Update year range in copyright notice of all files owned by the GDB project.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52
53 /* Standard set of definitions for printing, dumping, prefixifying,
54 * and evaluating expressions. */
55
56 const struct exp_descriptor exp_descriptor_standard =
57 {
58 print_subexp_standard,
59 operator_length_standard,
60 operator_check_standard,
61 op_name_standard,
62 dump_subexp_body_standard,
63 evaluate_subexp_standard
64 };
65 \f
66 /* Global variables declared in parser-defs.h (and commented there). */
67 const struct block *expression_context_block;
68 CORE_ADDR expression_context_pc;
69 const struct block *innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int paren_depth;
75 int comma_terminates;
76
77 /* True if parsing an expression to attempt completion. */
78 int parse_completion;
79
80 /* The index of the last struct expression directly before a '.' or
81 '->'. This is set when parsing and is only used when completing a
82 field name. It is -1 if no dereference operation was found. */
83 static int expout_last_struct = -1;
84
85 /* If we are completing a tagged type name, this will be nonzero. */
86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
87
88 /* The token for tagged type name completion. */
89 static char *expout_completion_name;
90
91 \f
92 static unsigned int expressiondebug = 0;
93 static void
94 show_expressiondebug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
98 }
99
100
101 /* Non-zero if an expression parser should set yydebug. */
102 int parser_debug;
103
104 static void
105 show_parserdebug (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
109 }
110
111
112 static void free_funcalls (void *ignore);
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 void _initialize_parse (void);
125
126 /* Data structure for saving values of arglist_len for function calls whose
127 arguments contain other function calls. */
128
129 struct funcall
130 {
131 struct funcall *next;
132 int arglist_len;
133 };
134
135 static struct funcall *funcall_chain;
136
137 /* Begin counting arguments for a function call,
138 saving the data about any containing call. */
139
140 void
141 start_arglist (void)
142 {
143 struct funcall *new;
144
145 new = (struct funcall *) xmalloc (sizeof (struct funcall));
146 new->next = funcall_chain;
147 new->arglist_len = arglist_len;
148 arglist_len = 0;
149 funcall_chain = new;
150 }
151
152 /* Return the number of arguments in a function call just terminated,
153 and restore the data for the containing function call. */
154
155 int
156 end_arglist (void)
157 {
158 int val = arglist_len;
159 struct funcall *call = funcall_chain;
160
161 funcall_chain = call->next;
162 arglist_len = call->arglist_len;
163 xfree (call);
164 return val;
165 }
166
167 /* Free everything in the funcall chain.
168 Used when there is an error inside parsing. */
169
170 static void
171 free_funcalls (void *ignore)
172 {
173 struct funcall *call, *next;
174
175 for (call = funcall_chain; call; call = next)
176 {
177 next = call->next;
178 xfree (call);
179 }
180 }
181 \f
182
183 /* See definition in parser-defs.h. */
184
185 void
186 initialize_expout (struct parser_state *ps, size_t initial_size,
187 const struct language_defn *lang,
188 struct gdbarch *gdbarch)
189 {
190 ps->expout_size = initial_size;
191 ps->expout_ptr = 0;
192 ps->expout = xmalloc (sizeof (struct expression)
193 + EXP_ELEM_TO_BYTES (ps->expout_size));
194 ps->expout->language_defn = lang;
195 ps->expout->gdbarch = gdbarch;
196 }
197
198 /* See definition in parser-defs.h. */
199
200 void
201 reallocate_expout (struct parser_state *ps)
202 {
203 /* Record the actual number of expression elements, and then
204 reallocate the expression memory so that we free up any
205 excess elements. */
206
207 ps->expout->nelts = ps->expout_ptr;
208 ps->expout = (struct expression *)
209 xrealloc (ps->expout,
210 sizeof (struct expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
212 }
213
214 /* This page contains the functions for adding data to the struct expression
215 being constructed. */
216
217 /* Add one element to the end of the expression. */
218
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220 a register through here. */
221
222 static void
223 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
224 {
225 if (ps->expout_ptr >= ps->expout_size)
226 {
227 ps->expout_size *= 2;
228 ps->expout = (struct expression *)
229 xrealloc (ps->expout, sizeof (struct expression)
230 + EXP_ELEM_TO_BYTES (ps->expout_size));
231 }
232 ps->expout->elts[ps->expout_ptr++] = *expelt;
233 }
234
235 void
236 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
237 {
238 union exp_element tmp;
239
240 memset (&tmp, 0, sizeof (union exp_element));
241 tmp.opcode = expelt;
242 write_exp_elt (ps, &tmp);
243 }
244
245 void
246 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
247 {
248 union exp_element tmp;
249
250 memset (&tmp, 0, sizeof (union exp_element));
251 tmp.symbol = expelt;
252 write_exp_elt (ps, &tmp);
253 }
254
255 void
256 write_exp_elt_block (struct parser_state *ps, const struct block *b)
257 {
258 union exp_element tmp;
259
260 memset (&tmp, 0, sizeof (union exp_element));
261 tmp.block = b;
262 write_exp_elt (ps, &tmp);
263 }
264
265 void
266 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
267 {
268 union exp_element tmp;
269
270 memset (&tmp, 0, sizeof (union exp_element));
271 tmp.objfile = objfile;
272 write_exp_elt (ps, &tmp);
273 }
274
275 void
276 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
277 {
278 union exp_element tmp;
279
280 memset (&tmp, 0, sizeof (union exp_element));
281 tmp.longconst = expelt;
282 write_exp_elt (ps, &tmp);
283 }
284
285 void
286 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
287 {
288 union exp_element tmp;
289
290 memset (&tmp, 0, sizeof (union exp_element));
291 tmp.doubleconst = expelt;
292 write_exp_elt (ps, &tmp);
293 }
294
295 void
296 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
297 {
298 union exp_element tmp;
299 int index;
300
301 for (index = 0; index < 16; index++)
302 tmp.decfloatconst[index] = expelt[index];
303
304 write_exp_elt (ps, &tmp);
305 }
306
307 void
308 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
309 {
310 union exp_element tmp;
311
312 memset (&tmp, 0, sizeof (union exp_element));
313 tmp.type = expelt;
314 write_exp_elt (ps, &tmp);
315 }
316
317 void
318 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
319 {
320 union exp_element tmp;
321
322 memset (&tmp, 0, sizeof (union exp_element));
323 tmp.internalvar = expelt;
324 write_exp_elt (ps, &tmp);
325 }
326
327 /* Add a string constant to the end of the expression.
328
329 String constants are stored by first writing an expression element
330 that contains the length of the string, then stuffing the string
331 constant itself into however many expression elements are needed
332 to hold it, and then writing another expression element that contains
333 the length of the string. I.e. an expression element at each end of
334 the string records the string length, so you can skip over the
335 expression elements containing the actual string bytes from either
336 end of the string. Note that this also allows gdb to handle
337 strings with embedded null bytes, as is required for some languages.
338
339 Don't be fooled by the fact that the string is null byte terminated,
340 this is strictly for the convenience of debugging gdb itself.
341 Gdb does not depend up the string being null terminated, since the
342 actual length is recorded in expression elements at each end of the
343 string. The null byte is taken into consideration when computing how
344 many expression elements are required to hold the string constant, of
345 course. */
346
347
348 void
349 write_exp_string (struct parser_state *ps, struct stoken str)
350 {
351 int len = str.length;
352 size_t lenelt;
353 char *strdata;
354
355 /* Compute the number of expression elements required to hold the string
356 (including a null byte terminator), along with one expression element
357 at each end to record the actual string length (not including the
358 null byte terminator). */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361
362 increase_expout_size (ps, lenelt);
363
364 /* Write the leading length expression element (which advances the current
365 expression element index), then write the string constant followed by a
366 terminating null byte, and then write the trailing length expression
367 element. */
368
369 write_exp_elt_longcst (ps, (LONGEST) len);
370 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
371 memcpy (strdata, str.ptr, len);
372 *(strdata + len) = '\0';
373 ps->expout_ptr += lenelt - 2;
374 write_exp_elt_longcst (ps, (LONGEST) len);
375 }
376
377 /* Add a vector of string constants to the end of the expression.
378
379 This adds an OP_STRING operation, but encodes the contents
380 differently from write_exp_string. The language is expected to
381 handle evaluation of this expression itself.
382
383 After the usual OP_STRING header, TYPE is written into the
384 expression as a long constant. The interpretation of this field is
385 up to the language evaluator.
386
387 Next, each string in VEC is written. The length is written as a
388 long constant, followed by the contents of the string. */
389
390 void
391 write_exp_string_vector (struct parser_state *ps, int type,
392 struct stoken_vector *vec)
393 {
394 int i, len;
395 size_t n_slots;
396
397 /* Compute the size. We compute the size in number of slots to
398 avoid issues with string padding. */
399 n_slots = 0;
400 for (i = 0; i < vec->len; ++i)
401 {
402 /* One slot for the length of this element, plus the number of
403 slots needed for this string. */
404 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
405 }
406
407 /* One more slot for the type of the string. */
408 ++n_slots;
409
410 /* Now compute a phony string length. */
411 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
412
413 n_slots += 4;
414 increase_expout_size (ps, n_slots);
415
416 write_exp_elt_opcode (ps, OP_STRING);
417 write_exp_elt_longcst (ps, len);
418 write_exp_elt_longcst (ps, type);
419
420 for (i = 0; i < vec->len; ++i)
421 {
422 write_exp_elt_longcst (ps, vec->tokens[i].length);
423 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
424 vec->tokens[i].length);
425 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
426 }
427
428 write_exp_elt_longcst (ps, len);
429 write_exp_elt_opcode (ps, OP_STRING);
430 }
431
432 /* Add a bitstring constant to the end of the expression.
433
434 Bitstring constants are stored by first writing an expression element
435 that contains the length of the bitstring (in bits), then stuffing the
436 bitstring constant itself into however many expression elements are
437 needed to hold it, and then writing another expression element that
438 contains the length of the bitstring. I.e. an expression element at
439 each end of the bitstring records the bitstring length, so you can skip
440 over the expression elements containing the actual bitstring bytes from
441 either end of the bitstring. */
442
443 void
444 write_exp_bitstring (struct parser_state *ps, struct stoken str)
445 {
446 int bits = str.length; /* length in bits */
447 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
448 size_t lenelt;
449 char *strdata;
450
451 /* Compute the number of expression elements required to hold the bitstring,
452 along with one expression element at each end to record the actual
453 bitstring length in bits. */
454
455 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
456
457 increase_expout_size (ps, lenelt);
458
459 /* Write the leading length expression element (which advances the current
460 expression element index), then write the bitstring constant, and then
461 write the trailing length expression element. */
462
463 write_exp_elt_longcst (ps, (LONGEST) bits);
464 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
465 memcpy (strdata, str.ptr, len);
466 ps->expout_ptr += lenelt - 2;
467 write_exp_elt_longcst (ps, (LONGEST) bits);
468 }
469
470 /* Add the appropriate elements for a minimal symbol to the end of
471 the expression. */
472
473 void
474 write_exp_msymbol (struct parser_state *ps,
475 struct bound_minimal_symbol bound_msym)
476 {
477 struct minimal_symbol *msymbol = bound_msym.minsym;
478 struct objfile *objfile = bound_msym.objfile;
479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
480
481 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
482 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
483 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
484 CORE_ADDR pc;
485
486 /* The minimal symbol might point to a function descriptor;
487 resolve it to the actual code address instead. */
488 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
489 if (pc != addr)
490 {
491 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
492
493 /* In this case, assume we have a code symbol instead of
494 a data symbol. */
495
496 if (ifunc_msym.minsym != NULL
497 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
498 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
499 {
500 /* A function descriptor has been resolved but PC is still in the
501 STT_GNU_IFUNC resolver body (such as because inferior does not
502 run to be able to call it). */
503
504 type = mst_text_gnu_ifunc;
505 }
506 else
507 type = mst_text;
508 section = NULL;
509 addr = pc;
510 }
511
512 if (overlay_debugging)
513 addr = symbol_overlayed_address (addr, section);
514
515 write_exp_elt_opcode (ps, OP_LONG);
516 /* Let's make the type big enough to hold a 64-bit address. */
517 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
518 write_exp_elt_longcst (ps, (LONGEST) addr);
519 write_exp_elt_opcode (ps, OP_LONG);
520
521 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
522 {
523 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
524 write_exp_elt_objfile (ps, objfile);
525 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
526 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
527 return;
528 }
529
530 write_exp_elt_opcode (ps, UNOP_MEMVAL);
531 switch (type)
532 {
533 case mst_text:
534 case mst_file_text:
535 case mst_solib_trampoline:
536 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
537 break;
538
539 case mst_text_gnu_ifunc:
540 write_exp_elt_type (ps, objfile_type (objfile)
541 ->nodebug_text_gnu_ifunc_symbol);
542 break;
543
544 case mst_data:
545 case mst_file_data:
546 case mst_bss:
547 case mst_file_bss:
548 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
549 break;
550
551 case mst_slot_got_plt:
552 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
553 break;
554
555 default:
556 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
557 break;
558 }
559 write_exp_elt_opcode (ps, UNOP_MEMVAL);
560 }
561
562 /* Mark the current index as the starting location of a structure
563 expression. This is used when completing on field names. */
564
565 void
566 mark_struct_expression (struct parser_state *ps)
567 {
568 gdb_assert (parse_completion
569 && expout_tag_completion_type == TYPE_CODE_UNDEF);
570 expout_last_struct = ps->expout_ptr;
571 }
572
573 /* Indicate that the current parser invocation is completing a tag.
574 TAG is the type code of the tag, and PTR and LENGTH represent the
575 start of the tag name. */
576
577 void
578 mark_completion_tag (enum type_code tag, const char *ptr, int length)
579 {
580 gdb_assert (parse_completion
581 && expout_tag_completion_type == TYPE_CODE_UNDEF
582 && expout_completion_name == NULL
583 && expout_last_struct == -1);
584 gdb_assert (tag == TYPE_CODE_UNION
585 || tag == TYPE_CODE_STRUCT
586 || tag == TYPE_CODE_ENUM);
587 expout_tag_completion_type = tag;
588 expout_completion_name = xmalloc (length + 1);
589 memcpy (expout_completion_name, ptr, length);
590 expout_completion_name[length] = '\0';
591 }
592
593 \f
594 /* Recognize tokens that start with '$'. These include:
595
596 $regname A native register name or a "standard
597 register name".
598
599 $variable A convenience variable with a name chosen
600 by the user.
601
602 $digits Value history with index <digits>, starting
603 from the first value which has index 1.
604
605 $$digits Value history with index <digits> relative
606 to the last value. I.e. $$0 is the last
607 value, $$1 is the one previous to that, $$2
608 is the one previous to $$1, etc.
609
610 $ | $0 | $$0 The last value in the value history.
611
612 $$ An abbreviation for the second to the last
613 value in the value history, I.e. $$1 */
614
615 void
616 write_dollar_variable (struct parser_state *ps, struct stoken str)
617 {
618 struct symbol *sym = NULL;
619 struct bound_minimal_symbol msym;
620 struct internalvar *isym = NULL;
621
622 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
623 and $$digits (equivalent to $<-digits> if you could type that). */
624
625 int negate = 0;
626 int i = 1;
627 /* Double dollar means negate the number and add -1 as well.
628 Thus $$ alone means -1. */
629 if (str.length >= 2 && str.ptr[1] == '$')
630 {
631 negate = 1;
632 i = 2;
633 }
634 if (i == str.length)
635 {
636 /* Just dollars (one or two). */
637 i = -negate;
638 goto handle_last;
639 }
640 /* Is the rest of the token digits? */
641 for (; i < str.length; i++)
642 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
643 break;
644 if (i == str.length)
645 {
646 i = atoi (str.ptr + 1 + negate);
647 if (negate)
648 i = -i;
649 goto handle_last;
650 }
651
652 /* Handle tokens that refer to machine registers:
653 $ followed by a register name. */
654 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
655 str.ptr + 1, str.length - 1);
656 if (i >= 0)
657 goto handle_register;
658
659 /* Any names starting with $ are probably debugger internal variables. */
660
661 isym = lookup_only_internalvar (copy_name (str) + 1);
662 if (isym)
663 {
664 write_exp_elt_opcode (ps, OP_INTERNALVAR);
665 write_exp_elt_intern (ps, isym);
666 write_exp_elt_opcode (ps, OP_INTERNALVAR);
667 return;
668 }
669
670 /* On some systems, such as HP-UX and hppa-linux, certain system routines
671 have names beginning with $ or $$. Check for those, first. */
672
673 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
674 VAR_DOMAIN, NULL);
675 if (sym)
676 {
677 write_exp_elt_opcode (ps, OP_VAR_VALUE);
678 write_exp_elt_block (ps, block_found); /* set by lookup_symbol */
679 write_exp_elt_sym (ps, sym);
680 write_exp_elt_opcode (ps, OP_VAR_VALUE);
681 return;
682 }
683 msym = lookup_bound_minimal_symbol (copy_name (str));
684 if (msym.minsym)
685 {
686 write_exp_msymbol (ps, msym);
687 return;
688 }
689
690 /* Any other names are assumed to be debugger internal variables. */
691
692 write_exp_elt_opcode (ps, OP_INTERNALVAR);
693 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
694 write_exp_elt_opcode (ps, OP_INTERNALVAR);
695 return;
696 handle_last:
697 write_exp_elt_opcode (ps, OP_LAST);
698 write_exp_elt_longcst (ps, (LONGEST) i);
699 write_exp_elt_opcode (ps, OP_LAST);
700 return;
701 handle_register:
702 write_exp_elt_opcode (ps, OP_REGISTER);
703 str.length--;
704 str.ptr++;
705 write_exp_string (ps, str);
706 write_exp_elt_opcode (ps, OP_REGISTER);
707 return;
708 }
709
710
711 const char *
712 find_template_name_end (const char *p)
713 {
714 int depth = 1;
715 int just_seen_right = 0;
716 int just_seen_colon = 0;
717 int just_seen_space = 0;
718
719 if (!p || (*p != '<'))
720 return 0;
721
722 while (*++p)
723 {
724 switch (*p)
725 {
726 case '\'':
727 case '\"':
728 case '{':
729 case '}':
730 /* In future, may want to allow these?? */
731 return 0;
732 case '<':
733 depth++; /* start nested template */
734 if (just_seen_colon || just_seen_right || just_seen_space)
735 return 0; /* but not after : or :: or > or space */
736 break;
737 case '>':
738 if (just_seen_colon || just_seen_right)
739 return 0; /* end a (nested?) template */
740 just_seen_right = 1; /* but not after : or :: */
741 if (--depth == 0) /* also disallow >>, insist on > > */
742 return ++p; /* if outermost ended, return */
743 break;
744 case ':':
745 if (just_seen_space || (just_seen_colon > 1))
746 return 0; /* nested class spec coming up */
747 just_seen_colon++; /* we allow :: but not :::: */
748 break;
749 case ' ':
750 break;
751 default:
752 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
753 (*p >= 'A' && *p <= 'Z') ||
754 (*p >= '0' && *p <= '9') ||
755 (*p == '_') || (*p == ',') || /* commas for template args */
756 (*p == '&') || (*p == '*') || /* pointer and ref types */
757 (*p == '(') || (*p == ')') || /* function types */
758 (*p == '[') || (*p == ']'))) /* array types */
759 return 0;
760 }
761 if (*p != ' ')
762 just_seen_space = 0;
763 if (*p != ':')
764 just_seen_colon = 0;
765 if (*p != '>')
766 just_seen_right = 0;
767 }
768 return 0;
769 }
770 \f
771
772 /* Return a null-terminated temporary copy of the name of a string token.
773
774 Tokens that refer to names do so with explicit pointer and length,
775 so they can share the storage that lexptr is parsing.
776 When it is necessary to pass a name to a function that expects
777 a null-terminated string, the substring is copied out
778 into a separate block of storage.
779
780 N.B. A single buffer is reused on each call. */
781
782 char *
783 copy_name (struct stoken token)
784 {
785 /* A temporary buffer for identifiers, so we can null-terminate them.
786 We allocate this with xrealloc. parse_exp_1 used to allocate with
787 alloca, using the size of the whole expression as a conservative
788 estimate of the space needed. However, macro expansion can
789 introduce names longer than the original expression; there's no
790 practical way to know beforehand how large that might be. */
791 static char *namecopy;
792 static size_t namecopy_size;
793
794 /* Make sure there's enough space for the token. */
795 if (namecopy_size < token.length + 1)
796 {
797 namecopy_size = token.length + 1;
798 namecopy = xrealloc (namecopy, token.length + 1);
799 }
800
801 memcpy (namecopy, token.ptr, token.length);
802 namecopy[token.length] = 0;
803
804 return namecopy;
805 }
806 \f
807
808 /* See comments on parser-defs.h. */
809
810 int
811 prefixify_expression (struct expression *expr)
812 {
813 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
814 struct expression *temp;
815 int inpos = expr->nelts, outpos = 0;
816
817 temp = (struct expression *) alloca (len);
818
819 /* Copy the original expression into temp. */
820 memcpy (temp, expr, len);
821
822 return prefixify_subexp (temp, expr, inpos, outpos);
823 }
824
825 /* Return the number of exp_elements in the postfix subexpression
826 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
827
828 int
829 length_of_subexp (struct expression *expr, int endpos)
830 {
831 int oplen, args;
832
833 operator_length (expr, endpos, &oplen, &args);
834
835 while (args > 0)
836 {
837 oplen += length_of_subexp (expr, endpos - oplen);
838 args--;
839 }
840
841 return oplen;
842 }
843
844 /* Sets *OPLENP to the length of the operator whose (last) index is
845 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
846 operator takes. */
847
848 void
849 operator_length (const struct expression *expr, int endpos, int *oplenp,
850 int *argsp)
851 {
852 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
853 oplenp, argsp);
854 }
855
856 /* Default value for operator_length in exp_descriptor vectors. */
857
858 void
859 operator_length_standard (const struct expression *expr, int endpos,
860 int *oplenp, int *argsp)
861 {
862 int oplen = 1;
863 int args = 0;
864 enum f90_range_type range_type;
865 int i;
866
867 if (endpos < 1)
868 error (_("?error in operator_length_standard"));
869
870 i = (int) expr->elts[endpos - 1].opcode;
871
872 switch (i)
873 {
874 /* C++ */
875 case OP_SCOPE:
876 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
877 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
878 break;
879
880 case OP_LONG:
881 case OP_DOUBLE:
882 case OP_DECFLOAT:
883 case OP_VAR_VALUE:
884 oplen = 4;
885 break;
886
887 case OP_TYPE:
888 case OP_BOOL:
889 case OP_LAST:
890 case OP_INTERNALVAR:
891 case OP_VAR_ENTRY_VALUE:
892 oplen = 3;
893 break;
894
895 case OP_COMPLEX:
896 oplen = 3;
897 args = 2;
898 break;
899
900 case OP_FUNCALL:
901 case OP_F77_UNDETERMINED_ARGLIST:
902 oplen = 3;
903 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
904 break;
905
906 case TYPE_INSTANCE:
907 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
908 args = 1;
909 break;
910
911 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
912 oplen = 4;
913 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
914 break;
915
916 case UNOP_MAX:
917 case UNOP_MIN:
918 oplen = 3;
919 break;
920
921 case UNOP_CAST_TYPE:
922 case UNOP_DYNAMIC_CAST:
923 case UNOP_REINTERPRET_CAST:
924 case UNOP_MEMVAL_TYPE:
925 oplen = 1;
926 args = 2;
927 break;
928
929 case BINOP_VAL:
930 case UNOP_CAST:
931 case UNOP_MEMVAL:
932 oplen = 3;
933 args = 1;
934 break;
935
936 case UNOP_MEMVAL_TLS:
937 oplen = 4;
938 args = 1;
939 break;
940
941 case UNOP_ABS:
942 case UNOP_CAP:
943 case UNOP_CHR:
944 case UNOP_FLOAT:
945 case UNOP_HIGH:
946 case UNOP_ODD:
947 case UNOP_ORD:
948 case UNOP_TRUNC:
949 case OP_TYPEOF:
950 case OP_DECLTYPE:
951 case OP_TYPEID:
952 oplen = 1;
953 args = 1;
954 break;
955
956 case OP_ADL_FUNC:
957 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
958 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
959 oplen++;
960 oplen++;
961 break;
962
963 case STRUCTOP_STRUCT:
964 case STRUCTOP_PTR:
965 args = 1;
966 /* fall through */
967 case OP_REGISTER:
968 case OP_M2_STRING:
969 case OP_STRING:
970 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
971 NSString constant. */
972 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
973 case OP_NAME:
974 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
975 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
976 break;
977
978 case OP_ARRAY:
979 oplen = 4;
980 args = longest_to_int (expr->elts[endpos - 2].longconst);
981 args -= longest_to_int (expr->elts[endpos - 3].longconst);
982 args += 1;
983 break;
984
985 case TERNOP_COND:
986 case TERNOP_SLICE:
987 args = 3;
988 break;
989
990 /* Modula-2 */
991 case MULTI_SUBSCRIPT:
992 oplen = 3;
993 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
994 break;
995
996 case BINOP_ASSIGN_MODIFY:
997 oplen = 3;
998 args = 2;
999 break;
1000
1001 /* C++ */
1002 case OP_THIS:
1003 oplen = 2;
1004 break;
1005
1006 case OP_F90_RANGE:
1007 oplen = 3;
1008
1009 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1010 switch (range_type)
1011 {
1012 case LOW_BOUND_DEFAULT:
1013 case HIGH_BOUND_DEFAULT:
1014 args = 1;
1015 break;
1016 case BOTH_BOUND_DEFAULT:
1017 args = 0;
1018 break;
1019 case NONE_BOUND_DEFAULT:
1020 args = 2;
1021 break;
1022 }
1023
1024 break;
1025
1026 default:
1027 args = 1 + (i < (int) BINOP_END);
1028 }
1029
1030 *oplenp = oplen;
1031 *argsp = args;
1032 }
1033
1034 /* Copy the subexpression ending just before index INEND in INEXPR
1035 into OUTEXPR, starting at index OUTBEG.
1036 In the process, convert it from suffix to prefix form.
1037 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1038 Otherwise, it returns the index of the subexpression which is the
1039 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1040
1041 static int
1042 prefixify_subexp (struct expression *inexpr,
1043 struct expression *outexpr, int inend, int outbeg)
1044 {
1045 int oplen;
1046 int args;
1047 int i;
1048 int *arglens;
1049 int result = -1;
1050
1051 operator_length (inexpr, inend, &oplen, &args);
1052
1053 /* Copy the final operator itself, from the end of the input
1054 to the beginning of the output. */
1055 inend -= oplen;
1056 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1057 EXP_ELEM_TO_BYTES (oplen));
1058 outbeg += oplen;
1059
1060 if (expout_last_struct == inend)
1061 result = outbeg - oplen;
1062
1063 /* Find the lengths of the arg subexpressions. */
1064 arglens = (int *) alloca (args * sizeof (int));
1065 for (i = args - 1; i >= 0; i--)
1066 {
1067 oplen = length_of_subexp (inexpr, inend);
1068 arglens[i] = oplen;
1069 inend -= oplen;
1070 }
1071
1072 /* Now copy each subexpression, preserving the order of
1073 the subexpressions, but prefixifying each one.
1074 In this loop, inend starts at the beginning of
1075 the expression this level is working on
1076 and marches forward over the arguments.
1077 outbeg does similarly in the output. */
1078 for (i = 0; i < args; i++)
1079 {
1080 int r;
1081
1082 oplen = arglens[i];
1083 inend += oplen;
1084 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1085 if (r != -1)
1086 {
1087 /* Return immediately. We probably have only parsed a
1088 partial expression, so we don't want to try to reverse
1089 the other operands. */
1090 return r;
1091 }
1092 outbeg += oplen;
1093 }
1094
1095 return result;
1096 }
1097 \f
1098 /* Read an expression from the string *STRINGPTR points to,
1099 parse it, and return a pointer to a struct expression that we malloc.
1100 Use block BLOCK as the lexical context for variable names;
1101 if BLOCK is zero, use the block of the selected stack frame.
1102 Meanwhile, advance *STRINGPTR to point after the expression,
1103 at the first nonwhite character that is not part of the expression
1104 (possibly a null character).
1105
1106 If COMMA is nonzero, stop if a comma is reached. */
1107
1108 struct expression *
1109 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1110 int comma)
1111 {
1112 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1113 }
1114
1115 static struct expression *
1116 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1117 const struct block *block,
1118 int comma, int void_context_p, int *out_subexp)
1119 {
1120 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1121 void_context_p, out_subexp);
1122 }
1123
1124 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1125 no value is expected from the expression.
1126 OUT_SUBEXP is set when attempting to complete a field name; in this
1127 case it is set to the index of the subexpression on the
1128 left-hand-side of the struct op. If not doing such completion, it
1129 is left untouched. */
1130
1131 static struct expression *
1132 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1133 const struct block *block,
1134 int comma, int void_context_p, int *out_subexp)
1135 {
1136 volatile struct gdb_exception except;
1137 struct cleanup *old_chain, *inner_chain;
1138 const struct language_defn *lang = NULL;
1139 struct parser_state ps;
1140 int subexp;
1141
1142 lexptr = *stringptr;
1143 prev_lexptr = NULL;
1144
1145 paren_depth = 0;
1146 type_stack.depth = 0;
1147 expout_last_struct = -1;
1148 expout_tag_completion_type = TYPE_CODE_UNDEF;
1149 xfree (expout_completion_name);
1150 expout_completion_name = NULL;
1151
1152 comma_terminates = comma;
1153
1154 if (lexptr == 0 || *lexptr == 0)
1155 error_no_arg (_("expression to compute"));
1156
1157 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1158 funcall_chain = 0;
1159
1160 expression_context_block = block;
1161
1162 /* If no context specified, try using the current frame, if any. */
1163 if (!expression_context_block)
1164 expression_context_block = get_selected_block (&expression_context_pc);
1165 else if (pc == 0)
1166 expression_context_pc = BLOCK_START (expression_context_block);
1167 else
1168 expression_context_pc = pc;
1169
1170 /* Fall back to using the current source static context, if any. */
1171
1172 if (!expression_context_block)
1173 {
1174 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1175 if (cursal.symtab)
1176 expression_context_block
1177 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1178 STATIC_BLOCK);
1179 if (expression_context_block)
1180 expression_context_pc = BLOCK_START (expression_context_block);
1181 }
1182
1183 if (language_mode == language_mode_auto && block != NULL)
1184 {
1185 /* Find the language associated to the given context block.
1186 Default to the current language if it can not be determined.
1187
1188 Note that using the language corresponding to the current frame
1189 can sometimes give unexpected results. For instance, this
1190 routine is often called several times during the inferior
1191 startup phase to re-parse breakpoint expressions after
1192 a new shared library has been loaded. The language associated
1193 to the current frame at this moment is not relevant for
1194 the breakpoint. Using it would therefore be silly, so it seems
1195 better to rely on the current language rather than relying on
1196 the current frame language to parse the expression. That's why
1197 we do the following language detection only if the context block
1198 has been specifically provided. */
1199 struct symbol *func = block_linkage_function (block);
1200
1201 if (func != NULL)
1202 lang = language_def (SYMBOL_LANGUAGE (func));
1203 if (lang == NULL || lang->la_language == language_unknown)
1204 lang = current_language;
1205 }
1206 else
1207 lang = current_language;
1208
1209 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1210 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1211 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1212 to the value matching SELECTED_FRAME as set by get_current_arch. */
1213
1214 initialize_expout (&ps, 10, lang, get_current_arch ());
1215 inner_chain = make_cleanup_restore_current_language ();
1216 set_language (lang->la_language);
1217
1218 TRY_CATCH (except, RETURN_MASK_ALL)
1219 {
1220 if (lang->la_parser (&ps))
1221 lang->la_error (NULL);
1222 }
1223 if (except.reason < 0)
1224 {
1225 if (! parse_completion)
1226 {
1227 xfree (ps.expout);
1228 throw_exception (except);
1229 }
1230 }
1231
1232 reallocate_expout (&ps);
1233
1234 /* Convert expression from postfix form as generated by yacc
1235 parser, to a prefix form. */
1236
1237 if (expressiondebug)
1238 dump_raw_expression (ps.expout, gdb_stdlog,
1239 "before conversion to prefix form");
1240
1241 subexp = prefixify_expression (ps.expout);
1242 if (out_subexp)
1243 *out_subexp = subexp;
1244
1245 lang->la_post_parser (&ps.expout, void_context_p);
1246
1247 if (expressiondebug)
1248 dump_prefix_expression (ps.expout, gdb_stdlog);
1249
1250 do_cleanups (inner_chain);
1251 discard_cleanups (old_chain);
1252
1253 *stringptr = lexptr;
1254 return ps.expout;
1255 }
1256
1257 /* Parse STRING as an expression, and complain if this fails
1258 to use up all of the contents of STRING. */
1259
1260 struct expression *
1261 parse_expression (const char *string)
1262 {
1263 struct expression *exp;
1264
1265 exp = parse_exp_1 (&string, 0, 0, 0);
1266 if (*string)
1267 error (_("Junk after end of expression."));
1268 return exp;
1269 }
1270
1271 /* Parse STRING as an expression. If parsing ends in the middle of a
1272 field reference, return the type of the left-hand-side of the
1273 reference; furthermore, if the parsing ends in the field name,
1274 return the field name in *NAME. If the parsing ends in the middle
1275 of a field reference, but the reference is somehow invalid, throw
1276 an exception. In all other cases, return NULL. Returned non-NULL
1277 *NAME must be freed by the caller. */
1278
1279 struct type *
1280 parse_expression_for_completion (const char *string, char **name,
1281 enum type_code *code)
1282 {
1283 struct expression *exp = NULL;
1284 struct value *val;
1285 int subexp;
1286 volatile struct gdb_exception except;
1287
1288 TRY_CATCH (except, RETURN_MASK_ERROR)
1289 {
1290 parse_completion = 1;
1291 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1292 }
1293 parse_completion = 0;
1294 if (except.reason < 0 || ! exp)
1295 return NULL;
1296
1297 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1298 {
1299 *code = expout_tag_completion_type;
1300 *name = expout_completion_name;
1301 expout_completion_name = NULL;
1302 return NULL;
1303 }
1304
1305 if (expout_last_struct == -1)
1306 {
1307 xfree (exp);
1308 return NULL;
1309 }
1310
1311 *name = extract_field_op (exp, &subexp);
1312 if (!*name)
1313 {
1314 xfree (exp);
1315 return NULL;
1316 }
1317
1318 /* This might throw an exception. If so, we want to let it
1319 propagate. */
1320 val = evaluate_subexpression_type (exp, subexp);
1321 /* (*NAME) is a part of the EXP memory block freed below. */
1322 *name = xstrdup (*name);
1323 xfree (exp);
1324
1325 return value_type (val);
1326 }
1327
1328 /* A post-parser that does nothing. */
1329
1330 void
1331 null_post_parser (struct expression **exp, int void_context_p)
1332 {
1333 }
1334
1335 /* Parse floating point value P of length LEN.
1336 Return 0 (false) if invalid, 1 (true) if valid.
1337 The successfully parsed number is stored in D.
1338 *SUFFIX points to the suffix of the number in P.
1339
1340 NOTE: This accepts the floating point syntax that sscanf accepts. */
1341
1342 int
1343 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1344 {
1345 char *copy;
1346 int n, num;
1347
1348 copy = xmalloc (len + 1);
1349 memcpy (copy, p, len);
1350 copy[len] = 0;
1351
1352 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1353 xfree (copy);
1354
1355 /* The sscanf man page suggests not making any assumptions on the effect
1356 of %n on the result, so we don't.
1357 That is why we simply test num == 0. */
1358 if (num == 0)
1359 return 0;
1360
1361 *suffix = p + n;
1362 return 1;
1363 }
1364
1365 /* Parse floating point value P of length LEN, using the C syntax for floats.
1366 Return 0 (false) if invalid, 1 (true) if valid.
1367 The successfully parsed number is stored in *D.
1368 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1369
1370 int
1371 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1372 DOUBLEST *d, struct type **t)
1373 {
1374 const char *suffix;
1375 int suffix_len;
1376 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1377
1378 if (! parse_float (p, len, d, &suffix))
1379 return 0;
1380
1381 suffix_len = p + len - suffix;
1382
1383 if (suffix_len == 0)
1384 *t = builtin_types->builtin_double;
1385 else if (suffix_len == 1)
1386 {
1387 /* Handle suffixes: 'f' for float, 'l' for long double. */
1388 if (tolower (*suffix) == 'f')
1389 *t = builtin_types->builtin_float;
1390 else if (tolower (*suffix) == 'l')
1391 *t = builtin_types->builtin_long_double;
1392 else
1393 return 0;
1394 }
1395 else
1396 return 0;
1397
1398 return 1;
1399 }
1400 \f
1401 /* Stuff for maintaining a stack of types. Currently just used by C, but
1402 probably useful for any language which declares its types "backwards". */
1403
1404 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1405
1406 static void
1407 type_stack_reserve (struct type_stack *stack, int howmuch)
1408 {
1409 if (stack->depth + howmuch >= stack->size)
1410 {
1411 stack->size *= 2;
1412 if (stack->size < howmuch)
1413 stack->size = howmuch;
1414 stack->elements = xrealloc (stack->elements,
1415 stack->size * sizeof (union type_stack_elt));
1416 }
1417 }
1418
1419 /* Ensure that there is a single open slot in the global type stack. */
1420
1421 static void
1422 check_type_stack_depth (void)
1423 {
1424 type_stack_reserve (&type_stack, 1);
1425 }
1426
1427 /* A helper function for insert_type and insert_type_address_space.
1428 This does work of expanding the type stack and inserting the new
1429 element, ELEMENT, into the stack at location SLOT. */
1430
1431 static void
1432 insert_into_type_stack (int slot, union type_stack_elt element)
1433 {
1434 check_type_stack_depth ();
1435
1436 if (slot < type_stack.depth)
1437 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1438 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1439 type_stack.elements[slot] = element;
1440 ++type_stack.depth;
1441 }
1442
1443 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1444 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1445 a qualifier, it is inserted at slot 1 (just above a previous
1446 tp_pointer) if there is anything on the stack, or simply pushed if
1447 the stack is empty. Other values for TP are invalid. */
1448
1449 void
1450 insert_type (enum type_pieces tp)
1451 {
1452 union type_stack_elt element;
1453 int slot;
1454
1455 gdb_assert (tp == tp_pointer || tp == tp_reference
1456 || tp == tp_const || tp == tp_volatile);
1457
1458 /* If there is anything on the stack (we know it will be a
1459 tp_pointer), insert the qualifier above it. Otherwise, simply
1460 push this on the top of the stack. */
1461 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1462 slot = 1;
1463 else
1464 slot = 0;
1465
1466 element.piece = tp;
1467 insert_into_type_stack (slot, element);
1468 }
1469
1470 void
1471 push_type (enum type_pieces tp)
1472 {
1473 check_type_stack_depth ();
1474 type_stack.elements[type_stack.depth++].piece = tp;
1475 }
1476
1477 void
1478 push_type_int (int n)
1479 {
1480 check_type_stack_depth ();
1481 type_stack.elements[type_stack.depth++].int_val = n;
1482 }
1483
1484 /* Insert a tp_space_identifier and the corresponding address space
1485 value into the stack. STRING is the name of an address space, as
1486 recognized by address_space_name_to_int. If the stack is empty,
1487 the new elements are simply pushed. If the stack is not empty,
1488 this function assumes that the first item on the stack is a
1489 tp_pointer, and the new values are inserted above the first
1490 item. */
1491
1492 void
1493 insert_type_address_space (struct parser_state *pstate, char *string)
1494 {
1495 union type_stack_elt element;
1496 int slot;
1497
1498 /* If there is anything on the stack (we know it will be a
1499 tp_pointer), insert the address space qualifier above it.
1500 Otherwise, simply push this on the top of the stack. */
1501 if (type_stack.depth)
1502 slot = 1;
1503 else
1504 slot = 0;
1505
1506 element.piece = tp_space_identifier;
1507 insert_into_type_stack (slot, element);
1508 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1509 string);
1510 insert_into_type_stack (slot, element);
1511 }
1512
1513 enum type_pieces
1514 pop_type (void)
1515 {
1516 if (type_stack.depth)
1517 return type_stack.elements[--type_stack.depth].piece;
1518 return tp_end;
1519 }
1520
1521 int
1522 pop_type_int (void)
1523 {
1524 if (type_stack.depth)
1525 return type_stack.elements[--type_stack.depth].int_val;
1526 /* "Can't happen". */
1527 return 0;
1528 }
1529
1530 /* Pop a type list element from the global type stack. */
1531
1532 static VEC (type_ptr) *
1533 pop_typelist (void)
1534 {
1535 gdb_assert (type_stack.depth);
1536 return type_stack.elements[--type_stack.depth].typelist_val;
1537 }
1538
1539 /* Pop a type_stack element from the global type stack. */
1540
1541 static struct type_stack *
1542 pop_type_stack (void)
1543 {
1544 gdb_assert (type_stack.depth);
1545 return type_stack.elements[--type_stack.depth].stack_val;
1546 }
1547
1548 /* Append the elements of the type stack FROM to the type stack TO.
1549 Always returns TO. */
1550
1551 struct type_stack *
1552 append_type_stack (struct type_stack *to, struct type_stack *from)
1553 {
1554 type_stack_reserve (to, from->depth);
1555
1556 memcpy (&to->elements[to->depth], &from->elements[0],
1557 from->depth * sizeof (union type_stack_elt));
1558 to->depth += from->depth;
1559
1560 return to;
1561 }
1562
1563 /* Push the type stack STACK as an element on the global type stack. */
1564
1565 void
1566 push_type_stack (struct type_stack *stack)
1567 {
1568 check_type_stack_depth ();
1569 type_stack.elements[type_stack.depth++].stack_val = stack;
1570 push_type (tp_type_stack);
1571 }
1572
1573 /* Copy the global type stack into a newly allocated type stack and
1574 return it. The global stack is cleared. The returned type stack
1575 must be freed with type_stack_cleanup. */
1576
1577 struct type_stack *
1578 get_type_stack (void)
1579 {
1580 struct type_stack *result = XNEW (struct type_stack);
1581
1582 *result = type_stack;
1583 type_stack.depth = 0;
1584 type_stack.size = 0;
1585 type_stack.elements = NULL;
1586
1587 return result;
1588 }
1589
1590 /* A cleanup function that destroys a single type stack. */
1591
1592 void
1593 type_stack_cleanup (void *arg)
1594 {
1595 struct type_stack *stack = arg;
1596
1597 xfree (stack->elements);
1598 xfree (stack);
1599 }
1600
1601 /* Push a function type with arguments onto the global type stack.
1602 LIST holds the argument types. If the final item in LIST is NULL,
1603 then the function will be varargs. */
1604
1605 void
1606 push_typelist (VEC (type_ptr) *list)
1607 {
1608 check_type_stack_depth ();
1609 type_stack.elements[type_stack.depth++].typelist_val = list;
1610 push_type (tp_function_with_arguments);
1611 }
1612
1613 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1614 as modified by all the stuff on the stack. */
1615 struct type *
1616 follow_types (struct type *follow_type)
1617 {
1618 int done = 0;
1619 int make_const = 0;
1620 int make_volatile = 0;
1621 int make_addr_space = 0;
1622 int array_size;
1623
1624 while (!done)
1625 switch (pop_type ())
1626 {
1627 case tp_end:
1628 done = 1;
1629 if (make_const)
1630 follow_type = make_cv_type (make_const,
1631 TYPE_VOLATILE (follow_type),
1632 follow_type, 0);
1633 if (make_volatile)
1634 follow_type = make_cv_type (TYPE_CONST (follow_type),
1635 make_volatile,
1636 follow_type, 0);
1637 if (make_addr_space)
1638 follow_type = make_type_with_address_space (follow_type,
1639 make_addr_space);
1640 make_const = make_volatile = 0;
1641 make_addr_space = 0;
1642 break;
1643 case tp_const:
1644 make_const = 1;
1645 break;
1646 case tp_volatile:
1647 make_volatile = 1;
1648 break;
1649 case tp_space_identifier:
1650 make_addr_space = pop_type_int ();
1651 break;
1652 case tp_pointer:
1653 follow_type = lookup_pointer_type (follow_type);
1654 if (make_const)
1655 follow_type = make_cv_type (make_const,
1656 TYPE_VOLATILE (follow_type),
1657 follow_type, 0);
1658 if (make_volatile)
1659 follow_type = make_cv_type (TYPE_CONST (follow_type),
1660 make_volatile,
1661 follow_type, 0);
1662 if (make_addr_space)
1663 follow_type = make_type_with_address_space (follow_type,
1664 make_addr_space);
1665 make_const = make_volatile = 0;
1666 make_addr_space = 0;
1667 break;
1668 case tp_reference:
1669 follow_type = lookup_reference_type (follow_type);
1670 if (make_const)
1671 follow_type = make_cv_type (make_const,
1672 TYPE_VOLATILE (follow_type),
1673 follow_type, 0);
1674 if (make_volatile)
1675 follow_type = make_cv_type (TYPE_CONST (follow_type),
1676 make_volatile,
1677 follow_type, 0);
1678 if (make_addr_space)
1679 follow_type = make_type_with_address_space (follow_type,
1680 make_addr_space);
1681 make_const = make_volatile = 0;
1682 make_addr_space = 0;
1683 break;
1684 case tp_array:
1685 array_size = pop_type_int ();
1686 /* FIXME-type-allocation: need a way to free this type when we are
1687 done with it. */
1688 follow_type =
1689 lookup_array_range_type (follow_type,
1690 0, array_size >= 0 ? array_size - 1 : 0);
1691 if (array_size < 0)
1692 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1693 = PROP_UNDEFINED;
1694 break;
1695 case tp_function:
1696 /* FIXME-type-allocation: need a way to free this type when we are
1697 done with it. */
1698 follow_type = lookup_function_type (follow_type);
1699 break;
1700
1701 case tp_function_with_arguments:
1702 {
1703 VEC (type_ptr) *args = pop_typelist ();
1704
1705 follow_type
1706 = lookup_function_type_with_arguments (follow_type,
1707 VEC_length (type_ptr, args),
1708 VEC_address (type_ptr,
1709 args));
1710 VEC_free (type_ptr, args);
1711 }
1712 break;
1713
1714 case tp_type_stack:
1715 {
1716 struct type_stack *stack = pop_type_stack ();
1717 /* Sort of ugly, but not really much worse than the
1718 alternatives. */
1719 struct type_stack save = type_stack;
1720
1721 type_stack = *stack;
1722 follow_type = follow_types (follow_type);
1723 gdb_assert (type_stack.depth == 0);
1724
1725 type_stack = save;
1726 }
1727 break;
1728 default:
1729 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1730 }
1731 return follow_type;
1732 }
1733 \f
1734 /* This function avoids direct calls to fprintf
1735 in the parser generated debug code. */
1736 void
1737 parser_fprintf (FILE *x, const char *y, ...)
1738 {
1739 va_list args;
1740
1741 va_start (args, y);
1742 if (x == stderr)
1743 vfprintf_unfiltered (gdb_stderr, y, args);
1744 else
1745 {
1746 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1747 vfprintf_unfiltered (gdb_stderr, y, args);
1748 }
1749 va_end (args);
1750 }
1751
1752 /* Implementation of the exp_descriptor method operator_check. */
1753
1754 int
1755 operator_check_standard (struct expression *exp, int pos,
1756 int (*objfile_func) (struct objfile *objfile,
1757 void *data),
1758 void *data)
1759 {
1760 const union exp_element *const elts = exp->elts;
1761 struct type *type = NULL;
1762 struct objfile *objfile = NULL;
1763
1764 /* Extended operators should have been already handled by exp_descriptor
1765 iterate method of its specific language. */
1766 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1767
1768 /* Track the callers of write_exp_elt_type for this table. */
1769
1770 switch (elts[pos].opcode)
1771 {
1772 case BINOP_VAL:
1773 case OP_COMPLEX:
1774 case OP_DECFLOAT:
1775 case OP_DOUBLE:
1776 case OP_LONG:
1777 case OP_SCOPE:
1778 case OP_TYPE:
1779 case UNOP_CAST:
1780 case UNOP_MAX:
1781 case UNOP_MEMVAL:
1782 case UNOP_MIN:
1783 type = elts[pos + 1].type;
1784 break;
1785
1786 case TYPE_INSTANCE:
1787 {
1788 LONGEST arg, nargs = elts[pos + 1].longconst;
1789
1790 for (arg = 0; arg < nargs; arg++)
1791 {
1792 struct type *type = elts[pos + 2 + arg].type;
1793 struct objfile *objfile = TYPE_OBJFILE (type);
1794
1795 if (objfile && (*objfile_func) (objfile, data))
1796 return 1;
1797 }
1798 }
1799 break;
1800
1801 case UNOP_MEMVAL_TLS:
1802 objfile = elts[pos + 1].objfile;
1803 type = elts[pos + 2].type;
1804 break;
1805
1806 case OP_VAR_VALUE:
1807 {
1808 const struct block *const block = elts[pos + 1].block;
1809 const struct symbol *const symbol = elts[pos + 2].symbol;
1810
1811 /* Check objfile where the variable itself is placed.
1812 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1813 if ((*objfile_func) (symbol_objfile (symbol), data))
1814 return 1;
1815
1816 /* Check objfile where is placed the code touching the variable. */
1817 objfile = lookup_objfile_from_block (block);
1818
1819 type = SYMBOL_TYPE (symbol);
1820 }
1821 break;
1822 }
1823
1824 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1825
1826 if (type && TYPE_OBJFILE (type)
1827 && (*objfile_func) (TYPE_OBJFILE (type), data))
1828 return 1;
1829 if (objfile && (*objfile_func) (objfile, data))
1830 return 1;
1831
1832 return 0;
1833 }
1834
1835 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1836 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1837 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1838 returns non-zero value then (any other) non-zero value is immediately
1839 returned to the caller. Otherwise zero is returned after iterating
1840 through whole EXP. */
1841
1842 static int
1843 exp_iterate (struct expression *exp,
1844 int (*objfile_func) (struct objfile *objfile, void *data),
1845 void *data)
1846 {
1847 int endpos;
1848
1849 for (endpos = exp->nelts; endpos > 0; )
1850 {
1851 int pos, args, oplen = 0;
1852
1853 operator_length (exp, endpos, &oplen, &args);
1854 gdb_assert (oplen > 0);
1855
1856 pos = endpos - oplen;
1857 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1858 objfile_func, data))
1859 return 1;
1860
1861 endpos = pos;
1862 }
1863
1864 return 0;
1865 }
1866
1867 /* Helper for exp_uses_objfile. */
1868
1869 static int
1870 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1871 {
1872 struct objfile *objfile = objfile_voidp;
1873
1874 if (exp_objfile->separate_debug_objfile_backlink)
1875 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1876
1877 return exp_objfile == objfile;
1878 }
1879
1880 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1881 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1882 file. */
1883
1884 int
1885 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1886 {
1887 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1888
1889 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1890 }
1891
1892 /* See definition in parser-defs.h. */
1893
1894 void
1895 increase_expout_size (struct parser_state *ps, size_t lenelt)
1896 {
1897 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1898 {
1899 ps->expout_size = max (ps->expout_size * 2,
1900 ps->expout_ptr + lenelt + 10);
1901 ps->expout = (struct expression *)
1902 xrealloc (ps->expout, (sizeof (struct expression)
1903 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1904 }
1905 }
1906
1907 void
1908 _initialize_parse (void)
1909 {
1910 type_stack.size = 0;
1911 type_stack.depth = 0;
1912 type_stack.elements = NULL;
1913
1914 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1915 &expressiondebug,
1916 _("Set expression debugging."),
1917 _("Show expression debugging."),
1918 _("When non-zero, the internal representation "
1919 "of expressions will be printed."),
1920 NULL,
1921 show_expressiondebug,
1922 &setdebuglist, &showdebuglist);
1923 add_setshow_boolean_cmd ("parser", class_maintenance,
1924 &parser_debug,
1925 _("Set parser debugging."),
1926 _("Show parser debugging."),
1927 _("When non-zero, expression parser "
1928 "tracing will be enabled."),
1929 NULL,
1930 show_parserdebug,
1931 &setdebuglist, &showdebuglist);
1932 }
This page took 0.217562 seconds and 5 git commands to generate.