfile *objfile,
195 const char *name, enum language lang)
196 {
197 if (objfile->per_bfd->name_of_main == NULL
198 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
199 objfile->per_bfd->name_of_main
200 = obstack_copy0 (&objfile->per_bfd->storage_obstack, name, strlen (name));
201 objfile->per_bfd->language_of_main = lang;
202 }
203
204 \f
205
206 /* Called via bfd_map_over_sections to build up the section table that
207 the objfile references. The objfile contains pointers to the start
208 of the table (objfile->sections) and to the first location after
209 the end of the table (objfile->sections_end). */
210
211 static void
212 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
213 struct objfile *objfile, int force)
214 {
215 struct obj_section *section;
216
217 if (!force)
218 {
219 flagword aflag;
220
221 aflag = bfd_get_section_flags (abfd, asect);
222 if (!(aflag & SEC_ALLOC))
223 return;
224 }
225
226 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
227 section->objfile = objfile;
228 section->the_bfd_section = asect;
229 section->ovly_mapped = 0;
230 }
231
232 static void
233 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
234 void *objfilep)
235 {
236 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
237 }
238
239 /* Builds a section table for OBJFILE.
240
241 Note that the OFFSET and OVLY_MAPPED in each table entry are
242 initialized to zero. */
243
244 void
245 build_objfile_section_table (struct objfile *objfile)
246 {
247 int count = gdb_bfd_count_sections (objfile->obfd);
248
249 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
250 count,
251 struct obj_section);
252 objfile->sections_end = (objfile->sections + count);
253 bfd_map_over_sections (objfile->obfd,
254 add_to_objfile_sections, (void *) objfile);
255
256 /* See gdb_bfd_section_index. */
257 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
258 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
259 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
260 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
261 }
262
263 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
264 allocate a new objfile struct, fill it in as best we can, link it
265 into the list of all known objfiles, and return a pointer to the
266 new objfile struct.
267
268 NAME should contain original non-canonicalized filename or other
269 identifier as entered by user. If there is no better source use
270 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
271 NAME content is copied into returned objfile.
272
273 The FLAGS word contains various bits (OBJF_*) that can be taken as
274 requests for specific operations. Other bits like OBJF_SHARED are
275 simply copied through to the new objfile flags member. */
276
277 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
278 by jv-lang.c, to create an artificial objfile used to hold
279 information about dynamically-loaded Java classes. Unfortunately,
280 that branch of this function doesn't get tested very frequently, so
281 it's prone to breakage. (E.g. at one time the name was set to NULL
282 in that situation, which broke a loop over all names in the dynamic
283 library loader.) If you change this function, please try to leave
284 things in a consistent state even if abfd is NULL. */
285
286 struct objfile *
287 allocate_objfile (bfd *abfd, const char *name, int flags)
288 {
289 struct objfile *objfile;
290 char *expanded_name;
291
292 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
293 objfile->psymbol_cache = psymbol_bcache_init ();
294 /* We could use obstack_specify_allocation here instead, but
295 gdb_obstack.h specifies the alloc/dealloc functions. */
296 obstack_init (&objfile->objfile_obstack);
297
298 objfile_alloc_data (objfile);
299
300 if (name == NULL)
301 {
302 gdb_assert (abfd == NULL);
303 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
304 expanded_name = xstrdup ("<<anonymous objfile>>");
305 }
306 else if ((flags & OBJF_NOT_FILENAME) != 0)
307 expanded_name = xstrdup (name);
308 else
309 expanded_name = gdb_abspath (name);
310 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
311 expanded_name,
312 strlen (expanded_name));
313 xfree (expanded_name);
314
315 /* Update the per-objfile information that comes from the bfd, ensuring
316 that any data that is reference is saved in the per-objfile data
317 region. */
318
319 /* Update the per-objfile information that comes from the bfd, ensuring
320 that any data that is reference is saved in the per-objfile data
321 region. */
322
323 objfile->obfd = abfd;
324 gdb_bfd_ref (abfd);
325 if (abfd != NULL)
326 {
327 objfile->mtime = bfd_get_mtime (abfd);
328
329 /* Build section table. */
330 build_objfile_section_table (objfile);
331 }
332
333 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
334 objfile->pspace = current_program_space;
335
336 terminate_minimal_symbol_table (objfile);
337
338 /* Initialize the section indexes for this objfile, so that we can
339 later detect if they are used w/o being properly assigned to. */
340
341 objfile->sect_index_text = -1;
342 objfile->sect_index_data = -1;
343 objfile->sect_index_bss = -1;
344 objfile->sect_index_rodata = -1;
345
346 /* Add this file onto the tail of the linked list of other such files. */
347
348 objfile->next = NULL;
349 if (object_files == NULL)
350 object_files = objfile;
351 else
352 {
353 struct objfile *last_one;
354
355 for (last_one = object_files;
356 last_one->next;
357 last_one = last_one->next);
358 last_one->next = objfile;
359 }
360
361 /* Save passed in flag bits. */
362 objfile->flags |= flags;
363
364 /* Rebuild section map next time we need it. */
365 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
366
367 return objfile;
368 }
369
370 /* Retrieve the gdbarch associated with OBJFILE. */
371 struct gdbarch *
372 get_objfile_arch (struct objfile *objfile)
373 {
374 return objfile->per_bfd->gdbarch;
375 }
376
377 /* If there is a valid and known entry point, function fills *ENTRY_P with it
378 and returns non-zero; otherwise it returns zero. */
379
380 int
381 entry_point_address_query (CORE_ADDR *entry_p)
382 {
383 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
384 return 0;
385
386 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
387 + ANOFFSET (symfile_objfile->section_offsets,
388 symfile_objfile->per_bfd->ei.the_bfd_section_index));
389
390 return 1;
391 }
392
393 /* Get current entry point address. Call error if it is not known. */
394
395 CORE_ADDR
396 entry_point_address (void)
397 {
398 CORE_ADDR retval;
399
400 if (!entry_point_address_query (&retval))
401 error (_("Entry point address is not known."));
402
403 return retval;
404 }
405
406 /* Iterator on PARENT and every separate debug objfile of PARENT.
407 The usage pattern is:
408 for (objfile = parent;
409 objfile;
410 objfile = objfile_separate_debug_iterate (parent, objfile))
411 ...
412 */
413
414 struct objfile *
415 objfile_separate_debug_iterate (const struct objfile *parent,
416 const struct objfile *objfile)
417 {
418 struct objfile *res;
419
420 /* If any, return the first child. */
421 res = objfile->separate_debug_objfile;
422 if (res)
423 return res;
424
425 /* Common case where there is no separate debug objfile. */
426 if (objfile == parent)
427 return NULL;
428
429 /* Return the brother if any. Note that we don't iterate on brothers of
430 the parents. */
431 res = objfile->separate_debug_objfile_link;
432 if (res)
433 return res;
434
435 for (res = objfile->separate_debug_objfile_backlink;
436 res != parent;
437 res = res->separate_debug_objfile_backlink)
438 {
439 gdb_assert (res != NULL);
440 if (res->separate_debug_objfile_link)
441 return res->separate_debug_objfile_link;
442 }
443 return NULL;
444 }
445
446 /* Put one object file before a specified on in the global list.
447 This can be used to make sure an object file is destroyed before
448 another when using ALL_OBJFILES_SAFE to free all objfiles. */
449 void
450 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
451 {
452 struct objfile **objp;
453
454 unlink_objfile (objfile);
455
456 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
457 {
458 if (*objp == before_this)
459 {
460 objfile->next = *objp;
461 *objp = objfile;
462 return;
463 }
464 }
465
466 internal_error (__FILE__, __LINE__,
467 _("put_objfile_before: before objfile not in list"));
468 }
469
470 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
471 list.
472
473 It is not a bug, or error, to call this function if OBJFILE is not known
474 to be in the current list. This is done in the case of mapped objfiles,
475 for example, just to ensure that the mapped objfile doesn't appear twice
476 in the list. Since the list is threaded, linking in a mapped objfile
477 twice would create a circular list.
478
479 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
480 unlinking it, just to ensure that we have completely severed any linkages
481 between the OBJFILE and the list. */
482
483 void
484 unlink_objfile (struct objfile *objfile)
485 {
486 struct objfile **objpp;
487
488 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
489 {
490 if (*objpp == objfile)
491 {
492 *objpp = (*objpp)->next;
493 objfile->next = NULL;
494 return;
495 }
496 }
497
498 internal_error (__FILE__, __LINE__,
499 _("unlink_objfile: objfile already unlinked"));
500 }
501
502 /* Add OBJFILE as a separate debug objfile of PARENT. */
503
504 void
505 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
506 {
507 gdb_assert (objfile && parent);
508
509 /* Must not be already in a list. */
510 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
511 gdb_assert (objfile->separate_debug_objfile_link == NULL);
512 gdb_assert (objfile->separate_debug_objfile == NULL);
513 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
514 gdb_assert (parent->separate_debug_objfile_link == NULL);
515
516 objfile->separate_debug_objfile_backlink = parent;
517 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
518 parent->separate_debug_objfile = objfile;
519
520 /* Put the separate debug object before the normal one, this is so that
521 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
522 put_objfile_before (objfile, parent);
523 }
524
525 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
526 itself. */
527
528 void
529 free_objfile_separate_debug (struct objfile *objfile)
530 {
531 struct objfile *child;
532
533 for (child = objfile->separate_debug_objfile; child;)
534 {
535 struct objfile *next_child = child->separate_debug_objfile_link;
536 free_objfile (child);
537 child = next_child;
538 }
539 }
540
541 /* Destroy an objfile and all the symtabs and psymtabs under it. */
542
543 void
544 free_objfile (struct objfile *objfile)
545 {
546 /* First notify observers that this objfile is about to be freed. */
547 observer_notify_free_objfile (objfile);
548
549 /* Free all separate debug objfiles. */
550 free_objfile_separate_debug (objfile);
551
552 if (objfile->separate_debug_objfile_backlink)
553 {
554 /* We freed the separate debug file, make sure the base objfile
555 doesn't reference it. */
556 struct objfile *child;
557
558 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
559
560 if (child == objfile)
561 {
562 /* OBJFILE is the first child. */
563 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
564 objfile->separate_debug_objfile_link;
565 }
566 else
567 {
568 /* Find OBJFILE in the list. */
569 while (1)
570 {
571 if (child->separate_debug_objfile_link == objfile)
572 {
573 child->separate_debug_objfile_link =
574 objfile->separate_debug_objfile_link;
575 break;
576 }
577 child = child->separate_debug_objfile_link;
578 gdb_assert (child);
579 }
580 }
581 }
582
583 /* Remove any references to this objfile in the global value
584 lists. */
585 preserve_values (objfile);
586
587 /* It still may reference data modules have associated with the objfile and
588 the symbol file data. */
589 forget_cached_source_info_for_objfile (objfile);
590
591 breakpoint_free_objfile (objfile);
592 btrace_free_objfile (objfile);
593
594 /* First do any symbol file specific actions required when we are
595 finished with a particular symbol file. Note that if the objfile
596 is using reusable symbol information (via mmalloc) then each of
597 these routines is responsible for doing the correct thing, either
598 freeing things which are valid only during this particular gdb
599 execution, or leaving them to be reused during the next one. */
600
601 if (objfile->sf != NULL)
602 {
603 (*objfile->sf->sym_finish) (objfile);
604 }
605
606 /* Discard any data modules have associated with the objfile. The function
607 still may reference objfile->obfd. */
608 objfile_free_data (objfile);
609
610 if (objfile->obfd)
611 gdb_bfd_unref (objfile->obfd);
612 else
613 free_objfile_per_bfd_storage (objfile->per_bfd);
614
615 /* Remove it from the chain of all objfiles. */
616
617 unlink_objfile (objfile);
618
619 if (objfile == symfile_objfile)
620 symfile_objfile = NULL;
621
622 /* Before the symbol table code was redone to make it easier to
623 selectively load and remove information particular to a specific
624 linkage unit, gdb used to do these things whenever the monolithic
625 symbol table was blown away. How much still needs to be done
626 is unknown, but we play it safe for now and keep each action until
627 it is shown to be no longer needed. */
628
629 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
630 for example), so we need to call this here. */
631 clear_pc_function_cache ();
632
633 /* Clear globals which might have pointed into a removed objfile.
634 FIXME: It's not clear which of these are supposed to persist
635 between expressions and which ought to be reset each time. */
636 expression_context_block = NULL;
637 innermost_block = NULL;
638
639 /* Check to see if the current_source_symtab belongs to this objfile,
640 and if so, call clear_current_source_symtab_and_line. */
641
642 {
643 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
644
645 if (cursal.symtab && cursal.symtab->objfile == objfile)
646 clear_current_source_symtab_and_line ();
647 }
648
649 if (objfile->global_psymbols.list)
650 xfree (objfile->global_psymbols.list);
651 if (objfile->static_psymbols.list)
652 xfree (objfile->static_psymbols.list);
653 /* Free the obstacks for non-reusable objfiles. */
654 psymbol_bcache_free (objfile->psymbol_cache);
655 obstack_free (&objfile->objfile_obstack, 0);
656
657 /* Rebuild section map next time we need it. */
658 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
659
660 /* The last thing we do is free the objfile struct itself. */
661 xfree (objfile);
662 }
663
664 static void
665 do_free_objfile_cleanup (void *obj)
666 {
667 free_objfile (obj);
668 }
669
670 struct cleanup *
671 make_cleanup_free_objfile (struct objfile *obj)
672 {
673 return make_cleanup (do_free_objfile_cleanup, obj);
674 }
675
676 /* Free all the object files at once and clean up their users. */
677
678 void
679 free_all_objfiles (void)
680 {
681 struct objfile *objfile, *temp;
682 struct so_list *so;
683
684 /* Any objfile referencewould become stale. */
685 for (so = master_so_list (); so; so = so->next)
686 gdb_assert (so->objfile == NULL);
687
688 ALL_OBJFILES_SAFE (objfile, temp)
689 {
690 free_objfile (objfile);
691 }
692 clear_symtab_users (0);
693 }
694 \f
695 /* A helper function for objfile_relocate1 that relocates a single
696 symbol. */
697
698 static void
699 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
700 struct section_offsets *delta)
701 {
702 fixup_symbol_section (sym, objfile);
703
704 /* The RS6000 code from which this was taken skipped
705 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
706 But I'm leaving out that test, on the theory that
707 they can't possibly pass the tests below. */
708 if ((SYMBOL_CLASS (sym) == LOC_LABEL
709 || SYMBOL_CLASS (sym) == LOC_STATIC)
710 && SYMBOL_SECTION (sym) >= 0)
711 {
712 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
713 }
714 }
715
716 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
717 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
718 Return non-zero iff any change happened. */
719
720 static int
721 objfile_relocate1 (struct objfile *objfile,
722 const struct section_offsets *new_offsets)
723 {
724 struct obj_section *s;
725 struct section_offsets *delta =
726 ((struct section_offsets *)
727 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
728
729 int i;
730 int something_changed = 0;
731
732 for (i = 0; i < objfile->num_sections; ++i)
733 {
734 delta->offsets[i] =
735 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
736 if (ANOFFSET (delta, i) != 0)
737 something_changed = 1;
738 }
739 if (!something_changed)
740 return 0;
741
742 /* OK, get all the symtabs. */
743 {
744 struct symtab *s;
745
746 ALL_OBJFILE_SYMTABS (objfile, s)
747 {
748 struct linetable *l;
749 struct blockvector *bv;
750 int i;
751
752 /* First the line table. */
753 l = LINETABLE (s);
754 if (l)
755 {
756 for (i = 0; i < l->nitems; ++i)
757 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
758 }
759
760 /* Don't relocate a shared blockvector more than once. */
761 if (!s->primary)
762 continue;
763
764 bv = BLOCKVECTOR (s);
765 if (BLOCKVECTOR_MAP (bv))
766 addrmap_relocate (BLOCKVECTOR_MAP (bv),
767 ANOFFSET (delta, s->block_line_section));
768
769 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
770 {
771 struct block *b;
772 struct symbol *sym;
773 struct dict_iterator iter;
774
775 b = BLOCKVECTOR_BLOCK (bv, i);
776 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
777 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
778
779 /* We only want to iterate over the local symbols, not any
780 symbols in included symtabs. */
781 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
782 {
783 relocate_one_symbol (sym, objfile, delta);
784 }
785 }
786 }
787 }
788
789 /* Relocate isolated symbols. */
790 {
791 struct symbol *iter;
792
793 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
794 relocate_one_symbol (iter, objfile, delta);
795 }
796
797 if (objfile->psymtabs_addrmap)
798 addrmap_relocate (objfile->psymtabs_addrmap,
799 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
800
801 if (objfile->sf)
802 objfile->sf->qf->relocate (objfile, new_offsets, delta);
803
804 {
805 int i;
806
807 for (i = 0; i < objfile->num_sections; ++i)
808 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
809 }
810
811 /* Rebuild section map next time we need it. */
812 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
813
814 /* Update the table in exec_ops, used to read memory. */
815 ALL_OBJFILE_OSECTIONS (objfile, s)
816 {
817 int idx = s - objfile->sections;
818
819 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
820 obj_section_addr (s));
821 }
822
823 /* Data changed. */
824 return 1;
825 }
826
827 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
828 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
829
830 The number and ordering of sections does differ between the two objfiles.
831 Only their names match. Also the file offsets will differ (objfile being
832 possibly prelinked but separate_debug_objfile is probably not prelinked) but
833 the in-memory absolute address as specified by NEW_OFFSETS must match both
834 files. */
835
836 void
837 objfile_relocate (struct objfile *objfile,
838 const struct section_offsets *new_offsets)
839 {
840 struct objfile *debug_objfile;
841 int changed = 0;
842
843 changed |= objfile_relocate1 (objfile, new_offsets);
844
845 for (debug_objfile = objfile->separate_debug_objfile;
846 debug_objfile;
847 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
848 {
849 struct section_addr_info *objfile_addrs;
850 struct section_offsets *new_debug_offsets;
851 struct cleanup *my_cleanups;
852
853 objfile_addrs = build_section_addr_info_from_objfile (objfile);
854 my_cleanups = make_cleanup (xfree, objfile_addrs);
855
856 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
857 relative ones must be already created according to debug_objfile. */
858
859 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
860
861 gdb_assert (debug_objfile->num_sections
862 == gdb_bfd_count_sections (debug_objfile->obfd));
863 new_debug_offsets =
864 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
865 make_cleanup (xfree, new_debug_offsets);
866 relative_addr_info_to_section_offsets (new_debug_offsets,
867 debug_objfile->num_sections,
868 objfile_addrs);
869
870 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
871
872 do_cleanups (my_cleanups);
873 }
874
875 /* Relocate breakpoints as necessary, after things are relocated. */
876 if (changed)
877 breakpoint_re_set ();
878 }
879
880 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
881 not touched here.
882 Return non-zero iff any change happened. */
883
884 static int
885 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
886 {
887 struct section_offsets *new_offsets =
888 ((struct section_offsets *)
889 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
890 int i;
891
892 for (i = 0; i < objfile->num_sections; ++i)
893 new_offsets->offsets[i] = slide;
894
895 return objfile_relocate1 (objfile, new_offsets);
896 }
897
898 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
899 SEPARATE_DEBUG_OBJFILEs. */
900
901 void
902 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
903 {
904 struct objfile *debug_objfile;
905 int changed = 0;
906
907 changed |= objfile_rebase1 (objfile, slide);
908
909 for (debug_objfile = objfile->separate_debug_objfile;
910 debug_objfile;
911 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
912 changed |= objfile_rebase1 (debug_objfile, slide);
913
914 /* Relocate breakpoints as necessary, after things are relocated. */
915 if (changed)
916 breakpoint_re_set ();
917 }
918 \f
919 /* Return non-zero if OBJFILE has partial symbols. */
920
921 int
922 objfile_has_partial_symbols (struct objfile *objfile)
923 {
924 if (!objfile->sf)
925 return 0;
926
927 /* If we have not read psymbols, but we have a function capable of reading
928 them, then that is an indication that they are in fact available. Without
929 this function the symbols may have been already read in but they also may
930 not be present in this objfile. */
931 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
932 && objfile->sf->sym_read_psymbols != NULL)
933 return 1;
934
935 return objfile->sf->qf->has_symbols (objfile);
936 }
937
938 /* Return non-zero if OBJFILE has full symbols. */
939
940 int
941 objfile_has_full_symbols (struct objfile *objfile)
942 {
943 return objfile->symtabs != NULL;
944 }
945
946 /* Return non-zero if OBJFILE has full or partial symbols, either directly
947 or through a separate debug file. */
948
949 int
950 objfile_has_symbols (struct objfile *objfile)
951 {
952 struct objfile *o;
953
954 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
955 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
956 return 1;
957 return 0;
958 }
959
960
961 /* Many places in gdb want to test just to see if we have any partial
962 symbols available. This function returns zero if none are currently
963 available, nonzero otherwise. */
964
965 int
966 have_partial_symbols (void)
967 {
968 struct objfile *ofp;
969
970 ALL_OBJFILES (ofp)
971 {
972 if (objfile_has_partial_symbols (ofp))
973 return 1;
974 }
975 return 0;
976 }
977
978 /* Many places in gdb want to test just to see if we have any full
979 symbols available. This function returns zero if none are currently
980 available, nonzero otherwise. */
981
982 int
983 have_full_symbols (void)
984 {
985 struct objfile *ofp;
986
987 ALL_OBJFILES (ofp)
988 {
989 if (objfile_has_full_symbols (ofp))
990 return 1;
991 }
992 return 0;
993 }
994
995
996 /* This operations deletes all objfile entries that represent solibs that
997 weren't explicitly loaded by the user, via e.g., the add-symbol-file
998 command. */
999
1000 void
1001 objfile_purge_solibs (void)
1002 {
1003 struct objfile *objf;
1004 struct objfile *temp;
1005
1006 ALL_OBJFILES_SAFE (objf, temp)
1007 {
1008 /* We assume that the solib package has been purged already, or will
1009 be soon. */
1010
1011 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1012 free_objfile (objf);
1013 }
1014 }
1015
1016
1017 /* Many places in gdb want to test just to see if we have any minimal
1018 symbols available. This function returns zero if none are currently
1019 available, nonzero otherwise. */
1020
1021 int
1022 have_minimal_symbols (void)
1023 {
1024 struct objfile *ofp;
1025
1026 ALL_OBJFILES (ofp)
1027 {
1028 if (ofp->per_bfd->minimal_symbol_count > 0)
1029 {
1030 return 1;
1031 }
1032 }
1033 return 0;
1034 }
1035
1036 /* Qsort comparison function. */
1037
1038 static int
1039 qsort_cmp (const void *a, const void *b)
1040 {
1041 const struct obj_section *sect1 = *(const struct obj_section **) a;
1042 const struct obj_section *sect2 = *(const struct obj_section **) b;
1043 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1044 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1045
1046 if (sect1_addr < sect2_addr)
1047 return -1;
1048 else if (sect1_addr > sect2_addr)
1049 return 1;
1050 else
1051 {
1052 /* Sections are at the same address. This could happen if
1053 A) we have an objfile and a separate debuginfo.
1054 B) we are confused, and have added sections without proper relocation,
1055 or something like that. */
1056
1057 const struct objfile *const objfile1 = sect1->objfile;
1058 const struct objfile *const objfile2 = sect2->objfile;
1059
1060 if (objfile1->separate_debug_objfile == objfile2
1061 || objfile2->separate_debug_objfile == objfile1)
1062 {
1063 /* Case A. The ordering doesn't matter: separate debuginfo files
1064 will be filtered out later. */
1065
1066 return 0;
1067 }
1068
1069 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1070 triage. This section could be slow (since we iterate over all
1071 objfiles in each call to qsort_cmp), but this shouldn't happen
1072 very often (GDB is already in a confused state; one hopes this
1073 doesn't happen at all). If you discover that significant time is
1074 spent in the loops below, do 'set complaints 100' and examine the
1075 resulting complaints. */
1076
1077 if (objfile1 == objfile2)
1078 {
1079 /* Both sections came from the same objfile. We are really confused.
1080 Sort on sequence order of sections within the objfile. */
1081
1082 const struct obj_section *osect;
1083
1084 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1085 if (osect == sect1)
1086 return -1;
1087 else if (osect == sect2)
1088 return 1;
1089
1090 /* We should have found one of the sections before getting here. */
1091 gdb_assert_not_reached ("section not found");
1092 }
1093 else
1094 {
1095 /* Sort on sequence number of the objfile in the chain. */
1096
1097 const struct objfile *objfile;
1098
1099 ALL_OBJFILES (objfile)
1100 if (objfile == objfile1)
1101 return -1;
1102 else if (objfile == objfile2)
1103 return 1;
1104
1105 /* We should have found one of the objfiles before getting here. */
1106 gdb_assert_not_reached ("objfile not found");
1107 }
1108 }
1109
1110 /* Unreachable. */
1111 gdb_assert_not_reached ("unexpected code path");
1112 return 0;
1113 }
1114
1115 /* Select "better" obj_section to keep. We prefer the one that came from
1116 the real object, rather than the one from separate debuginfo.
1117 Most of the time the two sections are exactly identical, but with
1118 prelinking the .rel.dyn section in the real object may have different
1119 size. */
1120
1121 static struct obj_section *
1122 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1123 {
1124 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1125 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1126 || (b->objfile->separate_debug_objfile == a->objfile));
1127 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1128 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1129
1130 if (a->objfile->separate_debug_objfile != NULL)
1131 return a;
1132 return b;
1133 }
1134
1135 /* Return 1 if SECTION should be inserted into the section map.
1136 We want to insert only non-overlay and non-TLS section. */
1137
1138 static int
1139 insert_section_p (const struct bfd *abfd,
1140 const struct bfd_section *section)
1141 {
1142 const bfd_vma lma = bfd_section_lma (abfd, section);
1143
1144 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1145 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1146 /* This is an overlay section. IN_MEMORY check is needed to avoid
1147 discarding sections from the "system supplied DSO" (aka vdso)
1148 on some Linux systems (e.g. Fedora 11). */
1149 return 0;
1150 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1151 /* This is a TLS section. */
1152 return 0;
1153
1154 return 1;
1155 }
1156
1157 /* Filter out overlapping sections where one section came from the real
1158 objfile, and the other from a separate debuginfo file.
1159 Return the size of table after redundant sections have been eliminated. */
1160
1161 static int
1162 filter_debuginfo_sections (struct obj_section **map, int map_size)
1163 {
1164 int i, j;
1165
1166 for (i = 0, j = 0; i < map_size - 1; i++)
1167 {
1168 struct obj_section *const sect1 = map[i];
1169 struct obj_section *const sect2 = map[i + 1];
1170 const struct objfile *const objfile1 = sect1->objfile;
1171 const struct objfile *const objfile2 = sect2->objfile;
1172 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1173 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1174
1175 if (sect1_addr == sect2_addr
1176 && (objfile1->separate_debug_objfile == objfile2
1177 || objfile2->separate_debug_objfile == objfile1))
1178 {
1179 map[j++] = preferred_obj_section (sect1, sect2);
1180 ++i;
1181 }
1182 else
1183 map[j++] = sect1;
1184 }
1185
1186 if (i < map_size)
1187 {
1188 gdb_assert (i == map_size - 1);
1189 map[j++] = map[i];
1190 }
1191
1192 /* The map should not have shrunk to less than half the original size. */
1193 gdb_assert (map_size / 2 <= j);
1194
1195 return j;
1196 }
1197
1198 /* Filter out overlapping sections, issuing a warning if any are found.
1199 Overlapping sections could really be overlay sections which we didn't
1200 classify as such in insert_section_p, or we could be dealing with a
1201 corrupt binary. */
1202
1203 static int
1204 filter_overlapping_sections (struct obj_section **map, int map_size)
1205 {
1206 int i, j;
1207
1208 for (i = 0, j = 0; i < map_size - 1; )
1209 {
1210 int k;
1211
1212 map[j++] = map[i];
1213 for (k = i + 1; k < map_size; k++)
1214 {
1215 struct obj_section *const sect1 = map[i];
1216 struct obj_section *const sect2 = map[k];
1217 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1218 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1219 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1220
1221 gdb_assert (sect1_addr <= sect2_addr);
1222
1223 if (sect1_endaddr <= sect2_addr)
1224 break;
1225 else
1226 {
1227 /* We have an overlap. Report it. */
1228
1229 struct objfile *const objf1 = sect1->objfile;
1230 struct objfile *const objf2 = sect2->objfile;
1231
1232 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1233 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1234
1235 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1236
1237 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1238
1239 complaint (&symfile_complaints,
1240 _("unexpected overlap between:\n"
1241 " (A) section `%s' from `%s' [%s, %s)\n"
1242 " (B) section `%s' from `%s' [%s, %s).\n"
1243 "Will ignore section B"),
1244 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1245 paddress (gdbarch, sect1_addr),
1246 paddress (gdbarch, sect1_endaddr),
1247 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1248 paddress (gdbarch, sect2_addr),
1249 paddress (gdbarch, sect2_endaddr));
1250 }
1251 }
1252 i = k;
1253 }
1254
1255 if (i < map_size)
1256 {
1257 gdb_assert (i == map_size - 1);
1258 map[j++] = map[i];
1259 }
1260
1261 return j;
1262 }
1263
1264
1265 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1266 TLS, overlay and overlapping sections. */
1267
1268 static void
1269 update_section_map (struct program_space *pspace,
1270 struct obj_section ***pmap, int *pmap_size)
1271 {
1272 struct objfile_pspace_info *pspace_info;
1273 int alloc_size, map_size, i;
1274 struct obj_section *s, **map;
1275 struct objfile *objfile;
1276
1277 pspace_info = get_objfile_pspace_data (pspace);
1278 gdb_assert (pspace_info->section_map_dirty != 0
1279 || pspace_info->new_objfiles_available != 0);
1280
1281 map = *pmap;
1282 xfree (map);
1283
1284 alloc_size = 0;
1285 ALL_PSPACE_OBJFILES (pspace, objfile)
1286 ALL_OBJFILE_OSECTIONS (objfile, s)
1287 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1288 alloc_size += 1;
1289
1290 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1291 if (alloc_size == 0)
1292 {
1293 *pmap = NULL;
1294 *pmap_size = 0;
1295 return;
1296 }
1297
1298 map = xmalloc (alloc_size * sizeof (*map));
1299
1300 i = 0;
1301 ALL_PSPACE_OBJFILES (pspace, objfile)
1302 ALL_OBJFILE_OSECTIONS (objfile, s)
1303 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1304 map[i++] = s;
1305
1306 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1307 map_size = filter_debuginfo_sections(map, alloc_size);
1308 map_size = filter_overlapping_sections(map, map_size);
1309
1310 if (map_size < alloc_size)
1311 /* Some sections were eliminated. Trim excess space. */
1312 map = xrealloc (map, map_size * sizeof (*map));
1313 else
1314 gdb_assert (alloc_size == map_size);
1315
1316 *pmap = map;
1317 *pmap_size = map_size;
1318 }
1319
1320 /* Bsearch comparison function. */
1321
1322 static int
1323 bsearch_cmp (const void *key, const void *elt)
1324 {
1325 const CORE_ADDR pc = *(CORE_ADDR *) key;
1326 const struct obj_section *section = *(const struct obj_section **) elt;
1327
1328 if (pc < obj_section_addr (section))
1329 return -1;
1330 if (pc < obj_section_endaddr (section))
1331 return 0;
1332 return 1;
1333 }
1334
1335 /* Returns a section whose range includes PC or NULL if none found. */
1336
1337 struct obj_section *
1338 find_pc_section (CORE_ADDR pc)
1339 {
1340 struct objfile_pspace_info *pspace_info;
1341 struct obj_section *s, **sp;
1342
1343 /* Check for mapped overlay section first. */
1344 s = find_pc_mapped_section (pc);
1345 if (s)
1346 return s;
1347
1348 pspace_info = get_objfile_pspace_data (current_program_space);
1349 if (pspace_info->section_map_dirty
1350 || (pspace_info->new_objfiles_available
1351 && !pspace_info->inhibit_updates))
1352 {
1353 update_section_map (current_program_space,
1354 &pspace_info->sections,
1355 &pspace_info->num_sections);
1356
1357 /* Don't need updates to section map until objfiles are added,
1358 removed or relocated. */
1359 pspace_info->new_objfiles_available = 0;
1360 pspace_info->section_map_dirty = 0;
1361 }
1362
1363 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1364 bsearch be non-NULL. */
1365 if (pspace_info->sections == NULL)
1366 {
1367 gdb_assert (pspace_info->num_sections == 0);
1368 return NULL;
1369 }
1370
1371 sp = (struct obj_section **) bsearch (&pc,
1372 pspace_info->sections,
1373 pspace_info->num_sections,
1374 sizeof (*pspace_info->sections),
1375 bsearch_cmp);
1376 if (sp != NULL)
1377 return *sp;
1378 return NULL;
1379 }
1380
1381
1382 /* Return non-zero if PC is in a section called NAME. */
1383
1384 int
1385 pc_in_section (CORE_ADDR pc, char *name)
1386 {
1387 struct obj_section *s;
1388 int retval = 0;
1389
1390 s = find_pc_section (pc);
1391
1392 retval = (s != NULL
1393 && s->the_bfd_section->name != NULL
1394 && strcmp (s->the_bfd_section->name, name) == 0);
1395 return (retval);
1396 }
1397 \f
1398
1399 /* Set section_map_dirty so section map will be rebuilt next time it
1400 is used. Called by reread_symbols. */
1401
1402 void
1403 objfiles_changed (void)
1404 {
1405 /* Rebuild section map next time we need it. */
1406 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1407 }
1408
1409 /* See comments in objfiles.h. */
1410
1411 void
1412 inhibit_section_map_updates (struct program_space *pspace)
1413 {
1414 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1415 }
1416
1417 /* See comments in objfiles.h. */
1418
1419 void
1420 resume_section_map_updates (struct program_space *pspace)
1421 {
1422 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1423 }
1424
1425 /* See comments in objfiles.h. */
1426
1427 void
1428 resume_section_map_updates_cleanup (void *arg)
1429 {
1430 resume_section_map_updates (arg);
1431 }
1432
1433 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1434 otherwise. */
1435
1436 int
1437 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1438 {
1439 struct obj_section *osect;
1440
1441 if (objfile == NULL)
1442 return 0;
1443
1444 ALL_OBJFILE_OSECTIONS (objfile, osect)
1445 {
1446 if (section_is_overlay (osect) && !section_is_mapped (osect))
1447 continue;
1448
1449 if (obj_section_addr (osect) <= addr
1450 && addr < obj_section_endaddr (osect))
1451 return 1;
1452 }
1453 return 0;
1454 }
1455
1456 int
1457 shared_objfile_contains_address_p (struct program_space *pspace,
1458 CORE_ADDR address)
1459 {
1460 struct objfile *objfile;
1461
1462 ALL_PSPACE_OBJFILES (pspace, objfile)
1463 {
1464 if ((objfile->flags & OBJF_SHARED) != 0
1465 && is_addr_in_objfile (address, objfile))
1466 return 1;
1467 }
1468
1469 return 0;
1470 }
1471
1472 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1473 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1474 searching the objfiles in the order they are stored internally,
1475 ignoring CURRENT_OBJFILE.
1476
1477 On most platorms, it should be close enough to doing the best
1478 we can without some knowledge specific to the architecture. */
1479
1480 void
1481 default_iterate_over_objfiles_in_search_order
1482 (struct gdbarch *gdbarch,
1483 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1484 void *cb_data, struct objfile *current_objfile)
1485 {
1486 int stop = 0;
1487 struct objfile *objfile;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 stop = cb (objfile, cb_data);
1492 if (stop)
1493 return;
1494 }
1495 }
1496
1497 /* Return canonical name for OBJFILE. */
1498
1499 const char *
1500 objfile_name (const struct objfile *objfile)
1501 {
1502 if (objfile->obfd != NULL)
1503 return bfd_get_filename (objfile->obfd);
1504
1505 return objfile->original_name;
1506 }
1507
1508 /* Provide a prototype to silence -Wmissing-prototypes. */
1509 extern initialize_file_ftype _initialize_objfiles;
1510
1511 void
1512 _initialize_objfiles (void)
1513 {
1514 objfiles_pspace_data
1515 = register_program_space_data_with_cleanup (NULL,
1516 objfiles_pspace_data_cleanup);
1517
1518 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1519 objfile_bfd_data_free);
1520 }
This page took 0.062564 seconds and 4 git commands to generate.