Remove ALL_OBJFILES_SAFE
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 /* objfile_per_bfd_storage is not trivially constructible, must
148 call the ctor manually. */
149 storage = new (storage) objfile_per_bfd_storage ();
150 set_bfd_data (abfd, objfiles_bfd_data, storage);
151 }
152 else
153 storage
154 = obstack_new<objfile_per_bfd_storage> (&objfile->objfile_obstack);
155
156 /* Look up the gdbarch associated with the BFD. */
157 if (abfd != NULL)
158 storage->gdbarch = gdbarch_from_bfd (abfd);
159
160 storage->filename_cache = bcache_xmalloc (NULL, NULL);
161 storage->macro_cache = bcache_xmalloc (NULL, NULL);
162 storage->language_of_main = language_unknown;
163 }
164
165 return storage;
166 }
167
168 /* Free STORAGE. */
169
170 static void
171 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
172 {
173 bcache_xfree (storage->filename_cache);
174 bcache_xfree (storage->macro_cache);
175 if (storage->demangled_names_hash)
176 htab_delete (storage->demangled_names_hash);
177 storage->~objfile_per_bfd_storage ();
178 }
179
180 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
181 cleanup function to the BFD registry. */
182
183 static void
184 objfile_bfd_data_free (struct bfd *unused, void *d)
185 {
186 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
187 }
188
189 /* See objfiles.h. */
190
191 void
192 set_objfile_per_bfd (struct objfile *objfile)
193 {
194 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
195 }
196
197 /* Set the objfile's per-BFD notion of the "main" name and
198 language. */
199
200 void
201 set_objfile_main_name (struct objfile *objfile,
202 const char *name, enum language lang)
203 {
204 if (objfile->per_bfd->name_of_main == NULL
205 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
206 objfile->per_bfd->name_of_main
207 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
208 strlen (name));
209 objfile->per_bfd->language_of_main = lang;
210 }
211
212 /* Helper structure to map blocks to static link properties in hash tables. */
213
214 struct static_link_htab_entry
215 {
216 const struct block *block;
217 const struct dynamic_prop *static_link;
218 };
219
220 /* Return a hash code for struct static_link_htab_entry *P. */
221
222 static hashval_t
223 static_link_htab_entry_hash (const void *p)
224 {
225 const struct static_link_htab_entry *e
226 = (const struct static_link_htab_entry *) p;
227
228 return htab_hash_pointer (e->block);
229 }
230
231 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
232 mappings for the same block. */
233
234 static int
235 static_link_htab_entry_eq (const void *p1, const void *p2)
236 {
237 const struct static_link_htab_entry *e1
238 = (const struct static_link_htab_entry *) p1;
239 const struct static_link_htab_entry *e2
240 = (const struct static_link_htab_entry *) p2;
241
242 return e1->block == e2->block;
243 }
244
245 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
246 Must not be called more than once for each BLOCK. */
247
248 void
249 objfile_register_static_link (struct objfile *objfile,
250 const struct block *block,
251 const struct dynamic_prop *static_link)
252 {
253 void **slot;
254 struct static_link_htab_entry lookup_entry;
255 struct static_link_htab_entry *entry;
256
257 if (objfile->static_links == NULL)
258 objfile->static_links = htab_create_alloc
259 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
260 xcalloc, xfree);
261
262 /* Create a slot for the mapping, make sure it's the first mapping for this
263 block and then create the mapping itself. */
264 lookup_entry.block = block;
265 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
266 gdb_assert (*slot == NULL);
267
268 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
269 entry->block = block;
270 entry->static_link = static_link;
271 *slot = (void *) entry;
272 }
273
274 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
275 none was found. */
276
277 const struct dynamic_prop *
278 objfile_lookup_static_link (struct objfile *objfile,
279 const struct block *block)
280 {
281 struct static_link_htab_entry *entry;
282 struct static_link_htab_entry lookup_entry;
283
284 if (objfile->static_links == NULL)
285 return NULL;
286 lookup_entry.block = block;
287 entry
288 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
289 &lookup_entry);
290 if (entry == NULL)
291 return NULL;
292
293 gdb_assert (entry->block == block);
294 return entry->static_link;
295 }
296
297 \f
298
299 /* Called via bfd_map_over_sections to build up the section table that
300 the objfile references. The objfile contains pointers to the start
301 of the table (objfile->sections) and to the first location after
302 the end of the table (objfile->sections_end). */
303
304 static void
305 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
306 struct objfile *objfile, int force)
307 {
308 struct obj_section *section;
309
310 if (!force)
311 {
312 flagword aflag;
313
314 aflag = bfd_get_section_flags (abfd, asect);
315 if (!(aflag & SEC_ALLOC))
316 return;
317 }
318
319 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
320 section->objfile = objfile;
321 section->the_bfd_section = asect;
322 section->ovly_mapped = 0;
323 }
324
325 static void
326 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
327 void *objfilep)
328 {
329 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
330 }
331
332 /* Builds a section table for OBJFILE.
333
334 Note that the OFFSET and OVLY_MAPPED in each table entry are
335 initialized to zero. */
336
337 void
338 build_objfile_section_table (struct objfile *objfile)
339 {
340 int count = gdb_bfd_count_sections (objfile->obfd);
341
342 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
343 count,
344 struct obj_section);
345 objfile->sections_end = (objfile->sections + count);
346 bfd_map_over_sections (objfile->obfd,
347 add_to_objfile_sections, (void *) objfile);
348
349 /* See gdb_bfd_section_index. */
350 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
352 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
353 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
354 }
355
356 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
357 initialize the new objfile as best we can and link it into the list
358 of all known objfiles.
359
360 NAME should contain original non-canonicalized filename or other
361 identifier as entered by user. If there is no better source use
362 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
363 NAME content is copied into returned objfile.
364
365 The FLAGS word contains various bits (OBJF_*) that can be taken as
366 requests for specific operations. Other bits like OBJF_SHARED are
367 simply copied through to the new objfile flags member. */
368
369 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
370 : flags (flags_),
371 pspace (current_program_space),
372 obfd (abfd),
373 psymbol_cache (psymbol_bcache_init ())
374 {
375 const char *expanded_name;
376
377 /* We could use obstack_specify_allocation here instead, but
378 gdb_obstack.h specifies the alloc/dealloc functions. */
379 obstack_init (&objfile_obstack);
380
381 objfile_alloc_data (this);
382
383 gdb::unique_xmalloc_ptr<char> name_holder;
384 if (name == NULL)
385 {
386 gdb_assert (abfd == NULL);
387 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
388 expanded_name = "<<anonymous objfile>>";
389 }
390 else if ((flags & OBJF_NOT_FILENAME) != 0
391 || is_target_filename (name))
392 expanded_name = name;
393 else
394 {
395 name_holder = gdb_abspath (name);
396 expanded_name = name_holder.get ();
397 }
398 original_name
399 = (char *) obstack_copy0 (&objfile_obstack,
400 expanded_name,
401 strlen (expanded_name));
402
403 /* Update the per-objfile information that comes from the bfd, ensuring
404 that any data that is reference is saved in the per-objfile data
405 region. */
406
407 gdb_bfd_ref (abfd);
408 if (abfd != NULL)
409 {
410 mtime = bfd_get_mtime (abfd);
411
412 /* Build section table. */
413 build_objfile_section_table (this);
414 }
415
416 per_bfd = get_objfile_bfd_data (this, abfd);
417
418 terminate_minimal_symbol_table (this);
419
420 /* Add this file onto the tail of the linked list of other such files. */
421
422 if (object_files == NULL)
423 object_files = this;
424 else
425 {
426 struct objfile *last_one;
427
428 for (last_one = object_files;
429 last_one->next;
430 last_one = last_one->next);
431 last_one->next = this;
432 }
433
434 /* Rebuild section map next time we need it. */
435 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
436 }
437
438 /* Retrieve the gdbarch associated with OBJFILE. */
439
440 struct gdbarch *
441 get_objfile_arch (const struct objfile *objfile)
442 {
443 return objfile->per_bfd->gdbarch;
444 }
445
446 /* If there is a valid and known entry point, function fills *ENTRY_P with it
447 and returns non-zero; otherwise it returns zero. */
448
449 int
450 entry_point_address_query (CORE_ADDR *entry_p)
451 {
452 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
453 return 0;
454
455 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
456 + ANOFFSET (symfile_objfile->section_offsets,
457 symfile_objfile->per_bfd->ei.the_bfd_section_index));
458
459 return 1;
460 }
461
462 /* Get current entry point address. Call error if it is not known. */
463
464 CORE_ADDR
465 entry_point_address (void)
466 {
467 CORE_ADDR retval;
468
469 if (!entry_point_address_query (&retval))
470 error (_("Entry point address is not known."));
471
472 return retval;
473 }
474
475 /* Iterator on PARENT and every separate debug objfile of PARENT.
476 The usage pattern is:
477 for (objfile = parent;
478 objfile;
479 objfile = objfile_separate_debug_iterate (parent, objfile))
480 ...
481 */
482
483 struct objfile *
484 objfile_separate_debug_iterate (const struct objfile *parent,
485 const struct objfile *objfile)
486 {
487 struct objfile *res;
488
489 /* If any, return the first child. */
490 res = objfile->separate_debug_objfile;
491 if (res)
492 return res;
493
494 /* Common case where there is no separate debug objfile. */
495 if (objfile == parent)
496 return NULL;
497
498 /* Return the brother if any. Note that we don't iterate on brothers of
499 the parents. */
500 res = objfile->separate_debug_objfile_link;
501 if (res)
502 return res;
503
504 for (res = objfile->separate_debug_objfile_backlink;
505 res != parent;
506 res = res->separate_debug_objfile_backlink)
507 {
508 gdb_assert (res != NULL);
509 if (res->separate_debug_objfile_link)
510 return res->separate_debug_objfile_link;
511 }
512 return NULL;
513 }
514
515 /* Put one object file before a specified on in the global list.
516 This can be used to make sure an object file is destroyed before
517 another when using all_objfiles_safe to free all objfiles. */
518 void
519 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
520 {
521 struct objfile **objp;
522
523 unlink_objfile (objfile);
524
525 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
526 {
527 if (*objp == before_this)
528 {
529 objfile->next = *objp;
530 *objp = objfile;
531 return;
532 }
533 }
534
535 internal_error (__FILE__, __LINE__,
536 _("put_objfile_before: before objfile not in list"));
537 }
538
539 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
540 list.
541
542 It is not a bug, or error, to call this function if OBJFILE is not known
543 to be in the current list. This is done in the case of mapped objfiles,
544 for example, just to ensure that the mapped objfile doesn't appear twice
545 in the list. Since the list is threaded, linking in a mapped objfile
546 twice would create a circular list.
547
548 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
549 unlinking it, just to ensure that we have completely severed any linkages
550 between the OBJFILE and the list. */
551
552 void
553 unlink_objfile (struct objfile *objfile)
554 {
555 struct objfile **objpp;
556
557 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
558 {
559 if (*objpp == objfile)
560 {
561 *objpp = (*objpp)->next;
562 objfile->next = NULL;
563 return;
564 }
565 }
566
567 internal_error (__FILE__, __LINE__,
568 _("unlink_objfile: objfile already unlinked"));
569 }
570
571 /* Add OBJFILE as a separate debug objfile of PARENT. */
572
573 void
574 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
575 {
576 gdb_assert (objfile && parent);
577
578 /* Must not be already in a list. */
579 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
580 gdb_assert (objfile->separate_debug_objfile_link == NULL);
581 gdb_assert (objfile->separate_debug_objfile == NULL);
582 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
583 gdb_assert (parent->separate_debug_objfile_link == NULL);
584
585 objfile->separate_debug_objfile_backlink = parent;
586 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
587 parent->separate_debug_objfile = objfile;
588
589 /* Put the separate debug object before the normal one, this is so that
590 usage of all_objfiles_safe will stay safe. */
591 put_objfile_before (objfile, parent);
592 }
593
594 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
595 itself. */
596
597 void
598 free_objfile_separate_debug (struct objfile *objfile)
599 {
600 struct objfile *child;
601
602 for (child = objfile->separate_debug_objfile; child;)
603 {
604 struct objfile *next_child = child->separate_debug_objfile_link;
605 delete child;
606 child = next_child;
607 }
608 }
609
610 /* Destroy an objfile and all the symtabs and psymtabs under it. */
611
612 objfile::~objfile ()
613 {
614 /* First notify observers that this objfile is about to be freed. */
615 gdb::observers::free_objfile.notify (this);
616
617 /* Free all separate debug objfiles. */
618 free_objfile_separate_debug (this);
619
620 if (separate_debug_objfile_backlink)
621 {
622 /* We freed the separate debug file, make sure the base objfile
623 doesn't reference it. */
624 struct objfile *child;
625
626 child = separate_debug_objfile_backlink->separate_debug_objfile;
627
628 if (child == this)
629 {
630 /* THIS is the first child. */
631 separate_debug_objfile_backlink->separate_debug_objfile =
632 separate_debug_objfile_link;
633 }
634 else
635 {
636 /* Find THIS in the list. */
637 while (1)
638 {
639 if (child->separate_debug_objfile_link == this)
640 {
641 child->separate_debug_objfile_link =
642 separate_debug_objfile_link;
643 break;
644 }
645 child = child->separate_debug_objfile_link;
646 gdb_assert (child);
647 }
648 }
649 }
650
651 /* Remove any references to this objfile in the global value
652 lists. */
653 preserve_values (this);
654
655 /* It still may reference data modules have associated with the objfile and
656 the symbol file data. */
657 forget_cached_source_info_for_objfile (this);
658
659 breakpoint_free_objfile (this);
660 btrace_free_objfile (this);
661
662 /* First do any symbol file specific actions required when we are
663 finished with a particular symbol file. Note that if the objfile
664 is using reusable symbol information (via mmalloc) then each of
665 these routines is responsible for doing the correct thing, either
666 freeing things which are valid only during this particular gdb
667 execution, or leaving them to be reused during the next one. */
668
669 if (sf != NULL)
670 (*sf->sym_finish) (this);
671
672 /* Discard any data modules have associated with the objfile. The function
673 still may reference obfd. */
674 objfile_free_data (this);
675
676 if (obfd)
677 gdb_bfd_unref (obfd);
678 else
679 free_objfile_per_bfd_storage (per_bfd);
680
681 /* Remove it from the chain of all objfiles. */
682
683 unlink_objfile (this);
684
685 if (this == symfile_objfile)
686 symfile_objfile = NULL;
687
688 /* Before the symbol table code was redone to make it easier to
689 selectively load and remove information particular to a specific
690 linkage unit, gdb used to do these things whenever the monolithic
691 symbol table was blown away. How much still needs to be done
692 is unknown, but we play it safe for now and keep each action until
693 it is shown to be no longer needed. */
694
695 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
696 for example), so we need to call this here. */
697 clear_pc_function_cache ();
698
699 /* Clear globals which might have pointed into a removed objfile.
700 FIXME: It's not clear which of these are supposed to persist
701 between expressions and which ought to be reset each time. */
702 expression_context_block = NULL;
703 innermost_block.reset ();
704
705 /* Check to see if the current_source_symtab belongs to this objfile,
706 and if so, call clear_current_source_symtab_and_line. */
707
708 {
709 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
710
711 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
712 clear_current_source_symtab_and_line ();
713 }
714
715 /* Free the obstacks for non-reusable objfiles. */
716 psymbol_bcache_free (psymbol_cache);
717 obstack_free (&objfile_obstack, 0);
718
719 /* Rebuild section map next time we need it. */
720 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
721
722 /* Free the map for static links. There's no need to free static link
723 themselves since they were allocated on the objstack. */
724 if (static_links != NULL)
725 htab_delete (static_links);
726 }
727
728 /* Free all the object files at once and clean up their users. */
729
730 void
731 free_all_objfiles (void)
732 {
733 struct so_list *so;
734
735 /* Any objfile referencewould become stale. */
736 for (so = master_so_list (); so; so = so->next)
737 gdb_assert (so->objfile == NULL);
738
739 for (objfile *objfile : all_objfiles_safe (current_program_space))
740 delete objfile;
741 clear_symtab_users (0);
742 }
743 \f
744 /* A helper function for objfile_relocate1 that relocates a single
745 symbol. */
746
747 static void
748 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
749 struct section_offsets *delta)
750 {
751 fixup_symbol_section (sym, objfile);
752
753 /* The RS6000 code from which this was taken skipped
754 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
755 But I'm leaving out that test, on the theory that
756 they can't possibly pass the tests below. */
757 if ((SYMBOL_CLASS (sym) == LOC_LABEL
758 || SYMBOL_CLASS (sym) == LOC_STATIC)
759 && SYMBOL_SECTION (sym) >= 0)
760 {
761 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
762 }
763 }
764
765 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
766 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
767 Return non-zero iff any change happened. */
768
769 static int
770 objfile_relocate1 (struct objfile *objfile,
771 const struct section_offsets *new_offsets)
772 {
773 struct section_offsets *delta =
774 ((struct section_offsets *)
775 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
776
777 int something_changed = 0;
778
779 for (int i = 0; i < objfile->num_sections; ++i)
780 {
781 delta->offsets[i] =
782 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
783 if (ANOFFSET (delta, i) != 0)
784 something_changed = 1;
785 }
786 if (!something_changed)
787 return 0;
788
789 /* OK, get all the symtabs. */
790 {
791 struct compunit_symtab *cust;
792 struct symtab *s;
793
794 ALL_OBJFILE_FILETABS (objfile, cust, s)
795 {
796 struct linetable *l;
797
798 /* First the line table. */
799 l = SYMTAB_LINETABLE (s);
800 if (l)
801 {
802 for (int i = 0; i < l->nitems; ++i)
803 l->item[i].pc += ANOFFSET (delta,
804 COMPUNIT_BLOCK_LINE_SECTION
805 (cust));
806 }
807 }
808
809 ALL_OBJFILE_COMPUNITS (objfile, cust)
810 {
811 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
812 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
813
814 if (BLOCKVECTOR_MAP (bv))
815 addrmap_relocate (BLOCKVECTOR_MAP (bv),
816 ANOFFSET (delta, block_line_section));
817
818 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
819 {
820 struct block *b;
821 struct symbol *sym;
822 struct dict_iterator iter;
823
824 b = BLOCKVECTOR_BLOCK (bv, i);
825 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
826 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
827
828 if (BLOCK_RANGES (b) != nullptr)
829 for (int j = 0; j < BLOCK_NRANGES (b); j++)
830 {
831 BLOCK_RANGE_START (b, j)
832 += ANOFFSET (delta, block_line_section);
833 BLOCK_RANGE_END (b, j) += ANOFFSET (delta, block_line_section);
834 }
835
836 /* We only want to iterate over the local symbols, not any
837 symbols in included symtabs. */
838 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
839 {
840 relocate_one_symbol (sym, objfile, delta);
841 }
842 }
843 }
844 }
845
846 /* This stores relocated addresses and so must be cleared. This
847 will cause it to be recreated on demand. */
848 objfile->psymbol_map.clear ();
849
850 /* Relocate isolated symbols. */
851 {
852 struct symbol *iter;
853
854 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
855 relocate_one_symbol (iter, objfile, delta);
856 }
857
858 {
859 int i;
860
861 for (i = 0; i < objfile->num_sections; ++i)
862 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
863 }
864
865 /* Rebuild section map next time we need it. */
866 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
867
868 /* Update the table in exec_ops, used to read memory. */
869 struct obj_section *s;
870 ALL_OBJFILE_OSECTIONS (objfile, s)
871 {
872 int idx = s - objfile->sections;
873
874 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
875 obj_section_addr (s));
876 }
877
878 /* Data changed. */
879 return 1;
880 }
881
882 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
883 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
884
885 The number and ordering of sections does differ between the two objfiles.
886 Only their names match. Also the file offsets will differ (objfile being
887 possibly prelinked but separate_debug_objfile is probably not prelinked) but
888 the in-memory absolute address as specified by NEW_OFFSETS must match both
889 files. */
890
891 void
892 objfile_relocate (struct objfile *objfile,
893 const struct section_offsets *new_offsets)
894 {
895 struct objfile *debug_objfile;
896 int changed = 0;
897
898 changed |= objfile_relocate1 (objfile, new_offsets);
899
900 for (debug_objfile = objfile->separate_debug_objfile;
901 debug_objfile;
902 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
903 {
904 section_addr_info objfile_addrs
905 = build_section_addr_info_from_objfile (objfile);
906
907 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
908 relative ones must be already created according to debug_objfile. */
909
910 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
911
912 gdb_assert (debug_objfile->num_sections
913 == gdb_bfd_count_sections (debug_objfile->obfd));
914 std::vector<struct section_offsets>
915 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
916 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
917 debug_objfile->num_sections,
918 objfile_addrs);
919
920 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
921 }
922
923 /* Relocate breakpoints as necessary, after things are relocated. */
924 if (changed)
925 breakpoint_re_set ();
926 }
927
928 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
929 not touched here.
930 Return non-zero iff any change happened. */
931
932 static int
933 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
934 {
935 struct section_offsets *new_offsets =
936 ((struct section_offsets *)
937 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
938 int i;
939
940 for (i = 0; i < objfile->num_sections; ++i)
941 new_offsets->offsets[i] = slide;
942
943 return objfile_relocate1 (objfile, new_offsets);
944 }
945
946 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
947 SEPARATE_DEBUG_OBJFILEs. */
948
949 void
950 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
951 {
952 struct objfile *debug_objfile;
953 int changed = 0;
954
955 changed |= objfile_rebase1 (objfile, slide);
956
957 for (debug_objfile = objfile->separate_debug_objfile;
958 debug_objfile;
959 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
960 changed |= objfile_rebase1 (debug_objfile, slide);
961
962 /* Relocate breakpoints as necessary, after things are relocated. */
963 if (changed)
964 breakpoint_re_set ();
965 }
966 \f
967 /* Return non-zero if OBJFILE has partial symbols. */
968
969 int
970 objfile_has_partial_symbols (struct objfile *objfile)
971 {
972 if (!objfile->sf)
973 return 0;
974
975 /* If we have not read psymbols, but we have a function capable of reading
976 them, then that is an indication that they are in fact available. Without
977 this function the symbols may have been already read in but they also may
978 not be present in this objfile. */
979 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
980 && objfile->sf->sym_read_psymbols != NULL)
981 return 1;
982
983 return objfile->sf->qf->has_symbols (objfile);
984 }
985
986 /* Return non-zero if OBJFILE has full symbols. */
987
988 int
989 objfile_has_full_symbols (struct objfile *objfile)
990 {
991 return objfile->compunit_symtabs != NULL;
992 }
993
994 /* Return non-zero if OBJFILE has full or partial symbols, either directly
995 or through a separate debug file. */
996
997 int
998 objfile_has_symbols (struct objfile *objfile)
999 {
1000 struct objfile *o;
1001
1002 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1003 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1004 return 1;
1005 return 0;
1006 }
1007
1008
1009 /* Many places in gdb want to test just to see if we have any partial
1010 symbols available. This function returns zero if none are currently
1011 available, nonzero otherwise. */
1012
1013 int
1014 have_partial_symbols (void)
1015 {
1016 for (objfile *ofp : all_objfiles (current_program_space))
1017 {
1018 if (objfile_has_partial_symbols (ofp))
1019 return 1;
1020 }
1021 return 0;
1022 }
1023
1024 /* Many places in gdb want to test just to see if we have any full
1025 symbols available. This function returns zero if none are currently
1026 available, nonzero otherwise. */
1027
1028 int
1029 have_full_symbols (void)
1030 {
1031 for (objfile *ofp : all_objfiles (current_program_space))
1032 {
1033 if (objfile_has_full_symbols (ofp))
1034 return 1;
1035 }
1036 return 0;
1037 }
1038
1039
1040 /* This operations deletes all objfile entries that represent solibs that
1041 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1042 command. */
1043
1044 void
1045 objfile_purge_solibs (void)
1046 {
1047 for (objfile *objf : all_objfiles_safe (current_program_space))
1048 {
1049 /* We assume that the solib package has been purged already, or will
1050 be soon. */
1051
1052 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1053 delete objf;
1054 }
1055 }
1056
1057
1058 /* Many places in gdb want to test just to see if we have any minimal
1059 symbols available. This function returns zero if none are currently
1060 available, nonzero otherwise. */
1061
1062 int
1063 have_minimal_symbols (void)
1064 {
1065 for (objfile *ofp : all_objfiles (current_program_space))
1066 {
1067 if (ofp->per_bfd->minimal_symbol_count > 0)
1068 {
1069 return 1;
1070 }
1071 }
1072 return 0;
1073 }
1074
1075 /* Qsort comparison function. */
1076
1077 static int
1078 qsort_cmp (const void *a, const void *b)
1079 {
1080 const struct obj_section *sect1 = *(const struct obj_section **) a;
1081 const struct obj_section *sect2 = *(const struct obj_section **) b;
1082 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1083 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1084
1085 if (sect1_addr < sect2_addr)
1086 return -1;
1087 else if (sect1_addr > sect2_addr)
1088 return 1;
1089 else
1090 {
1091 /* Sections are at the same address. This could happen if
1092 A) we have an objfile and a separate debuginfo.
1093 B) we are confused, and have added sections without proper relocation,
1094 or something like that. */
1095
1096 const struct objfile *const objfile1 = sect1->objfile;
1097 const struct objfile *const objfile2 = sect2->objfile;
1098
1099 if (objfile1->separate_debug_objfile == objfile2
1100 || objfile2->separate_debug_objfile == objfile1)
1101 {
1102 /* Case A. The ordering doesn't matter: separate debuginfo files
1103 will be filtered out later. */
1104
1105 return 0;
1106 }
1107
1108 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1109 triage. This section could be slow (since we iterate over all
1110 objfiles in each call to qsort_cmp), but this shouldn't happen
1111 very often (GDB is already in a confused state; one hopes this
1112 doesn't happen at all). If you discover that significant time is
1113 spent in the loops below, do 'set complaints 100' and examine the
1114 resulting complaints. */
1115
1116 if (objfile1 == objfile2)
1117 {
1118 /* Both sections came from the same objfile. We are really confused.
1119 Sort on sequence order of sections within the objfile. */
1120
1121 const struct obj_section *osect;
1122
1123 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1124 if (osect == sect1)
1125 return -1;
1126 else if (osect == sect2)
1127 return 1;
1128
1129 /* We should have found one of the sections before getting here. */
1130 gdb_assert_not_reached ("section not found");
1131 }
1132 else
1133 {
1134 /* Sort on sequence number of the objfile in the chain. */
1135
1136 for (objfile *objfile : all_objfiles (current_program_space))
1137 if (objfile == objfile1)
1138 return -1;
1139 else if (objfile == objfile2)
1140 return 1;
1141
1142 /* We should have found one of the objfiles before getting here. */
1143 gdb_assert_not_reached ("objfile not found");
1144 }
1145 }
1146
1147 /* Unreachable. */
1148 gdb_assert_not_reached ("unexpected code path");
1149 return 0;
1150 }
1151
1152 /* Select "better" obj_section to keep. We prefer the one that came from
1153 the real object, rather than the one from separate debuginfo.
1154 Most of the time the two sections are exactly identical, but with
1155 prelinking the .rel.dyn section in the real object may have different
1156 size. */
1157
1158 static struct obj_section *
1159 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1160 {
1161 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1162 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1163 || (b->objfile->separate_debug_objfile == a->objfile));
1164 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1165 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1166
1167 if (a->objfile->separate_debug_objfile != NULL)
1168 return a;
1169 return b;
1170 }
1171
1172 /* Return 1 if SECTION should be inserted into the section map.
1173 We want to insert only non-overlay and non-TLS section. */
1174
1175 static int
1176 insert_section_p (const struct bfd *abfd,
1177 const struct bfd_section *section)
1178 {
1179 const bfd_vma lma = bfd_section_lma (abfd, section);
1180
1181 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1182 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1183 /* This is an overlay section. IN_MEMORY check is needed to avoid
1184 discarding sections from the "system supplied DSO" (aka vdso)
1185 on some Linux systems (e.g. Fedora 11). */
1186 return 0;
1187 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1188 /* This is a TLS section. */
1189 return 0;
1190
1191 return 1;
1192 }
1193
1194 /* Filter out overlapping sections where one section came from the real
1195 objfile, and the other from a separate debuginfo file.
1196 Return the size of table after redundant sections have been eliminated. */
1197
1198 static int
1199 filter_debuginfo_sections (struct obj_section **map, int map_size)
1200 {
1201 int i, j;
1202
1203 for (i = 0, j = 0; i < map_size - 1; i++)
1204 {
1205 struct obj_section *const sect1 = map[i];
1206 struct obj_section *const sect2 = map[i + 1];
1207 const struct objfile *const objfile1 = sect1->objfile;
1208 const struct objfile *const objfile2 = sect2->objfile;
1209 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1210 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1211
1212 if (sect1_addr == sect2_addr
1213 && (objfile1->separate_debug_objfile == objfile2
1214 || objfile2->separate_debug_objfile == objfile1))
1215 {
1216 map[j++] = preferred_obj_section (sect1, sect2);
1217 ++i;
1218 }
1219 else
1220 map[j++] = sect1;
1221 }
1222
1223 if (i < map_size)
1224 {
1225 gdb_assert (i == map_size - 1);
1226 map[j++] = map[i];
1227 }
1228
1229 /* The map should not have shrunk to less than half the original size. */
1230 gdb_assert (map_size / 2 <= j);
1231
1232 return j;
1233 }
1234
1235 /* Filter out overlapping sections, issuing a warning if any are found.
1236 Overlapping sections could really be overlay sections which we didn't
1237 classify as such in insert_section_p, or we could be dealing with a
1238 corrupt binary. */
1239
1240 static int
1241 filter_overlapping_sections (struct obj_section **map, int map_size)
1242 {
1243 int i, j;
1244
1245 for (i = 0, j = 0; i < map_size - 1; )
1246 {
1247 int k;
1248
1249 map[j++] = map[i];
1250 for (k = i + 1; k < map_size; k++)
1251 {
1252 struct obj_section *const sect1 = map[i];
1253 struct obj_section *const sect2 = map[k];
1254 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1255 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1256 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1257
1258 gdb_assert (sect1_addr <= sect2_addr);
1259
1260 if (sect1_endaddr <= sect2_addr)
1261 break;
1262 else
1263 {
1264 /* We have an overlap. Report it. */
1265
1266 struct objfile *const objf1 = sect1->objfile;
1267 struct objfile *const objf2 = sect2->objfile;
1268
1269 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1270 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1271
1272 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1273
1274 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1275
1276 complaint (_("unexpected overlap between:\n"
1277 " (A) section `%s' from `%s' [%s, %s)\n"
1278 " (B) section `%s' from `%s' [%s, %s).\n"
1279 "Will ignore section B"),
1280 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1281 paddress (gdbarch, sect1_addr),
1282 paddress (gdbarch, sect1_endaddr),
1283 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1284 paddress (gdbarch, sect2_addr),
1285 paddress (gdbarch, sect2_endaddr));
1286 }
1287 }
1288 i = k;
1289 }
1290
1291 if (i < map_size)
1292 {
1293 gdb_assert (i == map_size - 1);
1294 map[j++] = map[i];
1295 }
1296
1297 return j;
1298 }
1299
1300
1301 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1302 TLS, overlay and overlapping sections. */
1303
1304 static void
1305 update_section_map (struct program_space *pspace,
1306 struct obj_section ***pmap, int *pmap_size)
1307 {
1308 struct objfile_pspace_info *pspace_info;
1309 int alloc_size, map_size, i;
1310 struct obj_section *s, **map;
1311
1312 pspace_info = get_objfile_pspace_data (pspace);
1313 gdb_assert (pspace_info->section_map_dirty != 0
1314 || pspace_info->new_objfiles_available != 0);
1315
1316 map = *pmap;
1317 xfree (map);
1318
1319 alloc_size = 0;
1320 for (objfile *objfile : all_objfiles (pspace))
1321 ALL_OBJFILE_OSECTIONS (objfile, s)
1322 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1323 alloc_size += 1;
1324
1325 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1326 if (alloc_size == 0)
1327 {
1328 *pmap = NULL;
1329 *pmap_size = 0;
1330 return;
1331 }
1332
1333 map = XNEWVEC (struct obj_section *, alloc_size);
1334
1335 i = 0;
1336 for (objfile *objfile : all_objfiles (pspace))
1337 ALL_OBJFILE_OSECTIONS (objfile, s)
1338 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1339 map[i++] = s;
1340
1341 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1342 map_size = filter_debuginfo_sections(map, alloc_size);
1343 map_size = filter_overlapping_sections(map, map_size);
1344
1345 if (map_size < alloc_size)
1346 /* Some sections were eliminated. Trim excess space. */
1347 map = XRESIZEVEC (struct obj_section *, map, map_size);
1348 else
1349 gdb_assert (alloc_size == map_size);
1350
1351 *pmap = map;
1352 *pmap_size = map_size;
1353 }
1354
1355 /* Bsearch comparison function. */
1356
1357 static int
1358 bsearch_cmp (const void *key, const void *elt)
1359 {
1360 const CORE_ADDR pc = *(CORE_ADDR *) key;
1361 const struct obj_section *section = *(const struct obj_section **) elt;
1362
1363 if (pc < obj_section_addr (section))
1364 return -1;
1365 if (pc < obj_section_endaddr (section))
1366 return 0;
1367 return 1;
1368 }
1369
1370 /* Returns a section whose range includes PC or NULL if none found. */
1371
1372 struct obj_section *
1373 find_pc_section (CORE_ADDR pc)
1374 {
1375 struct objfile_pspace_info *pspace_info;
1376 struct obj_section *s, **sp;
1377
1378 /* Check for mapped overlay section first. */
1379 s = find_pc_mapped_section (pc);
1380 if (s)
1381 return s;
1382
1383 pspace_info = get_objfile_pspace_data (current_program_space);
1384 if (pspace_info->section_map_dirty
1385 || (pspace_info->new_objfiles_available
1386 && !pspace_info->inhibit_updates))
1387 {
1388 update_section_map (current_program_space,
1389 &pspace_info->sections,
1390 &pspace_info->num_sections);
1391
1392 /* Don't need updates to section map until objfiles are added,
1393 removed or relocated. */
1394 pspace_info->new_objfiles_available = 0;
1395 pspace_info->section_map_dirty = 0;
1396 }
1397
1398 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1399 bsearch be non-NULL. */
1400 if (pspace_info->sections == NULL)
1401 {
1402 gdb_assert (pspace_info->num_sections == 0);
1403 return NULL;
1404 }
1405
1406 sp = (struct obj_section **) bsearch (&pc,
1407 pspace_info->sections,
1408 pspace_info->num_sections,
1409 sizeof (*pspace_info->sections),
1410 bsearch_cmp);
1411 if (sp != NULL)
1412 return *sp;
1413 return NULL;
1414 }
1415
1416
1417 /* Return non-zero if PC is in a section called NAME. */
1418
1419 int
1420 pc_in_section (CORE_ADDR pc, const char *name)
1421 {
1422 struct obj_section *s;
1423 int retval = 0;
1424
1425 s = find_pc_section (pc);
1426
1427 retval = (s != NULL
1428 && s->the_bfd_section->name != NULL
1429 && strcmp (s->the_bfd_section->name, name) == 0);
1430 return (retval);
1431 }
1432 \f
1433
1434 /* Set section_map_dirty so section map will be rebuilt next time it
1435 is used. Called by reread_symbols. */
1436
1437 void
1438 objfiles_changed (void)
1439 {
1440 /* Rebuild section map next time we need it. */
1441 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1442 }
1443
1444 /* See comments in objfiles.h. */
1445
1446 scoped_restore_tmpl<int>
1447 inhibit_section_map_updates (struct program_space *pspace)
1448 {
1449 return scoped_restore_tmpl<int>
1450 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1451 }
1452
1453 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1454 otherwise. */
1455
1456 int
1457 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1458 {
1459 struct obj_section *osect;
1460
1461 if (objfile == NULL)
1462 return 0;
1463
1464 ALL_OBJFILE_OSECTIONS (objfile, osect)
1465 {
1466 if (section_is_overlay (osect) && !section_is_mapped (osect))
1467 continue;
1468
1469 if (obj_section_addr (osect) <= addr
1470 && addr < obj_section_endaddr (osect))
1471 return 1;
1472 }
1473 return 0;
1474 }
1475
1476 int
1477 shared_objfile_contains_address_p (struct program_space *pspace,
1478 CORE_ADDR address)
1479 {
1480 for (objfile *objfile : all_objfiles (pspace))
1481 {
1482 if ((objfile->flags & OBJF_SHARED) != 0
1483 && is_addr_in_objfile (address, objfile))
1484 return 1;
1485 }
1486
1487 return 0;
1488 }
1489
1490 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1491 gdbarch method. It is equivalent to use the all_objfiles iterable,
1492 searching the objfiles in the order they are stored internally,
1493 ignoring CURRENT_OBJFILE.
1494
1495 On most platorms, it should be close enough to doing the best
1496 we can without some knowledge specific to the architecture. */
1497
1498 void
1499 default_iterate_over_objfiles_in_search_order
1500 (struct gdbarch *gdbarch,
1501 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1502 void *cb_data, struct objfile *current_objfile)
1503 {
1504 int stop = 0;
1505
1506 for (objfile *objfile : all_objfiles (current_program_space))
1507 {
1508 stop = cb (objfile, cb_data);
1509 if (stop)
1510 return;
1511 }
1512 }
1513
1514 /* See objfiles.h. */
1515
1516 const char *
1517 objfile_name (const struct objfile *objfile)
1518 {
1519 if (objfile->obfd != NULL)
1520 return bfd_get_filename (objfile->obfd);
1521
1522 return objfile->original_name;
1523 }
1524
1525 /* See objfiles.h. */
1526
1527 const char *
1528 objfile_filename (const struct objfile *objfile)
1529 {
1530 if (objfile->obfd != NULL)
1531 return bfd_get_filename (objfile->obfd);
1532
1533 return NULL;
1534 }
1535
1536 /* See objfiles.h. */
1537
1538 const char *
1539 objfile_debug_name (const struct objfile *objfile)
1540 {
1541 return lbasename (objfile->original_name);
1542 }
1543
1544 /* See objfiles.h. */
1545
1546 const char *
1547 objfile_flavour_name (struct objfile *objfile)
1548 {
1549 if (objfile->obfd != NULL)
1550 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1551 return NULL;
1552 }
1553
1554 void
1555 _initialize_objfiles (void)
1556 {
1557 objfiles_pspace_data
1558 = register_program_space_data_with_cleanup (NULL,
1559 objfiles_pspace_data_cleanup);
1560
1561 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1562 objfile_bfd_data_free);
1563 }
This page took 0.071847 seconds and 5 git commands to generate.