Code cleanup: Add objfile_name accessor
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info;
89
90 info = program_space_data (pspace, objfiles_pspace_data);
91 if (info != NULL)
92 {
93 xfree (info->sections);
94 xfree (info);
95 }
96 }
97
98 /* Get the current svr4 data. If none is found yet, add it now. This
99 function always returns a valid object. */
100
101 static struct objfile_pspace_info *
102 get_objfile_pspace_data (struct program_space *pspace)
103 {
104 struct objfile_pspace_info *info;
105
106 info = program_space_data (pspace, objfiles_pspace_data);
107 if (info == NULL)
108 {
109 info = XZALLOC (struct objfile_pspace_info);
110 set_program_space_data (pspace, objfiles_pspace_data, info);
111 }
112
113 return info;
114 }
115
116 \f
117
118 /* Per-BFD data key. */
119
120 static const struct bfd_data *objfiles_bfd_data;
121
122 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
123 NULL, and it already has a per-BFD storage object, use that.
124 Otherwise, allocate a new per-BFD storage object. If ABFD is not
125 NULL, the object is allocated on the BFD; otherwise it is allocated
126 on OBJFILE's obstack. Note that it is not safe to call this
127 multiple times for a given OBJFILE -- it can only be called when
128 allocating or re-initializing OBJFILE. */
129
130 static struct objfile_per_bfd_storage *
131 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
132 {
133 struct objfile_per_bfd_storage *storage = NULL;
134
135 if (abfd != NULL)
136 storage = bfd_data (abfd, objfiles_bfd_data);
137
138 if (storage == NULL)
139 {
140 if (abfd != NULL)
141 {
142 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
143 set_bfd_data (abfd, objfiles_bfd_data, storage);
144
145 /* Look up the gdbarch associated with the BFD. */
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148 else
149 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
150 struct objfile_per_bfd_storage);
151
152 obstack_init (&storage->storage_obstack);
153 storage->filename_cache = bcache_xmalloc (NULL, NULL);
154 storage->macro_cache = bcache_xmalloc (NULL, NULL);
155 }
156
157 return storage;
158 }
159
160 /* Free STORAGE. */
161
162 static void
163 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
164 {
165 bcache_xfree (storage->filename_cache);
166 bcache_xfree (storage->macro_cache);
167 obstack_free (&storage->storage_obstack, 0);
168 }
169
170 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
171 cleanup function to the BFD registry. */
172
173 static void
174 objfile_bfd_data_free (struct bfd *unused, void *d)
175 {
176 free_objfile_per_bfd_storage (d);
177 }
178
179 /* See objfiles.h. */
180
181 void
182 set_objfile_per_bfd (struct objfile *objfile)
183 {
184 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
185 }
186
187 \f
188
189 /* Called via bfd_map_over_sections to build up the section table that
190 the objfile references. The objfile contains pointers to the start
191 of the table (objfile->sections) and to the first location after
192 the end of the table (objfile->sections_end). */
193
194 static void
195 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
196 struct objfile *objfile, int force)
197 {
198 struct obj_section *section;
199
200 if (!force)
201 {
202 flagword aflag;
203
204 aflag = bfd_get_section_flags (abfd, asect);
205 if (!(aflag & SEC_ALLOC))
206 return;
207 }
208
209 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
210 section->objfile = objfile;
211 section->the_bfd_section = asect;
212 section->ovly_mapped = 0;
213 }
214
215 static void
216 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
217 void *objfilep)
218 {
219 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
220 }
221
222 /* Builds a section table for OBJFILE.
223
224 Note that the OFFSET and OVLY_MAPPED in each table entry are
225 initialized to zero. */
226
227 void
228 build_objfile_section_table (struct objfile *objfile)
229 {
230 int count = gdb_bfd_count_sections (objfile->obfd);
231
232 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
233 count,
234 struct obj_section);
235 objfile->sections_end = (objfile->sections + count);
236 bfd_map_over_sections (objfile->obfd,
237 add_to_objfile_sections, (void *) objfile);
238
239 /* See gdb_bfd_section_index. */
240 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
241 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
242 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
243 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
244 }
245
246 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
247 allocate a new objfile struct, fill it in as best we can, link it
248 into the list of all known objfiles, and return a pointer to the
249 new objfile struct.
250
251 The FLAGS word contains various bits (OBJF_*) that can be taken as
252 requests for specific operations. Other bits like OBJF_SHARED are
253 simply copied through to the new objfile flags member. */
254
255 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
256 by jv-lang.c, to create an artificial objfile used to hold
257 information about dynamically-loaded Java classes. Unfortunately,
258 that branch of this function doesn't get tested very frequently, so
259 it's prone to breakage. (E.g. at one time the name was set to NULL
260 in that situation, which broke a loop over all names in the dynamic
261 library loader.) If you change this function, please try to leave
262 things in a consistent state even if abfd is NULL. */
263
264 struct objfile *
265 allocate_objfile (bfd *abfd, int flags)
266 {
267 struct objfile *objfile;
268
269 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
270 objfile->psymbol_cache = psymbol_bcache_init ();
271 /* We could use obstack_specify_allocation here instead, but
272 gdb_obstack.h specifies the alloc/dealloc functions. */
273 obstack_init (&objfile->objfile_obstack);
274 terminate_minimal_symbol_table (objfile);
275
276 objfile_alloc_data (objfile);
277
278 /* Update the per-objfile information that comes from the bfd, ensuring
279 that any data that is reference is saved in the per-objfile data
280 region. */
281
282 objfile->obfd = abfd;
283 gdb_bfd_ref (abfd);
284 if (abfd != NULL)
285 {
286 objfile->original_name = bfd_get_filename (abfd);
287 objfile->mtime = bfd_get_mtime (abfd);
288
289 /* Build section table. */
290 build_objfile_section_table (objfile);
291 }
292 else
293 {
294 objfile->original_name = "<<anonymous objfile>>";
295 }
296
297 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
298 objfile->pspace = current_program_space;
299
300 /* Initialize the section indexes for this objfile, so that we can
301 later detect if they are used w/o being properly assigned to. */
302
303 objfile->sect_index_text = -1;
304 objfile->sect_index_data = -1;
305 objfile->sect_index_bss = -1;
306 objfile->sect_index_rodata = -1;
307
308 /* Add this file onto the tail of the linked list of other such files. */
309
310 objfile->next = NULL;
311 if (object_files == NULL)
312 object_files = objfile;
313 else
314 {
315 struct objfile *last_one;
316
317 for (last_one = object_files;
318 last_one->next;
319 last_one = last_one->next);
320 last_one->next = objfile;
321 }
322
323 /* Save passed in flag bits. */
324 objfile->flags |= flags;
325
326 /* Rebuild section map next time we need it. */
327 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
328
329 return objfile;
330 }
331
332 /* Retrieve the gdbarch associated with OBJFILE. */
333 struct gdbarch *
334 get_objfile_arch (struct objfile *objfile)
335 {
336 return objfile->per_bfd->gdbarch;
337 }
338
339 /* If there is a valid and known entry point, function fills *ENTRY_P with it
340 and returns non-zero; otherwise it returns zero. */
341
342 int
343 entry_point_address_query (CORE_ADDR *entry_p)
344 {
345 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
346 return 0;
347
348 *entry_p = symfile_objfile->ei.entry_point;
349
350 return 1;
351 }
352
353 /* Get current entry point address. Call error if it is not known. */
354
355 CORE_ADDR
356 entry_point_address (void)
357 {
358 CORE_ADDR retval;
359
360 if (!entry_point_address_query (&retval))
361 error (_("Entry point address is not known."));
362
363 return retval;
364 }
365
366 /* Iterator on PARENT and every separate debug objfile of PARENT.
367 The usage pattern is:
368 for (objfile = parent;
369 objfile;
370 objfile = objfile_separate_debug_iterate (parent, objfile))
371 ...
372 */
373
374 struct objfile *
375 objfile_separate_debug_iterate (const struct objfile *parent,
376 const struct objfile *objfile)
377 {
378 struct objfile *res;
379
380 /* If any, return the first child. */
381 res = objfile->separate_debug_objfile;
382 if (res)
383 return res;
384
385 /* Common case where there is no separate debug objfile. */
386 if (objfile == parent)
387 return NULL;
388
389 /* Return the brother if any. Note that we don't iterate on brothers of
390 the parents. */
391 res = objfile->separate_debug_objfile_link;
392 if (res)
393 return res;
394
395 for (res = objfile->separate_debug_objfile_backlink;
396 res != parent;
397 res = res->separate_debug_objfile_backlink)
398 {
399 gdb_assert (res != NULL);
400 if (res->separate_debug_objfile_link)
401 return res->separate_debug_objfile_link;
402 }
403 return NULL;
404 }
405
406 /* Put one object file before a specified on in the global list.
407 This can be used to make sure an object file is destroyed before
408 another when using ALL_OBJFILES_SAFE to free all objfiles. */
409 void
410 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
411 {
412 struct objfile **objp;
413
414 unlink_objfile (objfile);
415
416 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
417 {
418 if (*objp == before_this)
419 {
420 objfile->next = *objp;
421 *objp = objfile;
422 return;
423 }
424 }
425
426 internal_error (__FILE__, __LINE__,
427 _("put_objfile_before: before objfile not in list"));
428 }
429
430 /* Put OBJFILE at the front of the list. */
431
432 void
433 objfile_to_front (struct objfile *objfile)
434 {
435 struct objfile **objp;
436 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
437 {
438 if (*objp == objfile)
439 {
440 /* Unhook it from where it is. */
441 *objp = objfile->next;
442 /* Put it in the front. */
443 objfile->next = object_files;
444 object_files = objfile;
445 break;
446 }
447 }
448 }
449
450 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
451 list.
452
453 It is not a bug, or error, to call this function if OBJFILE is not known
454 to be in the current list. This is done in the case of mapped objfiles,
455 for example, just to ensure that the mapped objfile doesn't appear twice
456 in the list. Since the list is threaded, linking in a mapped objfile
457 twice would create a circular list.
458
459 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
460 unlinking it, just to ensure that we have completely severed any linkages
461 between the OBJFILE and the list. */
462
463 void
464 unlink_objfile (struct objfile *objfile)
465 {
466 struct objfile **objpp;
467
468 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
469 {
470 if (*objpp == objfile)
471 {
472 *objpp = (*objpp)->next;
473 objfile->next = NULL;
474 return;
475 }
476 }
477
478 internal_error (__FILE__, __LINE__,
479 _("unlink_objfile: objfile already unlinked"));
480 }
481
482 /* Add OBJFILE as a separate debug objfile of PARENT. */
483
484 void
485 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
486 {
487 gdb_assert (objfile && parent);
488
489 /* Must not be already in a list. */
490 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
491 gdb_assert (objfile->separate_debug_objfile_link == NULL);
492 gdb_assert (objfile->separate_debug_objfile == NULL);
493 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
494 gdb_assert (parent->separate_debug_objfile_link == NULL);
495
496 objfile->separate_debug_objfile_backlink = parent;
497 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
498 parent->separate_debug_objfile = objfile;
499
500 /* Put the separate debug object before the normal one, this is so that
501 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
502 put_objfile_before (objfile, parent);
503 }
504
505 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
506 itself. */
507
508 void
509 free_objfile_separate_debug (struct objfile *objfile)
510 {
511 struct objfile *child;
512
513 for (child = objfile->separate_debug_objfile; child;)
514 {
515 struct objfile *next_child = child->separate_debug_objfile_link;
516 free_objfile (child);
517 child = next_child;
518 }
519 }
520
521 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
522 that as much as possible is allocated on the objfile_obstack
523 so that the memory can be efficiently freed.
524
525 Things which we do NOT free because they are not in malloc'd memory
526 or not in memory specific to the objfile include:
527
528 objfile -> sf
529
530 FIXME: If the objfile is using reusable symbol information (via mmalloc),
531 then we need to take into account the fact that more than one process
532 may be using the symbol information at the same time (when mmalloc is
533 extended to support cooperative locking). When more than one process
534 is using the mapped symbol info, we need to be more careful about when
535 we free objects in the reusable area. */
536
537 void
538 free_objfile (struct objfile *objfile)
539 {
540 /* Free all separate debug objfiles. */
541 free_objfile_separate_debug (objfile);
542
543 if (objfile->separate_debug_objfile_backlink)
544 {
545 /* We freed the separate debug file, make sure the base objfile
546 doesn't reference it. */
547 struct objfile *child;
548
549 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
550
551 if (child == objfile)
552 {
553 /* OBJFILE is the first child. */
554 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
555 objfile->separate_debug_objfile_link;
556 }
557 else
558 {
559 /* Find OBJFILE in the list. */
560 while (1)
561 {
562 if (child->separate_debug_objfile_link == objfile)
563 {
564 child->separate_debug_objfile_link =
565 objfile->separate_debug_objfile_link;
566 break;
567 }
568 child = child->separate_debug_objfile_link;
569 gdb_assert (child);
570 }
571 }
572 }
573
574 /* Remove any references to this objfile in the global value
575 lists. */
576 preserve_values (objfile);
577
578 /* It still may reference data modules have associated with the objfile and
579 the symbol file data. */
580 forget_cached_source_info_for_objfile (objfile);
581
582 breakpoint_free_objfile (objfile);
583 btrace_free_objfile (objfile);
584
585 /* First do any symbol file specific actions required when we are
586 finished with a particular symbol file. Note that if the objfile
587 is using reusable symbol information (via mmalloc) then each of
588 these routines is responsible for doing the correct thing, either
589 freeing things which are valid only during this particular gdb
590 execution, or leaving them to be reused during the next one. */
591
592 if (objfile->sf != NULL)
593 {
594 (*objfile->sf->sym_finish) (objfile);
595 }
596
597 /* Discard any data modules have associated with the objfile. The function
598 still may reference objfile->obfd. */
599 objfile_free_data (objfile);
600
601 if (objfile->obfd)
602 gdb_bfd_unref (objfile->obfd);
603 else
604 free_objfile_per_bfd_storage (objfile->per_bfd);
605
606 /* Remove it from the chain of all objfiles. */
607
608 unlink_objfile (objfile);
609
610 if (objfile == symfile_objfile)
611 symfile_objfile = NULL;
612
613 /* Before the symbol table code was redone to make it easier to
614 selectively load and remove information particular to a specific
615 linkage unit, gdb used to do these things whenever the monolithic
616 symbol table was blown away. How much still needs to be done
617 is unknown, but we play it safe for now and keep each action until
618 it is shown to be no longer needed. */
619
620 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
621 for example), so we need to call this here. */
622 clear_pc_function_cache ();
623
624 /* Clear globals which might have pointed into a removed objfile.
625 FIXME: It's not clear which of these are supposed to persist
626 between expressions and which ought to be reset each time. */
627 expression_context_block = NULL;
628 innermost_block = NULL;
629
630 /* Check to see if the current_source_symtab belongs to this objfile,
631 and if so, call clear_current_source_symtab_and_line. */
632
633 {
634 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
635
636 if (cursal.symtab && cursal.symtab->objfile == objfile)
637 clear_current_source_symtab_and_line ();
638 }
639
640 /* The last thing we do is free the objfile struct itself. */
641
642 if (objfile->global_psymbols.list)
643 xfree (objfile->global_psymbols.list);
644 if (objfile->static_psymbols.list)
645 xfree (objfile->static_psymbols.list);
646 /* Free the obstacks for non-reusable objfiles. */
647 psymbol_bcache_free (objfile->psymbol_cache);
648 if (objfile->demangled_names_hash)
649 htab_delete (objfile->demangled_names_hash);
650 obstack_free (&objfile->objfile_obstack, 0);
651
652 /* Rebuild section map next time we need it. */
653 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
654
655 xfree (objfile);
656 }
657
658 static void
659 do_free_objfile_cleanup (void *obj)
660 {
661 free_objfile (obj);
662 }
663
664 struct cleanup *
665 make_cleanup_free_objfile (struct objfile *obj)
666 {
667 return make_cleanup (do_free_objfile_cleanup, obj);
668 }
669
670 /* Free all the object files at once and clean up their users. */
671
672 void
673 free_all_objfiles (void)
674 {
675 struct objfile *objfile, *temp;
676 struct so_list *so;
677
678 /* Any objfile referencewould become stale. */
679 for (so = master_so_list (); so; so = so->next)
680 gdb_assert (so->objfile == NULL);
681
682 ALL_OBJFILES_SAFE (objfile, temp)
683 {
684 free_objfile (objfile);
685 }
686 clear_symtab_users (0);
687 }
688 \f
689 /* A helper function for objfile_relocate1 that relocates a single
690 symbol. */
691
692 static void
693 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
694 struct section_offsets *delta)
695 {
696 fixup_symbol_section (sym, objfile);
697
698 /* The RS6000 code from which this was taken skipped
699 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
700 But I'm leaving out that test, on the theory that
701 they can't possibly pass the tests below. */
702 if ((SYMBOL_CLASS (sym) == LOC_LABEL
703 || SYMBOL_CLASS (sym) == LOC_STATIC)
704 && SYMBOL_SECTION (sym) >= 0)
705 {
706 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
707 }
708 }
709
710 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
711 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
712 Return non-zero iff any change happened. */
713
714 static int
715 objfile_relocate1 (struct objfile *objfile,
716 const struct section_offsets *new_offsets)
717 {
718 struct obj_section *s;
719 struct section_offsets *delta =
720 ((struct section_offsets *)
721 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
722
723 int i;
724 int something_changed = 0;
725
726 for (i = 0; i < objfile->num_sections; ++i)
727 {
728 delta->offsets[i] =
729 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
730 if (ANOFFSET (delta, i) != 0)
731 something_changed = 1;
732 }
733 if (!something_changed)
734 return 0;
735
736 /* OK, get all the symtabs. */
737 {
738 struct symtab *s;
739
740 ALL_OBJFILE_SYMTABS (objfile, s)
741 {
742 struct linetable *l;
743 struct blockvector *bv;
744 int i;
745
746 /* First the line table. */
747 l = LINETABLE (s);
748 if (l)
749 {
750 for (i = 0; i < l->nitems; ++i)
751 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
752 }
753
754 /* Don't relocate a shared blockvector more than once. */
755 if (!s->primary)
756 continue;
757
758 bv = BLOCKVECTOR (s);
759 if (BLOCKVECTOR_MAP (bv))
760 addrmap_relocate (BLOCKVECTOR_MAP (bv),
761 ANOFFSET (delta, s->block_line_section));
762
763 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
764 {
765 struct block *b;
766 struct symbol *sym;
767 struct dict_iterator iter;
768
769 b = BLOCKVECTOR_BLOCK (bv, i);
770 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
771 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
772
773 /* We only want to iterate over the local symbols, not any
774 symbols in included symtabs. */
775 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
776 {
777 relocate_one_symbol (sym, objfile, delta);
778 }
779 }
780 }
781 }
782
783 /* Relocate isolated symbols. */
784 {
785 struct symbol *iter;
786
787 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
788 relocate_one_symbol (iter, objfile, delta);
789 }
790
791 if (objfile->psymtabs_addrmap)
792 addrmap_relocate (objfile->psymtabs_addrmap,
793 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
794
795 if (objfile->sf)
796 objfile->sf->qf->relocate (objfile, new_offsets, delta);
797
798 {
799 struct minimal_symbol *msym;
800
801 ALL_OBJFILE_MSYMBOLS (objfile, msym)
802 if (SYMBOL_SECTION (msym) >= 0)
803 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
804 }
805 /* Relocating different sections by different amounts may cause the symbols
806 to be out of order. */
807 msymbols_sort (objfile);
808
809 if (objfile->ei.entry_point_p)
810 {
811 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
812 only as a fallback. */
813 struct obj_section *s;
814 s = find_pc_section (objfile->ei.entry_point);
815 if (s)
816 {
817 int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
818
819 objfile->ei.entry_point += ANOFFSET (delta, idx);
820 }
821 else
822 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
823 }
824
825 {
826 int i;
827
828 for (i = 0; i < objfile->num_sections; ++i)
829 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
830 }
831
832 /* Rebuild section map next time we need it. */
833 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
834
835 /* Update the table in exec_ops, used to read memory. */
836 ALL_OBJFILE_OSECTIONS (objfile, s)
837 {
838 int idx = s - objfile->sections;
839
840 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
841 obj_section_addr (s));
842 }
843
844 /* Relocating probes. */
845 if (objfile->sf && objfile->sf->sym_probe_fns)
846 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
847 new_offsets, delta);
848
849 /* Data changed. */
850 return 1;
851 }
852
853 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
854 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
855
856 The number and ordering of sections does differ between the two objfiles.
857 Only their names match. Also the file offsets will differ (objfile being
858 possibly prelinked but separate_debug_objfile is probably not prelinked) but
859 the in-memory absolute address as specified by NEW_OFFSETS must match both
860 files. */
861
862 void
863 objfile_relocate (struct objfile *objfile,
864 const struct section_offsets *new_offsets)
865 {
866 struct objfile *debug_objfile;
867 int changed = 0;
868
869 changed |= objfile_relocate1 (objfile, new_offsets);
870
871 for (debug_objfile = objfile->separate_debug_objfile;
872 debug_objfile;
873 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
874 {
875 struct section_addr_info *objfile_addrs;
876 struct section_offsets *new_debug_offsets;
877 struct cleanup *my_cleanups;
878
879 objfile_addrs = build_section_addr_info_from_objfile (objfile);
880 my_cleanups = make_cleanup (xfree, objfile_addrs);
881
882 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
883 relative ones must be already created according to debug_objfile. */
884
885 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
886
887 gdb_assert (debug_objfile->num_sections
888 == gdb_bfd_count_sections (debug_objfile->obfd));
889 new_debug_offsets =
890 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
891 make_cleanup (xfree, new_debug_offsets);
892 relative_addr_info_to_section_offsets (new_debug_offsets,
893 debug_objfile->num_sections,
894 objfile_addrs);
895
896 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
897
898 do_cleanups (my_cleanups);
899 }
900
901 /* Relocate breakpoints as necessary, after things are relocated. */
902 if (changed)
903 breakpoint_re_set ();
904 }
905
906 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
907 not touched here.
908 Return non-zero iff any change happened. */
909
910 static int
911 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
912 {
913 struct section_offsets *new_offsets =
914 ((struct section_offsets *)
915 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
916 int i;
917
918 for (i = 0; i < objfile->num_sections; ++i)
919 new_offsets->offsets[i] = slide;
920
921 return objfile_relocate1 (objfile, new_offsets);
922 }
923
924 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
925 SEPARATE_DEBUG_OBJFILEs. */
926
927 void
928 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
929 {
930 struct objfile *debug_objfile;
931 int changed = 0;
932
933 changed |= objfile_rebase1 (objfile, slide);
934
935 for (debug_objfile = objfile->separate_debug_objfile;
936 debug_objfile;
937 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
938 changed |= objfile_rebase1 (debug_objfile, slide);
939
940 /* Relocate breakpoints as necessary, after things are relocated. */
941 if (changed)
942 breakpoint_re_set ();
943 }
944 \f
945 /* Return non-zero if OBJFILE has partial symbols. */
946
947 int
948 objfile_has_partial_symbols (struct objfile *objfile)
949 {
950 if (!objfile->sf)
951 return 0;
952
953 /* If we have not read psymbols, but we have a function capable of reading
954 them, then that is an indication that they are in fact available. Without
955 this function the symbols may have been already read in but they also may
956 not be present in this objfile. */
957 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
958 && objfile->sf->sym_read_psymbols != NULL)
959 return 1;
960
961 return objfile->sf->qf->has_symbols (objfile);
962 }
963
964 /* Return non-zero if OBJFILE has full symbols. */
965
966 int
967 objfile_has_full_symbols (struct objfile *objfile)
968 {
969 return objfile->symtabs != NULL;
970 }
971
972 /* Return non-zero if OBJFILE has full or partial symbols, either directly
973 or through a separate debug file. */
974
975 int
976 objfile_has_symbols (struct objfile *objfile)
977 {
978 struct objfile *o;
979
980 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
981 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
982 return 1;
983 return 0;
984 }
985
986
987 /* Many places in gdb want to test just to see if we have any partial
988 symbols available. This function returns zero if none are currently
989 available, nonzero otherwise. */
990
991 int
992 have_partial_symbols (void)
993 {
994 struct objfile *ofp;
995
996 ALL_OBJFILES (ofp)
997 {
998 if (objfile_has_partial_symbols (ofp))
999 return 1;
1000 }
1001 return 0;
1002 }
1003
1004 /* Many places in gdb want to test just to see if we have any full
1005 symbols available. This function returns zero if none are currently
1006 available, nonzero otherwise. */
1007
1008 int
1009 have_full_symbols (void)
1010 {
1011 struct objfile *ofp;
1012
1013 ALL_OBJFILES (ofp)
1014 {
1015 if (objfile_has_full_symbols (ofp))
1016 return 1;
1017 }
1018 return 0;
1019 }
1020
1021
1022 /* This operations deletes all objfile entries that represent solibs that
1023 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1024 command. */
1025
1026 void
1027 objfile_purge_solibs (void)
1028 {
1029 struct objfile *objf;
1030 struct objfile *temp;
1031
1032 ALL_OBJFILES_SAFE (objf, temp)
1033 {
1034 /* We assume that the solib package has been purged already, or will
1035 be soon. */
1036
1037 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1038 free_objfile (objf);
1039 }
1040 }
1041
1042
1043 /* Many places in gdb want to test just to see if we have any minimal
1044 symbols available. This function returns zero if none are currently
1045 available, nonzero otherwise. */
1046
1047 int
1048 have_minimal_symbols (void)
1049 {
1050 struct objfile *ofp;
1051
1052 ALL_OBJFILES (ofp)
1053 {
1054 if (ofp->minimal_symbol_count > 0)
1055 {
1056 return 1;
1057 }
1058 }
1059 return 0;
1060 }
1061
1062 /* Qsort comparison function. */
1063
1064 static int
1065 qsort_cmp (const void *a, const void *b)
1066 {
1067 const struct obj_section *sect1 = *(const struct obj_section **) a;
1068 const struct obj_section *sect2 = *(const struct obj_section **) b;
1069 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1070 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1071
1072 if (sect1_addr < sect2_addr)
1073 return -1;
1074 else if (sect1_addr > sect2_addr)
1075 return 1;
1076 else
1077 {
1078 /* Sections are at the same address. This could happen if
1079 A) we have an objfile and a separate debuginfo.
1080 B) we are confused, and have added sections without proper relocation,
1081 or something like that. */
1082
1083 const struct objfile *const objfile1 = sect1->objfile;
1084 const struct objfile *const objfile2 = sect2->objfile;
1085
1086 if (objfile1->separate_debug_objfile == objfile2
1087 || objfile2->separate_debug_objfile == objfile1)
1088 {
1089 /* Case A. The ordering doesn't matter: separate debuginfo files
1090 will be filtered out later. */
1091
1092 return 0;
1093 }
1094
1095 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1096 triage. This section could be slow (since we iterate over all
1097 objfiles in each call to qsort_cmp), but this shouldn't happen
1098 very often (GDB is already in a confused state; one hopes this
1099 doesn't happen at all). If you discover that significant time is
1100 spent in the loops below, do 'set complaints 100' and examine the
1101 resulting complaints. */
1102
1103 if (objfile1 == objfile2)
1104 {
1105 /* Both sections came from the same objfile. We are really confused.
1106 Sort on sequence order of sections within the objfile. */
1107
1108 const struct obj_section *osect;
1109
1110 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1111 if (osect == sect1)
1112 return -1;
1113 else if (osect == sect2)
1114 return 1;
1115
1116 /* We should have found one of the sections before getting here. */
1117 gdb_assert_not_reached ("section not found");
1118 }
1119 else
1120 {
1121 /* Sort on sequence number of the objfile in the chain. */
1122
1123 const struct objfile *objfile;
1124
1125 ALL_OBJFILES (objfile)
1126 if (objfile == objfile1)
1127 return -1;
1128 else if (objfile == objfile2)
1129 return 1;
1130
1131 /* We should have found one of the objfiles before getting here. */
1132 gdb_assert_not_reached ("objfile not found");
1133 }
1134 }
1135
1136 /* Unreachable. */
1137 gdb_assert_not_reached ("unexpected code path");
1138 return 0;
1139 }
1140
1141 /* Select "better" obj_section to keep. We prefer the one that came from
1142 the real object, rather than the one from separate debuginfo.
1143 Most of the time the two sections are exactly identical, but with
1144 prelinking the .rel.dyn section in the real object may have different
1145 size. */
1146
1147 static struct obj_section *
1148 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1149 {
1150 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1151 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1152 || (b->objfile->separate_debug_objfile == a->objfile));
1153 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1154 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1155
1156 if (a->objfile->separate_debug_objfile != NULL)
1157 return a;
1158 return b;
1159 }
1160
1161 /* Return 1 if SECTION should be inserted into the section map.
1162 We want to insert only non-overlay and non-TLS section. */
1163
1164 static int
1165 insert_section_p (const struct bfd *abfd,
1166 const struct bfd_section *section)
1167 {
1168 const bfd_vma lma = bfd_section_lma (abfd, section);
1169
1170 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1171 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1172 /* This is an overlay section. IN_MEMORY check is needed to avoid
1173 discarding sections from the "system supplied DSO" (aka vdso)
1174 on some Linux systems (e.g. Fedora 11). */
1175 return 0;
1176 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1177 /* This is a TLS section. */
1178 return 0;
1179
1180 return 1;
1181 }
1182
1183 /* Filter out overlapping sections where one section came from the real
1184 objfile, and the other from a separate debuginfo file.
1185 Return the size of table after redundant sections have been eliminated. */
1186
1187 static int
1188 filter_debuginfo_sections (struct obj_section **map, int map_size)
1189 {
1190 int i, j;
1191
1192 for (i = 0, j = 0; i < map_size - 1; i++)
1193 {
1194 struct obj_section *const sect1 = map[i];
1195 struct obj_section *const sect2 = map[i + 1];
1196 const struct objfile *const objfile1 = sect1->objfile;
1197 const struct objfile *const objfile2 = sect2->objfile;
1198 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1199 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1200
1201 if (sect1_addr == sect2_addr
1202 && (objfile1->separate_debug_objfile == objfile2
1203 || objfile2->separate_debug_objfile == objfile1))
1204 {
1205 map[j++] = preferred_obj_section (sect1, sect2);
1206 ++i;
1207 }
1208 else
1209 map[j++] = sect1;
1210 }
1211
1212 if (i < map_size)
1213 {
1214 gdb_assert (i == map_size - 1);
1215 map[j++] = map[i];
1216 }
1217
1218 /* The map should not have shrunk to less than half the original size. */
1219 gdb_assert (map_size / 2 <= j);
1220
1221 return j;
1222 }
1223
1224 /* Filter out overlapping sections, issuing a warning if any are found.
1225 Overlapping sections could really be overlay sections which we didn't
1226 classify as such in insert_section_p, or we could be dealing with a
1227 corrupt binary. */
1228
1229 static int
1230 filter_overlapping_sections (struct obj_section **map, int map_size)
1231 {
1232 int i, j;
1233
1234 for (i = 0, j = 0; i < map_size - 1; )
1235 {
1236 int k;
1237
1238 map[j++] = map[i];
1239 for (k = i + 1; k < map_size; k++)
1240 {
1241 struct obj_section *const sect1 = map[i];
1242 struct obj_section *const sect2 = map[k];
1243 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1244 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1245 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1246
1247 gdb_assert (sect1_addr <= sect2_addr);
1248
1249 if (sect1_endaddr <= sect2_addr)
1250 break;
1251 else
1252 {
1253 /* We have an overlap. Report it. */
1254
1255 struct objfile *const objf1 = sect1->objfile;
1256 struct objfile *const objf2 = sect2->objfile;
1257
1258 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1259 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1260
1261 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1262
1263 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1264
1265 complaint (&symfile_complaints,
1266 _("unexpected overlap between:\n"
1267 " (A) section `%s' from `%s' [%s, %s)\n"
1268 " (B) section `%s' from `%s' [%s, %s).\n"
1269 "Will ignore section B"),
1270 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1271 paddress (gdbarch, sect1_addr),
1272 paddress (gdbarch, sect1_endaddr),
1273 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1274 paddress (gdbarch, sect2_addr),
1275 paddress (gdbarch, sect2_endaddr));
1276 }
1277 }
1278 i = k;
1279 }
1280
1281 if (i < map_size)
1282 {
1283 gdb_assert (i == map_size - 1);
1284 map[j++] = map[i];
1285 }
1286
1287 return j;
1288 }
1289
1290
1291 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1292 TLS, overlay and overlapping sections. */
1293
1294 static void
1295 update_section_map (struct program_space *pspace,
1296 struct obj_section ***pmap, int *pmap_size)
1297 {
1298 struct objfile_pspace_info *pspace_info;
1299 int alloc_size, map_size, i;
1300 struct obj_section *s, **map;
1301 struct objfile *objfile;
1302
1303 pspace_info = get_objfile_pspace_data (pspace);
1304 gdb_assert (pspace_info->section_map_dirty != 0
1305 || pspace_info->new_objfiles_available != 0);
1306
1307 map = *pmap;
1308 xfree (map);
1309
1310 alloc_size = 0;
1311 ALL_PSPACE_OBJFILES (pspace, objfile)
1312 ALL_OBJFILE_OSECTIONS (objfile, s)
1313 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1314 alloc_size += 1;
1315
1316 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1317 if (alloc_size == 0)
1318 {
1319 *pmap = NULL;
1320 *pmap_size = 0;
1321 return;
1322 }
1323
1324 map = xmalloc (alloc_size * sizeof (*map));
1325
1326 i = 0;
1327 ALL_PSPACE_OBJFILES (pspace, objfile)
1328 ALL_OBJFILE_OSECTIONS (objfile, s)
1329 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1330 map[i++] = s;
1331
1332 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1333 map_size = filter_debuginfo_sections(map, alloc_size);
1334 map_size = filter_overlapping_sections(map, map_size);
1335
1336 if (map_size < alloc_size)
1337 /* Some sections were eliminated. Trim excess space. */
1338 map = xrealloc (map, map_size * sizeof (*map));
1339 else
1340 gdb_assert (alloc_size == map_size);
1341
1342 *pmap = map;
1343 *pmap_size = map_size;
1344 }
1345
1346 /* Bsearch comparison function. */
1347
1348 static int
1349 bsearch_cmp (const void *key, const void *elt)
1350 {
1351 const CORE_ADDR pc = *(CORE_ADDR *) key;
1352 const struct obj_section *section = *(const struct obj_section **) elt;
1353
1354 if (pc < obj_section_addr (section))
1355 return -1;
1356 if (pc < obj_section_endaddr (section))
1357 return 0;
1358 return 1;
1359 }
1360
1361 /* Returns a section whose range includes PC or NULL if none found. */
1362
1363 struct obj_section *
1364 find_pc_section (CORE_ADDR pc)
1365 {
1366 struct objfile_pspace_info *pspace_info;
1367 struct obj_section *s, **sp;
1368
1369 /* Check for mapped overlay section first. */
1370 s = find_pc_mapped_section (pc);
1371 if (s)
1372 return s;
1373
1374 pspace_info = get_objfile_pspace_data (current_program_space);
1375 if (pspace_info->section_map_dirty
1376 || (pspace_info->new_objfiles_available
1377 && !pspace_info->inhibit_updates))
1378 {
1379 update_section_map (current_program_space,
1380 &pspace_info->sections,
1381 &pspace_info->num_sections);
1382
1383 /* Don't need updates to section map until objfiles are added,
1384 removed or relocated. */
1385 pspace_info->new_objfiles_available = 0;
1386 pspace_info->section_map_dirty = 0;
1387 }
1388
1389 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1390 bsearch be non-NULL. */
1391 if (pspace_info->sections == NULL)
1392 {
1393 gdb_assert (pspace_info->num_sections == 0);
1394 return NULL;
1395 }
1396
1397 sp = (struct obj_section **) bsearch (&pc,
1398 pspace_info->sections,
1399 pspace_info->num_sections,
1400 sizeof (*pspace_info->sections),
1401 bsearch_cmp);
1402 if (sp != NULL)
1403 return *sp;
1404 return NULL;
1405 }
1406
1407
1408 /* Return non-zero if PC is in a section called NAME. */
1409
1410 int
1411 pc_in_section (CORE_ADDR pc, char *name)
1412 {
1413 struct obj_section *s;
1414 int retval = 0;
1415
1416 s = find_pc_section (pc);
1417
1418 retval = (s != NULL
1419 && s->the_bfd_section->name != NULL
1420 && strcmp (s->the_bfd_section->name, name) == 0);
1421 return (retval);
1422 }
1423 \f
1424
1425 /* Set section_map_dirty so section map will be rebuilt next time it
1426 is used. Called by reread_symbols. */
1427
1428 void
1429 objfiles_changed (void)
1430 {
1431 /* Rebuild section map next time we need it. */
1432 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1433 }
1434
1435 /* See comments in objfiles.h. */
1436
1437 void
1438 inhibit_section_map_updates (struct program_space *pspace)
1439 {
1440 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1441 }
1442
1443 /* See comments in objfiles.h. */
1444
1445 void
1446 resume_section_map_updates (struct program_space *pspace)
1447 {
1448 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1449 }
1450
1451 /* See comments in objfiles.h. */
1452
1453 void
1454 resume_section_map_updates_cleanup (void *arg)
1455 {
1456 resume_section_map_updates (arg);
1457 }
1458
1459 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1460 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1461 searching the objfiles in the order they are stored internally,
1462 ignoring CURRENT_OBJFILE.
1463
1464 On most platorms, it should be close enough to doing the best
1465 we can without some knowledge specific to the architecture. */
1466
1467 void
1468 default_iterate_over_objfiles_in_search_order
1469 (struct gdbarch *gdbarch,
1470 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1471 void *cb_data, struct objfile *current_objfile)
1472 {
1473 int stop = 0;
1474 struct objfile *objfile;
1475
1476 ALL_OBJFILES (objfile)
1477 {
1478 stop = cb (objfile, cb_data);
1479 if (stop)
1480 return;
1481 }
1482 }
1483
1484 /* Return canonical name for OBJFILE. */
1485
1486 const char *
1487 objfile_name (const struct objfile *objfile)
1488 {
1489 return objfile->original_name;
1490 }
1491
1492 /* Provide a prototype to silence -Wmissing-prototypes. */
1493 extern initialize_file_ftype _initialize_objfiles;
1494
1495 void
1496 _initialize_objfiles (void)
1497 {
1498 objfiles_pspace_data
1499 = register_program_space_data_with_cleanup (NULL,
1500 objfiles_pspace_data_cleanup);
1501
1502 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1503 objfile_bfd_data_free);
1504 }
This page took 0.074262 seconds and 4 git commands to generate.