remove gdb_string.h
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include <string.h>
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = program_space_data (pspace, objfiles_pspace_data);
103 if (info == NULL)
104 {
105 info = XZALLOC (struct objfile_pspace_info);
106 set_program_space_data (pspace, objfiles_pspace_data, info);
107 }
108
109 return info;
110 }
111
112 \f
113
114 /* Per-BFD data key. */
115
116 static const struct bfd_data *objfiles_bfd_data;
117
118 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
119 NULL, and it already has a per-BFD storage object, use that.
120 Otherwise, allocate a new per-BFD storage object. If ABFD is not
121 NULL, the object is allocated on the BFD; otherwise it is allocated
122 on OBJFILE's obstack. Note that it is not safe to call this
123 multiple times for a given OBJFILE -- it can only be called when
124 allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = bfd_data (abfd, objfiles_bfd_data);
133
134 if (storage == NULL)
135 {
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 {
141 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
142 set_bfd_data (abfd, objfiles_bfd_data, storage);
143 }
144 else
145 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
146 struct objfile_per_bfd_storage);
147
148 /* Look up the gdbarch associated with the BFD. */
149 if (abfd != NULL)
150 storage->gdbarch = gdbarch_from_bfd (abfd);
151
152 obstack_init (&storage->storage_obstack);
153 storage->filename_cache = bcache_xmalloc (NULL, NULL);
154 storage->macro_cache = bcache_xmalloc (NULL, NULL);
155 }
156
157 return storage;
158 }
159
160 /* Free STORAGE. */
161
162 static void
163 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
164 {
165 bcache_xfree (storage->filename_cache);
166 bcache_xfree (storage->macro_cache);
167 if (storage->demangled_names_hash)
168 htab_delete (storage->demangled_names_hash);
169 obstack_free (&storage->storage_obstack, 0);
170 }
171
172 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
173 cleanup function to the BFD registry. */
174
175 static void
176 objfile_bfd_data_free (struct bfd *unused, void *d)
177 {
178 free_objfile_per_bfd_storage (d);
179 }
180
181 /* See objfiles.h. */
182
183 void
184 set_objfile_per_bfd (struct objfile *objfile)
185 {
186 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
187 }
188
189 \f
190
191 /* Called via bfd_map_over_sections to build up the section table that
192 the objfile references. The objfile contains pointers to the start
193 of the table (objfile->sections) and to the first location after
194 the end of the table (objfile->sections_end). */
195
196 static void
197 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
198 struct objfile *objfile, int force)
199 {
200 struct obj_section *section;
201
202 if (!force)
203 {
204 flagword aflag;
205
206 aflag = bfd_get_section_flags (abfd, asect);
207 if (!(aflag & SEC_ALLOC))
208 return;
209 }
210
211 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
212 section->objfile = objfile;
213 section->the_bfd_section = asect;
214 section->ovly_mapped = 0;
215 }
216
217 static void
218 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
219 void *objfilep)
220 {
221 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
222 }
223
224 /* Builds a section table for OBJFILE.
225
226 Note that the OFFSET and OVLY_MAPPED in each table entry are
227 initialized to zero. */
228
229 void
230 build_objfile_section_table (struct objfile *objfile)
231 {
232 int count = gdb_bfd_count_sections (objfile->obfd);
233
234 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
235 count,
236 struct obj_section);
237 objfile->sections_end = (objfile->sections + count);
238 bfd_map_over_sections (objfile->obfd,
239 add_to_objfile_sections, (void *) objfile);
240
241 /* See gdb_bfd_section_index. */
242 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
243 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
244 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
245 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
246 }
247
248 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
249 allocate a new objfile struct, fill it in as best we can, link it
250 into the list of all known objfiles, and return a pointer to the
251 new objfile struct.
252
253 NAME should contain original non-canonicalized filename or other
254 identifier as entered by user. If there is no better source use
255 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
256 NAME content is copied into returned objfile.
257
258 The FLAGS word contains various bits (OBJF_*) that can be taken as
259 requests for specific operations. Other bits like OBJF_SHARED are
260 simply copied through to the new objfile flags member. */
261
262 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
263 by jv-lang.c, to create an artificial objfile used to hold
264 information about dynamically-loaded Java classes. Unfortunately,
265 that branch of this function doesn't get tested very frequently, so
266 it's prone to breakage. (E.g. at one time the name was set to NULL
267 in that situation, which broke a loop over all names in the dynamic
268 library loader.) If you change this function, please try to leave
269 things in a consistent state even if abfd is NULL. */
270
271 struct objfile *
272 allocate_objfile (bfd *abfd, const char *name, int flags)
273 {
274 struct objfile *objfile;
275
276 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
277 objfile->psymbol_cache = psymbol_bcache_init ();
278 /* We could use obstack_specify_allocation here instead, but
279 gdb_obstack.h specifies the alloc/dealloc functions. */
280 obstack_init (&objfile->objfile_obstack);
281 terminate_minimal_symbol_table (objfile);
282
283 objfile_alloc_data (objfile);
284
285 if (name == NULL)
286 {
287 gdb_assert (abfd == NULL);
288 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
289 name = "<<anonymous objfile>>";
290 }
291 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack, name,
292 strlen (name));
293
294 /* Update the per-objfile information that comes from the bfd, ensuring
295 that any data that is reference is saved in the per-objfile data
296 region. */
297
298 objfile->obfd = abfd;
299 gdb_bfd_ref (abfd);
300 if (abfd != NULL)
301 {
302 objfile->mtime = bfd_get_mtime (abfd);
303
304 /* Build section table. */
305 build_objfile_section_table (objfile);
306 }
307
308 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
309 objfile->pspace = current_program_space;
310
311 /* Initialize the section indexes for this objfile, so that we can
312 later detect if they are used w/o being properly assigned to. */
313
314 objfile->sect_index_text = -1;
315 objfile->sect_index_data = -1;
316 objfile->sect_index_bss = -1;
317 objfile->sect_index_rodata = -1;
318
319 /* Add this file onto the tail of the linked list of other such files. */
320
321 objfile->next = NULL;
322 if (object_files == NULL)
323 object_files = objfile;
324 else
325 {
326 struct objfile *last_one;
327
328 for (last_one = object_files;
329 last_one->next;
330 last_one = last_one->next);
331 last_one->next = objfile;
332 }
333
334 /* Save passed in flag bits. */
335 objfile->flags |= flags;
336
337 /* Rebuild section map next time we need it. */
338 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
339
340 return objfile;
341 }
342
343 /* Retrieve the gdbarch associated with OBJFILE. */
344 struct gdbarch *
345 get_objfile_arch (struct objfile *objfile)
346 {
347 return objfile->per_bfd->gdbarch;
348 }
349
350 /* If there is a valid and known entry point, function fills *ENTRY_P with it
351 and returns non-zero; otherwise it returns zero. */
352
353 int
354 entry_point_address_query (CORE_ADDR *entry_p)
355 {
356 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
357 return 0;
358
359 *entry_p = symfile_objfile->ei.entry_point;
360
361 return 1;
362 }
363
364 /* Get current entry point address. Call error if it is not known. */
365
366 CORE_ADDR
367 entry_point_address (void)
368 {
369 CORE_ADDR retval;
370
371 if (!entry_point_address_query (&retval))
372 error (_("Entry point address is not known."));
373
374 return retval;
375 }
376
377 /* Iterator on PARENT and every separate debug objfile of PARENT.
378 The usage pattern is:
379 for (objfile = parent;
380 objfile;
381 objfile = objfile_separate_debug_iterate (parent, objfile))
382 ...
383 */
384
385 struct objfile *
386 objfile_separate_debug_iterate (const struct objfile *parent,
387 const struct objfile *objfile)
388 {
389 struct objfile *res;
390
391 /* If any, return the first child. */
392 res = objfile->separate_debug_objfile;
393 if (res)
394 return res;
395
396 /* Common case where there is no separate debug objfile. */
397 if (objfile == parent)
398 return NULL;
399
400 /* Return the brother if any. Note that we don't iterate on brothers of
401 the parents. */
402 res = objfile->separate_debug_objfile_link;
403 if (res)
404 return res;
405
406 for (res = objfile->separate_debug_objfile_backlink;
407 res != parent;
408 res = res->separate_debug_objfile_backlink)
409 {
410 gdb_assert (res != NULL);
411 if (res->separate_debug_objfile_link)
412 return res->separate_debug_objfile_link;
413 }
414 return NULL;
415 }
416
417 /* Put one object file before a specified on in the global list.
418 This can be used to make sure an object file is destroyed before
419 another when using ALL_OBJFILES_SAFE to free all objfiles. */
420 void
421 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
422 {
423 struct objfile **objp;
424
425 unlink_objfile (objfile);
426
427 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
428 {
429 if (*objp == before_this)
430 {
431 objfile->next = *objp;
432 *objp = objfile;
433 return;
434 }
435 }
436
437 internal_error (__FILE__, __LINE__,
438 _("put_objfile_before: before objfile not in list"));
439 }
440
441 /* Put OBJFILE at the front of the list. */
442
443 void
444 objfile_to_front (struct objfile *objfile)
445 {
446 struct objfile **objp;
447 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
448 {
449 if (*objp == objfile)
450 {
451 /* Unhook it from where it is. */
452 *objp = objfile->next;
453 /* Put it in the front. */
454 objfile->next = object_files;
455 object_files = objfile;
456 break;
457 }
458 }
459 }
460
461 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
462 list.
463
464 It is not a bug, or error, to call this function if OBJFILE is not known
465 to be in the current list. This is done in the case of mapped objfiles,
466 for example, just to ensure that the mapped objfile doesn't appear twice
467 in the list. Since the list is threaded, linking in a mapped objfile
468 twice would create a circular list.
469
470 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
471 unlinking it, just to ensure that we have completely severed any linkages
472 between the OBJFILE and the list. */
473
474 void
475 unlink_objfile (struct objfile *objfile)
476 {
477 struct objfile **objpp;
478
479 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
480 {
481 if (*objpp == objfile)
482 {
483 *objpp = (*objpp)->next;
484 objfile->next = NULL;
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("unlink_objfile: objfile already unlinked"));
491 }
492
493 /* Add OBJFILE as a separate debug objfile of PARENT. */
494
495 void
496 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
497 {
498 gdb_assert (objfile && parent);
499
500 /* Must not be already in a list. */
501 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
502 gdb_assert (objfile->separate_debug_objfile_link == NULL);
503 gdb_assert (objfile->separate_debug_objfile == NULL);
504 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
505 gdb_assert (parent->separate_debug_objfile_link == NULL);
506
507 objfile->separate_debug_objfile_backlink = parent;
508 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
509 parent->separate_debug_objfile = objfile;
510
511 /* Put the separate debug object before the normal one, this is so that
512 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
513 put_objfile_before (objfile, parent);
514 }
515
516 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
517 itself. */
518
519 void
520 free_objfile_separate_debug (struct objfile *objfile)
521 {
522 struct objfile *child;
523
524 for (child = objfile->separate_debug_objfile; child;)
525 {
526 struct objfile *next_child = child->separate_debug_objfile_link;
527 free_objfile (child);
528 child = next_child;
529 }
530 }
531
532 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
533 that as much as possible is allocated on the objfile_obstack
534 so that the memory can be efficiently freed.
535
536 Things which we do NOT free because they are not in malloc'd memory
537 or not in memory specific to the objfile include:
538
539 objfile -> sf
540
541 FIXME: If the objfile is using reusable symbol information (via mmalloc),
542 then we need to take into account the fact that more than one process
543 may be using the symbol information at the same time (when mmalloc is
544 extended to support cooperative locking). When more than one process
545 is using the mapped symbol info, we need to be more careful about when
546 we free objects in the reusable area. */
547
548 void
549 free_objfile (struct objfile *objfile)
550 {
551 /* First notify observers that this objfile is about to be freed. */
552 observer_notify_free_objfile (objfile);
553
554 /* Free all separate debug objfiles. */
555 free_objfile_separate_debug (objfile);
556
557 if (objfile->separate_debug_objfile_backlink)
558 {
559 /* We freed the separate debug file, make sure the base objfile
560 doesn't reference it. */
561 struct objfile *child;
562
563 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
564
565 if (child == objfile)
566 {
567 /* OBJFILE is the first child. */
568 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
569 objfile->separate_debug_objfile_link;
570 }
571 else
572 {
573 /* Find OBJFILE in the list. */
574 while (1)
575 {
576 if (child->separate_debug_objfile_link == objfile)
577 {
578 child->separate_debug_objfile_link =
579 objfile->separate_debug_objfile_link;
580 break;
581 }
582 child = child->separate_debug_objfile_link;
583 gdb_assert (child);
584 }
585 }
586 }
587
588 /* Remove any references to this objfile in the global value
589 lists. */
590 preserve_values (objfile);
591
592 /* It still may reference data modules have associated with the objfile and
593 the symbol file data. */
594 forget_cached_source_info_for_objfile (objfile);
595
596 breakpoint_free_objfile (objfile);
597 btrace_free_objfile (objfile);
598
599 /* First do any symbol file specific actions required when we are
600 finished with a particular symbol file. Note that if the objfile
601 is using reusable symbol information (via mmalloc) then each of
602 these routines is responsible for doing the correct thing, either
603 freeing things which are valid only during this particular gdb
604 execution, or leaving them to be reused during the next one. */
605
606 if (objfile->sf != NULL)
607 {
608 (*objfile->sf->sym_finish) (objfile);
609 }
610
611 /* Discard any data modules have associated with the objfile. The function
612 still may reference objfile->obfd. */
613 objfile_free_data (objfile);
614
615 if (objfile->obfd)
616 gdb_bfd_unref (objfile->obfd);
617 else
618 free_objfile_per_bfd_storage (objfile->per_bfd);
619
620 /* Remove it from the chain of all objfiles. */
621
622 unlink_objfile (objfile);
623
624 if (objfile == symfile_objfile)
625 symfile_objfile = NULL;
626
627 /* Before the symbol table code was redone to make it easier to
628 selectively load and remove information particular to a specific
629 linkage unit, gdb used to do these things whenever the monolithic
630 symbol table was blown away. How much still needs to be done
631 is unknown, but we play it safe for now and keep each action until
632 it is shown to be no longer needed. */
633
634 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
635 for example), so we need to call this here. */
636 clear_pc_function_cache ();
637
638 /* Clear globals which might have pointed into a removed objfile.
639 FIXME: It's not clear which of these are supposed to persist
640 between expressions and which ought to be reset each time. */
641 expression_context_block = NULL;
642 innermost_block = NULL;
643
644 /* Check to see if the current_source_symtab belongs to this objfile,
645 and if so, call clear_current_source_symtab_and_line. */
646
647 {
648 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
649
650 if (cursal.symtab && cursal.symtab->objfile == objfile)
651 clear_current_source_symtab_and_line ();
652 }
653
654 if (objfile->global_psymbols.list)
655 xfree (objfile->global_psymbols.list);
656 if (objfile->static_psymbols.list)
657 xfree (objfile->static_psymbols.list);
658 /* Free the obstacks for non-reusable objfiles. */
659 psymbol_bcache_free (objfile->psymbol_cache);
660 obstack_free (&objfile->objfile_obstack, 0);
661
662 /* Rebuild section map next time we need it. */
663 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
664
665 /* The last thing we do is free the objfile struct itself. */
666 xfree (objfile);
667 }
668
669 static void
670 do_free_objfile_cleanup (void *obj)
671 {
672 free_objfile (obj);
673 }
674
675 struct cleanup *
676 make_cleanup_free_objfile (struct objfile *obj)
677 {
678 return make_cleanup (do_free_objfile_cleanup, obj);
679 }
680
681 /* Free all the object files at once and clean up their users. */
682
683 void
684 free_all_objfiles (void)
685 {
686 struct objfile *objfile, *temp;
687 struct so_list *so;
688
689 /* Any objfile referencewould become stale. */
690 for (so = master_so_list (); so; so = so->next)
691 gdb_assert (so->objfile == NULL);
692
693 ALL_OBJFILES_SAFE (objfile, temp)
694 {
695 free_objfile (objfile);
696 }
697 clear_symtab_users (0);
698 }
699 \f
700 /* A helper function for objfile_relocate1 that relocates a single
701 symbol. */
702
703 static void
704 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
705 struct section_offsets *delta)
706 {
707 fixup_symbol_section (sym, objfile);
708
709 /* The RS6000 code from which this was taken skipped
710 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
711 But I'm leaving out that test, on the theory that
712 they can't possibly pass the tests below. */
713 if ((SYMBOL_CLASS (sym) == LOC_LABEL
714 || SYMBOL_CLASS (sym) == LOC_STATIC)
715 && SYMBOL_SECTION (sym) >= 0)
716 {
717 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
718 }
719 }
720
721 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
722 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
723 Return non-zero iff any change happened. */
724
725 static int
726 objfile_relocate1 (struct objfile *objfile,
727 const struct section_offsets *new_offsets)
728 {
729 struct obj_section *s;
730 struct section_offsets *delta =
731 ((struct section_offsets *)
732 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
733
734 int i;
735 int something_changed = 0;
736
737 for (i = 0; i < objfile->num_sections; ++i)
738 {
739 delta->offsets[i] =
740 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
741 if (ANOFFSET (delta, i) != 0)
742 something_changed = 1;
743 }
744 if (!something_changed)
745 return 0;
746
747 /* OK, get all the symtabs. */
748 {
749 struct symtab *s;
750
751 ALL_OBJFILE_SYMTABS (objfile, s)
752 {
753 struct linetable *l;
754 struct blockvector *bv;
755 int i;
756
757 /* First the line table. */
758 l = LINETABLE (s);
759 if (l)
760 {
761 for (i = 0; i < l->nitems; ++i)
762 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
763 }
764
765 /* Don't relocate a shared blockvector more than once. */
766 if (!s->primary)
767 continue;
768
769 bv = BLOCKVECTOR (s);
770 if (BLOCKVECTOR_MAP (bv))
771 addrmap_relocate (BLOCKVECTOR_MAP (bv),
772 ANOFFSET (delta, s->block_line_section));
773
774 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
775 {
776 struct block *b;
777 struct symbol *sym;
778 struct dict_iterator iter;
779
780 b = BLOCKVECTOR_BLOCK (bv, i);
781 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
782 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
783
784 /* We only want to iterate over the local symbols, not any
785 symbols in included symtabs. */
786 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
787 {
788 relocate_one_symbol (sym, objfile, delta);
789 }
790 }
791 }
792 }
793
794 /* Relocate isolated symbols. */
795 {
796 struct symbol *iter;
797
798 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
799 relocate_one_symbol (iter, objfile, delta);
800 }
801
802 if (objfile->psymtabs_addrmap)
803 addrmap_relocate (objfile->psymtabs_addrmap,
804 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
805
806 if (objfile->sf)
807 objfile->sf->qf->relocate (objfile, new_offsets, delta);
808
809 {
810 struct minimal_symbol *msym;
811
812 ALL_OBJFILE_MSYMBOLS (objfile, msym)
813 if (SYMBOL_SECTION (msym) >= 0)
814 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
815 }
816 /* Relocating different sections by different amounts may cause the symbols
817 to be out of order. */
818 msymbols_sort (objfile);
819
820 if (objfile->ei.entry_point_p)
821 {
822 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
823 only as a fallback. */
824 struct obj_section *s;
825 s = find_pc_section (objfile->ei.entry_point);
826 if (s)
827 {
828 int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
829
830 objfile->ei.entry_point += ANOFFSET (delta, idx);
831 }
832 else
833 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
834 }
835
836 {
837 int i;
838
839 for (i = 0; i < objfile->num_sections; ++i)
840 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
841 }
842
843 /* Rebuild section map next time we need it. */
844 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
845
846 /* Update the table in exec_ops, used to read memory. */
847 ALL_OBJFILE_OSECTIONS (objfile, s)
848 {
849 int idx = s - objfile->sections;
850
851 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
852 obj_section_addr (s));
853 }
854
855 /* Relocating probes. */
856 if (objfile->sf && objfile->sf->sym_probe_fns)
857 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
858 new_offsets, delta);
859
860 /* Data changed. */
861 return 1;
862 }
863
864 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
865 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
866
867 The number and ordering of sections does differ between the two objfiles.
868 Only their names match. Also the file offsets will differ (objfile being
869 possibly prelinked but separate_debug_objfile is probably not prelinked) but
870 the in-memory absolute address as specified by NEW_OFFSETS must match both
871 files. */
872
873 void
874 objfile_relocate (struct objfile *objfile,
875 const struct section_offsets *new_offsets)
876 {
877 struct objfile *debug_objfile;
878 int changed = 0;
879
880 changed |= objfile_relocate1 (objfile, new_offsets);
881
882 for (debug_objfile = objfile->separate_debug_objfile;
883 debug_objfile;
884 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
885 {
886 struct section_addr_info *objfile_addrs;
887 struct section_offsets *new_debug_offsets;
888 struct cleanup *my_cleanups;
889
890 objfile_addrs = build_section_addr_info_from_objfile (objfile);
891 my_cleanups = make_cleanup (xfree, objfile_addrs);
892
893 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
894 relative ones must be already created according to debug_objfile. */
895
896 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
897
898 gdb_assert (debug_objfile->num_sections
899 == gdb_bfd_count_sections (debug_objfile->obfd));
900 new_debug_offsets =
901 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
902 make_cleanup (xfree, new_debug_offsets);
903 relative_addr_info_to_section_offsets (new_debug_offsets,
904 debug_objfile->num_sections,
905 objfile_addrs);
906
907 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
908
909 do_cleanups (my_cleanups);
910 }
911
912 /* Relocate breakpoints as necessary, after things are relocated. */
913 if (changed)
914 breakpoint_re_set ();
915 }
916
917 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
918 not touched here.
919 Return non-zero iff any change happened. */
920
921 static int
922 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
923 {
924 struct section_offsets *new_offsets =
925 ((struct section_offsets *)
926 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
927 int i;
928
929 for (i = 0; i < objfile->num_sections; ++i)
930 new_offsets->offsets[i] = slide;
931
932 return objfile_relocate1 (objfile, new_offsets);
933 }
934
935 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
936 SEPARATE_DEBUG_OBJFILEs. */
937
938 void
939 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
940 {
941 struct objfile *debug_objfile;
942 int changed = 0;
943
944 changed |= objfile_rebase1 (objfile, slide);
945
946 for (debug_objfile = objfile->separate_debug_objfile;
947 debug_objfile;
948 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
949 changed |= objfile_rebase1 (debug_objfile, slide);
950
951 /* Relocate breakpoints as necessary, after things are relocated. */
952 if (changed)
953 breakpoint_re_set ();
954 }
955 \f
956 /* Return non-zero if OBJFILE has partial symbols. */
957
958 int
959 objfile_has_partial_symbols (struct objfile *objfile)
960 {
961 if (!objfile->sf)
962 return 0;
963
964 /* If we have not read psymbols, but we have a function capable of reading
965 them, then that is an indication that they are in fact available. Without
966 this function the symbols may have been already read in but they also may
967 not be present in this objfile. */
968 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
969 && objfile->sf->sym_read_psymbols != NULL)
970 return 1;
971
972 return objfile->sf->qf->has_symbols (objfile);
973 }
974
975 /* Return non-zero if OBJFILE has full symbols. */
976
977 int
978 objfile_has_full_symbols (struct objfile *objfile)
979 {
980 return objfile->symtabs != NULL;
981 }
982
983 /* Return non-zero if OBJFILE has full or partial symbols, either directly
984 or through a separate debug file. */
985
986 int
987 objfile_has_symbols (struct objfile *objfile)
988 {
989 struct objfile *o;
990
991 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
992 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
993 return 1;
994 return 0;
995 }
996
997
998 /* Many places in gdb want to test just to see if we have any partial
999 symbols available. This function returns zero if none are currently
1000 available, nonzero otherwise. */
1001
1002 int
1003 have_partial_symbols (void)
1004 {
1005 struct objfile *ofp;
1006
1007 ALL_OBJFILES (ofp)
1008 {
1009 if (objfile_has_partial_symbols (ofp))
1010 return 1;
1011 }
1012 return 0;
1013 }
1014
1015 /* Many places in gdb want to test just to see if we have any full
1016 symbols available. This function returns zero if none are currently
1017 available, nonzero otherwise. */
1018
1019 int
1020 have_full_symbols (void)
1021 {
1022 struct objfile *ofp;
1023
1024 ALL_OBJFILES (ofp)
1025 {
1026 if (objfile_has_full_symbols (ofp))
1027 return 1;
1028 }
1029 return 0;
1030 }
1031
1032
1033 /* This operations deletes all objfile entries that represent solibs that
1034 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1035 command. */
1036
1037 void
1038 objfile_purge_solibs (void)
1039 {
1040 struct objfile *objf;
1041 struct objfile *temp;
1042
1043 ALL_OBJFILES_SAFE (objf, temp)
1044 {
1045 /* We assume that the solib package has been purged already, or will
1046 be soon. */
1047
1048 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1049 free_objfile (objf);
1050 }
1051 }
1052
1053
1054 /* Many places in gdb want to test just to see if we have any minimal
1055 symbols available. This function returns zero if none are currently
1056 available, nonzero otherwise. */
1057
1058 int
1059 have_minimal_symbols (void)
1060 {
1061 struct objfile *ofp;
1062
1063 ALL_OBJFILES (ofp)
1064 {
1065 if (ofp->minimal_symbol_count > 0)
1066 {
1067 return 1;
1068 }
1069 }
1070 return 0;
1071 }
1072
1073 /* Qsort comparison function. */
1074
1075 static int
1076 qsort_cmp (const void *a, const void *b)
1077 {
1078 const struct obj_section *sect1 = *(const struct obj_section **) a;
1079 const struct obj_section *sect2 = *(const struct obj_section **) b;
1080 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1081 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1082
1083 if (sect1_addr < sect2_addr)
1084 return -1;
1085 else if (sect1_addr > sect2_addr)
1086 return 1;
1087 else
1088 {
1089 /* Sections are at the same address. This could happen if
1090 A) we have an objfile and a separate debuginfo.
1091 B) we are confused, and have added sections without proper relocation,
1092 or something like that. */
1093
1094 const struct objfile *const objfile1 = sect1->objfile;
1095 const struct objfile *const objfile2 = sect2->objfile;
1096
1097 if (objfile1->separate_debug_objfile == objfile2
1098 || objfile2->separate_debug_objfile == objfile1)
1099 {
1100 /* Case A. The ordering doesn't matter: separate debuginfo files
1101 will be filtered out later. */
1102
1103 return 0;
1104 }
1105
1106 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1107 triage. This section could be slow (since we iterate over all
1108 objfiles in each call to qsort_cmp), but this shouldn't happen
1109 very often (GDB is already in a confused state; one hopes this
1110 doesn't happen at all). If you discover that significant time is
1111 spent in the loops below, do 'set complaints 100' and examine the
1112 resulting complaints. */
1113
1114 if (objfile1 == objfile2)
1115 {
1116 /* Both sections came from the same objfile. We are really confused.
1117 Sort on sequence order of sections within the objfile. */
1118
1119 const struct obj_section *osect;
1120
1121 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1122 if (osect == sect1)
1123 return -1;
1124 else if (osect == sect2)
1125 return 1;
1126
1127 /* We should have found one of the sections before getting here. */
1128 gdb_assert_not_reached ("section not found");
1129 }
1130 else
1131 {
1132 /* Sort on sequence number of the objfile in the chain. */
1133
1134 const struct objfile *objfile;
1135
1136 ALL_OBJFILES (objfile)
1137 if (objfile == objfile1)
1138 return -1;
1139 else if (objfile == objfile2)
1140 return 1;
1141
1142 /* We should have found one of the objfiles before getting here. */
1143 gdb_assert_not_reached ("objfile not found");
1144 }
1145 }
1146
1147 /* Unreachable. */
1148 gdb_assert_not_reached ("unexpected code path");
1149 return 0;
1150 }
1151
1152 /* Select "better" obj_section to keep. We prefer the one that came from
1153 the real object, rather than the one from separate debuginfo.
1154 Most of the time the two sections are exactly identical, but with
1155 prelinking the .rel.dyn section in the real object may have different
1156 size. */
1157
1158 static struct obj_section *
1159 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1160 {
1161 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1162 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1163 || (b->objfile->separate_debug_objfile == a->objfile));
1164 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1165 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1166
1167 if (a->objfile->separate_debug_objfile != NULL)
1168 return a;
1169 return b;
1170 }
1171
1172 /* Return 1 if SECTION should be inserted into the section map.
1173 We want to insert only non-overlay and non-TLS section. */
1174
1175 static int
1176 insert_section_p (const struct bfd *abfd,
1177 const struct bfd_section *section)
1178 {
1179 const bfd_vma lma = bfd_section_lma (abfd, section);
1180
1181 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1182 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1183 /* This is an overlay section. IN_MEMORY check is needed to avoid
1184 discarding sections from the "system supplied DSO" (aka vdso)
1185 on some Linux systems (e.g. Fedora 11). */
1186 return 0;
1187 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1188 /* This is a TLS section. */
1189 return 0;
1190
1191 return 1;
1192 }
1193
1194 /* Filter out overlapping sections where one section came from the real
1195 objfile, and the other from a separate debuginfo file.
1196 Return the size of table after redundant sections have been eliminated. */
1197
1198 static int
1199 filter_debuginfo_sections (struct obj_section **map, int map_size)
1200 {
1201 int i, j;
1202
1203 for (i = 0, j = 0; i < map_size - 1; i++)
1204 {
1205 struct obj_section *const sect1 = map[i];
1206 struct obj_section *const sect2 = map[i + 1];
1207 const struct objfile *const objfile1 = sect1->objfile;
1208 const struct objfile *const objfile2 = sect2->objfile;
1209 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1210 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1211
1212 if (sect1_addr == sect2_addr
1213 && (objfile1->separate_debug_objfile == objfile2
1214 || objfile2->separate_debug_objfile == objfile1))
1215 {
1216 map[j++] = preferred_obj_section (sect1, sect2);
1217 ++i;
1218 }
1219 else
1220 map[j++] = sect1;
1221 }
1222
1223 if (i < map_size)
1224 {
1225 gdb_assert (i == map_size - 1);
1226 map[j++] = map[i];
1227 }
1228
1229 /* The map should not have shrunk to less than half the original size. */
1230 gdb_assert (map_size / 2 <= j);
1231
1232 return j;
1233 }
1234
1235 /* Filter out overlapping sections, issuing a warning if any are found.
1236 Overlapping sections could really be overlay sections which we didn't
1237 classify as such in insert_section_p, or we could be dealing with a
1238 corrupt binary. */
1239
1240 static int
1241 filter_overlapping_sections (struct obj_section **map, int map_size)
1242 {
1243 int i, j;
1244
1245 for (i = 0, j = 0; i < map_size - 1; )
1246 {
1247 int k;
1248
1249 map[j++] = map[i];
1250 for (k = i + 1; k < map_size; k++)
1251 {
1252 struct obj_section *const sect1 = map[i];
1253 struct obj_section *const sect2 = map[k];
1254 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1255 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1256 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1257
1258 gdb_assert (sect1_addr <= sect2_addr);
1259
1260 if (sect1_endaddr <= sect2_addr)
1261 break;
1262 else
1263 {
1264 /* We have an overlap. Report it. */
1265
1266 struct objfile *const objf1 = sect1->objfile;
1267 struct objfile *const objf2 = sect2->objfile;
1268
1269 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1270 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1271
1272 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1273
1274 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1275
1276 complaint (&symfile_complaints,
1277 _("unexpected overlap between:\n"
1278 " (A) section `%s' from `%s' [%s, %s)\n"
1279 " (B) section `%s' from `%s' [%s, %s).\n"
1280 "Will ignore section B"),
1281 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1282 paddress (gdbarch, sect1_addr),
1283 paddress (gdbarch, sect1_endaddr),
1284 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1285 paddress (gdbarch, sect2_addr),
1286 paddress (gdbarch, sect2_endaddr));
1287 }
1288 }
1289 i = k;
1290 }
1291
1292 if (i < map_size)
1293 {
1294 gdb_assert (i == map_size - 1);
1295 map[j++] = map[i];
1296 }
1297
1298 return j;
1299 }
1300
1301
1302 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1303 TLS, overlay and overlapping sections. */
1304
1305 static void
1306 update_section_map (struct program_space *pspace,
1307 struct obj_section ***pmap, int *pmap_size)
1308 {
1309 struct objfile_pspace_info *pspace_info;
1310 int alloc_size, map_size, i;
1311 struct obj_section *s, **map;
1312 struct objfile *objfile;
1313
1314 pspace_info = get_objfile_pspace_data (pspace);
1315 gdb_assert (pspace_info->section_map_dirty != 0
1316 || pspace_info->new_objfiles_available != 0);
1317
1318 map = *pmap;
1319 xfree (map);
1320
1321 alloc_size = 0;
1322 ALL_PSPACE_OBJFILES (pspace, objfile)
1323 ALL_OBJFILE_OSECTIONS (objfile, s)
1324 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1325 alloc_size += 1;
1326
1327 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1328 if (alloc_size == 0)
1329 {
1330 *pmap = NULL;
1331 *pmap_size = 0;
1332 return;
1333 }
1334
1335 map = xmalloc (alloc_size * sizeof (*map));
1336
1337 i = 0;
1338 ALL_PSPACE_OBJFILES (pspace, objfile)
1339 ALL_OBJFILE_OSECTIONS (objfile, s)
1340 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1341 map[i++] = s;
1342
1343 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1344 map_size = filter_debuginfo_sections(map, alloc_size);
1345 map_size = filter_overlapping_sections(map, map_size);
1346
1347 if (map_size < alloc_size)
1348 /* Some sections were eliminated. Trim excess space. */
1349 map = xrealloc (map, map_size * sizeof (*map));
1350 else
1351 gdb_assert (alloc_size == map_size);
1352
1353 *pmap = map;
1354 *pmap_size = map_size;
1355 }
1356
1357 /* Bsearch comparison function. */
1358
1359 static int
1360 bsearch_cmp (const void *key, const void *elt)
1361 {
1362 const CORE_ADDR pc = *(CORE_ADDR *) key;
1363 const struct obj_section *section = *(const struct obj_section **) elt;
1364
1365 if (pc < obj_section_addr (section))
1366 return -1;
1367 if (pc < obj_section_endaddr (section))
1368 return 0;
1369 return 1;
1370 }
1371
1372 /* Returns a section whose range includes PC or NULL if none found. */
1373
1374 struct obj_section *
1375 find_pc_section (CORE_ADDR pc)
1376 {
1377 struct objfile_pspace_info *pspace_info;
1378 struct obj_section *s, **sp;
1379
1380 /* Check for mapped overlay section first. */
1381 s = find_pc_mapped_section (pc);
1382 if (s)
1383 return s;
1384
1385 pspace_info = get_objfile_pspace_data (current_program_space);
1386 if (pspace_info->section_map_dirty
1387 || (pspace_info->new_objfiles_available
1388 && !pspace_info->inhibit_updates))
1389 {
1390 update_section_map (current_program_space,
1391 &pspace_info->sections,
1392 &pspace_info->num_sections);
1393
1394 /* Don't need updates to section map until objfiles are added,
1395 removed or relocated. */
1396 pspace_info->new_objfiles_available = 0;
1397 pspace_info->section_map_dirty = 0;
1398 }
1399
1400 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1401 bsearch be non-NULL. */
1402 if (pspace_info->sections == NULL)
1403 {
1404 gdb_assert (pspace_info->num_sections == 0);
1405 return NULL;
1406 }
1407
1408 sp = (struct obj_section **) bsearch (&pc,
1409 pspace_info->sections,
1410 pspace_info->num_sections,
1411 sizeof (*pspace_info->sections),
1412 bsearch_cmp);
1413 if (sp != NULL)
1414 return *sp;
1415 return NULL;
1416 }
1417
1418
1419 /* Return non-zero if PC is in a section called NAME. */
1420
1421 int
1422 pc_in_section (CORE_ADDR pc, char *name)
1423 {
1424 struct obj_section *s;
1425 int retval = 0;
1426
1427 s = find_pc_section (pc);
1428
1429 retval = (s != NULL
1430 && s->the_bfd_section->name != NULL
1431 && strcmp (s->the_bfd_section->name, name) == 0);
1432 return (retval);
1433 }
1434 \f
1435
1436 /* Set section_map_dirty so section map will be rebuilt next time it
1437 is used. Called by reread_symbols. */
1438
1439 void
1440 objfiles_changed (void)
1441 {
1442 /* Rebuild section map next time we need it. */
1443 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1444 }
1445
1446 /* See comments in objfiles.h. */
1447
1448 void
1449 inhibit_section_map_updates (struct program_space *pspace)
1450 {
1451 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1452 }
1453
1454 /* See comments in objfiles.h. */
1455
1456 void
1457 resume_section_map_updates (struct program_space *pspace)
1458 {
1459 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1460 }
1461
1462 /* See comments in objfiles.h. */
1463
1464 void
1465 resume_section_map_updates_cleanup (void *arg)
1466 {
1467 resume_section_map_updates (arg);
1468 }
1469
1470 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1471 otherwise. */
1472
1473 int
1474 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1475 {
1476 struct obj_section *osect;
1477
1478 if (objfile == NULL)
1479 return 0;
1480
1481 ALL_OBJFILE_OSECTIONS (objfile, osect)
1482 {
1483 if (section_is_overlay (osect) && !section_is_mapped (osect))
1484 continue;
1485
1486 if (obj_section_addr (osect) <= addr
1487 && addr < obj_section_endaddr (osect))
1488 return 1;
1489 }
1490 return 0;
1491 }
1492
1493 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1494 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1495 searching the objfiles in the order they are stored internally,
1496 ignoring CURRENT_OBJFILE.
1497
1498 On most platorms, it should be close enough to doing the best
1499 we can without some knowledge specific to the architecture. */
1500
1501 void
1502 default_iterate_over_objfiles_in_search_order
1503 (struct gdbarch *gdbarch,
1504 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1505 void *cb_data, struct objfile *current_objfile)
1506 {
1507 int stop = 0;
1508 struct objfile *objfile;
1509
1510 ALL_OBJFILES (objfile)
1511 {
1512 stop = cb (objfile, cb_data);
1513 if (stop)
1514 return;
1515 }
1516 }
1517
1518 /* Return canonical name for OBJFILE. */
1519
1520 const char *
1521 objfile_name (const struct objfile *objfile)
1522 {
1523 if (objfile->obfd != NULL)
1524 return bfd_get_filename (objfile->obfd);
1525
1526 return objfile->original_name;
1527 }
1528
1529 /* Provide a prototype to silence -Wmissing-prototypes. */
1530 extern initialize_file_ftype _initialize_objfiles;
1531
1532 void
1533 _initialize_objfiles (void)
1534 {
1535 objfiles_pspace_data
1536 = register_program_space_data_with_cleanup (NULL,
1537 objfiles_pspace_data_cleanup);
1538
1539 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1540 objfile_bfd_data_free);
1541 }
This page took 0.060229 seconds and 5 git commands to generate.