* c-exp.y (block, variable, name_not_typename, lex_one_token,
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986, 1989-2001, 2004-2005, 2007-2012 Free Software
4 Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include "defs.h"
34 #include <ctype.h>
35 #include "arch-utils.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "f-lang.h"
45 #include "parser-defs.h"
46 #include "gdbcmd.h"
47 #include "symfile.h" /* for overlay functions */
48 #include "inferior.h"
49 #include "doublest.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "source.h"
53 #include "objfiles.h"
54 #include "exceptions.h"
55 #include "user-regs.h"
56
57 /* Standard set of definitions for printing, dumping, prefixifying,
58 * and evaluating expressions. */
59
60 const struct exp_descriptor exp_descriptor_standard =
61 {
62 print_subexp_standard,
63 operator_length_standard,
64 operator_check_standard,
65 op_name_standard,
66 dump_subexp_body_standard,
67 evaluate_subexp_standard
68 };
69 \f
70 /* Global variables declared in parser-defs.h (and commented there). */
71 struct expression *expout;
72 int expout_size;
73 int expout_ptr;
74 const struct block *expression_context_block;
75 CORE_ADDR expression_context_pc;
76 const struct block *innermost_block;
77 int arglist_len;
78 static struct type_stack type_stack;
79 char *lexptr;
80 char *prev_lexptr;
81 int paren_depth;
82 int comma_terminates;
83
84 /* True if parsing an expression to attempt completion. */
85 int parse_completion;
86
87 /* The index of the last struct expression directly before a '.' or
88 '->'. This is set when parsing and is only used when completing a
89 field name. It is -1 if no dereference operation was found. */
90 static int expout_last_struct = -1;
91
92 /* If we are completing a tagged type name, this will be nonzero. */
93 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
94
95 /* The token for tagged type name completion. */
96 static char *expout_completion_name;
97
98 \f
99 static unsigned int expressiondebug = 0;
100 static void
101 show_expressiondebug (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
105 }
106
107
108 /* Non-zero if an expression parser should set yydebug. */
109 int parser_debug;
110
111 static void
112 show_parserdebug (struct ui_file *file, int from_tty,
113 struct cmd_list_element *c, const char *value)
114 {
115 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
116 }
117
118
119 static void free_funcalls (void *ignore);
120
121 static int prefixify_subexp (struct expression *, struct expression *, int,
122 int);
123
124 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
125 const struct block *, int,
126 int, int *);
127
128 void _initialize_parse (void);
129
130 /* Data structure for saving values of arglist_len for function calls whose
131 arguments contain other function calls. */
132
133 struct funcall
134 {
135 struct funcall *next;
136 int arglist_len;
137 };
138
139 static struct funcall *funcall_chain;
140
141 /* Begin counting arguments for a function call,
142 saving the data about any containing call. */
143
144 void
145 start_arglist (void)
146 {
147 struct funcall *new;
148
149 new = (struct funcall *) xmalloc (sizeof (struct funcall));
150 new->next = funcall_chain;
151 new->arglist_len = arglist_len;
152 arglist_len = 0;
153 funcall_chain = new;
154 }
155
156 /* Return the number of arguments in a function call just terminated,
157 and restore the data for the containing function call. */
158
159 int
160 end_arglist (void)
161 {
162 int val = arglist_len;
163 struct funcall *call = funcall_chain;
164
165 funcall_chain = call->next;
166 arglist_len = call->arglist_len;
167 xfree (call);
168 return val;
169 }
170
171 /* Free everything in the funcall chain.
172 Used when there is an error inside parsing. */
173
174 static void
175 free_funcalls (void *ignore)
176 {
177 struct funcall *call, *next;
178
179 for (call = funcall_chain; call; call = next)
180 {
181 next = call->next;
182 xfree (call);
183 }
184 }
185 \f
186 /* This page contains the functions for adding data to the struct expression
187 being constructed. */
188
189 /* See definition in parser-defs.h. */
190
191 void
192 initialize_expout (int initial_size, const struct language_defn *lang,
193 struct gdbarch *gdbarch)
194 {
195 expout_size = initial_size;
196 expout_ptr = 0;
197 expout = xmalloc (sizeof (struct expression)
198 + EXP_ELEM_TO_BYTES (expout_size));
199 expout->language_defn = lang;
200 expout->gdbarch = gdbarch;
201 }
202
203 /* See definition in parser-defs.h. */
204
205 void
206 reallocate_expout (void)
207 {
208 /* Record the actual number of expression elements, and then
209 reallocate the expression memory so that we free up any
210 excess elements. */
211
212 expout->nelts = expout_ptr;
213 expout = xrealloc ((char *) expout,
214 sizeof (struct expression)
215 + EXP_ELEM_TO_BYTES (expout_ptr));
216 }
217
218 /* Add one element to the end of the expression. */
219
220 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
221 a register through here. */
222
223 static void
224 write_exp_elt (const union exp_element *expelt)
225 {
226 if (expout_ptr >= expout_size)
227 {
228 expout_size *= 2;
229 expout = (struct expression *)
230 xrealloc ((char *) expout, sizeof (struct expression)
231 + EXP_ELEM_TO_BYTES (expout_size));
232 }
233 expout->elts[expout_ptr++] = *expelt;
234 }
235
236 void
237 write_exp_elt_opcode (enum exp_opcode expelt)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.opcode = expelt;
243 write_exp_elt (&tmp);
244 }
245
246 void
247 write_exp_elt_sym (struct symbol *expelt)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.symbol = expelt;
253 write_exp_elt (&tmp);
254 }
255
256 void
257 write_exp_elt_block (const struct block *b)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.block = b;
263 write_exp_elt (&tmp);
264 }
265
266 void
267 write_exp_elt_objfile (struct objfile *objfile)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.objfile = objfile;
273 write_exp_elt (&tmp);
274 }
275
276 void
277 write_exp_elt_longcst (LONGEST expelt)
278 {
279 union exp_element tmp;
280
281 memset (&tmp, 0, sizeof (union exp_element));
282 tmp.longconst = expelt;
283 write_exp_elt (&tmp);
284 }
285
286 void
287 write_exp_elt_dblcst (DOUBLEST expelt)
288 {
289 union exp_element tmp;
290
291 memset (&tmp, 0, sizeof (union exp_element));
292 tmp.doubleconst = expelt;
293 write_exp_elt (&tmp);
294 }
295
296 void
297 write_exp_elt_decfloatcst (gdb_byte expelt[16])
298 {
299 union exp_element tmp;
300 int index;
301
302 for (index = 0; index < 16; index++)
303 tmp.decfloatconst[index] = expelt[index];
304
305 write_exp_elt (&tmp);
306 }
307
308 void
309 write_exp_elt_type (struct type *expelt)
310 {
311 union exp_element tmp;
312
313 memset (&tmp, 0, sizeof (union exp_element));
314 tmp.type = expelt;
315 write_exp_elt (&tmp);
316 }
317
318 void
319 write_exp_elt_intern (struct internalvar *expelt)
320 {
321 union exp_element tmp;
322
323 memset (&tmp, 0, sizeof (union exp_element));
324 tmp.internalvar = expelt;
325 write_exp_elt (&tmp);
326 }
327
328 /* Add a string constant to the end of the expression.
329
330 String constants are stored by first writing an expression element
331 that contains the length of the string, then stuffing the string
332 constant itself into however many expression elements are needed
333 to hold it, and then writing another expression element that contains
334 the length of the string. I.e. an expression element at each end of
335 the string records the string length, so you can skip over the
336 expression elements containing the actual string bytes from either
337 end of the string. Note that this also allows gdb to handle
338 strings with embedded null bytes, as is required for some languages.
339
340 Don't be fooled by the fact that the string is null byte terminated,
341 this is strictly for the convenience of debugging gdb itself.
342 Gdb does not depend up the string being null terminated, since the
343 actual length is recorded in expression elements at each end of the
344 string. The null byte is taken into consideration when computing how
345 many expression elements are required to hold the string constant, of
346 course. */
347
348
349 void
350 write_exp_string (struct stoken str)
351 {
352 int len = str.length;
353 int lenelt;
354 char *strdata;
355
356 /* Compute the number of expression elements required to hold the string
357 (including a null byte terminator), along with one expression element
358 at each end to record the actual string length (not including the
359 null byte terminator). */
360
361 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
362
363 /* Ensure that we have enough available expression elements to store
364 everything. */
365
366 if ((expout_ptr + lenelt) >= expout_size)
367 {
368 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
369 expout = (struct expression *)
370 xrealloc ((char *) expout, (sizeof (struct expression)
371 + EXP_ELEM_TO_BYTES (expout_size)));
372 }
373
374 /* Write the leading length expression element (which advances the current
375 expression element index), then write the string constant followed by a
376 terminating null byte, and then write the trailing length expression
377 element. */
378
379 write_exp_elt_longcst ((LONGEST) len);
380 strdata = (char *) &expout->elts[expout_ptr];
381 memcpy (strdata, str.ptr, len);
382 *(strdata + len) = '\0';
383 expout_ptr += lenelt - 2;
384 write_exp_elt_longcst ((LONGEST) len);
385 }
386
387 /* Add a vector of string constants to the end of the expression.
388
389 This adds an OP_STRING operation, but encodes the contents
390 differently from write_exp_string. The language is expected to
391 handle evaluation of this expression itself.
392
393 After the usual OP_STRING header, TYPE is written into the
394 expression as a long constant. The interpretation of this field is
395 up to the language evaluator.
396
397 Next, each string in VEC is written. The length is written as a
398 long constant, followed by the contents of the string. */
399
400 void
401 write_exp_string_vector (int type, struct stoken_vector *vec)
402 {
403 int i, n_slots, len;
404
405 /* Compute the size. We compute the size in number of slots to
406 avoid issues with string padding. */
407 n_slots = 0;
408 for (i = 0; i < vec->len; ++i)
409 {
410 /* One slot for the length of this element, plus the number of
411 slots needed for this string. */
412 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
413 }
414
415 /* One more slot for the type of the string. */
416 ++n_slots;
417
418 /* Now compute a phony string length. */
419 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
420
421 n_slots += 4;
422 if ((expout_ptr + n_slots) >= expout_size)
423 {
424 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
425 expout = (struct expression *)
426 xrealloc ((char *) expout, (sizeof (struct expression)
427 + EXP_ELEM_TO_BYTES (expout_size)));
428 }
429
430 write_exp_elt_opcode (OP_STRING);
431 write_exp_elt_longcst (len);
432 write_exp_elt_longcst (type);
433
434 for (i = 0; i < vec->len; ++i)
435 {
436 write_exp_elt_longcst (vec->tokens[i].length);
437 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
438 vec->tokens[i].length);
439 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
440 }
441
442 write_exp_elt_longcst (len);
443 write_exp_elt_opcode (OP_STRING);
444 }
445
446 /* Add a bitstring constant to the end of the expression.
447
448 Bitstring constants are stored by first writing an expression element
449 that contains the length of the bitstring (in bits), then stuffing the
450 bitstring constant itself into however many expression elements are
451 needed to hold it, and then writing another expression element that
452 contains the length of the bitstring. I.e. an expression element at
453 each end of the bitstring records the bitstring length, so you can skip
454 over the expression elements containing the actual bitstring bytes from
455 either end of the bitstring. */
456
457 void
458 write_exp_bitstring (struct stoken str)
459 {
460 int bits = str.length; /* length in bits */
461 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
462 int lenelt;
463 char *strdata;
464
465 /* Compute the number of expression elements required to hold the bitstring,
466 along with one expression element at each end to record the actual
467 bitstring length in bits. */
468
469 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
470
471 /* Ensure that we have enough available expression elements to store
472 everything. */
473
474 if ((expout_ptr + lenelt) >= expout_size)
475 {
476 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
477 expout = (struct expression *)
478 xrealloc ((char *) expout, (sizeof (struct expression)
479 + EXP_ELEM_TO_BYTES (expout_size)));
480 }
481
482 /* Write the leading length expression element (which advances the current
483 expression element index), then write the bitstring constant, and then
484 write the trailing length expression element. */
485
486 write_exp_elt_longcst ((LONGEST) bits);
487 strdata = (char *) &expout->elts[expout_ptr];
488 memcpy (strdata, str.ptr, len);
489 expout_ptr += lenelt - 2;
490 write_exp_elt_longcst ((LONGEST) bits);
491 }
492
493 /* Add the appropriate elements for a minimal symbol to the end of
494 the expression. */
495
496 void
497 write_exp_msymbol (struct minimal_symbol *msymbol)
498 {
499 struct objfile *objfile = msymbol_objfile (msymbol);
500 struct gdbarch *gdbarch = get_objfile_arch (objfile);
501
502 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
503 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
504 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
505 CORE_ADDR pc;
506
507 /* The minimal symbol might point to a function descriptor;
508 resolve it to the actual code address instead. */
509 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
510 if (pc != addr)
511 {
512 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
513
514 /* In this case, assume we have a code symbol instead of
515 a data symbol. */
516
517 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
518 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
519 {
520 /* A function descriptor has been resolved but PC is still in the
521 STT_GNU_IFUNC resolver body (such as because inferior does not
522 run to be able to call it). */
523
524 type = mst_text_gnu_ifunc;
525 }
526 else
527 type = mst_text;
528 section = NULL;
529 addr = pc;
530 }
531
532 if (overlay_debugging)
533 addr = symbol_overlayed_address (addr, section);
534
535 write_exp_elt_opcode (OP_LONG);
536 /* Let's make the type big enough to hold a 64-bit address. */
537 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
538 write_exp_elt_longcst ((LONGEST) addr);
539 write_exp_elt_opcode (OP_LONG);
540
541 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
542 {
543 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
544 write_exp_elt_objfile (objfile);
545 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
546 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
547 return;
548 }
549
550 write_exp_elt_opcode (UNOP_MEMVAL);
551 switch (type)
552 {
553 case mst_text:
554 case mst_file_text:
555 case mst_solib_trampoline:
556 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
557 break;
558
559 case mst_text_gnu_ifunc:
560 write_exp_elt_type (objfile_type (objfile)
561 ->nodebug_text_gnu_ifunc_symbol);
562 break;
563
564 case mst_data:
565 case mst_file_data:
566 case mst_bss:
567 case mst_file_bss:
568 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
569 break;
570
571 case mst_slot_got_plt:
572 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
573 break;
574
575 default:
576 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
577 break;
578 }
579 write_exp_elt_opcode (UNOP_MEMVAL);
580 }
581
582 /* Mark the current index as the starting location of a structure
583 expression. This is used when completing on field names. */
584
585 void
586 mark_struct_expression (void)
587 {
588 gdb_assert (parse_completion
589 && expout_tag_completion_type == TYPE_CODE_UNDEF);
590 expout_last_struct = expout_ptr;
591 }
592
593 /* Indicate that the current parser invocation is completing a tag.
594 TAG is the type code of the tag, and PTR and LENGTH represent the
595 start of the tag name. */
596
597 void
598 mark_completion_tag (enum type_code tag, const char *ptr, int length)
599 {
600 gdb_assert (parse_completion
601 && expout_tag_completion_type == TYPE_CODE_UNDEF
602 && expout_completion_name == NULL
603 && expout_last_struct == -1);
604 gdb_assert (tag == TYPE_CODE_UNION
605 || tag == TYPE_CODE_STRUCT
606 || tag == TYPE_CODE_CLASS
607 || tag == TYPE_CODE_ENUM);
608 expout_tag_completion_type = tag;
609 expout_completion_name = xmalloc (length + 1);
610 memcpy (expout_completion_name, ptr, length);
611 expout_completion_name[length] = '\0';
612 }
613
614 \f
615 /* Recognize tokens that start with '$'. These include:
616
617 $regname A native register name or a "standard
618 register name".
619
620 $variable A convenience variable with a name chosen
621 by the user.
622
623 $digits Value history with index <digits>, starting
624 from the first value which has index 1.
625
626 $$digits Value history with index <digits> relative
627 to the last value. I.e. $$0 is the last
628 value, $$1 is the one previous to that, $$2
629 is the one previous to $$1, etc.
630
631 $ | $0 | $$0 The last value in the value history.
632
633 $$ An abbreviation for the second to the last
634 value in the value history, I.e. $$1 */
635
636 void
637 write_dollar_variable (struct stoken str)
638 {
639 struct symbol *sym = NULL;
640 struct minimal_symbol *msym = NULL;
641 struct internalvar *isym = NULL;
642
643 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
644 and $$digits (equivalent to $<-digits> if you could type that). */
645
646 int negate = 0;
647 int i = 1;
648 /* Double dollar means negate the number and add -1 as well.
649 Thus $$ alone means -1. */
650 if (str.length >= 2 && str.ptr[1] == '$')
651 {
652 negate = 1;
653 i = 2;
654 }
655 if (i == str.length)
656 {
657 /* Just dollars (one or two). */
658 i = -negate;
659 goto handle_last;
660 }
661 /* Is the rest of the token digits? */
662 for (; i < str.length; i++)
663 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
664 break;
665 if (i == str.length)
666 {
667 i = atoi (str.ptr + 1 + negate);
668 if (negate)
669 i = -i;
670 goto handle_last;
671 }
672
673 /* Handle tokens that refer to machine registers:
674 $ followed by a register name. */
675 i = user_reg_map_name_to_regnum (parse_gdbarch,
676 str.ptr + 1, str.length - 1);
677 if (i >= 0)
678 goto handle_register;
679
680 /* Any names starting with $ are probably debugger internal variables. */
681
682 isym = lookup_only_internalvar (copy_name (str) + 1);
683 if (isym)
684 {
685 write_exp_elt_opcode (OP_INTERNALVAR);
686 write_exp_elt_intern (isym);
687 write_exp_elt_opcode (OP_INTERNALVAR);
688 return;
689 }
690
691 /* On some systems, such as HP-UX and hppa-linux, certain system routines
692 have names beginning with $ or $$. Check for those, first. */
693
694 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
695 VAR_DOMAIN, NULL);
696 if (sym)
697 {
698 write_exp_elt_opcode (OP_VAR_VALUE);
699 write_exp_elt_block (block_found); /* set by lookup_symbol */
700 write_exp_elt_sym (sym);
701 write_exp_elt_opcode (OP_VAR_VALUE);
702 return;
703 }
704 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
705 if (msym)
706 {
707 write_exp_msymbol (msym);
708 return;
709 }
710
711 /* Any other names are assumed to be debugger internal variables. */
712
713 write_exp_elt_opcode (OP_INTERNALVAR);
714 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
715 write_exp_elt_opcode (OP_INTERNALVAR);
716 return;
717 handle_last:
718 write_exp_elt_opcode (OP_LAST);
719 write_exp_elt_longcst ((LONGEST) i);
720 write_exp_elt_opcode (OP_LAST);
721 return;
722 handle_register:
723 write_exp_elt_opcode (OP_REGISTER);
724 str.length--;
725 str.ptr++;
726 write_exp_string (str);
727 write_exp_elt_opcode (OP_REGISTER);
728 return;
729 }
730
731
732 char *
733 find_template_name_end (char *p)
734 {
735 int depth = 1;
736 int just_seen_right = 0;
737 int just_seen_colon = 0;
738 int just_seen_space = 0;
739
740 if (!p || (*p != '<'))
741 return 0;
742
743 while (*++p)
744 {
745 switch (*p)
746 {
747 case '\'':
748 case '\"':
749 case '{':
750 case '}':
751 /* In future, may want to allow these?? */
752 return 0;
753 case '<':
754 depth++; /* start nested template */
755 if (just_seen_colon || just_seen_right || just_seen_space)
756 return 0; /* but not after : or :: or > or space */
757 break;
758 case '>':
759 if (just_seen_colon || just_seen_right)
760 return 0; /* end a (nested?) template */
761 just_seen_right = 1; /* but not after : or :: */
762 if (--depth == 0) /* also disallow >>, insist on > > */
763 return ++p; /* if outermost ended, return */
764 break;
765 case ':':
766 if (just_seen_space || (just_seen_colon > 1))
767 return 0; /* nested class spec coming up */
768 just_seen_colon++; /* we allow :: but not :::: */
769 break;
770 case ' ':
771 break;
772 default:
773 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
774 (*p >= 'A' && *p <= 'Z') ||
775 (*p >= '0' && *p <= '9') ||
776 (*p == '_') || (*p == ',') || /* commas for template args */
777 (*p == '&') || (*p == '*') || /* pointer and ref types */
778 (*p == '(') || (*p == ')') || /* function types */
779 (*p == '[') || (*p == ']'))) /* array types */
780 return 0;
781 }
782 if (*p != ' ')
783 just_seen_space = 0;
784 if (*p != ':')
785 just_seen_colon = 0;
786 if (*p != '>')
787 just_seen_right = 0;
788 }
789 return 0;
790 }
791 \f
792
793 /* Return a null-terminated temporary copy of the name of a string token.
794
795 Tokens that refer to names do so with explicit pointer and length,
796 so they can share the storage that lexptr is parsing.
797 When it is necessary to pass a name to a function that expects
798 a null-terminated string, the substring is copied out
799 into a separate block of storage.
800
801 N.B. A single buffer is reused on each call. */
802
803 char *
804 copy_name (struct stoken token)
805 {
806 /* A temporary buffer for identifiers, so we can null-terminate them.
807 We allocate this with xrealloc. parse_exp_1 used to allocate with
808 alloca, using the size of the whole expression as a conservative
809 estimate of the space needed. However, macro expansion can
810 introduce names longer than the original expression; there's no
811 practical way to know beforehand how large that might be. */
812 static char *namecopy;
813 static size_t namecopy_size;
814
815 /* Make sure there's enough space for the token. */
816 if (namecopy_size < token.length + 1)
817 {
818 namecopy_size = token.length + 1;
819 namecopy = xrealloc (namecopy, token.length + 1);
820 }
821
822 memcpy (namecopy, token.ptr, token.length);
823 namecopy[token.length] = 0;
824
825 return namecopy;
826 }
827 \f
828
829 /* See comments on parser-defs.h. */
830
831 int
832 prefixify_expression (struct expression *expr)
833 {
834 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
835 struct expression *temp;
836 int inpos = expr->nelts, outpos = 0;
837
838 temp = (struct expression *) alloca (len);
839
840 /* Copy the original expression into temp. */
841 memcpy (temp, expr, len);
842
843 return prefixify_subexp (temp, expr, inpos, outpos);
844 }
845
846 /* Return the number of exp_elements in the postfix subexpression
847 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
848
849 int
850 length_of_subexp (struct expression *expr, int endpos)
851 {
852 int oplen, args;
853
854 operator_length (expr, endpos, &oplen, &args);
855
856 while (args > 0)
857 {
858 oplen += length_of_subexp (expr, endpos - oplen);
859 args--;
860 }
861
862 return oplen;
863 }
864
865 /* Sets *OPLENP to the length of the operator whose (last) index is
866 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
867 operator takes. */
868
869 void
870 operator_length (const struct expression *expr, int endpos, int *oplenp,
871 int *argsp)
872 {
873 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
874 oplenp, argsp);
875 }
876
877 /* Default value for operator_length in exp_descriptor vectors. */
878
879 void
880 operator_length_standard (const struct expression *expr, int endpos,
881 int *oplenp, int *argsp)
882 {
883 int oplen = 1;
884 int args = 0;
885 enum f90_range_type range_type;
886 int i;
887
888 if (endpos < 1)
889 error (_("?error in operator_length_standard"));
890
891 i = (int) expr->elts[endpos - 1].opcode;
892
893 switch (i)
894 {
895 /* C++ */
896 case OP_SCOPE:
897 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
898 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
899 break;
900
901 case OP_LONG:
902 case OP_DOUBLE:
903 case OP_DECFLOAT:
904 case OP_VAR_VALUE:
905 oplen = 4;
906 break;
907
908 case OP_TYPE:
909 case OP_BOOL:
910 case OP_LAST:
911 case OP_INTERNALVAR:
912 case OP_VAR_ENTRY_VALUE:
913 oplen = 3;
914 break;
915
916 case OP_COMPLEX:
917 oplen = 3;
918 args = 2;
919 break;
920
921 case OP_FUNCALL:
922 case OP_F77_UNDETERMINED_ARGLIST:
923 oplen = 3;
924 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
925 break;
926
927 case TYPE_INSTANCE:
928 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
929 args = 1;
930 break;
931
932 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
933 oplen = 4;
934 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
935 break;
936
937 case UNOP_MAX:
938 case UNOP_MIN:
939 oplen = 3;
940 break;
941
942 case UNOP_CAST_TYPE:
943 case UNOP_DYNAMIC_CAST:
944 case UNOP_REINTERPRET_CAST:
945 case UNOP_MEMVAL_TYPE:
946 oplen = 1;
947 args = 2;
948 break;
949
950 case BINOP_VAL:
951 case UNOP_CAST:
952 case UNOP_MEMVAL:
953 oplen = 3;
954 args = 1;
955 break;
956
957 case UNOP_MEMVAL_TLS:
958 oplen = 4;
959 args = 1;
960 break;
961
962 case UNOP_ABS:
963 case UNOP_CAP:
964 case UNOP_CHR:
965 case UNOP_FLOAT:
966 case UNOP_HIGH:
967 case UNOP_ODD:
968 case UNOP_ORD:
969 case UNOP_TRUNC:
970 case OP_TYPEOF:
971 case OP_DECLTYPE:
972 oplen = 1;
973 args = 1;
974 break;
975
976 case OP_ADL_FUNC:
977 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
978 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
979 oplen++;
980 oplen++;
981 break;
982
983 case STRUCTOP_STRUCT:
984 case STRUCTOP_PTR:
985 args = 1;
986 /* fall through */
987 case OP_REGISTER:
988 case OP_M2_STRING:
989 case OP_STRING:
990 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
991 NSString constant. */
992 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
993 case OP_NAME:
994 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
995 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
996 break;
997
998 case OP_ARRAY:
999 oplen = 4;
1000 args = longest_to_int (expr->elts[endpos - 2].longconst);
1001 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1002 args += 1;
1003 break;
1004
1005 case TERNOP_COND:
1006 case TERNOP_SLICE:
1007 args = 3;
1008 break;
1009
1010 /* Modula-2 */
1011 case MULTI_SUBSCRIPT:
1012 oplen = 3;
1013 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1014 break;
1015
1016 case BINOP_ASSIGN_MODIFY:
1017 oplen = 3;
1018 args = 2;
1019 break;
1020
1021 /* C++ */
1022 case OP_THIS:
1023 oplen = 2;
1024 break;
1025
1026 case OP_F90_RANGE:
1027 oplen = 3;
1028
1029 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1030 switch (range_type)
1031 {
1032 case LOW_BOUND_DEFAULT:
1033 case HIGH_BOUND_DEFAULT:
1034 args = 1;
1035 break;
1036 case BOTH_BOUND_DEFAULT:
1037 args = 0;
1038 break;
1039 case NONE_BOUND_DEFAULT:
1040 args = 2;
1041 break;
1042 }
1043
1044 break;
1045
1046 default:
1047 args = 1 + (i < (int) BINOP_END);
1048 }
1049
1050 *oplenp = oplen;
1051 *argsp = args;
1052 }
1053
1054 /* Copy the subexpression ending just before index INEND in INEXPR
1055 into OUTEXPR, starting at index OUTBEG.
1056 In the process, convert it from suffix to prefix form.
1057 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1058 Otherwise, it returns the index of the subexpression which is the
1059 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1060
1061 static int
1062 prefixify_subexp (struct expression *inexpr,
1063 struct expression *outexpr, int inend, int outbeg)
1064 {
1065 int oplen;
1066 int args;
1067 int i;
1068 int *arglens;
1069 int result = -1;
1070
1071 operator_length (inexpr, inend, &oplen, &args);
1072
1073 /* Copy the final operator itself, from the end of the input
1074 to the beginning of the output. */
1075 inend -= oplen;
1076 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1077 EXP_ELEM_TO_BYTES (oplen));
1078 outbeg += oplen;
1079
1080 if (expout_last_struct == inend)
1081 result = outbeg - oplen;
1082
1083 /* Find the lengths of the arg subexpressions. */
1084 arglens = (int *) alloca (args * sizeof (int));
1085 for (i = args - 1; i >= 0; i--)
1086 {
1087 oplen = length_of_subexp (inexpr, inend);
1088 arglens[i] = oplen;
1089 inend -= oplen;
1090 }
1091
1092 /* Now copy each subexpression, preserving the order of
1093 the subexpressions, but prefixifying each one.
1094 In this loop, inend starts at the beginning of
1095 the expression this level is working on
1096 and marches forward over the arguments.
1097 outbeg does similarly in the output. */
1098 for (i = 0; i < args; i++)
1099 {
1100 int r;
1101
1102 oplen = arglens[i];
1103 inend += oplen;
1104 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1105 if (r != -1)
1106 {
1107 /* Return immediately. We probably have only parsed a
1108 partial expression, so we don't want to try to reverse
1109 the other operands. */
1110 return r;
1111 }
1112 outbeg += oplen;
1113 }
1114
1115 return result;
1116 }
1117 \f
1118 /* Read an expression from the string *STRINGPTR points to,
1119 parse it, and return a pointer to a struct expression that we malloc.
1120 Use block BLOCK as the lexical context for variable names;
1121 if BLOCK is zero, use the block of the selected stack frame.
1122 Meanwhile, advance *STRINGPTR to point after the expression,
1123 at the first nonwhite character that is not part of the expression
1124 (possibly a null character).
1125
1126 If COMMA is nonzero, stop if a comma is reached. */
1127
1128 struct expression *
1129 parse_exp_1 (char **stringptr, CORE_ADDR pc, const struct block *block,
1130 int comma)
1131 {
1132 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1133 }
1134
1135 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1136 no value is expected from the expression.
1137 OUT_SUBEXP is set when attempting to complete a field name; in this
1138 case it is set to the index of the subexpression on the
1139 left-hand-side of the struct op. If not doing such completion, it
1140 is left untouched. */
1141
1142 static struct expression *
1143 parse_exp_in_context (char **stringptr, CORE_ADDR pc, const struct block *block,
1144 int comma, int void_context_p, int *out_subexp)
1145 {
1146 volatile struct gdb_exception except;
1147 struct cleanup *old_chain;
1148 const struct language_defn *lang = NULL;
1149 int subexp;
1150
1151 lexptr = *stringptr;
1152 prev_lexptr = NULL;
1153
1154 paren_depth = 0;
1155 type_stack.depth = 0;
1156 expout_last_struct = -1;
1157 expout_tag_completion_type = TYPE_CODE_UNDEF;
1158 xfree (expout_completion_name);
1159 expout_completion_name = NULL;
1160
1161 comma_terminates = comma;
1162
1163 if (lexptr == 0 || *lexptr == 0)
1164 error_no_arg (_("expression to compute"));
1165
1166 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1167 funcall_chain = 0;
1168
1169 expression_context_block = block;
1170
1171 /* If no context specified, try using the current frame, if any. */
1172 if (!expression_context_block)
1173 expression_context_block = get_selected_block (&expression_context_pc);
1174 else if (pc == 0)
1175 expression_context_pc = BLOCK_START (expression_context_block);
1176 else
1177 expression_context_pc = pc;
1178
1179 /* Fall back to using the current source static context, if any. */
1180
1181 if (!expression_context_block)
1182 {
1183 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1184 if (cursal.symtab)
1185 expression_context_block
1186 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1187 if (expression_context_block)
1188 expression_context_pc = BLOCK_START (expression_context_block);
1189 }
1190
1191 if (language_mode == language_mode_auto && block != NULL)
1192 {
1193 /* Find the language associated to the given context block.
1194 Default to the current language if it can not be determined.
1195
1196 Note that using the language corresponding to the current frame
1197 can sometimes give unexpected results. For instance, this
1198 routine is often called several times during the inferior
1199 startup phase to re-parse breakpoint expressions after
1200 a new shared library has been loaded. The language associated
1201 to the current frame at this moment is not relevant for
1202 the breakpoint. Using it would therefore be silly, so it seems
1203 better to rely on the current language rather than relying on
1204 the current frame language to parse the expression. That's why
1205 we do the following language detection only if the context block
1206 has been specifically provided. */
1207 struct symbol *func = block_linkage_function (block);
1208
1209 if (func != NULL)
1210 lang = language_def (SYMBOL_LANGUAGE (func));
1211 if (lang == NULL || lang->la_language == language_unknown)
1212 lang = current_language;
1213 }
1214 else
1215 lang = current_language;
1216
1217 initialize_expout (10, lang, get_current_arch ());
1218
1219 TRY_CATCH (except, RETURN_MASK_ALL)
1220 {
1221 if (lang->la_parser ())
1222 lang->la_error (NULL);
1223 }
1224 if (except.reason < 0)
1225 {
1226 if (! parse_completion)
1227 {
1228 xfree (expout);
1229 throw_exception (except);
1230 }
1231 }
1232
1233 discard_cleanups (old_chain);
1234
1235 reallocate_expout ();
1236
1237 /* Convert expression from postfix form as generated by yacc
1238 parser, to a prefix form. */
1239
1240 if (expressiondebug)
1241 dump_raw_expression (expout, gdb_stdlog,
1242 "before conversion to prefix form");
1243
1244 subexp = prefixify_expression (expout);
1245 if (out_subexp)
1246 *out_subexp = subexp;
1247
1248 lang->la_post_parser (&expout, void_context_p);
1249
1250 if (expressiondebug)
1251 dump_prefix_expression (expout, gdb_stdlog);
1252
1253 *stringptr = lexptr;
1254 return expout;
1255 }
1256
1257 /* Parse STRING as an expression, and complain if this fails
1258 to use up all of the contents of STRING. */
1259
1260 struct expression *
1261 parse_expression (char *string)
1262 {
1263 struct expression *exp;
1264
1265 exp = parse_exp_1 (&string, 0, 0, 0);
1266 if (*string)
1267 error (_("Junk after end of expression."));
1268 return exp;
1269 }
1270
1271 /* Parse STRING as an expression. If parsing ends in the middle of a
1272 field reference, return the type of the left-hand-side of the
1273 reference; furthermore, if the parsing ends in the field name,
1274 return the field name in *NAME. If the parsing ends in the middle
1275 of a field reference, but the reference is somehow invalid, throw
1276 an exception. In all other cases, return NULL. Returned non-NULL
1277 *NAME must be freed by the caller. */
1278
1279 struct type *
1280 parse_expression_for_completion (char *string, char **name,
1281 enum type_code *code)
1282 {
1283 struct expression *exp = NULL;
1284 struct value *val;
1285 int subexp;
1286 volatile struct gdb_exception except;
1287
1288 TRY_CATCH (except, RETURN_MASK_ERROR)
1289 {
1290 parse_completion = 1;
1291 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1292 }
1293 parse_completion = 0;
1294 if (except.reason < 0 || ! exp)
1295 return NULL;
1296
1297 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1298 {
1299 *code = expout_tag_completion_type;
1300 *name = expout_completion_name;
1301 expout_completion_name = NULL;
1302 return NULL;
1303 }
1304
1305 if (expout_last_struct == -1)
1306 {
1307 xfree (exp);
1308 return NULL;
1309 }
1310
1311 *name = extract_field_op (exp, &subexp);
1312 if (!*name)
1313 {
1314 xfree (exp);
1315 return NULL;
1316 }
1317
1318 /* This might throw an exception. If so, we want to let it
1319 propagate. */
1320 val = evaluate_subexpression_type (exp, subexp);
1321 /* (*NAME) is a part of the EXP memory block freed below. */
1322 *name = xstrdup (*name);
1323 xfree (exp);
1324
1325 return value_type (val);
1326 }
1327
1328 /* A post-parser that does nothing. */
1329
1330 void
1331 null_post_parser (struct expression **exp, int void_context_p)
1332 {
1333 }
1334
1335 /* Parse floating point value P of length LEN.
1336 Return 0 (false) if invalid, 1 (true) if valid.
1337 The successfully parsed number is stored in D.
1338 *SUFFIX points to the suffix of the number in P.
1339
1340 NOTE: This accepts the floating point syntax that sscanf accepts. */
1341
1342 int
1343 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1344 {
1345 char *copy;
1346 int n, num;
1347
1348 copy = xmalloc (len + 1);
1349 memcpy (copy, p, len);
1350 copy[len] = 0;
1351
1352 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1353 xfree (copy);
1354
1355 /* The sscanf man page suggests not making any assumptions on the effect
1356 of %n on the result, so we don't.
1357 That is why we simply test num == 0. */
1358 if (num == 0)
1359 return 0;
1360
1361 *suffix = p + n;
1362 return 1;
1363 }
1364
1365 /* Parse floating point value P of length LEN, using the C syntax for floats.
1366 Return 0 (false) if invalid, 1 (true) if valid.
1367 The successfully parsed number is stored in *D.
1368 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1369
1370 int
1371 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1372 DOUBLEST *d, struct type **t)
1373 {
1374 const char *suffix;
1375 int suffix_len;
1376 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1377
1378 if (! parse_float (p, len, d, &suffix))
1379 return 0;
1380
1381 suffix_len = p + len - suffix;
1382
1383 if (suffix_len == 0)
1384 *t = builtin_types->builtin_double;
1385 else if (suffix_len == 1)
1386 {
1387 /* Handle suffixes: 'f' for float, 'l' for long double. */
1388 if (tolower (*suffix) == 'f')
1389 *t = builtin_types->builtin_float;
1390 else if (tolower (*suffix) == 'l')
1391 *t = builtin_types->builtin_long_double;
1392 else
1393 return 0;
1394 }
1395 else
1396 return 0;
1397
1398 return 1;
1399 }
1400 \f
1401 /* Stuff for maintaining a stack of types. Currently just used by C, but
1402 probably useful for any language which declares its types "backwards". */
1403
1404 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1405
1406 static void
1407 type_stack_reserve (struct type_stack *stack, int howmuch)
1408 {
1409 if (stack->depth + howmuch >= stack->size)
1410 {
1411 stack->size *= 2;
1412 if (stack->size < howmuch)
1413 stack->size = howmuch;
1414 stack->elements = xrealloc (stack->elements,
1415 stack->size * sizeof (union type_stack_elt));
1416 }
1417 }
1418
1419 /* Ensure that there is a single open slot in the global type stack. */
1420
1421 static void
1422 check_type_stack_depth (void)
1423 {
1424 type_stack_reserve (&type_stack, 1);
1425 }
1426
1427 /* A helper function for insert_type and insert_type_address_space.
1428 This does work of expanding the type stack and inserting the new
1429 element, ELEMENT, into the stack at location SLOT. */
1430
1431 static void
1432 insert_into_type_stack (int slot, union type_stack_elt element)
1433 {
1434 check_type_stack_depth ();
1435
1436 if (slot < type_stack.depth)
1437 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1438 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1439 type_stack.elements[slot] = element;
1440 ++type_stack.depth;
1441 }
1442
1443 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1444 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1445 a qualifier, it is inserted at slot 1 (just above a previous
1446 tp_pointer) if there is anything on the stack, or simply pushed if
1447 the stack is empty. Other values for TP are invalid. */
1448
1449 void
1450 insert_type (enum type_pieces tp)
1451 {
1452 union type_stack_elt element;
1453 int slot;
1454
1455 gdb_assert (tp == tp_pointer || tp == tp_reference
1456 || tp == tp_const || tp == tp_volatile);
1457
1458 /* If there is anything on the stack (we know it will be a
1459 tp_pointer), insert the qualifier above it. Otherwise, simply
1460 push this on the top of the stack. */
1461 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1462 slot = 1;
1463 else
1464 slot = 0;
1465
1466 element.piece = tp;
1467 insert_into_type_stack (slot, element);
1468 }
1469
1470 void
1471 push_type (enum type_pieces tp)
1472 {
1473 check_type_stack_depth ();
1474 type_stack.elements[type_stack.depth++].piece = tp;
1475 }
1476
1477 void
1478 push_type_int (int n)
1479 {
1480 check_type_stack_depth ();
1481 type_stack.elements[type_stack.depth++].int_val = n;
1482 }
1483
1484 /* Insert a tp_space_identifier and the corresponding address space
1485 value into the stack. STRING is the name of an address space, as
1486 recognized by address_space_name_to_int. If the stack is empty,
1487 the new elements are simply pushed. If the stack is not empty,
1488 this function assumes that the first item on the stack is a
1489 tp_pointer, and the new values are inserted above the first
1490 item. */
1491
1492 void
1493 insert_type_address_space (char *string)
1494 {
1495 union type_stack_elt element;
1496 int slot;
1497
1498 /* If there is anything on the stack (we know it will be a
1499 tp_pointer), insert the address space qualifier above it.
1500 Otherwise, simply push this on the top of the stack. */
1501 if (type_stack.depth)
1502 slot = 1;
1503 else
1504 slot = 0;
1505
1506 element.piece = tp_space_identifier;
1507 insert_into_type_stack (slot, element);
1508 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1509 insert_into_type_stack (slot, element);
1510 }
1511
1512 enum type_pieces
1513 pop_type (void)
1514 {
1515 if (type_stack.depth)
1516 return type_stack.elements[--type_stack.depth].piece;
1517 return tp_end;
1518 }
1519
1520 int
1521 pop_type_int (void)
1522 {
1523 if (type_stack.depth)
1524 return type_stack.elements[--type_stack.depth].int_val;
1525 /* "Can't happen". */
1526 return 0;
1527 }
1528
1529 /* Pop a type list element from the global type stack. */
1530
1531 static VEC (type_ptr) *
1532 pop_typelist (void)
1533 {
1534 gdb_assert (type_stack.depth);
1535 return type_stack.elements[--type_stack.depth].typelist_val;
1536 }
1537
1538 /* Pop a type_stack element from the global type stack. */
1539
1540 static struct type_stack *
1541 pop_type_stack (void)
1542 {
1543 gdb_assert (type_stack.depth);
1544 return type_stack.elements[--type_stack.depth].stack_val;
1545 }
1546
1547 /* Append the elements of the type stack FROM to the type stack TO.
1548 Always returns TO. */
1549
1550 struct type_stack *
1551 append_type_stack (struct type_stack *to, struct type_stack *from)
1552 {
1553 type_stack_reserve (to, from->depth);
1554
1555 memcpy (&to->elements[to->depth], &from->elements[0],
1556 from->depth * sizeof (union type_stack_elt));
1557 to->depth += from->depth;
1558
1559 return to;
1560 }
1561
1562 /* Push the type stack STACK as an element on the global type stack. */
1563
1564 void
1565 push_type_stack (struct type_stack *stack)
1566 {
1567 check_type_stack_depth ();
1568 type_stack.elements[type_stack.depth++].stack_val = stack;
1569 push_type (tp_type_stack);
1570 }
1571
1572 /* Copy the global type stack into a newly allocated type stack and
1573 return it. The global stack is cleared. The returned type stack
1574 must be freed with type_stack_cleanup. */
1575
1576 struct type_stack *
1577 get_type_stack (void)
1578 {
1579 struct type_stack *result = XNEW (struct type_stack);
1580
1581 *result = type_stack;
1582 type_stack.depth = 0;
1583 type_stack.size = 0;
1584 type_stack.elements = NULL;
1585
1586 return result;
1587 }
1588
1589 /* A cleanup function that destroys a single type stack. */
1590
1591 void
1592 type_stack_cleanup (void *arg)
1593 {
1594 struct type_stack *stack = arg;
1595
1596 xfree (stack->elements);
1597 xfree (stack);
1598 }
1599
1600 /* Push a function type with arguments onto the global type stack.
1601 LIST holds the argument types. If the final item in LIST is NULL,
1602 then the function will be varargs. */
1603
1604 void
1605 push_typelist (VEC (type_ptr) *list)
1606 {
1607 check_type_stack_depth ();
1608 type_stack.elements[type_stack.depth++].typelist_val = list;
1609 push_type (tp_function_with_arguments);
1610 }
1611
1612 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1613 as modified by all the stuff on the stack. */
1614 struct type *
1615 follow_types (struct type *follow_type)
1616 {
1617 int done = 0;
1618 int make_const = 0;
1619 int make_volatile = 0;
1620 int make_addr_space = 0;
1621 int array_size;
1622
1623 while (!done)
1624 switch (pop_type ())
1625 {
1626 case tp_end:
1627 done = 1;
1628 if (make_const)
1629 follow_type = make_cv_type (make_const,
1630 TYPE_VOLATILE (follow_type),
1631 follow_type, 0);
1632 if (make_volatile)
1633 follow_type = make_cv_type (TYPE_CONST (follow_type),
1634 make_volatile,
1635 follow_type, 0);
1636 if (make_addr_space)
1637 follow_type = make_type_with_address_space (follow_type,
1638 make_addr_space);
1639 make_const = make_volatile = 0;
1640 make_addr_space = 0;
1641 break;
1642 case tp_const:
1643 make_const = 1;
1644 break;
1645 case tp_volatile:
1646 make_volatile = 1;
1647 break;
1648 case tp_space_identifier:
1649 make_addr_space = pop_type_int ();
1650 break;
1651 case tp_pointer:
1652 follow_type = lookup_pointer_type (follow_type);
1653 if (make_const)
1654 follow_type = make_cv_type (make_const,
1655 TYPE_VOLATILE (follow_type),
1656 follow_type, 0);
1657 if (make_volatile)
1658 follow_type = make_cv_type (TYPE_CONST (follow_type),
1659 make_volatile,
1660 follow_type, 0);
1661 if (make_addr_space)
1662 follow_type = make_type_with_address_space (follow_type,
1663 make_addr_space);
1664 make_const = make_volatile = 0;
1665 make_addr_space = 0;
1666 break;
1667 case tp_reference:
1668 follow_type = lookup_reference_type (follow_type);
1669 if (make_const)
1670 follow_type = make_cv_type (make_const,
1671 TYPE_VOLATILE (follow_type),
1672 follow_type, 0);
1673 if (make_volatile)
1674 follow_type = make_cv_type (TYPE_CONST (follow_type),
1675 make_volatile,
1676 follow_type, 0);
1677 if (make_addr_space)
1678 follow_type = make_type_with_address_space (follow_type,
1679 make_addr_space);
1680 make_const = make_volatile = 0;
1681 make_addr_space = 0;
1682 break;
1683 case tp_array:
1684 array_size = pop_type_int ();
1685 /* FIXME-type-allocation: need a way to free this type when we are
1686 done with it. */
1687 follow_type =
1688 lookup_array_range_type (follow_type,
1689 0, array_size >= 0 ? array_size - 1 : 0);
1690 if (array_size < 0)
1691 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1692 break;
1693 case tp_function:
1694 /* FIXME-type-allocation: need a way to free this type when we are
1695 done with it. */
1696 follow_type = lookup_function_type (follow_type);
1697 break;
1698
1699 case tp_function_with_arguments:
1700 {
1701 VEC (type_ptr) *args = pop_typelist ();
1702
1703 follow_type
1704 = lookup_function_type_with_arguments (follow_type,
1705 VEC_length (type_ptr, args),
1706 VEC_address (type_ptr,
1707 args));
1708 VEC_free (type_ptr, args);
1709 }
1710 break;
1711
1712 case tp_type_stack:
1713 {
1714 struct type_stack *stack = pop_type_stack ();
1715 /* Sort of ugly, but not really much worse than the
1716 alternatives. */
1717 struct type_stack save = type_stack;
1718
1719 type_stack = *stack;
1720 follow_type = follow_types (follow_type);
1721 gdb_assert (type_stack.depth == 0);
1722
1723 type_stack = save;
1724 }
1725 break;
1726 default:
1727 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1728 }
1729 return follow_type;
1730 }
1731 \f
1732 /* This function avoids direct calls to fprintf
1733 in the parser generated debug code. */
1734 void
1735 parser_fprintf (FILE *x, const char *y, ...)
1736 {
1737 va_list args;
1738
1739 va_start (args, y);
1740 if (x == stderr)
1741 vfprintf_unfiltered (gdb_stderr, y, args);
1742 else
1743 {
1744 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1745 vfprintf_unfiltered (gdb_stderr, y, args);
1746 }
1747 va_end (args);
1748 }
1749
1750 /* Implementation of the exp_descriptor method operator_check. */
1751
1752 int
1753 operator_check_standard (struct expression *exp, int pos,
1754 int (*objfile_func) (struct objfile *objfile,
1755 void *data),
1756 void *data)
1757 {
1758 const union exp_element *const elts = exp->elts;
1759 struct type *type = NULL;
1760 struct objfile *objfile = NULL;
1761
1762 /* Extended operators should have been already handled by exp_descriptor
1763 iterate method of its specific language. */
1764 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1765
1766 /* Track the callers of write_exp_elt_type for this table. */
1767
1768 switch (elts[pos].opcode)
1769 {
1770 case BINOP_VAL:
1771 case OP_COMPLEX:
1772 case OP_DECFLOAT:
1773 case OP_DOUBLE:
1774 case OP_LONG:
1775 case OP_SCOPE:
1776 case OP_TYPE:
1777 case UNOP_CAST:
1778 case UNOP_MAX:
1779 case UNOP_MEMVAL:
1780 case UNOP_MIN:
1781 type = elts[pos + 1].type;
1782 break;
1783
1784 case TYPE_INSTANCE:
1785 {
1786 LONGEST arg, nargs = elts[pos + 1].longconst;
1787
1788 for (arg = 0; arg < nargs; arg++)
1789 {
1790 struct type *type = elts[pos + 2 + arg].type;
1791 struct objfile *objfile = TYPE_OBJFILE (type);
1792
1793 if (objfile && (*objfile_func) (objfile, data))
1794 return 1;
1795 }
1796 }
1797 break;
1798
1799 case UNOP_MEMVAL_TLS:
1800 objfile = elts[pos + 1].objfile;
1801 type = elts[pos + 2].type;
1802 break;
1803
1804 case OP_VAR_VALUE:
1805 {
1806 const struct block *const block = elts[pos + 1].block;
1807 const struct symbol *const symbol = elts[pos + 2].symbol;
1808
1809 /* Check objfile where the variable itself is placed.
1810 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1811 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1812 return 1;
1813
1814 /* Check objfile where is placed the code touching the variable. */
1815 objfile = lookup_objfile_from_block (block);
1816
1817 type = SYMBOL_TYPE (symbol);
1818 }
1819 break;
1820 }
1821
1822 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1823
1824 if (type && TYPE_OBJFILE (type)
1825 && (*objfile_func) (TYPE_OBJFILE (type), data))
1826 return 1;
1827 if (objfile && (*objfile_func) (objfile, data))
1828 return 1;
1829
1830 return 0;
1831 }
1832
1833 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1834 The functions are never called with NULL OBJFILE. Functions get passed an
1835 arbitrary caller supplied DATA pointer. If any of the functions returns
1836 non-zero value then (any other) non-zero value is immediately returned to
1837 the caller. Otherwise zero is returned after iterating through whole EXP.
1838 */
1839
1840 static int
1841 exp_iterate (struct expression *exp,
1842 int (*objfile_func) (struct objfile *objfile, void *data),
1843 void *data)
1844 {
1845 int endpos;
1846
1847 for (endpos = exp->nelts; endpos > 0; )
1848 {
1849 int pos, args, oplen = 0;
1850
1851 operator_length (exp, endpos, &oplen, &args);
1852 gdb_assert (oplen > 0);
1853
1854 pos = endpos - oplen;
1855 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1856 objfile_func, data))
1857 return 1;
1858
1859 endpos = pos;
1860 }
1861
1862 return 0;
1863 }
1864
1865 /* Helper for exp_uses_objfile. */
1866
1867 static int
1868 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1869 {
1870 struct objfile *objfile = objfile_voidp;
1871
1872 if (exp_objfile->separate_debug_objfile_backlink)
1873 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1874
1875 return exp_objfile == objfile;
1876 }
1877
1878 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1879 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1880 file. */
1881
1882 int
1883 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1884 {
1885 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1886
1887 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1888 }
1889
1890 void
1891 _initialize_parse (void)
1892 {
1893 type_stack.size = 0;
1894 type_stack.depth = 0;
1895 type_stack.elements = NULL;
1896
1897 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1898 &expressiondebug,
1899 _("Set expression debugging."),
1900 _("Show expression debugging."),
1901 _("When non-zero, the internal representation "
1902 "of expressions will be printed."),
1903 NULL,
1904 show_expressiondebug,
1905 &setdebuglist, &showdebuglist);
1906 add_setshow_boolean_cmd ("parser", class_maintenance,
1907 &parser_debug,
1908 _("Set parser debugging."),
1909 _("Show parser debugging."),
1910 _("When non-zero, expression parser "
1911 "tracing will be enabled."),
1912 NULL,
1913 show_parserdebug,
1914 &setdebuglist, &showdebuglist);
1915 }
This page took 0.116649 seconds and 5 git commands to generate.