Replace the block_found global with explicit data-flow
[deliverable/binutils-gdb.git] / gdb / p-exp.y
1 /* YACC parser for Pascal expressions, for GDB.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This file is derived from c-exp.y */
20
21 /* Parse a Pascal expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 /* Known bugs or limitations:
39 - pascal string operations are not supported at all.
40 - there are some problems with boolean types.
41 - Pascal type hexadecimal constants are not supported
42 because they conflict with the internal variables format.
43 Probably also lots of other problems, less well defined PM. */
44 %{
45
46 #include "defs.h"
47 #include <ctype.h>
48 #include "expression.h"
49 #include "value.h"
50 #include "parser-defs.h"
51 #include "language.h"
52 #include "p-lang.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
56 #include "block.h"
57 #include "completer.h"
58
59 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
62 as well as gratuitiously global symbol names, so we can have multiple
63 yacc generated parsers in gdb. Note that these are only the variables
64 produced by yacc. If other parser generators (bison, byacc, etc) produce
65 additional global names that conflict at link time, then those parser
66 generators need to be fixed instead of adding those names to this list. */
67
68 #define yymaxdepth pascal_maxdepth
69 #define yyparse pascal_parse_internal
70 #define yylex pascal_lex
71 #define yyerror pascal_error
72 #define yylval pascal_lval
73 #define yychar pascal_char
74 #define yydebug pascal_debug
75 #define yypact pascal_pact
76 #define yyr1 pascal_r1
77 #define yyr2 pascal_r2
78 #define yydef pascal_def
79 #define yychk pascal_chk
80 #define yypgo pascal_pgo
81 #define yyact pascal_act
82 #define yyexca pascal_exca
83 #define yyerrflag pascal_errflag
84 #define yynerrs pascal_nerrs
85 #define yyps pascal_ps
86 #define yypv pascal_pv
87 #define yys pascal_s
88 #define yy_yys pascal_yys
89 #define yystate pascal_state
90 #define yytmp pascal_tmp
91 #define yyv pascal_v
92 #define yy_yyv pascal_yyv
93 #define yyval pascal_val
94 #define yylloc pascal_lloc
95 #define yyreds pascal_reds /* With YYDEBUG defined */
96 #define yytoks pascal_toks /* With YYDEBUG defined */
97 #define yyname pascal_name /* With YYDEBUG defined */
98 #define yyrule pascal_rule /* With YYDEBUG defined */
99 #define yylhs pascal_yylhs
100 #define yylen pascal_yylen
101 #define yydefred pascal_yydefred
102 #define yydgoto pascal_yydgoto
103 #define yysindex pascal_yysindex
104 #define yyrindex pascal_yyrindex
105 #define yygindex pascal_yygindex
106 #define yytable pascal_yytable
107 #define yycheck pascal_yycheck
108 #define yyss pascal_yyss
109 #define yysslim pascal_yysslim
110 #define yyssp pascal_yyssp
111 #define yystacksize pascal_yystacksize
112 #define yyvs pascal_yyvs
113 #define yyvsp pascal_yyvsp
114
115 #ifndef YYDEBUG
116 #define YYDEBUG 1 /* Default to yydebug support */
117 #endif
118
119 #define YYFPRINTF parser_fprintf
120
121 /* The state of the parser, used internally when we are parsing the
122 expression. */
123
124 static struct parser_state *pstate = NULL;
125
126 int yyparse (void);
127
128 static int yylex (void);
129
130 void yyerror (char *);
131
132 static char *uptok (const char *, int);
133 %}
134
135 /* Although the yacc "value" of an expression is not used,
136 since the result is stored in the structure being created,
137 other node types do have values. */
138
139 %union
140 {
141 LONGEST lval;
142 struct {
143 LONGEST val;
144 struct type *type;
145 } typed_val_int;
146 struct {
147 DOUBLEST dval;
148 struct type *type;
149 } typed_val_float;
150 struct symbol *sym;
151 struct type *tval;
152 struct stoken sval;
153 struct ttype tsym;
154 struct symtoken ssym;
155 int voidval;
156 const struct block *bval;
157 enum exp_opcode opcode;
158 struct internalvar *ivar;
159
160 struct type **tvec;
161 int *ivec;
162 }
163
164 %{
165 /* YYSTYPE gets defined by %union */
166 static int parse_number (struct parser_state *,
167 const char *, int, int, YYSTYPE *);
168
169 static struct type *current_type;
170 static struct internalvar *intvar;
171 static int leftdiv_is_integer;
172 static void push_current_type (void);
173 static void pop_current_type (void);
174 static int search_field;
175 %}
176
177 %type <voidval> exp exp1 type_exp start normal_start variable qualified_name
178 %type <tval> type typebase
179 /* %type <bval> block */
180
181 /* Fancy type parsing. */
182 %type <tval> ptype
183
184 %token <typed_val_int> INT
185 %token <typed_val_float> FLOAT
186
187 /* Both NAME and TYPENAME tokens represent symbols in the input,
188 and both convey their data as strings.
189 But a TYPENAME is a string that happens to be defined as a typedef
190 or builtin type name (such as int or char)
191 and a NAME is any other symbol.
192 Contexts where this distinction is not important can use the
193 nonterminal "name", which matches either NAME or TYPENAME. */
194
195 %token <sval> STRING
196 %token <sval> FIELDNAME
197 %token <voidval> COMPLETE
198 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
199 %token <tsym> TYPENAME
200 %type <sval> name
201 %type <ssym> name_not_typename
202
203 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
204 but which would parse as a valid number in the current input radix.
205 E.g. "c" when input_radix==16. Depending on the parse, it will be
206 turned into a name or into a number. */
207
208 %token <ssym> NAME_OR_INT
209
210 %token STRUCT CLASS SIZEOF COLONCOLON
211 %token ERROR
212
213 /* Special type cases, put in to allow the parser to distinguish different
214 legal basetypes. */
215
216 %token <voidval> VARIABLE
217
218
219 /* Object pascal */
220 %token THIS
221 %token <lval> TRUEKEYWORD FALSEKEYWORD
222
223 %left ','
224 %left ABOVE_COMMA
225 %right ASSIGN
226 %left NOT
227 %left OR
228 %left XOR
229 %left ANDAND
230 %left '=' NOTEQUAL
231 %left '<' '>' LEQ GEQ
232 %left LSH RSH DIV MOD
233 %left '@'
234 %left '+' '-'
235 %left '*' '/'
236 %right UNARY INCREMENT DECREMENT
237 %right ARROW '.' '[' '('
238 %left '^'
239 %token <ssym> BLOCKNAME
240 %type <bval> block
241 %left COLONCOLON
242
243 \f
244 %%
245
246 start : { current_type = NULL;
247 intvar = NULL;
248 search_field = 0;
249 leftdiv_is_integer = 0;
250 }
251 normal_start {}
252 ;
253
254 normal_start :
255 exp1
256 | type_exp
257 ;
258
259 type_exp: type
260 { write_exp_elt_opcode (pstate, OP_TYPE);
261 write_exp_elt_type (pstate, $1);
262 write_exp_elt_opcode (pstate, OP_TYPE);
263 current_type = $1; } ;
264
265 /* Expressions, including the comma operator. */
266 exp1 : exp
267 | exp1 ',' exp
268 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
269 ;
270
271 /* Expressions, not including the comma operator. */
272 exp : exp '^' %prec UNARY
273 { write_exp_elt_opcode (pstate, UNOP_IND);
274 if (current_type)
275 current_type = TYPE_TARGET_TYPE (current_type); }
276 ;
277
278 exp : '@' exp %prec UNARY
279 { write_exp_elt_opcode (pstate, UNOP_ADDR);
280 if (current_type)
281 current_type = TYPE_POINTER_TYPE (current_type); }
282 ;
283
284 exp : '-' exp %prec UNARY
285 { write_exp_elt_opcode (pstate, UNOP_NEG); }
286 ;
287
288 exp : NOT exp %prec UNARY
289 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
290 ;
291
292 exp : INCREMENT '(' exp ')' %prec UNARY
293 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
294 ;
295
296 exp : DECREMENT '(' exp ')' %prec UNARY
297 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
298 ;
299
300
301 field_exp : exp '.' %prec UNARY
302 { search_field = 1; }
303 ;
304
305 exp : field_exp FIELDNAME
306 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
307 write_exp_string (pstate, $2);
308 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
309 search_field = 0;
310 if (current_type)
311 {
312 while (TYPE_CODE (current_type)
313 == TYPE_CODE_PTR)
314 current_type =
315 TYPE_TARGET_TYPE (current_type);
316 current_type = lookup_struct_elt_type (
317 current_type, $2.ptr, 0);
318 }
319 }
320 ;
321
322
323 exp : field_exp name
324 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
325 write_exp_string (pstate, $2);
326 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
327 search_field = 0;
328 if (current_type)
329 {
330 while (TYPE_CODE (current_type)
331 == TYPE_CODE_PTR)
332 current_type =
333 TYPE_TARGET_TYPE (current_type);
334 current_type = lookup_struct_elt_type (
335 current_type, $2.ptr, 0);
336 }
337 }
338 ;
339 exp : field_exp name COMPLETE
340 { mark_struct_expression (pstate);
341 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
342 write_exp_string (pstate, $2);
343 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
344 ;
345 exp : field_exp COMPLETE
346 { struct stoken s;
347 mark_struct_expression (pstate);
348 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
349 s.ptr = "";
350 s.length = 0;
351 write_exp_string (pstate, s);
352 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
353 ;
354
355 exp : exp '['
356 /* We need to save the current_type value. */
357 { const char *arrayname;
358 int arrayfieldindex;
359 arrayfieldindex = is_pascal_string_type (
360 current_type, NULL, NULL,
361 NULL, NULL, &arrayname);
362 if (arrayfieldindex)
363 {
364 struct stoken stringsval;
365 char *buf;
366
367 buf = alloca (strlen (arrayname) + 1);
368 stringsval.ptr = buf;
369 stringsval.length = strlen (arrayname);
370 strcpy (buf, arrayname);
371 current_type = TYPE_FIELD_TYPE (current_type,
372 arrayfieldindex - 1);
373 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
374 write_exp_string (pstate, stringsval);
375 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
376 }
377 push_current_type (); }
378 exp1 ']'
379 { pop_current_type ();
380 write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
381 if (current_type)
382 current_type = TYPE_TARGET_TYPE (current_type); }
383 ;
384
385 exp : exp '('
386 /* This is to save the value of arglist_len
387 being accumulated by an outer function call. */
388 { push_current_type ();
389 start_arglist (); }
390 arglist ')' %prec ARROW
391 { write_exp_elt_opcode (pstate, OP_FUNCALL);
392 write_exp_elt_longcst (pstate,
393 (LONGEST) end_arglist ());
394 write_exp_elt_opcode (pstate, OP_FUNCALL);
395 pop_current_type ();
396 if (current_type)
397 current_type = TYPE_TARGET_TYPE (current_type);
398 }
399 ;
400
401 arglist :
402 | exp
403 { arglist_len = 1; }
404 | arglist ',' exp %prec ABOVE_COMMA
405 { arglist_len++; }
406 ;
407
408 exp : type '(' exp ')' %prec UNARY
409 { if (current_type)
410 {
411 /* Allow automatic dereference of classes. */
412 if ((TYPE_CODE (current_type) == TYPE_CODE_PTR)
413 && (TYPE_CODE (TYPE_TARGET_TYPE (current_type)) == TYPE_CODE_STRUCT)
414 && (TYPE_CODE ($1) == TYPE_CODE_STRUCT))
415 write_exp_elt_opcode (pstate, UNOP_IND);
416 }
417 write_exp_elt_opcode (pstate, UNOP_CAST);
418 write_exp_elt_type (pstate, $1);
419 write_exp_elt_opcode (pstate, UNOP_CAST);
420 current_type = $1; }
421 ;
422
423 exp : '(' exp1 ')'
424 { }
425 ;
426
427 /* Binary operators in order of decreasing precedence. */
428
429 exp : exp '*' exp
430 { write_exp_elt_opcode (pstate, BINOP_MUL); }
431 ;
432
433 exp : exp '/' {
434 if (current_type && is_integral_type (current_type))
435 leftdiv_is_integer = 1;
436 }
437 exp
438 {
439 if (leftdiv_is_integer && current_type
440 && is_integral_type (current_type))
441 {
442 write_exp_elt_opcode (pstate, UNOP_CAST);
443 write_exp_elt_type (pstate,
444 parse_type (pstate)
445 ->builtin_long_double);
446 current_type
447 = parse_type (pstate)->builtin_long_double;
448 write_exp_elt_opcode (pstate, UNOP_CAST);
449 leftdiv_is_integer = 0;
450 }
451
452 write_exp_elt_opcode (pstate, BINOP_DIV);
453 }
454 ;
455
456 exp : exp DIV exp
457 { write_exp_elt_opcode (pstate, BINOP_INTDIV); }
458 ;
459
460 exp : exp MOD exp
461 { write_exp_elt_opcode (pstate, BINOP_REM); }
462 ;
463
464 exp : exp '+' exp
465 { write_exp_elt_opcode (pstate, BINOP_ADD); }
466 ;
467
468 exp : exp '-' exp
469 { write_exp_elt_opcode (pstate, BINOP_SUB); }
470 ;
471
472 exp : exp LSH exp
473 { write_exp_elt_opcode (pstate, BINOP_LSH); }
474 ;
475
476 exp : exp RSH exp
477 { write_exp_elt_opcode (pstate, BINOP_RSH); }
478 ;
479
480 exp : exp '=' exp
481 { write_exp_elt_opcode (pstate, BINOP_EQUAL);
482 current_type = parse_type (pstate)->builtin_bool;
483 }
484 ;
485
486 exp : exp NOTEQUAL exp
487 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL);
488 current_type = parse_type (pstate)->builtin_bool;
489 }
490 ;
491
492 exp : exp LEQ exp
493 { write_exp_elt_opcode (pstate, BINOP_LEQ);
494 current_type = parse_type (pstate)->builtin_bool;
495 }
496 ;
497
498 exp : exp GEQ exp
499 { write_exp_elt_opcode (pstate, BINOP_GEQ);
500 current_type = parse_type (pstate)->builtin_bool;
501 }
502 ;
503
504 exp : exp '<' exp
505 { write_exp_elt_opcode (pstate, BINOP_LESS);
506 current_type = parse_type (pstate)->builtin_bool;
507 }
508 ;
509
510 exp : exp '>' exp
511 { write_exp_elt_opcode (pstate, BINOP_GTR);
512 current_type = parse_type (pstate)->builtin_bool;
513 }
514 ;
515
516 exp : exp ANDAND exp
517 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
518 ;
519
520 exp : exp XOR exp
521 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
522 ;
523
524 exp : exp OR exp
525 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
526 ;
527
528 exp : exp ASSIGN exp
529 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
530 ;
531
532 exp : TRUEKEYWORD
533 { write_exp_elt_opcode (pstate, OP_BOOL);
534 write_exp_elt_longcst (pstate, (LONGEST) $1);
535 current_type = parse_type (pstate)->builtin_bool;
536 write_exp_elt_opcode (pstate, OP_BOOL); }
537 ;
538
539 exp : FALSEKEYWORD
540 { write_exp_elt_opcode (pstate, OP_BOOL);
541 write_exp_elt_longcst (pstate, (LONGEST) $1);
542 current_type = parse_type (pstate)->builtin_bool;
543 write_exp_elt_opcode (pstate, OP_BOOL); }
544 ;
545
546 exp : INT
547 { write_exp_elt_opcode (pstate, OP_LONG);
548 write_exp_elt_type (pstate, $1.type);
549 current_type = $1.type;
550 write_exp_elt_longcst (pstate, (LONGEST)($1.val));
551 write_exp_elt_opcode (pstate, OP_LONG); }
552 ;
553
554 exp : NAME_OR_INT
555 { YYSTYPE val;
556 parse_number (pstate, $1.stoken.ptr,
557 $1.stoken.length, 0, &val);
558 write_exp_elt_opcode (pstate, OP_LONG);
559 write_exp_elt_type (pstate, val.typed_val_int.type);
560 current_type = val.typed_val_int.type;
561 write_exp_elt_longcst (pstate, (LONGEST)
562 val.typed_val_int.val);
563 write_exp_elt_opcode (pstate, OP_LONG);
564 }
565 ;
566
567
568 exp : FLOAT
569 { write_exp_elt_opcode (pstate, OP_DOUBLE);
570 write_exp_elt_type (pstate, $1.type);
571 current_type = $1.type;
572 write_exp_elt_dblcst (pstate, $1.dval);
573 write_exp_elt_opcode (pstate, OP_DOUBLE); }
574 ;
575
576 exp : variable
577 ;
578
579 exp : VARIABLE
580 /* Already written by write_dollar_variable.
581 Handle current_type. */
582 { if (intvar) {
583 struct value * val, * mark;
584
585 mark = value_mark ();
586 val = value_of_internalvar (parse_gdbarch (pstate),
587 intvar);
588 current_type = value_type (val);
589 value_release_to_mark (mark);
590 }
591 }
592 ;
593
594 exp : SIZEOF '(' type ')' %prec UNARY
595 { write_exp_elt_opcode (pstate, OP_LONG);
596 write_exp_elt_type (pstate,
597 parse_type (pstate)->builtin_int);
598 current_type = parse_type (pstate)->builtin_int;
599 $3 = check_typedef ($3);
600 write_exp_elt_longcst (pstate,
601 (LONGEST) TYPE_LENGTH ($3));
602 write_exp_elt_opcode (pstate, OP_LONG); }
603 ;
604
605 exp : SIZEOF '(' exp ')' %prec UNARY
606 { write_exp_elt_opcode (pstate, UNOP_SIZEOF);
607 current_type = parse_type (pstate)->builtin_int; }
608
609 exp : STRING
610 { /* C strings are converted into array constants with
611 an explicit null byte added at the end. Thus
612 the array upper bound is the string length.
613 There is no such thing in C as a completely empty
614 string. */
615 const char *sp = $1.ptr; int count = $1.length;
616
617 while (count-- > 0)
618 {
619 write_exp_elt_opcode (pstate, OP_LONG);
620 write_exp_elt_type (pstate,
621 parse_type (pstate)
622 ->builtin_char);
623 write_exp_elt_longcst (pstate,
624 (LONGEST) (*sp++));
625 write_exp_elt_opcode (pstate, OP_LONG);
626 }
627 write_exp_elt_opcode (pstate, OP_LONG);
628 write_exp_elt_type (pstate,
629 parse_type (pstate)
630 ->builtin_char);
631 write_exp_elt_longcst (pstate, (LONGEST)'\0');
632 write_exp_elt_opcode (pstate, OP_LONG);
633 write_exp_elt_opcode (pstate, OP_ARRAY);
634 write_exp_elt_longcst (pstate, (LONGEST) 0);
635 write_exp_elt_longcst (pstate,
636 (LONGEST) ($1.length));
637 write_exp_elt_opcode (pstate, OP_ARRAY); }
638 ;
639
640 /* Object pascal */
641 exp : THIS
642 {
643 struct value * this_val;
644 struct type * this_type;
645 write_exp_elt_opcode (pstate, OP_THIS);
646 write_exp_elt_opcode (pstate, OP_THIS);
647 /* We need type of this. */
648 this_val
649 = value_of_this_silent (parse_language (pstate));
650 if (this_val)
651 this_type = value_type (this_val);
652 else
653 this_type = NULL;
654 if (this_type)
655 {
656 if (TYPE_CODE (this_type) == TYPE_CODE_PTR)
657 {
658 this_type = TYPE_TARGET_TYPE (this_type);
659 write_exp_elt_opcode (pstate, UNOP_IND);
660 }
661 }
662
663 current_type = this_type;
664 }
665 ;
666
667 /* end of object pascal. */
668
669 block : BLOCKNAME
670 {
671 if ($1.sym.symbol != 0)
672 $$ = SYMBOL_BLOCK_VALUE ($1.sym.symbol);
673 else
674 {
675 struct symtab *tem =
676 lookup_symtab (copy_name ($1.stoken));
677 if (tem)
678 $$ = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (tem),
679 STATIC_BLOCK);
680 else
681 error (_("No file or function \"%s\"."),
682 copy_name ($1.stoken));
683 }
684 }
685 ;
686
687 block : block COLONCOLON name
688 { struct symbol *tem
689 = lookup_symbol (copy_name ($3), $1,
690 VAR_DOMAIN, NULL).symbol;
691
692 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
693 error (_("No function \"%s\" in specified context."),
694 copy_name ($3));
695 $$ = SYMBOL_BLOCK_VALUE (tem); }
696 ;
697
698 variable: block COLONCOLON name
699 { struct block_symbol sym;
700
701 sym = lookup_symbol (copy_name ($3), $1,
702 VAR_DOMAIN, NULL);
703 if (sym.symbol == 0)
704 error (_("No symbol \"%s\" in specified context."),
705 copy_name ($3));
706
707 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
708 write_exp_elt_block (pstate, sym.block);
709 write_exp_elt_sym (pstate, sym.symbol);
710 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
711 ;
712
713 qualified_name: typebase COLONCOLON name
714 {
715 struct type *type = $1;
716
717 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
718 && TYPE_CODE (type) != TYPE_CODE_UNION)
719 error (_("`%s' is not defined as an aggregate type."),
720 TYPE_NAME (type));
721
722 write_exp_elt_opcode (pstate, OP_SCOPE);
723 write_exp_elt_type (pstate, type);
724 write_exp_string (pstate, $3);
725 write_exp_elt_opcode (pstate, OP_SCOPE);
726 }
727 ;
728
729 variable: qualified_name
730 | COLONCOLON name
731 {
732 char *name = copy_name ($2);
733 struct symbol *sym;
734 struct bound_minimal_symbol msymbol;
735
736 sym =
737 lookup_symbol (name, (const struct block *) NULL,
738 VAR_DOMAIN, NULL).symbol;
739 if (sym)
740 {
741 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
742 write_exp_elt_block (pstate, NULL);
743 write_exp_elt_sym (pstate, sym);
744 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
745 break;
746 }
747
748 msymbol = lookup_bound_minimal_symbol (name);
749 if (msymbol.minsym != NULL)
750 write_exp_msymbol (pstate, msymbol);
751 else if (!have_full_symbols ()
752 && !have_partial_symbols ())
753 error (_("No symbol table is loaded. "
754 "Use the \"file\" command."));
755 else
756 error (_("No symbol \"%s\" in current context."),
757 name);
758 }
759 ;
760
761 variable: name_not_typename
762 { struct block_symbol sym = $1.sym;
763
764 if (sym.symbol)
765 {
766 if (symbol_read_needs_frame (sym.symbol))
767 {
768 if (innermost_block == 0
769 || contained_in (sym.block,
770 innermost_block))
771 innermost_block = sym.block;
772 }
773
774 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
775 /* We want to use the selected frame, not
776 another more inner frame which happens to
777 be in the same block. */
778 write_exp_elt_block (pstate, NULL);
779 write_exp_elt_sym (pstate, sym.symbol);
780 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
781 current_type = sym.symbol->type; }
782 else if ($1.is_a_field_of_this)
783 {
784 struct value * this_val;
785 struct type * this_type;
786 /* Object pascal: it hangs off of `this'. Must
787 not inadvertently convert from a method call
788 to data ref. */
789 if (innermost_block == 0
790 || contained_in (sym.block,
791 innermost_block))
792 innermost_block = sym.block;
793 write_exp_elt_opcode (pstate, OP_THIS);
794 write_exp_elt_opcode (pstate, OP_THIS);
795 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
796 write_exp_string (pstate, $1.stoken);
797 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
798 /* We need type of this. */
799 this_val
800 = value_of_this_silent (parse_language (pstate));
801 if (this_val)
802 this_type = value_type (this_val);
803 else
804 this_type = NULL;
805 if (this_type)
806 current_type = lookup_struct_elt_type (
807 this_type,
808 copy_name ($1.stoken), 0);
809 else
810 current_type = NULL;
811 }
812 else
813 {
814 struct bound_minimal_symbol msymbol;
815 char *arg = copy_name ($1.stoken);
816
817 msymbol =
818 lookup_bound_minimal_symbol (arg);
819 if (msymbol.minsym != NULL)
820 write_exp_msymbol (pstate, msymbol);
821 else if (!have_full_symbols ()
822 && !have_partial_symbols ())
823 error (_("No symbol table is loaded. "
824 "Use the \"file\" command."));
825 else
826 error (_("No symbol \"%s\" in current context."),
827 copy_name ($1.stoken));
828 }
829 }
830 ;
831
832
833 ptype : typebase
834 ;
835
836 /* We used to try to recognize more pointer to member types here, but
837 that didn't work (shift/reduce conflicts meant that these rules never
838 got executed). The problem is that
839 int (foo::bar::baz::bizzle)
840 is a function type but
841 int (foo::bar::baz::bizzle::*)
842 is a pointer to member type. Stroustrup loses again! */
843
844 type : ptype
845 ;
846
847 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
848 : '^' typebase
849 { $$ = lookup_pointer_type ($2); }
850 | TYPENAME
851 { $$ = $1.type; }
852 | STRUCT name
853 { $$ = lookup_struct (copy_name ($2),
854 expression_context_block); }
855 | CLASS name
856 { $$ = lookup_struct (copy_name ($2),
857 expression_context_block); }
858 /* "const" and "volatile" are curently ignored. A type qualifier
859 after the type is handled in the ptype rule. I think these could
860 be too. */
861 ;
862
863 name : NAME { $$ = $1.stoken; }
864 | BLOCKNAME { $$ = $1.stoken; }
865 | TYPENAME { $$ = $1.stoken; }
866 | NAME_OR_INT { $$ = $1.stoken; }
867 ;
868
869 name_not_typename : NAME
870 | BLOCKNAME
871 /* These would be useful if name_not_typename was useful, but it is just
872 a fake for "variable", so these cause reduce/reduce conflicts because
873 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
874 =exp) or just an exp. If name_not_typename was ever used in an lvalue
875 context where only a name could occur, this might be useful.
876 | NAME_OR_INT
877 */
878 ;
879
880 %%
881
882 /* Take care of parsing a number (anything that starts with a digit).
883 Set yylval and return the token type; update lexptr.
884 LEN is the number of characters in it. */
885
886 /*** Needs some error checking for the float case ***/
887
888 static int
889 parse_number (struct parser_state *par_state,
890 const char *p, int len, int parsed_float, YYSTYPE *putithere)
891 {
892 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
893 here, and we do kind of silly things like cast to unsigned. */
894 LONGEST n = 0;
895 LONGEST prevn = 0;
896 ULONGEST un;
897
898 int i = 0;
899 int c;
900 int base = input_radix;
901 int unsigned_p = 0;
902
903 /* Number of "L" suffixes encountered. */
904 int long_p = 0;
905
906 /* We have found a "L" or "U" suffix. */
907 int found_suffix = 0;
908
909 ULONGEST high_bit;
910 struct type *signed_type;
911 struct type *unsigned_type;
912
913 if (parsed_float)
914 {
915 if (! parse_c_float (parse_gdbarch (par_state), p, len,
916 &putithere->typed_val_float.dval,
917 &putithere->typed_val_float.type))
918 return ERROR;
919 return FLOAT;
920 }
921
922 /* Handle base-switching prefixes 0x, 0t, 0d, 0. */
923 if (p[0] == '0')
924 switch (p[1])
925 {
926 case 'x':
927 case 'X':
928 if (len >= 3)
929 {
930 p += 2;
931 base = 16;
932 len -= 2;
933 }
934 break;
935
936 case 't':
937 case 'T':
938 case 'd':
939 case 'D':
940 if (len >= 3)
941 {
942 p += 2;
943 base = 10;
944 len -= 2;
945 }
946 break;
947
948 default:
949 base = 8;
950 break;
951 }
952
953 while (len-- > 0)
954 {
955 c = *p++;
956 if (c >= 'A' && c <= 'Z')
957 c += 'a' - 'A';
958 if (c != 'l' && c != 'u')
959 n *= base;
960 if (c >= '0' && c <= '9')
961 {
962 if (found_suffix)
963 return ERROR;
964 n += i = c - '0';
965 }
966 else
967 {
968 if (base > 10 && c >= 'a' && c <= 'f')
969 {
970 if (found_suffix)
971 return ERROR;
972 n += i = c - 'a' + 10;
973 }
974 else if (c == 'l')
975 {
976 ++long_p;
977 found_suffix = 1;
978 }
979 else if (c == 'u')
980 {
981 unsigned_p = 1;
982 found_suffix = 1;
983 }
984 else
985 return ERROR; /* Char not a digit */
986 }
987 if (i >= base)
988 return ERROR; /* Invalid digit in this base. */
989
990 /* Portably test for overflow (only works for nonzero values, so make
991 a second check for zero). FIXME: Can't we just make n and prevn
992 unsigned and avoid this? */
993 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
994 unsigned_p = 1; /* Try something unsigned. */
995
996 /* Portably test for unsigned overflow.
997 FIXME: This check is wrong; for example it doesn't find overflow
998 on 0x123456789 when LONGEST is 32 bits. */
999 if (c != 'l' && c != 'u' && n != 0)
1000 {
1001 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1002 error (_("Numeric constant too large."));
1003 }
1004 prevn = n;
1005 }
1006
1007 /* An integer constant is an int, a long, or a long long. An L
1008 suffix forces it to be long; an LL suffix forces it to be long
1009 long. If not forced to a larger size, it gets the first type of
1010 the above that it fits in. To figure out whether it fits, we
1011 shift it right and see whether anything remains. Note that we
1012 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1013 operation, because many compilers will warn about such a shift
1014 (which always produces a zero result). Sometimes gdbarch_int_bit
1015 or gdbarch_long_bit will be that big, sometimes not. To deal with
1016 the case where it is we just always shift the value more than
1017 once, with fewer bits each time. */
1018
1019 un = (ULONGEST)n >> 2;
1020 if (long_p == 0
1021 && (un >> (gdbarch_int_bit (parse_gdbarch (par_state)) - 2)) == 0)
1022 {
1023 high_bit
1024 = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch (par_state)) - 1);
1025
1026 /* A large decimal (not hex or octal) constant (between INT_MAX
1027 and UINT_MAX) is a long or unsigned long, according to ANSI,
1028 never an unsigned int, but this code treats it as unsigned
1029 int. This probably should be fixed. GCC gives a warning on
1030 such constants. */
1031
1032 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
1033 signed_type = parse_type (par_state)->builtin_int;
1034 }
1035 else if (long_p <= 1
1036 && (un >> (gdbarch_long_bit (parse_gdbarch (par_state)) - 2)) == 0)
1037 {
1038 high_bit
1039 = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch (par_state)) - 1);
1040 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
1041 signed_type = parse_type (par_state)->builtin_long;
1042 }
1043 else
1044 {
1045 int shift;
1046 if (sizeof (ULONGEST) * HOST_CHAR_BIT
1047 < gdbarch_long_long_bit (parse_gdbarch (par_state)))
1048 /* A long long does not fit in a LONGEST. */
1049 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1050 else
1051 shift = (gdbarch_long_long_bit (parse_gdbarch (par_state)) - 1);
1052 high_bit = (ULONGEST) 1 << shift;
1053 unsigned_type = parse_type (par_state)->builtin_unsigned_long_long;
1054 signed_type = parse_type (par_state)->builtin_long_long;
1055 }
1056
1057 putithere->typed_val_int.val = n;
1058
1059 /* If the high bit of the worked out type is set then this number
1060 has to be unsigned. */
1061
1062 if (unsigned_p || (n & high_bit))
1063 {
1064 putithere->typed_val_int.type = unsigned_type;
1065 }
1066 else
1067 {
1068 putithere->typed_val_int.type = signed_type;
1069 }
1070
1071 return INT;
1072 }
1073
1074
1075 struct type_push
1076 {
1077 struct type *stored;
1078 struct type_push *next;
1079 };
1080
1081 static struct type_push *tp_top = NULL;
1082
1083 static void
1084 push_current_type (void)
1085 {
1086 struct type_push *tpnew;
1087 tpnew = (struct type_push *) malloc (sizeof (struct type_push));
1088 tpnew->next = tp_top;
1089 tpnew->stored = current_type;
1090 current_type = NULL;
1091 tp_top = tpnew;
1092 }
1093
1094 static void
1095 pop_current_type (void)
1096 {
1097 struct type_push *tp = tp_top;
1098 if (tp)
1099 {
1100 current_type = tp->stored;
1101 tp_top = tp->next;
1102 free (tp);
1103 }
1104 }
1105
1106 struct token
1107 {
1108 char *oper;
1109 int token;
1110 enum exp_opcode opcode;
1111 };
1112
1113 static const struct token tokentab3[] =
1114 {
1115 {"shr", RSH, BINOP_END},
1116 {"shl", LSH, BINOP_END},
1117 {"and", ANDAND, BINOP_END},
1118 {"div", DIV, BINOP_END},
1119 {"not", NOT, BINOP_END},
1120 {"mod", MOD, BINOP_END},
1121 {"inc", INCREMENT, BINOP_END},
1122 {"dec", DECREMENT, BINOP_END},
1123 {"xor", XOR, BINOP_END}
1124 };
1125
1126 static const struct token tokentab2[] =
1127 {
1128 {"or", OR, BINOP_END},
1129 {"<>", NOTEQUAL, BINOP_END},
1130 {"<=", LEQ, BINOP_END},
1131 {">=", GEQ, BINOP_END},
1132 {":=", ASSIGN, BINOP_END},
1133 {"::", COLONCOLON, BINOP_END} };
1134
1135 /* Allocate uppercased var: */
1136 /* make an uppercased copy of tokstart. */
1137 static char *
1138 uptok (const char *tokstart, int namelen)
1139 {
1140 int i;
1141 char *uptokstart = (char *)malloc(namelen+1);
1142 for (i = 0;i <= namelen;i++)
1143 {
1144 if ((tokstart[i]>='a' && tokstart[i]<='z'))
1145 uptokstart[i] = tokstart[i]-('a'-'A');
1146 else
1147 uptokstart[i] = tokstart[i];
1148 }
1149 uptokstart[namelen]='\0';
1150 return uptokstart;
1151 }
1152
1153 /* Read one token, getting characters through lexptr. */
1154
1155 static int
1156 yylex (void)
1157 {
1158 int c;
1159 int namelen;
1160 unsigned int i;
1161 const char *tokstart;
1162 char *uptokstart;
1163 const char *tokptr;
1164 int explen, tempbufindex;
1165 static char *tempbuf;
1166 static int tempbufsize;
1167
1168 retry:
1169
1170 prev_lexptr = lexptr;
1171
1172 tokstart = lexptr;
1173 explen = strlen (lexptr);
1174
1175 /* See if it is a special token of length 3. */
1176 if (explen > 2)
1177 for (i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++)
1178 if (strncasecmp (tokstart, tokentab3[i].oper, 3) == 0
1179 && (!isalpha (tokentab3[i].oper[0]) || explen == 3
1180 || (!isalpha (tokstart[3])
1181 && !isdigit (tokstart[3]) && tokstart[3] != '_')))
1182 {
1183 lexptr += 3;
1184 yylval.opcode = tokentab3[i].opcode;
1185 return tokentab3[i].token;
1186 }
1187
1188 /* See if it is a special token of length 2. */
1189 if (explen > 1)
1190 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1191 if (strncasecmp (tokstart, tokentab2[i].oper, 2) == 0
1192 && (!isalpha (tokentab2[i].oper[0]) || explen == 2
1193 || (!isalpha (tokstart[2])
1194 && !isdigit (tokstart[2]) && tokstart[2] != '_')))
1195 {
1196 lexptr += 2;
1197 yylval.opcode = tokentab2[i].opcode;
1198 return tokentab2[i].token;
1199 }
1200
1201 switch (c = *tokstart)
1202 {
1203 case 0:
1204 if (search_field && parse_completion)
1205 return COMPLETE;
1206 else
1207 return 0;
1208
1209 case ' ':
1210 case '\t':
1211 case '\n':
1212 lexptr++;
1213 goto retry;
1214
1215 case '\'':
1216 /* We either have a character constant ('0' or '\177' for example)
1217 or we have a quoted symbol reference ('foo(int,int)' in object pascal
1218 for example). */
1219 lexptr++;
1220 c = *lexptr++;
1221 if (c == '\\')
1222 c = parse_escape (parse_gdbarch (pstate), &lexptr);
1223 else if (c == '\'')
1224 error (_("Empty character constant."));
1225
1226 yylval.typed_val_int.val = c;
1227 yylval.typed_val_int.type = parse_type (pstate)->builtin_char;
1228
1229 c = *lexptr++;
1230 if (c != '\'')
1231 {
1232 namelen = skip_quoted (tokstart) - tokstart;
1233 if (namelen > 2)
1234 {
1235 lexptr = tokstart + namelen;
1236 if (lexptr[-1] != '\'')
1237 error (_("Unmatched single quote."));
1238 namelen -= 2;
1239 tokstart++;
1240 uptokstart = uptok(tokstart,namelen);
1241 goto tryname;
1242 }
1243 error (_("Invalid character constant."));
1244 }
1245 return INT;
1246
1247 case '(':
1248 paren_depth++;
1249 lexptr++;
1250 return c;
1251
1252 case ')':
1253 if (paren_depth == 0)
1254 return 0;
1255 paren_depth--;
1256 lexptr++;
1257 return c;
1258
1259 case ',':
1260 if (comma_terminates && paren_depth == 0)
1261 return 0;
1262 lexptr++;
1263 return c;
1264
1265 case '.':
1266 /* Might be a floating point number. */
1267 if (lexptr[1] < '0' || lexptr[1] > '9')
1268 {
1269 goto symbol; /* Nope, must be a symbol. */
1270 }
1271
1272 /* FALL THRU into number case. */
1273
1274 case '0':
1275 case '1':
1276 case '2':
1277 case '3':
1278 case '4':
1279 case '5':
1280 case '6':
1281 case '7':
1282 case '8':
1283 case '9':
1284 {
1285 /* It's a number. */
1286 int got_dot = 0, got_e = 0, toktype;
1287 const char *p = tokstart;
1288 int hex = input_radix > 10;
1289
1290 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1291 {
1292 p += 2;
1293 hex = 1;
1294 }
1295 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1296 || p[1]=='d' || p[1]=='D'))
1297 {
1298 p += 2;
1299 hex = 0;
1300 }
1301
1302 for (;; ++p)
1303 {
1304 /* This test includes !hex because 'e' is a valid hex digit
1305 and thus does not indicate a floating point number when
1306 the radix is hex. */
1307 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1308 got_dot = got_e = 1;
1309 /* This test does not include !hex, because a '.' always indicates
1310 a decimal floating point number regardless of the radix. */
1311 else if (!got_dot && *p == '.')
1312 got_dot = 1;
1313 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1314 && (*p == '-' || *p == '+'))
1315 /* This is the sign of the exponent, not the end of the
1316 number. */
1317 continue;
1318 /* We will take any letters or digits. parse_number will
1319 complain if past the radix, or if L or U are not final. */
1320 else if ((*p < '0' || *p > '9')
1321 && ((*p < 'a' || *p > 'z')
1322 && (*p < 'A' || *p > 'Z')))
1323 break;
1324 }
1325 toktype = parse_number (pstate, tokstart,
1326 p - tokstart, got_dot | got_e, &yylval);
1327 if (toktype == ERROR)
1328 {
1329 char *err_copy = (char *) alloca (p - tokstart + 1);
1330
1331 memcpy (err_copy, tokstart, p - tokstart);
1332 err_copy[p - tokstart] = 0;
1333 error (_("Invalid number \"%s\"."), err_copy);
1334 }
1335 lexptr = p;
1336 return toktype;
1337 }
1338
1339 case '+':
1340 case '-':
1341 case '*':
1342 case '/':
1343 case '|':
1344 case '&':
1345 case '^':
1346 case '~':
1347 case '!':
1348 case '@':
1349 case '<':
1350 case '>':
1351 case '[':
1352 case ']':
1353 case '?':
1354 case ':':
1355 case '=':
1356 case '{':
1357 case '}':
1358 symbol:
1359 lexptr++;
1360 return c;
1361
1362 case '"':
1363
1364 /* Build the gdb internal form of the input string in tempbuf,
1365 translating any standard C escape forms seen. Note that the
1366 buffer is null byte terminated *only* for the convenience of
1367 debugging gdb itself and printing the buffer contents when
1368 the buffer contains no embedded nulls. Gdb does not depend
1369 upon the buffer being null byte terminated, it uses the length
1370 string instead. This allows gdb to handle C strings (as well
1371 as strings in other languages) with embedded null bytes. */
1372
1373 tokptr = ++tokstart;
1374 tempbufindex = 0;
1375
1376 do {
1377 /* Grow the static temp buffer if necessary, including allocating
1378 the first one on demand. */
1379 if (tempbufindex + 1 >= tempbufsize)
1380 {
1381 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1382 }
1383
1384 switch (*tokptr)
1385 {
1386 case '\0':
1387 case '"':
1388 /* Do nothing, loop will terminate. */
1389 break;
1390 case '\\':
1391 ++tokptr;
1392 c = parse_escape (parse_gdbarch (pstate), &tokptr);
1393 if (c == -1)
1394 {
1395 continue;
1396 }
1397 tempbuf[tempbufindex++] = c;
1398 break;
1399 default:
1400 tempbuf[tempbufindex++] = *tokptr++;
1401 break;
1402 }
1403 } while ((*tokptr != '"') && (*tokptr != '\0'));
1404 if (*tokptr++ != '"')
1405 {
1406 error (_("Unterminated string in expression."));
1407 }
1408 tempbuf[tempbufindex] = '\0'; /* See note above. */
1409 yylval.sval.ptr = tempbuf;
1410 yylval.sval.length = tempbufindex;
1411 lexptr = tokptr;
1412 return (STRING);
1413 }
1414
1415 if (!(c == '_' || c == '$'
1416 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1417 /* We must have come across a bad character (e.g. ';'). */
1418 error (_("Invalid character '%c' in expression."), c);
1419
1420 /* It's a name. See how long it is. */
1421 namelen = 0;
1422 for (c = tokstart[namelen];
1423 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1424 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1425 {
1426 /* Template parameter lists are part of the name.
1427 FIXME: This mishandles `print $a<4&&$a>3'. */
1428 if (c == '<')
1429 {
1430 int i = namelen;
1431 int nesting_level = 1;
1432 while (tokstart[++i])
1433 {
1434 if (tokstart[i] == '<')
1435 nesting_level++;
1436 else if (tokstart[i] == '>')
1437 {
1438 if (--nesting_level == 0)
1439 break;
1440 }
1441 }
1442 if (tokstart[i] == '>')
1443 namelen = i;
1444 else
1445 break;
1446 }
1447
1448 /* do NOT uppercase internals because of registers !!! */
1449 c = tokstart[++namelen];
1450 }
1451
1452 uptokstart = uptok(tokstart,namelen);
1453
1454 /* The token "if" terminates the expression and is NOT
1455 removed from the input stream. */
1456 if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F')
1457 {
1458 free (uptokstart);
1459 return 0;
1460 }
1461
1462 lexptr += namelen;
1463
1464 tryname:
1465
1466 /* Catch specific keywords. Should be done with a data structure. */
1467 switch (namelen)
1468 {
1469 case 6:
1470 if (strcmp (uptokstart, "OBJECT") == 0)
1471 {
1472 free (uptokstart);
1473 return CLASS;
1474 }
1475 if (strcmp (uptokstart, "RECORD") == 0)
1476 {
1477 free (uptokstart);
1478 return STRUCT;
1479 }
1480 if (strcmp (uptokstart, "SIZEOF") == 0)
1481 {
1482 free (uptokstart);
1483 return SIZEOF;
1484 }
1485 break;
1486 case 5:
1487 if (strcmp (uptokstart, "CLASS") == 0)
1488 {
1489 free (uptokstart);
1490 return CLASS;
1491 }
1492 if (strcmp (uptokstart, "FALSE") == 0)
1493 {
1494 yylval.lval = 0;
1495 free (uptokstart);
1496 return FALSEKEYWORD;
1497 }
1498 break;
1499 case 4:
1500 if (strcmp (uptokstart, "TRUE") == 0)
1501 {
1502 yylval.lval = 1;
1503 free (uptokstart);
1504 return TRUEKEYWORD;
1505 }
1506 if (strcmp (uptokstart, "SELF") == 0)
1507 {
1508 /* Here we search for 'this' like
1509 inserted in FPC stabs debug info. */
1510 static const char this_name[] = "this";
1511
1512 if (lookup_symbol (this_name, expression_context_block,
1513 VAR_DOMAIN, NULL).symbol)
1514 {
1515 free (uptokstart);
1516 return THIS;
1517 }
1518 }
1519 break;
1520 default:
1521 break;
1522 }
1523
1524 yylval.sval.ptr = tokstart;
1525 yylval.sval.length = namelen;
1526
1527 if (*tokstart == '$')
1528 {
1529 char *tmp;
1530
1531 /* $ is the normal prefix for pascal hexadecimal values
1532 but this conflicts with the GDB use for debugger variables
1533 so in expression to enter hexadecimal values
1534 we still need to use C syntax with 0xff */
1535 write_dollar_variable (pstate, yylval.sval);
1536 tmp = alloca (namelen + 1);
1537 memcpy (tmp, tokstart, namelen);
1538 tmp[namelen] = '\0';
1539 intvar = lookup_only_internalvar (tmp + 1);
1540 free (uptokstart);
1541 return VARIABLE;
1542 }
1543
1544 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1545 functions or symtabs. If this is not so, then ...
1546 Use token-type TYPENAME for symbols that happen to be defined
1547 currently as names of types; NAME for other symbols.
1548 The caller is not constrained to care about the distinction. */
1549 {
1550 char *tmp = copy_name (yylval.sval);
1551 struct symbol *sym;
1552 struct field_of_this_result is_a_field_of_this;
1553 int is_a_field = 0;
1554 int hextype;
1555
1556 is_a_field_of_this.type = NULL;
1557 if (search_field && current_type)
1558 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1559 if (is_a_field)
1560 sym = NULL;
1561 else
1562 sym = lookup_symbol (tmp, expression_context_block,
1563 VAR_DOMAIN, &is_a_field_of_this).symbol;
1564 /* second chance uppercased (as Free Pascal does). */
1565 if (!sym && is_a_field_of_this.type == NULL && !is_a_field)
1566 {
1567 for (i = 0; i <= namelen; i++)
1568 {
1569 if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
1570 tmp[i] -= ('a'-'A');
1571 }
1572 if (search_field && current_type)
1573 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1574 if (is_a_field)
1575 sym = NULL;
1576 else
1577 sym = lookup_symbol (tmp, expression_context_block,
1578 VAR_DOMAIN, &is_a_field_of_this).symbol;
1579 }
1580 /* Third chance Capitalized (as GPC does). */
1581 if (!sym && is_a_field_of_this.type == NULL && !is_a_field)
1582 {
1583 for (i = 0; i <= namelen; i++)
1584 {
1585 if (i == 0)
1586 {
1587 if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
1588 tmp[i] -= ('a'-'A');
1589 }
1590 else
1591 if ((tmp[i] >= 'A' && tmp[i] <= 'Z'))
1592 tmp[i] -= ('A'-'a');
1593 }
1594 if (search_field && current_type)
1595 is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL);
1596 if (is_a_field)
1597 sym = NULL;
1598 else
1599 sym = lookup_symbol (tmp, expression_context_block,
1600 VAR_DOMAIN, &is_a_field_of_this).symbol;
1601 }
1602
1603 if (is_a_field || (is_a_field_of_this.type != NULL))
1604 {
1605 tempbuf = (char *) realloc (tempbuf, namelen + 1);
1606 strncpy (tempbuf, tmp, namelen);
1607 tempbuf [namelen] = 0;
1608 yylval.sval.ptr = tempbuf;
1609 yylval.sval.length = namelen;
1610 yylval.ssym.sym.symbol = NULL;
1611 yylval.ssym.sym.block = NULL;
1612 free (uptokstart);
1613 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1614 if (is_a_field)
1615 return FIELDNAME;
1616 else
1617 return NAME;
1618 }
1619 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1620 no psymtabs (coff, xcoff, or some future change to blow away the
1621 psymtabs once once symbols are read). */
1622 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1623 || lookup_symtab (tmp))
1624 {
1625 yylval.ssym.sym.symbol = sym;
1626 yylval.ssym.sym.block = NULL;
1627 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1628 free (uptokstart);
1629 return BLOCKNAME;
1630 }
1631 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1632 {
1633 #if 1
1634 /* Despite the following flaw, we need to keep this code enabled.
1635 Because we can get called from check_stub_method, if we don't
1636 handle nested types then it screws many operations in any
1637 program which uses nested types. */
1638 /* In "A::x", if x is a member function of A and there happens
1639 to be a type (nested or not, since the stabs don't make that
1640 distinction) named x, then this code incorrectly thinks we
1641 are dealing with nested types rather than a member function. */
1642
1643 const char *p;
1644 const char *namestart;
1645 struct symbol *best_sym;
1646
1647 /* Look ahead to detect nested types. This probably should be
1648 done in the grammar, but trying seemed to introduce a lot
1649 of shift/reduce and reduce/reduce conflicts. It's possible
1650 that it could be done, though. Or perhaps a non-grammar, but
1651 less ad hoc, approach would work well. */
1652
1653 /* Since we do not currently have any way of distinguishing
1654 a nested type from a non-nested one (the stabs don't tell
1655 us whether a type is nested), we just ignore the
1656 containing type. */
1657
1658 p = lexptr;
1659 best_sym = sym;
1660 while (1)
1661 {
1662 /* Skip whitespace. */
1663 while (*p == ' ' || *p == '\t' || *p == '\n')
1664 ++p;
1665 if (*p == ':' && p[1] == ':')
1666 {
1667 /* Skip the `::'. */
1668 p += 2;
1669 /* Skip whitespace. */
1670 while (*p == ' ' || *p == '\t' || *p == '\n')
1671 ++p;
1672 namestart = p;
1673 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1674 || (*p >= 'a' && *p <= 'z')
1675 || (*p >= 'A' && *p <= 'Z'))
1676 ++p;
1677 if (p != namestart)
1678 {
1679 struct symbol *cur_sym;
1680 /* As big as the whole rest of the expression, which is
1681 at least big enough. */
1682 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1683 char *tmp1;
1684
1685 tmp1 = ncopy;
1686 memcpy (tmp1, tmp, strlen (tmp));
1687 tmp1 += strlen (tmp);
1688 memcpy (tmp1, "::", 2);
1689 tmp1 += 2;
1690 memcpy (tmp1, namestart, p - namestart);
1691 tmp1[p - namestart] = '\0';
1692 cur_sym = lookup_symbol (ncopy, expression_context_block,
1693 VAR_DOMAIN, NULL).symbol;
1694 if (cur_sym)
1695 {
1696 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1697 {
1698 best_sym = cur_sym;
1699 lexptr = p;
1700 }
1701 else
1702 break;
1703 }
1704 else
1705 break;
1706 }
1707 else
1708 break;
1709 }
1710 else
1711 break;
1712 }
1713
1714 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1715 #else /* not 0 */
1716 yylval.tsym.type = SYMBOL_TYPE (sym);
1717 #endif /* not 0 */
1718 free (uptokstart);
1719 return TYPENAME;
1720 }
1721 yylval.tsym.type
1722 = language_lookup_primitive_type (parse_language (pstate),
1723 parse_gdbarch (pstate), tmp);
1724 if (yylval.tsym.type != NULL)
1725 {
1726 free (uptokstart);
1727 return TYPENAME;
1728 }
1729
1730 /* Input names that aren't symbols but ARE valid hex numbers,
1731 when the input radix permits them, can be names or numbers
1732 depending on the parse. Note we support radixes > 16 here. */
1733 if (!sym
1734 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1735 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1736 {
1737 YYSTYPE newlval; /* Its value is ignored. */
1738 hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
1739 if (hextype == INT)
1740 {
1741 yylval.ssym.sym.symbol = sym;
1742 yylval.ssym.sym.block = NULL;
1743 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1744 free (uptokstart);
1745 return NAME_OR_INT;
1746 }
1747 }
1748
1749 free(uptokstart);
1750 /* Any other kind of symbol. */
1751 yylval.ssym.sym.symbol = sym;
1752 yylval.ssym.sym.block = NULL;
1753 return NAME;
1754 }
1755 }
1756
1757 int
1758 pascal_parse (struct parser_state *par_state)
1759 {
1760 int result;
1761 struct cleanup *c = make_cleanup_clear_parser_state (&pstate);
1762
1763 /* Setting up the parser state. */
1764 gdb_assert (par_state != NULL);
1765 pstate = par_state;
1766
1767 result = yyparse ();
1768 do_cleanups (c);
1769 return result;
1770 }
1771
1772 void
1773 yyerror (char *msg)
1774 {
1775 if (prev_lexptr)
1776 lexptr = prev_lexptr;
1777
1778 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1779 }
This page took 0.066054 seconds and 4 git commands to generate.