Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. */
124
125 static struct objfile_per_bfd_storage *
126 get_objfile_bfd_data (bfd *abfd)
127 {
128 struct objfile_per_bfd_storage *storage = NULL;
129
130 if (abfd != NULL)
131 storage = objfiles_bfd_data.get (abfd);
132
133 if (storage == NULL)
134 {
135 storage = new objfile_per_bfd_storage (abfd);
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 objfiles_bfd_data.set (abfd, storage);
141
142 /* Look up the gdbarch associated with the BFD. */
143 if (abfd != NULL)
144 storage->gdbarch = gdbarch_from_bfd (abfd);
145 }
146
147 return storage;
148 }
149
150 /* See objfiles.h. */
151
152 void
153 set_objfile_per_bfd (struct objfile *objfile)
154 {
155 objfile->per_bfd = get_objfile_bfd_data (objfile->obfd);
156 }
157
158 /* Set the objfile's per-BFD notion of the "main" name and
159 language. */
160
161 void
162 set_objfile_main_name (struct objfile *objfile,
163 const char *name, enum language lang)
164 {
165 if (objfile->per_bfd->name_of_main == NULL
166 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
167 objfile->per_bfd->name_of_main
168 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
169 objfile->per_bfd->language_of_main = lang;
170 }
171
172 /* Helper structure to map blocks to static link properties in hash tables. */
173
174 struct static_link_htab_entry
175 {
176 const struct block *block;
177 const struct dynamic_prop *static_link;
178 };
179
180 /* Return a hash code for struct static_link_htab_entry *P. */
181
182 static hashval_t
183 static_link_htab_entry_hash (const void *p)
184 {
185 const struct static_link_htab_entry *e
186 = (const struct static_link_htab_entry *) p;
187
188 return htab_hash_pointer (e->block);
189 }
190
191 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
192 mappings for the same block. */
193
194 static int
195 static_link_htab_entry_eq (const void *p1, const void *p2)
196 {
197 const struct static_link_htab_entry *e1
198 = (const struct static_link_htab_entry *) p1;
199 const struct static_link_htab_entry *e2
200 = (const struct static_link_htab_entry *) p2;
201
202 return e1->block == e2->block;
203 }
204
205 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
206 Must not be called more than once for each BLOCK. */
207
208 void
209 objfile_register_static_link (struct objfile *objfile,
210 const struct block *block,
211 const struct dynamic_prop *static_link)
212 {
213 void **slot;
214 struct static_link_htab_entry lookup_entry;
215 struct static_link_htab_entry *entry;
216
217 if (objfile->static_links == NULL)
218 objfile->static_links.reset (htab_create_alloc
219 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
220 xcalloc, xfree));
221
222 /* Create a slot for the mapping, make sure it's the first mapping for this
223 block and then create the mapping itself. */
224 lookup_entry.block = block;
225 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
226 gdb_assert (*slot == NULL);
227
228 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
229 entry->block = block;
230 entry->static_link = static_link;
231 *slot = (void *) entry;
232 }
233
234 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
235 none was found. */
236
237 const struct dynamic_prop *
238 objfile_lookup_static_link (struct objfile *objfile,
239 const struct block *block)
240 {
241 struct static_link_htab_entry *entry;
242 struct static_link_htab_entry lookup_entry;
243
244 if (objfile->static_links == NULL)
245 return NULL;
246 lookup_entry.block = block;
247 entry = ((struct static_link_htab_entry *)
248 htab_find (objfile->static_links.get (), &lookup_entry));
249 if (entry == NULL)
250 return NULL;
251
252 gdb_assert (entry->block == block);
253 return entry->static_link;
254 }
255
256 \f
257
258 /* Build up the section table that the objfile references. The
259 objfile contains pointers to the start of the table
260 (objfile->sections) and to the first location after the end of the
261 table (objfile->sections_end). */
262
263 static void
264 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
265 struct objfile *objfile, int force)
266 {
267 struct obj_section *section;
268
269 if (!force)
270 {
271 flagword aflag;
272
273 aflag = bfd_section_flags (asect);
274 if (!(aflag & SEC_ALLOC))
275 return;
276 }
277
278 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
279 section->objfile = objfile;
280 section->the_bfd_section = asect;
281 section->ovly_mapped = 0;
282 }
283
284 /* Builds a section table for OBJFILE.
285
286 Note that the OFFSET and OVLY_MAPPED in each table entry are
287 initialized to zero. */
288
289 void
290 build_objfile_section_table (struct objfile *objfile)
291 {
292 int count = gdb_bfd_count_sections (objfile->obfd);
293
294 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
295 count,
296 struct obj_section);
297 objfile->sections_end = (objfile->sections + count);
298 for (asection *sect : gdb_bfd_sections (objfile->obfd))
299 add_to_objfile_sections (objfile->obfd, sect, objfile, 0);
300
301 /* See gdb_bfd_section_index. */
302 add_to_objfile_sections (objfile->obfd, bfd_com_section_ptr, objfile, 1);
303 add_to_objfile_sections (objfile->obfd, bfd_und_section_ptr, objfile, 1);
304 add_to_objfile_sections (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
305 add_to_objfile_sections (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
306 }
307
308 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
309 initialize the new objfile as best we can and link it into the list
310 of all known objfiles.
311
312 NAME should contain original non-canonicalized filename or other
313 identifier as entered by user. If there is no better source use
314 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
315 NAME content is copied into returned objfile.
316
317 The FLAGS word contains various bits (OBJF_*) that can be taken as
318 requests for specific operations. Other bits like OBJF_SHARED are
319 simply copied through to the new objfile flags member. */
320
321 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
322 : flags (flags_),
323 pspace (current_program_space),
324 obfd (abfd)
325 {
326 const char *expanded_name;
327
328 /* We could use obstack_specify_allocation here instead, but
329 gdb_obstack.h specifies the alloc/dealloc functions. */
330 obstack_init (&objfile_obstack);
331
332 objfile_alloc_data (this);
333
334 gdb::unique_xmalloc_ptr<char> name_holder;
335 if (name == NULL)
336 {
337 gdb_assert (abfd == NULL);
338 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
339 expanded_name = "<<anonymous objfile>>";
340 }
341 else if ((flags & OBJF_NOT_FILENAME) != 0
342 || is_target_filename (name))
343 expanded_name = name;
344 else
345 {
346 name_holder = gdb_abspath (name);
347 expanded_name = name_holder.get ();
348 }
349 original_name = obstack_strdup (&objfile_obstack, expanded_name);
350
351 /* Update the per-objfile information that comes from the bfd, ensuring
352 that any data that is reference is saved in the per-objfile data
353 region. */
354
355 gdb_bfd_ref (abfd);
356 if (abfd != NULL)
357 {
358 mtime = bfd_get_mtime (abfd);
359
360 /* Build section table. */
361 build_objfile_section_table (this);
362 }
363
364 per_bfd = get_objfile_bfd_data (abfd);
365 }
366
367 /* If there is a valid and known entry point, function fills *ENTRY_P with it
368 and returns non-zero; otherwise it returns zero. */
369
370 int
371 entry_point_address_query (CORE_ADDR *entry_p)
372 {
373 objfile *objf = current_program_space->symfile_object_file;
374 if (objf == NULL || !objf->per_bfd->ei.entry_point_p)
375 return 0;
376
377 int idx = objf->per_bfd->ei.the_bfd_section_index;
378 *entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx];
379
380 return 1;
381 }
382
383 /* Get current entry point address. Call error if it is not known. */
384
385 CORE_ADDR
386 entry_point_address (void)
387 {
388 CORE_ADDR retval;
389
390 if (!entry_point_address_query (&retval))
391 error (_("Entry point address is not known."));
392
393 return retval;
394 }
395
396 separate_debug_iterator &
397 separate_debug_iterator::operator++ ()
398 {
399 gdb_assert (m_objfile != nullptr);
400
401 struct objfile *res;
402
403 /* If any, return the first child. */
404 res = m_objfile->separate_debug_objfile;
405 if (res != nullptr)
406 {
407 m_objfile = res;
408 return *this;
409 }
410
411 /* Common case where there is no separate debug objfile. */
412 if (m_objfile == m_parent)
413 {
414 m_objfile = nullptr;
415 return *this;
416 }
417
418 /* Return the brother if any. Note that we don't iterate on brothers of
419 the parents. */
420 res = m_objfile->separate_debug_objfile_link;
421 if (res != nullptr)
422 {
423 m_objfile = res;
424 return *this;
425 }
426
427 for (res = m_objfile->separate_debug_objfile_backlink;
428 res != m_parent;
429 res = res->separate_debug_objfile_backlink)
430 {
431 gdb_assert (res != nullptr);
432 if (res->separate_debug_objfile_link != nullptr)
433 {
434 m_objfile = res->separate_debug_objfile_link;
435 return *this;
436 }
437 }
438 m_objfile = nullptr;
439 return *this;
440 }
441
442 /* Add OBJFILE as a separate debug objfile of PARENT. */
443
444 static void
445 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
446 {
447 gdb_assert (objfile && parent);
448
449 /* Must not be already in a list. */
450 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
451 gdb_assert (objfile->separate_debug_objfile_link == NULL);
452 gdb_assert (objfile->separate_debug_objfile == NULL);
453 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
454 gdb_assert (parent->separate_debug_objfile_link == NULL);
455
456 objfile->separate_debug_objfile_backlink = parent;
457 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
458 parent->separate_debug_objfile = objfile;
459 }
460
461 /* See objfiles.h. */
462
463 objfile *
464 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
465 objfile *parent)
466 {
467 objfile *result = new objfile (bfd_, name_, flags_);
468 if (parent != nullptr)
469 add_separate_debug_objfile (result, parent);
470
471 /* Using std::make_shared might be a bit nicer here, but that would
472 require making the constructor public. */
473 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
474 parent);
475
476 /* Rebuild section map next time we need it. */
477 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
478
479 return result;
480 }
481
482 /* See objfiles.h. */
483
484 void
485 objfile::unlink ()
486 {
487 current_program_space->remove_objfile (this);
488 }
489
490 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
491 itself. */
492
493 void
494 free_objfile_separate_debug (struct objfile *objfile)
495 {
496 struct objfile *child;
497
498 for (child = objfile->separate_debug_objfile; child;)
499 {
500 struct objfile *next_child = child->separate_debug_objfile_link;
501 child->unlink ();
502 child = next_child;
503 }
504 }
505
506 /* Destroy an objfile and all the symtabs and psymtabs under it. */
507
508 objfile::~objfile ()
509 {
510 /* First notify observers that this objfile is about to be freed. */
511 gdb::observers::free_objfile.notify (this);
512
513 /* Free all separate debug objfiles. */
514 free_objfile_separate_debug (this);
515
516 if (separate_debug_objfile_backlink)
517 {
518 /* We freed the separate debug file, make sure the base objfile
519 doesn't reference it. */
520 struct objfile *child;
521
522 child = separate_debug_objfile_backlink->separate_debug_objfile;
523
524 if (child == this)
525 {
526 /* THIS is the first child. */
527 separate_debug_objfile_backlink->separate_debug_objfile =
528 separate_debug_objfile_link;
529 }
530 else
531 {
532 /* Find THIS in the list. */
533 while (1)
534 {
535 if (child->separate_debug_objfile_link == this)
536 {
537 child->separate_debug_objfile_link =
538 separate_debug_objfile_link;
539 break;
540 }
541 child = child->separate_debug_objfile_link;
542 gdb_assert (child);
543 }
544 }
545 }
546
547 /* Remove any references to this objfile in the global value
548 lists. */
549 preserve_values (this);
550
551 /* It still may reference data modules have associated with the objfile and
552 the symbol file data. */
553 forget_cached_source_info_for_objfile (this);
554
555 breakpoint_free_objfile (this);
556 btrace_free_objfile (this);
557
558 /* First do any symbol file specific actions required when we are
559 finished with a particular symbol file. Note that if the objfile
560 is using reusable symbol information (via mmalloc) then each of
561 these routines is responsible for doing the correct thing, either
562 freeing things which are valid only during this particular gdb
563 execution, or leaving them to be reused during the next one. */
564
565 if (sf != NULL)
566 (*sf->sym_finish) (this);
567
568 /* Discard any data modules have associated with the objfile. The function
569 still may reference obfd. */
570 objfile_free_data (this);
571
572 if (obfd)
573 gdb_bfd_unref (obfd);
574 else
575 delete per_bfd;
576
577 /* Before the symbol table code was redone to make it easier to
578 selectively load and remove information particular to a specific
579 linkage unit, gdb used to do these things whenever the monolithic
580 symbol table was blown away. How much still needs to be done
581 is unknown, but we play it safe for now and keep each action until
582 it is shown to be no longer needed. */
583
584 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
585 for example), so we need to call this here. */
586 clear_pc_function_cache ();
587
588 /* Check to see if the current_source_symtab belongs to this objfile,
589 and if so, call clear_current_source_symtab_and_line. */
590
591 {
592 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
593
594 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
595 clear_current_source_symtab_and_line ();
596 }
597
598 /* Free the obstacks for non-reusable objfiles. */
599 obstack_free (&objfile_obstack, 0);
600
601 /* Rebuild section map next time we need it. */
602 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
603 }
604
605 \f
606 /* A helper function for objfile_relocate1 that relocates a single
607 symbol. */
608
609 static void
610 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
611 const section_offsets &delta)
612 {
613 fixup_symbol_section (sym, objfile);
614
615 /* The RS6000 code from which this was taken skipped
616 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
617 But I'm leaving out that test, on the theory that
618 they can't possibly pass the tests below. */
619 if ((SYMBOL_CLASS (sym) == LOC_LABEL
620 || SYMBOL_CLASS (sym) == LOC_STATIC)
621 && sym->section_index () >= 0)
622 {
623 SET_SYMBOL_VALUE_ADDRESS (sym,
624 SYMBOL_VALUE_ADDRESS (sym)
625 + delta[sym->section_index ()]);
626 }
627 }
628
629 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
630 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
631 Return non-zero iff any change happened. */
632
633 static int
634 objfile_relocate1 (struct objfile *objfile,
635 const section_offsets &new_offsets)
636 {
637 section_offsets delta (objfile->section_offsets.size ());
638
639 int something_changed = 0;
640
641 for (int i = 0; i < objfile->section_offsets.size (); ++i)
642 {
643 delta[i] = new_offsets[i] - objfile->section_offsets[i];
644 if (delta[i] != 0)
645 something_changed = 1;
646 }
647 if (!something_changed)
648 return 0;
649
650 /* OK, get all the symtabs. */
651 {
652 for (compunit_symtab *cust : objfile->compunits ())
653 {
654 for (symtab *s : compunit_filetabs (cust))
655 {
656 struct linetable *l;
657
658 /* First the line table. */
659 l = SYMTAB_LINETABLE (s);
660 if (l)
661 {
662 for (int i = 0; i < l->nitems; ++i)
663 l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)];
664 }
665 }
666 }
667
668 for (compunit_symtab *cust : objfile->compunits ())
669 {
670 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
671 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
672
673 if (BLOCKVECTOR_MAP (bv))
674 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
675
676 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
677 {
678 struct block *b;
679 struct symbol *sym;
680 struct mdict_iterator miter;
681
682 b = BLOCKVECTOR_BLOCK (bv, i);
683 BLOCK_START (b) += delta[block_line_section];
684 BLOCK_END (b) += delta[block_line_section];
685
686 if (BLOCK_RANGES (b) != nullptr)
687 for (int j = 0; j < BLOCK_NRANGES (b); j++)
688 {
689 BLOCK_RANGE_START (b, j) += delta[block_line_section];
690 BLOCK_RANGE_END (b, j) += delta[block_line_section];
691 }
692
693 /* We only want to iterate over the local symbols, not any
694 symbols in included symtabs. */
695 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
696 {
697 relocate_one_symbol (sym, objfile, delta);
698 }
699 }
700 }
701 }
702
703 /* Notify the quick symbol object. */
704 for (const auto &iter : objfile->qf)
705 iter->relocated ();
706
707 /* Relocate isolated symbols. */
708 {
709 struct symbol *iter;
710
711 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
712 relocate_one_symbol (iter, objfile, delta);
713 }
714
715 {
716 int i;
717
718 for (i = 0; i < objfile->section_offsets.size (); ++i)
719 objfile->section_offsets[i] = new_offsets[i];
720 }
721
722 /* Rebuild section map next time we need it. */
723 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
724
725 /* Update the table in exec_ops, used to read memory. */
726 struct obj_section *s;
727 ALL_OBJFILE_OSECTIONS (objfile, s)
728 {
729 int idx = s - objfile->sections;
730
731 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
732 s->addr ());
733 }
734
735 /* Data changed. */
736 return 1;
737 }
738
739 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
740 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
741
742 The number and ordering of sections does differ between the two objfiles.
743 Only their names match. Also the file offsets will differ (objfile being
744 possibly prelinked but separate_debug_objfile is probably not prelinked) but
745 the in-memory absolute address as specified by NEW_OFFSETS must match both
746 files. */
747
748 void
749 objfile_relocate (struct objfile *objfile,
750 const section_offsets &new_offsets)
751 {
752 int changed = 0;
753
754 changed |= objfile_relocate1 (objfile, new_offsets);
755
756 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
757 {
758 if (debug_objfile == objfile)
759 continue;
760
761 section_addr_info objfile_addrs
762 = build_section_addr_info_from_objfile (objfile);
763
764 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
765 relative ones must be already created according to debug_objfile. */
766
767 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
768
769 gdb_assert (debug_objfile->section_offsets.size ()
770 == gdb_bfd_count_sections (debug_objfile->obfd));
771 section_offsets new_debug_offsets
772 (debug_objfile->section_offsets.size ());
773 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
774
775 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
776 }
777
778 /* Relocate breakpoints as necessary, after things are relocated. */
779 if (changed)
780 breakpoint_re_set ();
781 }
782
783 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
784 not touched here.
785 Return non-zero iff any change happened. */
786
787 static int
788 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
789 {
790 section_offsets new_offsets (objfile->section_offsets.size (), slide);
791 return objfile_relocate1 (objfile, new_offsets);
792 }
793
794 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
795 SEPARATE_DEBUG_OBJFILEs. */
796
797 void
798 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
799 {
800 int changed = 0;
801
802 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
803 changed |= objfile_rebase1 (debug_objfile, slide);
804
805 /* Relocate breakpoints as necessary, after things are relocated. */
806 if (changed)
807 breakpoint_re_set ();
808 }
809 \f
810 /* Return non-zero if OBJFILE has full symbols. */
811
812 int
813 objfile_has_full_symbols (struct objfile *objfile)
814 {
815 return objfile->compunit_symtabs != NULL;
816 }
817
818 /* Return non-zero if OBJFILE has full or partial symbols, either directly
819 or through a separate debug file. */
820
821 int
822 objfile_has_symbols (struct objfile *objfile)
823 {
824 for (::objfile *o : objfile->separate_debug_objfiles ())
825 if (o->has_partial_symbols () || objfile_has_full_symbols (o))
826 return 1;
827 return 0;
828 }
829
830
831 /* Many places in gdb want to test just to see if we have any partial
832 symbols available. This function returns zero if none are currently
833 available, nonzero otherwise. */
834
835 int
836 have_partial_symbols (void)
837 {
838 for (objfile *ofp : current_program_space->objfiles ())
839 {
840 if (ofp->has_partial_symbols ())
841 return 1;
842 }
843 return 0;
844 }
845
846 /* Many places in gdb want to test just to see if we have any full
847 symbols available. This function returns zero if none are currently
848 available, nonzero otherwise. */
849
850 int
851 have_full_symbols (void)
852 {
853 for (objfile *ofp : current_program_space->objfiles ())
854 {
855 if (objfile_has_full_symbols (ofp))
856 return 1;
857 }
858 return 0;
859 }
860
861
862 /* This operations deletes all objfile entries that represent solibs that
863 weren't explicitly loaded by the user, via e.g., the add-symbol-file
864 command. */
865
866 void
867 objfile_purge_solibs (void)
868 {
869 for (objfile *objf : current_program_space->objfiles_safe ())
870 {
871 /* We assume that the solib package has been purged already, or will
872 be soon. */
873
874 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
875 objf->unlink ();
876 }
877 }
878
879
880 /* Many places in gdb want to test just to see if we have any minimal
881 symbols available. This function returns zero if none are currently
882 available, nonzero otherwise. */
883
884 int
885 have_minimal_symbols (void)
886 {
887 for (objfile *ofp : current_program_space->objfiles ())
888 {
889 if (ofp->per_bfd->minimal_symbol_count > 0)
890 {
891 return 1;
892 }
893 }
894 return 0;
895 }
896
897 /* Qsort comparison function. */
898
899 static bool
900 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
901 {
902 const CORE_ADDR sect1_addr = sect1->addr ();
903 const CORE_ADDR sect2_addr = sect2->addr ();
904
905 if (sect1_addr < sect2_addr)
906 return true;
907 else if (sect1_addr > sect2_addr)
908 return false;
909 else
910 {
911 /* Sections are at the same address. This could happen if
912 A) we have an objfile and a separate debuginfo.
913 B) we are confused, and have added sections without proper relocation,
914 or something like that. */
915
916 const struct objfile *const objfile1 = sect1->objfile;
917 const struct objfile *const objfile2 = sect2->objfile;
918
919 if (objfile1->separate_debug_objfile == objfile2
920 || objfile2->separate_debug_objfile == objfile1)
921 {
922 /* Case A. The ordering doesn't matter: separate debuginfo files
923 will be filtered out later. */
924
925 return false;
926 }
927
928 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
929 triage. This section could be slow (since we iterate over all
930 objfiles in each call to sort_cmp), but this shouldn't happen
931 very often (GDB is already in a confused state; one hopes this
932 doesn't happen at all). If you discover that significant time is
933 spent in the loops below, do 'set complaints 100' and examine the
934 resulting complaints. */
935 if (objfile1 == objfile2)
936 {
937 /* Both sections came from the same objfile. We are really
938 confused. Sort on sequence order of sections within the
939 objfile. The order of checks is important here, if we find a
940 match on SECT2 first then either SECT2 is before SECT1, or,
941 SECT2 == SECT1, in both cases we should return false. The
942 second case shouldn't occur during normal use, but std::sort
943 does check that '!(a < a)' when compiled in debug mode. */
944
945 const struct obj_section *osect;
946
947 ALL_OBJFILE_OSECTIONS (objfile1, osect)
948 if (osect == sect2)
949 return false;
950 else if (osect == sect1)
951 return true;
952
953 /* We should have found one of the sections before getting here. */
954 gdb_assert_not_reached ("section not found");
955 }
956 else
957 {
958 /* Sort on sequence number of the objfile in the chain. */
959
960 for (objfile *objfile : current_program_space->objfiles ())
961 if (objfile == objfile1)
962 return true;
963 else if (objfile == objfile2)
964 return false;
965
966 /* We should have found one of the objfiles before getting here. */
967 gdb_assert_not_reached ("objfile not found");
968 }
969 }
970
971 /* Unreachable. */
972 gdb_assert_not_reached ("unexpected code path");
973 return false;
974 }
975
976 /* Select "better" obj_section to keep. We prefer the one that came from
977 the real object, rather than the one from separate debuginfo.
978 Most of the time the two sections are exactly identical, but with
979 prelinking the .rel.dyn section in the real object may have different
980 size. */
981
982 static struct obj_section *
983 preferred_obj_section (struct obj_section *a, struct obj_section *b)
984 {
985 gdb_assert (a->addr () == b->addr ());
986 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
987 || (b->objfile->separate_debug_objfile == a->objfile));
988 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
989 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
990
991 if (a->objfile->separate_debug_objfile != NULL)
992 return a;
993 return b;
994 }
995
996 /* Return 1 if SECTION should be inserted into the section map.
997 We want to insert only non-overlay and non-TLS section. */
998
999 static int
1000 insert_section_p (const struct bfd *abfd,
1001 const struct bfd_section *section)
1002 {
1003 const bfd_vma lma = bfd_section_lma (section);
1004
1005 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1006 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1007 /* This is an overlay section. IN_MEMORY check is needed to avoid
1008 discarding sections from the "system supplied DSO" (aka vdso)
1009 on some Linux systems (e.g. Fedora 11). */
1010 return 0;
1011 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1012 /* This is a TLS section. */
1013 return 0;
1014
1015 return 1;
1016 }
1017
1018 /* Filter out overlapping sections where one section came from the real
1019 objfile, and the other from a separate debuginfo file.
1020 Return the size of table after redundant sections have been eliminated. */
1021
1022 static int
1023 filter_debuginfo_sections (struct obj_section **map, int map_size)
1024 {
1025 int i, j;
1026
1027 for (i = 0, j = 0; i < map_size - 1; i++)
1028 {
1029 struct obj_section *const sect1 = map[i];
1030 struct obj_section *const sect2 = map[i + 1];
1031 const struct objfile *const objfile1 = sect1->objfile;
1032 const struct objfile *const objfile2 = sect2->objfile;
1033 const CORE_ADDR sect1_addr = sect1->addr ();
1034 const CORE_ADDR sect2_addr = sect2->addr ();
1035
1036 if (sect1_addr == sect2_addr
1037 && (objfile1->separate_debug_objfile == objfile2
1038 || objfile2->separate_debug_objfile == objfile1))
1039 {
1040 map[j++] = preferred_obj_section (sect1, sect2);
1041 ++i;
1042 }
1043 else
1044 map[j++] = sect1;
1045 }
1046
1047 if (i < map_size)
1048 {
1049 gdb_assert (i == map_size - 1);
1050 map[j++] = map[i];
1051 }
1052
1053 /* The map should not have shrunk to less than half the original size. */
1054 gdb_assert (map_size / 2 <= j);
1055
1056 return j;
1057 }
1058
1059 /* Filter out overlapping sections, issuing a warning if any are found.
1060 Overlapping sections could really be overlay sections which we didn't
1061 classify as such in insert_section_p, or we could be dealing with a
1062 corrupt binary. */
1063
1064 static int
1065 filter_overlapping_sections (struct obj_section **map, int map_size)
1066 {
1067 int i, j;
1068
1069 for (i = 0, j = 0; i < map_size - 1; )
1070 {
1071 int k;
1072
1073 map[j++] = map[i];
1074 for (k = i + 1; k < map_size; k++)
1075 {
1076 struct obj_section *const sect1 = map[i];
1077 struct obj_section *const sect2 = map[k];
1078 const CORE_ADDR sect1_addr = sect1->addr ();
1079 const CORE_ADDR sect2_addr = sect2->addr ();
1080 const CORE_ADDR sect1_endaddr = sect1->endaddr ();
1081
1082 gdb_assert (sect1_addr <= sect2_addr);
1083
1084 if (sect1_endaddr <= sect2_addr)
1085 break;
1086 else
1087 {
1088 /* We have an overlap. Report it. */
1089
1090 struct objfile *const objf1 = sect1->objfile;
1091 struct objfile *const objf2 = sect2->objfile;
1092
1093 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1094 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1095
1096 const CORE_ADDR sect2_endaddr = sect2->endaddr ();
1097
1098 struct gdbarch *const gdbarch = objf1->arch ();
1099
1100 complaint (_("unexpected overlap between:\n"
1101 " (A) section `%s' from `%s' [%s, %s)\n"
1102 " (B) section `%s' from `%s' [%s, %s).\n"
1103 "Will ignore section B"),
1104 bfd_section_name (bfds1), objfile_name (objf1),
1105 paddress (gdbarch, sect1_addr),
1106 paddress (gdbarch, sect1_endaddr),
1107 bfd_section_name (bfds2), objfile_name (objf2),
1108 paddress (gdbarch, sect2_addr),
1109 paddress (gdbarch, sect2_endaddr));
1110 }
1111 }
1112 i = k;
1113 }
1114
1115 if (i < map_size)
1116 {
1117 gdb_assert (i == map_size - 1);
1118 map[j++] = map[i];
1119 }
1120
1121 return j;
1122 }
1123
1124
1125 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1126 TLS, overlay and overlapping sections. */
1127
1128 static void
1129 update_section_map (struct program_space *pspace,
1130 struct obj_section ***pmap, int *pmap_size)
1131 {
1132 struct objfile_pspace_info *pspace_info;
1133 int alloc_size, map_size, i;
1134 struct obj_section *s, **map;
1135
1136 pspace_info = get_objfile_pspace_data (pspace);
1137 gdb_assert (pspace_info->section_map_dirty != 0
1138 || pspace_info->new_objfiles_available != 0);
1139
1140 map = *pmap;
1141 xfree (map);
1142
1143 alloc_size = 0;
1144 for (objfile *objfile : pspace->objfiles ())
1145 ALL_OBJFILE_OSECTIONS (objfile, s)
1146 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1147 alloc_size += 1;
1148
1149 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1150 if (alloc_size == 0)
1151 {
1152 *pmap = NULL;
1153 *pmap_size = 0;
1154 return;
1155 }
1156
1157 map = XNEWVEC (struct obj_section *, alloc_size);
1158
1159 i = 0;
1160 for (objfile *objfile : pspace->objfiles ())
1161 ALL_OBJFILE_OSECTIONS (objfile, s)
1162 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1163 map[i++] = s;
1164
1165 std::sort (map, map + alloc_size, sort_cmp);
1166 map_size = filter_debuginfo_sections(map, alloc_size);
1167 map_size = filter_overlapping_sections(map, map_size);
1168
1169 if (map_size < alloc_size)
1170 /* Some sections were eliminated. Trim excess space. */
1171 map = XRESIZEVEC (struct obj_section *, map, map_size);
1172 else
1173 gdb_assert (alloc_size == map_size);
1174
1175 *pmap = map;
1176 *pmap_size = map_size;
1177 }
1178
1179 /* Bsearch comparison function. */
1180
1181 static int
1182 bsearch_cmp (const void *key, const void *elt)
1183 {
1184 const CORE_ADDR pc = *(CORE_ADDR *) key;
1185 const struct obj_section *section = *(const struct obj_section **) elt;
1186
1187 if (pc < section->addr ())
1188 return -1;
1189 if (pc < section->endaddr ())
1190 return 0;
1191 return 1;
1192 }
1193
1194 /* Returns a section whose range includes PC or NULL if none found. */
1195
1196 struct obj_section *
1197 find_pc_section (CORE_ADDR pc)
1198 {
1199 struct objfile_pspace_info *pspace_info;
1200 struct obj_section *s, **sp;
1201
1202 /* Check for mapped overlay section first. */
1203 s = find_pc_mapped_section (pc);
1204 if (s)
1205 return s;
1206
1207 pspace_info = get_objfile_pspace_data (current_program_space);
1208 if (pspace_info->section_map_dirty
1209 || (pspace_info->new_objfiles_available
1210 && !pspace_info->inhibit_updates))
1211 {
1212 update_section_map (current_program_space,
1213 &pspace_info->sections,
1214 &pspace_info->num_sections);
1215
1216 /* Don't need updates to section map until objfiles are added,
1217 removed or relocated. */
1218 pspace_info->new_objfiles_available = 0;
1219 pspace_info->section_map_dirty = 0;
1220 }
1221
1222 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1223 bsearch be non-NULL. */
1224 if (pspace_info->sections == NULL)
1225 {
1226 gdb_assert (pspace_info->num_sections == 0);
1227 return NULL;
1228 }
1229
1230 sp = (struct obj_section **) bsearch (&pc,
1231 pspace_info->sections,
1232 pspace_info->num_sections,
1233 sizeof (*pspace_info->sections),
1234 bsearch_cmp);
1235 if (sp != NULL)
1236 return *sp;
1237 return NULL;
1238 }
1239
1240
1241 /* Return non-zero if PC is in a section called NAME. */
1242
1243 int
1244 pc_in_section (CORE_ADDR pc, const char *name)
1245 {
1246 struct obj_section *s;
1247 int retval = 0;
1248
1249 s = find_pc_section (pc);
1250
1251 retval = (s != NULL
1252 && s->the_bfd_section->name != NULL
1253 && strcmp (s->the_bfd_section->name, name) == 0);
1254 return (retval);
1255 }
1256 \f
1257
1258 /* Set section_map_dirty so section map will be rebuilt next time it
1259 is used. Called by reread_symbols. */
1260
1261 void
1262 objfiles_changed (void)
1263 {
1264 /* Rebuild section map next time we need it. */
1265 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1266 }
1267
1268 /* See comments in objfiles.h. */
1269
1270 scoped_restore_tmpl<int>
1271 inhibit_section_map_updates (struct program_space *pspace)
1272 {
1273 return scoped_restore_tmpl<int>
1274 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1275 }
1276
1277 /* See objfiles.h. */
1278
1279 bool
1280 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1281 {
1282 struct obj_section *osect;
1283
1284 if (objfile == NULL)
1285 return false;
1286
1287 ALL_OBJFILE_OSECTIONS (objfile, osect)
1288 {
1289 if (section_is_overlay (osect) && !section_is_mapped (osect))
1290 continue;
1291
1292 if (osect->addr () <= addr && addr < osect->endaddr ())
1293 return true;
1294 }
1295 return false;
1296 }
1297
1298 /* See objfiles.h. */
1299
1300 bool
1301 shared_objfile_contains_address_p (struct program_space *pspace,
1302 CORE_ADDR address)
1303 {
1304 for (objfile *objfile : pspace->objfiles ())
1305 {
1306 if ((objfile->flags & OBJF_SHARED) != 0
1307 && is_addr_in_objfile (address, objfile))
1308 return true;
1309 }
1310
1311 return false;
1312 }
1313
1314 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1315 gdbarch method. It is equivalent to use the objfiles iterable,
1316 searching the objfiles in the order they are stored internally,
1317 ignoring CURRENT_OBJFILE.
1318
1319 On most platforms, it should be close enough to doing the best
1320 we can without some knowledge specific to the architecture. */
1321
1322 void
1323 default_iterate_over_objfiles_in_search_order
1324 (struct gdbarch *gdbarch,
1325 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1326 void *cb_data, struct objfile *current_objfile)
1327 {
1328 int stop = 0;
1329
1330 for (objfile *objfile : current_program_space->objfiles ())
1331 {
1332 stop = cb (objfile, cb_data);
1333 if (stop)
1334 return;
1335 }
1336 }
1337
1338 /* See objfiles.h. */
1339
1340 const char *
1341 objfile_name (const struct objfile *objfile)
1342 {
1343 if (objfile->obfd != NULL)
1344 return bfd_get_filename (objfile->obfd);
1345
1346 return objfile->original_name;
1347 }
1348
1349 /* See objfiles.h. */
1350
1351 const char *
1352 objfile_filename (const struct objfile *objfile)
1353 {
1354 if (objfile->obfd != NULL)
1355 return bfd_get_filename (objfile->obfd);
1356
1357 return NULL;
1358 }
1359
1360 /* See objfiles.h. */
1361
1362 const char *
1363 objfile_debug_name (const struct objfile *objfile)
1364 {
1365 return lbasename (objfile->original_name);
1366 }
1367
1368 /* See objfiles.h. */
1369
1370 const char *
1371 objfile_flavour_name (struct objfile *objfile)
1372 {
1373 if (objfile->obfd != NULL)
1374 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1375 return NULL;
1376 }
This page took 0.065133 seconds and 4 git commands to generate.