Delete TYPE_CODE_CLASS, it's just an alias of TYPE_CODE_STRUCT.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52
53 /* Standard set of definitions for printing, dumping, prefixifying,
54 * and evaluating expressions. */
55
56 const struct exp_descriptor exp_descriptor_standard =
57 {
58 print_subexp_standard,
59 operator_length_standard,
60 operator_check_standard,
61 op_name_standard,
62 dump_subexp_body_standard,
63 evaluate_subexp_standard
64 };
65 \f
66 /* Global variables declared in parser-defs.h (and commented there). */
67 const struct block *expression_context_block;
68 CORE_ADDR expression_context_pc;
69 const struct block *innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int paren_depth;
75 int comma_terminates;
76
77 /* True if parsing an expression to attempt completion. */
78 int parse_completion;
79
80 /* The index of the last struct expression directly before a '.' or
81 '->'. This is set when parsing and is only used when completing a
82 field name. It is -1 if no dereference operation was found. */
83 static int expout_last_struct = -1;
84
85 /* If we are completing a tagged type name, this will be nonzero. */
86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
87
88 /* The token for tagged type name completion. */
89 static char *expout_completion_name;
90
91 \f
92 static unsigned int expressiondebug = 0;
93 static void
94 show_expressiondebug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
98 }
99
100
101 /* Non-zero if an expression parser should set yydebug. */
102 int parser_debug;
103
104 static void
105 show_parserdebug (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
109 }
110
111
112 static void free_funcalls (void *ignore);
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 void _initialize_parse (void);
125
126 /* Data structure for saving values of arglist_len for function calls whose
127 arguments contain other function calls. */
128
129 struct funcall
130 {
131 struct funcall *next;
132 int arglist_len;
133 };
134
135 static struct funcall *funcall_chain;
136
137 /* Begin counting arguments for a function call,
138 saving the data about any containing call. */
139
140 void
141 start_arglist (void)
142 {
143 struct funcall *new;
144
145 new = (struct funcall *) xmalloc (sizeof (struct funcall));
146 new->next = funcall_chain;
147 new->arglist_len = arglist_len;
148 arglist_len = 0;
149 funcall_chain = new;
150 }
151
152 /* Return the number of arguments in a function call just terminated,
153 and restore the data for the containing function call. */
154
155 int
156 end_arglist (void)
157 {
158 int val = arglist_len;
159 struct funcall *call = funcall_chain;
160
161 funcall_chain = call->next;
162 arglist_len = call->arglist_len;
163 xfree (call);
164 return val;
165 }
166
167 /* Free everything in the funcall chain.
168 Used when there is an error inside parsing. */
169
170 static void
171 free_funcalls (void *ignore)
172 {
173 struct funcall *call, *next;
174
175 for (call = funcall_chain; call; call = next)
176 {
177 next = call->next;
178 xfree (call);
179 }
180 }
181 \f
182
183 /* See definition in parser-defs.h. */
184
185 void
186 initialize_expout (struct parser_state *ps, size_t initial_size,
187 const struct language_defn *lang,
188 struct gdbarch *gdbarch)
189 {
190 ps->expout_size = initial_size;
191 ps->expout_ptr = 0;
192 ps->expout = xmalloc (sizeof (struct expression)
193 + EXP_ELEM_TO_BYTES (ps->expout_size));
194 ps->expout->language_defn = lang;
195 ps->expout->gdbarch = gdbarch;
196 }
197
198 /* See definition in parser-defs.h. */
199
200 void
201 reallocate_expout (struct parser_state *ps)
202 {
203 /* Record the actual number of expression elements, and then
204 reallocate the expression memory so that we free up any
205 excess elements. */
206
207 ps->expout->nelts = ps->expout_ptr;
208 ps->expout = (struct expression *)
209 xrealloc (ps->expout,
210 sizeof (struct expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
212 }
213
214 /* This page contains the functions for adding data to the struct expression
215 being constructed. */
216
217 /* Add one element to the end of the expression. */
218
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220 a register through here. */
221
222 static void
223 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
224 {
225 if (ps->expout_ptr >= ps->expout_size)
226 {
227 ps->expout_size *= 2;
228 ps->expout = (struct expression *)
229 xrealloc (ps->expout, sizeof (struct expression)
230 + EXP_ELEM_TO_BYTES (ps->expout_size));
231 }
232 ps->expout->elts[ps->expout_ptr++] = *expelt;
233 }
234
235 void
236 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
237 {
238 union exp_element tmp;
239
240 memset (&tmp, 0, sizeof (union exp_element));
241 tmp.opcode = expelt;
242 write_exp_elt (ps, &tmp);
243 }
244
245 void
246 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
247 {
248 union exp_element tmp;
249
250 memset (&tmp, 0, sizeof (union exp_element));
251 tmp.symbol = expelt;
252 write_exp_elt (ps, &tmp);
253 }
254
255 void
256 write_exp_elt_block (struct parser_state *ps, const struct block *b)
257 {
258 union exp_element tmp;
259
260 memset (&tmp, 0, sizeof (union exp_element));
261 tmp.block = b;
262 write_exp_elt (ps, &tmp);
263 }
264
265 void
266 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
267 {
268 union exp_element tmp;
269
270 memset (&tmp, 0, sizeof (union exp_element));
271 tmp.objfile = objfile;
272 write_exp_elt (ps, &tmp);
273 }
274
275 void
276 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
277 {
278 union exp_element tmp;
279
280 memset (&tmp, 0, sizeof (union exp_element));
281 tmp.longconst = expelt;
282 write_exp_elt (ps, &tmp);
283 }
284
285 void
286 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
287 {
288 union exp_element tmp;
289
290 memset (&tmp, 0, sizeof (union exp_element));
291 tmp.doubleconst = expelt;
292 write_exp_elt (ps, &tmp);
293 }
294
295 void
296 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
297 {
298 union exp_element tmp;
299 int index;
300
301 for (index = 0; index < 16; index++)
302 tmp.decfloatconst[index] = expelt[index];
303
304 write_exp_elt (ps, &tmp);
305 }
306
307 void
308 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
309 {
310 union exp_element tmp;
311
312 memset (&tmp, 0, sizeof (union exp_element));
313 tmp.type = expelt;
314 write_exp_elt (ps, &tmp);
315 }
316
317 void
318 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
319 {
320 union exp_element tmp;
321
322 memset (&tmp, 0, sizeof (union exp_element));
323 tmp.internalvar = expelt;
324 write_exp_elt (ps, &tmp);
325 }
326
327 /* Add a string constant to the end of the expression.
328
329 String constants are stored by first writing an expression element
330 that contains the length of the string, then stuffing the string
331 constant itself into however many expression elements are needed
332 to hold it, and then writing another expression element that contains
333 the length of the string. I.e. an expression element at each end of
334 the string records the string length, so you can skip over the
335 expression elements containing the actual string bytes from either
336 end of the string. Note that this also allows gdb to handle
337 strings with embedded null bytes, as is required for some languages.
338
339 Don't be fooled by the fact that the string is null byte terminated,
340 this is strictly for the convenience of debugging gdb itself.
341 Gdb does not depend up the string being null terminated, since the
342 actual length is recorded in expression elements at each end of the
343 string. The null byte is taken into consideration when computing how
344 many expression elements are required to hold the string constant, of
345 course. */
346
347
348 void
349 write_exp_string (struct parser_state *ps, struct stoken str)
350 {
351 int len = str.length;
352 size_t lenelt;
353 char *strdata;
354
355 /* Compute the number of expression elements required to hold the string
356 (including a null byte terminator), along with one expression element
357 at each end to record the actual string length (not including the
358 null byte terminator). */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361
362 increase_expout_size (ps, lenelt);
363
364 /* Write the leading length expression element (which advances the current
365 expression element index), then write the string constant followed by a
366 terminating null byte, and then write the trailing length expression
367 element. */
368
369 write_exp_elt_longcst (ps, (LONGEST) len);
370 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
371 memcpy (strdata, str.ptr, len);
372 *(strdata + len) = '\0';
373 ps->expout_ptr += lenelt - 2;
374 write_exp_elt_longcst (ps, (LONGEST) len);
375 }
376
377 /* Add a vector of string constants to the end of the expression.
378
379 This adds an OP_STRING operation, but encodes the contents
380 differently from write_exp_string. The language is expected to
381 handle evaluation of this expression itself.
382
383 After the usual OP_STRING header, TYPE is written into the
384 expression as a long constant. The interpretation of this field is
385 up to the language evaluator.
386
387 Next, each string in VEC is written. The length is written as a
388 long constant, followed by the contents of the string. */
389
390 void
391 write_exp_string_vector (struct parser_state *ps, int type,
392 struct stoken_vector *vec)
393 {
394 int i, len;
395 size_t n_slots;
396
397 /* Compute the size. We compute the size in number of slots to
398 avoid issues with string padding. */
399 n_slots = 0;
400 for (i = 0; i < vec->len; ++i)
401 {
402 /* One slot for the length of this element, plus the number of
403 slots needed for this string. */
404 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
405 }
406
407 /* One more slot for the type of the string. */
408 ++n_slots;
409
410 /* Now compute a phony string length. */
411 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
412
413 n_slots += 4;
414 increase_expout_size (ps, n_slots);
415
416 write_exp_elt_opcode (ps, OP_STRING);
417 write_exp_elt_longcst (ps, len);
418 write_exp_elt_longcst (ps, type);
419
420 for (i = 0; i < vec->len; ++i)
421 {
422 write_exp_elt_longcst (ps, vec->tokens[i].length);
423 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
424 vec->tokens[i].length);
425 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
426 }
427
428 write_exp_elt_longcst (ps, len);
429 write_exp_elt_opcode (ps, OP_STRING);
430 }
431
432 /* Add a bitstring constant to the end of the expression.
433
434 Bitstring constants are stored by first writing an expression element
435 that contains the length of the bitstring (in bits), then stuffing the
436 bitstring constant itself into however many expression elements are
437 needed to hold it, and then writing another expression element that
438 contains the length of the bitstring. I.e. an expression element at
439 each end of the bitstring records the bitstring length, so you can skip
440 over the expression elements containing the actual bitstring bytes from
441 either end of the bitstring. */
442
443 void
444 write_exp_bitstring (struct parser_state *ps, struct stoken str)
445 {
446 int bits = str.length; /* length in bits */
447 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
448 size_t lenelt;
449 char *strdata;
450
451 /* Compute the number of expression elements required to hold the bitstring,
452 along with one expression element at each end to record the actual
453 bitstring length in bits. */
454
455 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
456
457 increase_expout_size (ps, lenelt);
458
459 /* Write the leading length expression element (which advances the current
460 expression element index), then write the bitstring constant, and then
461 write the trailing length expression element. */
462
463 write_exp_elt_longcst (ps, (LONGEST) bits);
464 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
465 memcpy (strdata, str.ptr, len);
466 ps->expout_ptr += lenelt - 2;
467 write_exp_elt_longcst (ps, (LONGEST) bits);
468 }
469
470 /* Add the appropriate elements for a minimal symbol to the end of
471 the expression. */
472
473 void
474 write_exp_msymbol (struct parser_state *ps,
475 struct bound_minimal_symbol bound_msym)
476 {
477 struct minimal_symbol *msymbol = bound_msym.minsym;
478 struct objfile *objfile = bound_msym.objfile;
479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
480
481 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
482 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
483 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
484 CORE_ADDR pc;
485
486 /* The minimal symbol might point to a function descriptor;
487 resolve it to the actual code address instead. */
488 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
489 if (pc != addr)
490 {
491 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
492
493 /* In this case, assume we have a code symbol instead of
494 a data symbol. */
495
496 if (ifunc_msym.minsym != NULL
497 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
498 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
499 {
500 /* A function descriptor has been resolved but PC is still in the
501 STT_GNU_IFUNC resolver body (such as because inferior does not
502 run to be able to call it). */
503
504 type = mst_text_gnu_ifunc;
505 }
506 else
507 type = mst_text;
508 section = NULL;
509 addr = pc;
510 }
511
512 if (overlay_debugging)
513 addr = symbol_overlayed_address (addr, section);
514
515 write_exp_elt_opcode (ps, OP_LONG);
516 /* Let's make the type big enough to hold a 64-bit address. */
517 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
518 write_exp_elt_longcst (ps, (LONGEST) addr);
519 write_exp_elt_opcode (ps, OP_LONG);
520
521 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
522 {
523 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
524 write_exp_elt_objfile (ps, objfile);
525 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
526 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
527 return;
528 }
529
530 write_exp_elt_opcode (ps, UNOP_MEMVAL);
531 switch (type)
532 {
533 case mst_text:
534 case mst_file_text:
535 case mst_solib_trampoline:
536 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
537 break;
538
539 case mst_text_gnu_ifunc:
540 write_exp_elt_type (ps, objfile_type (objfile)
541 ->nodebug_text_gnu_ifunc_symbol);
542 break;
543
544 case mst_data:
545 case mst_file_data:
546 case mst_bss:
547 case mst_file_bss:
548 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
549 break;
550
551 case mst_slot_got_plt:
552 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
553 break;
554
555 default:
556 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
557 break;
558 }
559 write_exp_elt_opcode (ps, UNOP_MEMVAL);
560 }
561
562 /* Mark the current index as the starting location of a structure
563 expression. This is used when completing on field names. */
564
565 void
566 mark_struct_expression (struct parser_state *ps)
567 {
568 gdb_assert (parse_completion
569 && expout_tag_completion_type == TYPE_CODE_UNDEF);
570 expout_last_struct = ps->expout_ptr;
571 }
572
573 /* Indicate that the current parser invocation is completing a tag.
574 TAG is the type code of the tag, and PTR and LENGTH represent the
575 start of the tag name. */
576
577 void
578 mark_completion_tag (enum type_code tag, const char *ptr, int length)
579 {
580 gdb_assert (parse_completion
581 && expout_tag_completion_type == TYPE_CODE_UNDEF
582 && expout_completion_name == NULL
583 && expout_last_struct == -1);
584 gdb_assert (tag == TYPE_CODE_UNION
585 || tag == TYPE_CODE_STRUCT
586 || tag == TYPE_CODE_ENUM);
587 expout_tag_completion_type = tag;
588 expout_completion_name = xmalloc (length + 1);
589 memcpy (expout_completion_name, ptr, length);
590 expout_completion_name[length] = '\0';
591 }
592
593 \f
594 /* Recognize tokens that start with '$'. These include:
595
596 $regname A native register name or a "standard
597 register name".
598
599 $variable A convenience variable with a name chosen
600 by the user.
601
602 $digits Value history with index <digits>, starting
603 from the first value which has index 1.
604
605 $$digits Value history with index <digits> relative
606 to the last value. I.e. $$0 is the last
607 value, $$1 is the one previous to that, $$2
608 is the one previous to $$1, etc.
609
610 $ | $0 | $$0 The last value in the value history.
611
612 $$ An abbreviation for the second to the last
613 value in the value history, I.e. $$1 */
614
615 void
616 write_dollar_variable (struct parser_state *ps, struct stoken str)
617 {
618 struct symbol *sym = NULL;
619 struct bound_minimal_symbol msym;
620 struct internalvar *isym = NULL;
621
622 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
623 and $$digits (equivalent to $<-digits> if you could type that). */
624
625 int negate = 0;
626 int i = 1;
627 /* Double dollar means negate the number and add -1 as well.
628 Thus $$ alone means -1. */
629 if (str.length >= 2 && str.ptr[1] == '$')
630 {
631 negate = 1;
632 i = 2;
633 }
634 if (i == str.length)
635 {
636 /* Just dollars (one or two). */
637 i = -negate;
638 goto handle_last;
639 }
640 /* Is the rest of the token digits? */
641 for (; i < str.length; i++)
642 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
643 break;
644 if (i == str.length)
645 {
646 i = atoi (str.ptr + 1 + negate);
647 if (negate)
648 i = -i;
649 goto handle_last;
650 }
651
652 /* Handle tokens that refer to machine registers:
653 $ followed by a register name. */
654 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
655 str.ptr + 1, str.length - 1);
656 if (i >= 0)
657 goto handle_register;
658
659 /* Any names starting with $ are probably debugger internal variables. */
660
661 isym = lookup_only_internalvar (copy_name (str) + 1);
662 if (isym)
663 {
664 write_exp_elt_opcode (ps, OP_INTERNALVAR);
665 write_exp_elt_intern (ps, isym);
666 write_exp_elt_opcode (ps, OP_INTERNALVAR);
667 return;
668 }
669
670 /* On some systems, such as HP-UX and hppa-linux, certain system routines
671 have names beginning with $ or $$. Check for those, first. */
672
673 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
674 VAR_DOMAIN, NULL);
675 if (sym)
676 {
677 write_exp_elt_opcode (ps, OP_VAR_VALUE);
678 write_exp_elt_block (ps, block_found); /* set by lookup_symbol */
679 write_exp_elt_sym (ps, sym);
680 write_exp_elt_opcode (ps, OP_VAR_VALUE);
681 return;
682 }
683 msym = lookup_bound_minimal_symbol (copy_name (str));
684 if (msym.minsym)
685 {
686 write_exp_msymbol (ps, msym);
687 return;
688 }
689
690 /* Any other names are assumed to be debugger internal variables. */
691
692 write_exp_elt_opcode (ps, OP_INTERNALVAR);
693 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
694 write_exp_elt_opcode (ps, OP_INTERNALVAR);
695 return;
696 handle_last:
697 write_exp_elt_opcode (ps, OP_LAST);
698 write_exp_elt_longcst (ps, (LONGEST) i);
699 write_exp_elt_opcode (ps, OP_LAST);
700 return;
701 handle_register:
702 write_exp_elt_opcode (ps, OP_REGISTER);
703 str.length--;
704 str.ptr++;
705 write_exp_string (ps, str);
706 write_exp_elt_opcode (ps, OP_REGISTER);
707 return;
708 }
709
710
711 const char *
712 find_template_name_end (const char *p)
713 {
714 int depth = 1;
715 int just_seen_right = 0;
716 int just_seen_colon = 0;
717 int just_seen_space = 0;
718
719 if (!p || (*p != '<'))
720 return 0;
721
722 while (*++p)
723 {
724 switch (*p)
725 {
726 case '\'':
727 case '\"':
728 case '{':
729 case '}':
730 /* In future, may want to allow these?? */
731 return 0;
732 case '<':
733 depth++; /* start nested template */
734 if (just_seen_colon || just_seen_right || just_seen_space)
735 return 0; /* but not after : or :: or > or space */
736 break;
737 case '>':
738 if (just_seen_colon || just_seen_right)
739 return 0; /* end a (nested?) template */
740 just_seen_right = 1; /* but not after : or :: */
741 if (--depth == 0) /* also disallow >>, insist on > > */
742 return ++p; /* if outermost ended, return */
743 break;
744 case ':':
745 if (just_seen_space || (just_seen_colon > 1))
746 return 0; /* nested class spec coming up */
747 just_seen_colon++; /* we allow :: but not :::: */
748 break;
749 case ' ':
750 break;
751 default:
752 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
753 (*p >= 'A' && *p <= 'Z') ||
754 (*p >= '0' && *p <= '9') ||
755 (*p == '_') || (*p == ',') || /* commas for template args */
756 (*p == '&') || (*p == '*') || /* pointer and ref types */
757 (*p == '(') || (*p == ')') || /* function types */
758 (*p == '[') || (*p == ']'))) /* array types */
759 return 0;
760 }
761 if (*p != ' ')
762 just_seen_space = 0;
763 if (*p != ':')
764 just_seen_colon = 0;
765 if (*p != '>')
766 just_seen_right = 0;
767 }
768 return 0;
769 }
770 \f
771
772 /* Return a null-terminated temporary copy of the name of a string token.
773
774 Tokens that refer to names do so with explicit pointer and length,
775 so they can share the storage that lexptr is parsing.
776 When it is necessary to pass a name to a function that expects
777 a null-terminated string, the substring is copied out
778 into a separate block of storage.
779
780 N.B. A single buffer is reused on each call. */
781
782 char *
783 copy_name (struct stoken token)
784 {
785 /* A temporary buffer for identifiers, so we can null-terminate them.
786 We allocate this with xrealloc. parse_exp_1 used to allocate with
787 alloca, using the size of the whole expression as a conservative
788 estimate of the space needed. However, macro expansion can
789 introduce names longer than the original expression; there's no
790 practical way to know beforehand how large that might be. */
791 static char *namecopy;
792 static size_t namecopy_size;
793
794 /* Make sure there's enough space for the token. */
795 if (namecopy_size < token.length + 1)
796 {
797 namecopy_size = token.length + 1;
798 namecopy = xrealloc (namecopy, token.length + 1);
799 }
800
801 memcpy (namecopy, token.ptr, token.length);
802 namecopy[token.length] = 0;
803
804 return namecopy;
805 }
806 \f
807
808 /* See comments on parser-defs.h. */
809
810 int
811 prefixify_expression (struct expression *expr)
812 {
813 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
814 struct expression *temp;
815 int inpos = expr->nelts, outpos = 0;
816
817 temp = (struct expression *) alloca (len);
818
819 /* Copy the original expression into temp. */
820 memcpy (temp, expr, len);
821
822 return prefixify_subexp (temp, expr, inpos, outpos);
823 }
824
825 /* Return the number of exp_elements in the postfix subexpression
826 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
827
828 int
829 length_of_subexp (struct expression *expr, int endpos)
830 {
831 int oplen, args;
832
833 operator_length (expr, endpos, &oplen, &args);
834
835 while (args > 0)
836 {
837 oplen += length_of_subexp (expr, endpos - oplen);
838 args--;
839 }
840
841 return oplen;
842 }
843
844 /* Sets *OPLENP to the length of the operator whose (last) index is
845 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
846 operator takes. */
847
848 void
849 operator_length (const struct expression *expr, int endpos, int *oplenp,
850 int *argsp)
851 {
852 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
853 oplenp, argsp);
854 }
855
856 /* Default value for operator_length in exp_descriptor vectors. */
857
858 void
859 operator_length_standard (const struct expression *expr, int endpos,
860 int *oplenp, int *argsp)
861 {
862 int oplen = 1;
863 int args = 0;
864 enum f90_range_type range_type;
865 int i;
866
867 if (endpos < 1)
868 error (_("?error in operator_length_standard"));
869
870 i = (int) expr->elts[endpos - 1].opcode;
871
872 switch (i)
873 {
874 /* C++ */
875 case OP_SCOPE:
876 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
877 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
878 break;
879
880 case OP_LONG:
881 case OP_DOUBLE:
882 case OP_DECFLOAT:
883 case OP_VAR_VALUE:
884 oplen = 4;
885 break;
886
887 case OP_TYPE:
888 case OP_BOOL:
889 case OP_LAST:
890 case OP_INTERNALVAR:
891 case OP_VAR_ENTRY_VALUE:
892 oplen = 3;
893 break;
894
895 case OP_COMPLEX:
896 oplen = 3;
897 args = 2;
898 break;
899
900 case OP_FUNCALL:
901 case OP_F77_UNDETERMINED_ARGLIST:
902 oplen = 3;
903 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
904 break;
905
906 case TYPE_INSTANCE:
907 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
908 args = 1;
909 break;
910
911 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
912 oplen = 4;
913 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
914 break;
915
916 case UNOP_MAX:
917 case UNOP_MIN:
918 oplen = 3;
919 break;
920
921 case UNOP_CAST_TYPE:
922 case UNOP_DYNAMIC_CAST:
923 case UNOP_REINTERPRET_CAST:
924 case UNOP_MEMVAL_TYPE:
925 oplen = 1;
926 args = 2;
927 break;
928
929 case BINOP_VAL:
930 case UNOP_CAST:
931 case UNOP_MEMVAL:
932 oplen = 3;
933 args = 1;
934 break;
935
936 case UNOP_MEMVAL_TLS:
937 oplen = 4;
938 args = 1;
939 break;
940
941 case UNOP_ABS:
942 case UNOP_CAP:
943 case UNOP_CHR:
944 case UNOP_FLOAT:
945 case UNOP_HIGH:
946 case UNOP_ODD:
947 case UNOP_ORD:
948 case UNOP_TRUNC:
949 case OP_TYPEOF:
950 case OP_DECLTYPE:
951 case OP_TYPEID:
952 oplen = 1;
953 args = 1;
954 break;
955
956 case OP_ADL_FUNC:
957 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
958 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
959 oplen++;
960 oplen++;
961 break;
962
963 case STRUCTOP_STRUCT:
964 case STRUCTOP_PTR:
965 args = 1;
966 /* fall through */
967 case OP_REGISTER:
968 case OP_M2_STRING:
969 case OP_STRING:
970 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
971 NSString constant. */
972 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
973 case OP_NAME:
974 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
975 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
976 break;
977
978 case OP_ARRAY:
979 oplen = 4;
980 args = longest_to_int (expr->elts[endpos - 2].longconst);
981 args -= longest_to_int (expr->elts[endpos - 3].longconst);
982 args += 1;
983 break;
984
985 case TERNOP_COND:
986 case TERNOP_SLICE:
987 args = 3;
988 break;
989
990 /* Modula-2 */
991 case MULTI_SUBSCRIPT:
992 oplen = 3;
993 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
994 break;
995
996 case BINOP_ASSIGN_MODIFY:
997 oplen = 3;
998 args = 2;
999 break;
1000
1001 /* C++ */
1002 case OP_THIS:
1003 oplen = 2;
1004 break;
1005
1006 case OP_F90_RANGE:
1007 oplen = 3;
1008
1009 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1010 switch (range_type)
1011 {
1012 case LOW_BOUND_DEFAULT:
1013 case HIGH_BOUND_DEFAULT:
1014 args = 1;
1015 break;
1016 case BOTH_BOUND_DEFAULT:
1017 args = 0;
1018 break;
1019 case NONE_BOUND_DEFAULT:
1020 args = 2;
1021 break;
1022 }
1023
1024 break;
1025
1026 default:
1027 args = 1 + (i < (int) BINOP_END);
1028 }
1029
1030 *oplenp = oplen;
1031 *argsp = args;
1032 }
1033
1034 /* Copy the subexpression ending just before index INEND in INEXPR
1035 into OUTEXPR, starting at index OUTBEG.
1036 In the process, convert it from suffix to prefix form.
1037 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1038 Otherwise, it returns the index of the subexpression which is the
1039 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1040
1041 static int
1042 prefixify_subexp (struct expression *inexpr,
1043 struct expression *outexpr, int inend, int outbeg)
1044 {
1045 int oplen;
1046 int args;
1047 int i;
1048 int *arglens;
1049 int result = -1;
1050
1051 operator_length (inexpr, inend, &oplen, &args);
1052
1053 /* Copy the final operator itself, from the end of the input
1054 to the beginning of the output. */
1055 inend -= oplen;
1056 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1057 EXP_ELEM_TO_BYTES (oplen));
1058 outbeg += oplen;
1059
1060 if (expout_last_struct == inend)
1061 result = outbeg - oplen;
1062
1063 /* Find the lengths of the arg subexpressions. */
1064 arglens = (int *) alloca (args * sizeof (int));
1065 for (i = args - 1; i >= 0; i--)
1066 {
1067 oplen = length_of_subexp (inexpr, inend);
1068 arglens[i] = oplen;
1069 inend -= oplen;
1070 }
1071
1072 /* Now copy each subexpression, preserving the order of
1073 the subexpressions, but prefixifying each one.
1074 In this loop, inend starts at the beginning of
1075 the expression this level is working on
1076 and marches forward over the arguments.
1077 outbeg does similarly in the output. */
1078 for (i = 0; i < args; i++)
1079 {
1080 int r;
1081
1082 oplen = arglens[i];
1083 inend += oplen;
1084 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1085 if (r != -1)
1086 {
1087 /* Return immediately. We probably have only parsed a
1088 partial expression, so we don't want to try to reverse
1089 the other operands. */
1090 return r;
1091 }
1092 outbeg += oplen;
1093 }
1094
1095 return result;
1096 }
1097 \f
1098 /* Read an expression from the string *STRINGPTR points to,
1099 parse it, and return a pointer to a struct expression that we malloc.
1100 Use block BLOCK as the lexical context for variable names;
1101 if BLOCK is zero, use the block of the selected stack frame.
1102 Meanwhile, advance *STRINGPTR to point after the expression,
1103 at the first nonwhite character that is not part of the expression
1104 (possibly a null character).
1105
1106 If COMMA is nonzero, stop if a comma is reached. */
1107
1108 struct expression *
1109 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1110 int comma)
1111 {
1112 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1113 }
1114
1115 static struct expression *
1116 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1117 const struct block *block,
1118 int comma, int void_context_p, int *out_subexp)
1119 {
1120 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1121 void_context_p, out_subexp);
1122 }
1123
1124 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1125 no value is expected from the expression.
1126 OUT_SUBEXP is set when attempting to complete a field name; in this
1127 case it is set to the index of the subexpression on the
1128 left-hand-side of the struct op. If not doing such completion, it
1129 is left untouched. */
1130
1131 static struct expression *
1132 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1133 const struct block *block,
1134 int comma, int void_context_p, int *out_subexp)
1135 {
1136 volatile struct gdb_exception except;
1137 struct cleanup *old_chain, *inner_chain;
1138 const struct language_defn *lang = NULL;
1139 struct parser_state ps;
1140 int subexp;
1141
1142 lexptr = *stringptr;
1143 prev_lexptr = NULL;
1144
1145 paren_depth = 0;
1146 type_stack.depth = 0;
1147 expout_last_struct = -1;
1148 expout_tag_completion_type = TYPE_CODE_UNDEF;
1149 xfree (expout_completion_name);
1150 expout_completion_name = NULL;
1151
1152 comma_terminates = comma;
1153
1154 if (lexptr == 0 || *lexptr == 0)
1155 error_no_arg (_("expression to compute"));
1156
1157 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1158 funcall_chain = 0;
1159
1160 expression_context_block = block;
1161
1162 /* If no context specified, try using the current frame, if any. */
1163 if (!expression_context_block)
1164 expression_context_block = get_selected_block (&expression_context_pc);
1165 else if (pc == 0)
1166 expression_context_pc = BLOCK_START (expression_context_block);
1167 else
1168 expression_context_pc = pc;
1169
1170 /* Fall back to using the current source static context, if any. */
1171
1172 if (!expression_context_block)
1173 {
1174 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1175 if (cursal.symtab)
1176 expression_context_block
1177 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1178 if (expression_context_block)
1179 expression_context_pc = BLOCK_START (expression_context_block);
1180 }
1181
1182 if (language_mode == language_mode_auto && block != NULL)
1183 {
1184 /* Find the language associated to the given context block.
1185 Default to the current language if it can not be determined.
1186
1187 Note that using the language corresponding to the current frame
1188 can sometimes give unexpected results. For instance, this
1189 routine is often called several times during the inferior
1190 startup phase to re-parse breakpoint expressions after
1191 a new shared library has been loaded. The language associated
1192 to the current frame at this moment is not relevant for
1193 the breakpoint. Using it would therefore be silly, so it seems
1194 better to rely on the current language rather than relying on
1195 the current frame language to parse the expression. That's why
1196 we do the following language detection only if the context block
1197 has been specifically provided. */
1198 struct symbol *func = block_linkage_function (block);
1199
1200 if (func != NULL)
1201 lang = language_def (SYMBOL_LANGUAGE (func));
1202 if (lang == NULL || lang->la_language == language_unknown)
1203 lang = current_language;
1204 }
1205 else
1206 lang = current_language;
1207
1208 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1209 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1210 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1211 to the value matching SELECTED_FRAME as set by get_current_arch. */
1212
1213 initialize_expout (&ps, 10, lang, get_current_arch ());
1214 inner_chain = make_cleanup_restore_current_language ();
1215 set_language (lang->la_language);
1216
1217 TRY_CATCH (except, RETURN_MASK_ALL)
1218 {
1219 if (lang->la_parser (&ps))
1220 lang->la_error (NULL);
1221 }
1222 if (except.reason < 0)
1223 {
1224 if (! parse_completion)
1225 {
1226 xfree (ps.expout);
1227 throw_exception (except);
1228 }
1229 }
1230
1231 reallocate_expout (&ps);
1232
1233 /* Convert expression from postfix form as generated by yacc
1234 parser, to a prefix form. */
1235
1236 if (expressiondebug)
1237 dump_raw_expression (ps.expout, gdb_stdlog,
1238 "before conversion to prefix form");
1239
1240 subexp = prefixify_expression (ps.expout);
1241 if (out_subexp)
1242 *out_subexp = subexp;
1243
1244 lang->la_post_parser (&ps.expout, void_context_p);
1245
1246 if (expressiondebug)
1247 dump_prefix_expression (ps.expout, gdb_stdlog);
1248
1249 do_cleanups (inner_chain);
1250 discard_cleanups (old_chain);
1251
1252 *stringptr = lexptr;
1253 return ps.expout;
1254 }
1255
1256 /* Parse STRING as an expression, and complain if this fails
1257 to use up all of the contents of STRING. */
1258
1259 struct expression *
1260 parse_expression (const char *string)
1261 {
1262 struct expression *exp;
1263
1264 exp = parse_exp_1 (&string, 0, 0, 0);
1265 if (*string)
1266 error (_("Junk after end of expression."));
1267 return exp;
1268 }
1269
1270 /* Parse STRING as an expression. If parsing ends in the middle of a
1271 field reference, return the type of the left-hand-side of the
1272 reference; furthermore, if the parsing ends in the field name,
1273 return the field name in *NAME. If the parsing ends in the middle
1274 of a field reference, but the reference is somehow invalid, throw
1275 an exception. In all other cases, return NULL. Returned non-NULL
1276 *NAME must be freed by the caller. */
1277
1278 struct type *
1279 parse_expression_for_completion (const char *string, char **name,
1280 enum type_code *code)
1281 {
1282 struct expression *exp = NULL;
1283 struct value *val;
1284 int subexp;
1285 volatile struct gdb_exception except;
1286
1287 TRY_CATCH (except, RETURN_MASK_ERROR)
1288 {
1289 parse_completion = 1;
1290 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1291 }
1292 parse_completion = 0;
1293 if (except.reason < 0 || ! exp)
1294 return NULL;
1295
1296 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1297 {
1298 *code = expout_tag_completion_type;
1299 *name = expout_completion_name;
1300 expout_completion_name = NULL;
1301 return NULL;
1302 }
1303
1304 if (expout_last_struct == -1)
1305 {
1306 xfree (exp);
1307 return NULL;
1308 }
1309
1310 *name = extract_field_op (exp, &subexp);
1311 if (!*name)
1312 {
1313 xfree (exp);
1314 return NULL;
1315 }
1316
1317 /* This might throw an exception. If so, we want to let it
1318 propagate. */
1319 val = evaluate_subexpression_type (exp, subexp);
1320 /* (*NAME) is a part of the EXP memory block freed below. */
1321 *name = xstrdup (*name);
1322 xfree (exp);
1323
1324 return value_type (val);
1325 }
1326
1327 /* A post-parser that does nothing. */
1328
1329 void
1330 null_post_parser (struct expression **exp, int void_context_p)
1331 {
1332 }
1333
1334 /* Parse floating point value P of length LEN.
1335 Return 0 (false) if invalid, 1 (true) if valid.
1336 The successfully parsed number is stored in D.
1337 *SUFFIX points to the suffix of the number in P.
1338
1339 NOTE: This accepts the floating point syntax that sscanf accepts. */
1340
1341 int
1342 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1343 {
1344 char *copy;
1345 int n, num;
1346
1347 copy = xmalloc (len + 1);
1348 memcpy (copy, p, len);
1349 copy[len] = 0;
1350
1351 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1352 xfree (copy);
1353
1354 /* The sscanf man page suggests not making any assumptions on the effect
1355 of %n on the result, so we don't.
1356 That is why we simply test num == 0. */
1357 if (num == 0)
1358 return 0;
1359
1360 *suffix = p + n;
1361 return 1;
1362 }
1363
1364 /* Parse floating point value P of length LEN, using the C syntax for floats.
1365 Return 0 (false) if invalid, 1 (true) if valid.
1366 The successfully parsed number is stored in *D.
1367 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1368
1369 int
1370 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1371 DOUBLEST *d, struct type **t)
1372 {
1373 const char *suffix;
1374 int suffix_len;
1375 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1376
1377 if (! parse_float (p, len, d, &suffix))
1378 return 0;
1379
1380 suffix_len = p + len - suffix;
1381
1382 if (suffix_len == 0)
1383 *t = builtin_types->builtin_double;
1384 else if (suffix_len == 1)
1385 {
1386 /* Handle suffixes: 'f' for float, 'l' for long double. */
1387 if (tolower (*suffix) == 'f')
1388 *t = builtin_types->builtin_float;
1389 else if (tolower (*suffix) == 'l')
1390 *t = builtin_types->builtin_long_double;
1391 else
1392 return 0;
1393 }
1394 else
1395 return 0;
1396
1397 return 1;
1398 }
1399 \f
1400 /* Stuff for maintaining a stack of types. Currently just used by C, but
1401 probably useful for any language which declares its types "backwards". */
1402
1403 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1404
1405 static void
1406 type_stack_reserve (struct type_stack *stack, int howmuch)
1407 {
1408 if (stack->depth + howmuch >= stack->size)
1409 {
1410 stack->size *= 2;
1411 if (stack->size < howmuch)
1412 stack->size = howmuch;
1413 stack->elements = xrealloc (stack->elements,
1414 stack->size * sizeof (union type_stack_elt));
1415 }
1416 }
1417
1418 /* Ensure that there is a single open slot in the global type stack. */
1419
1420 static void
1421 check_type_stack_depth (void)
1422 {
1423 type_stack_reserve (&type_stack, 1);
1424 }
1425
1426 /* A helper function for insert_type and insert_type_address_space.
1427 This does work of expanding the type stack and inserting the new
1428 element, ELEMENT, into the stack at location SLOT. */
1429
1430 static void
1431 insert_into_type_stack (int slot, union type_stack_elt element)
1432 {
1433 check_type_stack_depth ();
1434
1435 if (slot < type_stack.depth)
1436 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1437 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1438 type_stack.elements[slot] = element;
1439 ++type_stack.depth;
1440 }
1441
1442 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1443 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1444 a qualifier, it is inserted at slot 1 (just above a previous
1445 tp_pointer) if there is anything on the stack, or simply pushed if
1446 the stack is empty. Other values for TP are invalid. */
1447
1448 void
1449 insert_type (enum type_pieces tp)
1450 {
1451 union type_stack_elt element;
1452 int slot;
1453
1454 gdb_assert (tp == tp_pointer || tp == tp_reference
1455 || tp == tp_const || tp == tp_volatile);
1456
1457 /* If there is anything on the stack (we know it will be a
1458 tp_pointer), insert the qualifier above it. Otherwise, simply
1459 push this on the top of the stack. */
1460 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1461 slot = 1;
1462 else
1463 slot = 0;
1464
1465 element.piece = tp;
1466 insert_into_type_stack (slot, element);
1467 }
1468
1469 void
1470 push_type (enum type_pieces tp)
1471 {
1472 check_type_stack_depth ();
1473 type_stack.elements[type_stack.depth++].piece = tp;
1474 }
1475
1476 void
1477 push_type_int (int n)
1478 {
1479 check_type_stack_depth ();
1480 type_stack.elements[type_stack.depth++].int_val = n;
1481 }
1482
1483 /* Insert a tp_space_identifier and the corresponding address space
1484 value into the stack. STRING is the name of an address space, as
1485 recognized by address_space_name_to_int. If the stack is empty,
1486 the new elements are simply pushed. If the stack is not empty,
1487 this function assumes that the first item on the stack is a
1488 tp_pointer, and the new values are inserted above the first
1489 item. */
1490
1491 void
1492 insert_type_address_space (struct parser_state *pstate, char *string)
1493 {
1494 union type_stack_elt element;
1495 int slot;
1496
1497 /* If there is anything on the stack (we know it will be a
1498 tp_pointer), insert the address space qualifier above it.
1499 Otherwise, simply push this on the top of the stack. */
1500 if (type_stack.depth)
1501 slot = 1;
1502 else
1503 slot = 0;
1504
1505 element.piece = tp_space_identifier;
1506 insert_into_type_stack (slot, element);
1507 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1508 string);
1509 insert_into_type_stack (slot, element);
1510 }
1511
1512 enum type_pieces
1513 pop_type (void)
1514 {
1515 if (type_stack.depth)
1516 return type_stack.elements[--type_stack.depth].piece;
1517 return tp_end;
1518 }
1519
1520 int
1521 pop_type_int (void)
1522 {
1523 if (type_stack.depth)
1524 return type_stack.elements[--type_stack.depth].int_val;
1525 /* "Can't happen". */
1526 return 0;
1527 }
1528
1529 /* Pop a type list element from the global type stack. */
1530
1531 static VEC (type_ptr) *
1532 pop_typelist (void)
1533 {
1534 gdb_assert (type_stack.depth);
1535 return type_stack.elements[--type_stack.depth].typelist_val;
1536 }
1537
1538 /* Pop a type_stack element from the global type stack. */
1539
1540 static struct type_stack *
1541 pop_type_stack (void)
1542 {
1543 gdb_assert (type_stack.depth);
1544 return type_stack.elements[--type_stack.depth].stack_val;
1545 }
1546
1547 /* Append the elements of the type stack FROM to the type stack TO.
1548 Always returns TO. */
1549
1550 struct type_stack *
1551 append_type_stack (struct type_stack *to, struct type_stack *from)
1552 {
1553 type_stack_reserve (to, from->depth);
1554
1555 memcpy (&to->elements[to->depth], &from->elements[0],
1556 from->depth * sizeof (union type_stack_elt));
1557 to->depth += from->depth;
1558
1559 return to;
1560 }
1561
1562 /* Push the type stack STACK as an element on the global type stack. */
1563
1564 void
1565 push_type_stack (struct type_stack *stack)
1566 {
1567 check_type_stack_depth ();
1568 type_stack.elements[type_stack.depth++].stack_val = stack;
1569 push_type (tp_type_stack);
1570 }
1571
1572 /* Copy the global type stack into a newly allocated type stack and
1573 return it. The global stack is cleared. The returned type stack
1574 must be freed with type_stack_cleanup. */
1575
1576 struct type_stack *
1577 get_type_stack (void)
1578 {
1579 struct type_stack *result = XNEW (struct type_stack);
1580
1581 *result = type_stack;
1582 type_stack.depth = 0;
1583 type_stack.size = 0;
1584 type_stack.elements = NULL;
1585
1586 return result;
1587 }
1588
1589 /* A cleanup function that destroys a single type stack. */
1590
1591 void
1592 type_stack_cleanup (void *arg)
1593 {
1594 struct type_stack *stack = arg;
1595
1596 xfree (stack->elements);
1597 xfree (stack);
1598 }
1599
1600 /* Push a function type with arguments onto the global type stack.
1601 LIST holds the argument types. If the final item in LIST is NULL,
1602 then the function will be varargs. */
1603
1604 void
1605 push_typelist (VEC (type_ptr) *list)
1606 {
1607 check_type_stack_depth ();
1608 type_stack.elements[type_stack.depth++].typelist_val = list;
1609 push_type (tp_function_with_arguments);
1610 }
1611
1612 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1613 as modified by all the stuff on the stack. */
1614 struct type *
1615 follow_types (struct type *follow_type)
1616 {
1617 int done = 0;
1618 int make_const = 0;
1619 int make_volatile = 0;
1620 int make_addr_space = 0;
1621 int array_size;
1622
1623 while (!done)
1624 switch (pop_type ())
1625 {
1626 case tp_end:
1627 done = 1;
1628 if (make_const)
1629 follow_type = make_cv_type (make_const,
1630 TYPE_VOLATILE (follow_type),
1631 follow_type, 0);
1632 if (make_volatile)
1633 follow_type = make_cv_type (TYPE_CONST (follow_type),
1634 make_volatile,
1635 follow_type, 0);
1636 if (make_addr_space)
1637 follow_type = make_type_with_address_space (follow_type,
1638 make_addr_space);
1639 make_const = make_volatile = 0;
1640 make_addr_space = 0;
1641 break;
1642 case tp_const:
1643 make_const = 1;
1644 break;
1645 case tp_volatile:
1646 make_volatile = 1;
1647 break;
1648 case tp_space_identifier:
1649 make_addr_space = pop_type_int ();
1650 break;
1651 case tp_pointer:
1652 follow_type = lookup_pointer_type (follow_type);
1653 if (make_const)
1654 follow_type = make_cv_type (make_const,
1655 TYPE_VOLATILE (follow_type),
1656 follow_type, 0);
1657 if (make_volatile)
1658 follow_type = make_cv_type (TYPE_CONST (follow_type),
1659 make_volatile,
1660 follow_type, 0);
1661 if (make_addr_space)
1662 follow_type = make_type_with_address_space (follow_type,
1663 make_addr_space);
1664 make_const = make_volatile = 0;
1665 make_addr_space = 0;
1666 break;
1667 case tp_reference:
1668 follow_type = lookup_reference_type (follow_type);
1669 if (make_const)
1670 follow_type = make_cv_type (make_const,
1671 TYPE_VOLATILE (follow_type),
1672 follow_type, 0);
1673 if (make_volatile)
1674 follow_type = make_cv_type (TYPE_CONST (follow_type),
1675 make_volatile,
1676 follow_type, 0);
1677 if (make_addr_space)
1678 follow_type = make_type_with_address_space (follow_type,
1679 make_addr_space);
1680 make_const = make_volatile = 0;
1681 make_addr_space = 0;
1682 break;
1683 case tp_array:
1684 array_size = pop_type_int ();
1685 /* FIXME-type-allocation: need a way to free this type when we are
1686 done with it. */
1687 follow_type =
1688 lookup_array_range_type (follow_type,
1689 0, array_size >= 0 ? array_size - 1 : 0);
1690 if (array_size < 0)
1691 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1692 = PROP_UNDEFINED;
1693 break;
1694 case tp_function:
1695 /* FIXME-type-allocation: need a way to free this type when we are
1696 done with it. */
1697 follow_type = lookup_function_type (follow_type);
1698 break;
1699
1700 case tp_function_with_arguments:
1701 {
1702 VEC (type_ptr) *args = pop_typelist ();
1703
1704 follow_type
1705 = lookup_function_type_with_arguments (follow_type,
1706 VEC_length (type_ptr, args),
1707 VEC_address (type_ptr,
1708 args));
1709 VEC_free (type_ptr, args);
1710 }
1711 break;
1712
1713 case tp_type_stack:
1714 {
1715 struct type_stack *stack = pop_type_stack ();
1716 /* Sort of ugly, but not really much worse than the
1717 alternatives. */
1718 struct type_stack save = type_stack;
1719
1720 type_stack = *stack;
1721 follow_type = follow_types (follow_type);
1722 gdb_assert (type_stack.depth == 0);
1723
1724 type_stack = save;
1725 }
1726 break;
1727 default:
1728 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1729 }
1730 return follow_type;
1731 }
1732 \f
1733 /* This function avoids direct calls to fprintf
1734 in the parser generated debug code. */
1735 void
1736 parser_fprintf (FILE *x, const char *y, ...)
1737 {
1738 va_list args;
1739
1740 va_start (args, y);
1741 if (x == stderr)
1742 vfprintf_unfiltered (gdb_stderr, y, args);
1743 else
1744 {
1745 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1746 vfprintf_unfiltered (gdb_stderr, y, args);
1747 }
1748 va_end (args);
1749 }
1750
1751 /* Implementation of the exp_descriptor method operator_check. */
1752
1753 int
1754 operator_check_standard (struct expression *exp, int pos,
1755 int (*objfile_func) (struct objfile *objfile,
1756 void *data),
1757 void *data)
1758 {
1759 const union exp_element *const elts = exp->elts;
1760 struct type *type = NULL;
1761 struct objfile *objfile = NULL;
1762
1763 /* Extended operators should have been already handled by exp_descriptor
1764 iterate method of its specific language. */
1765 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1766
1767 /* Track the callers of write_exp_elt_type for this table. */
1768
1769 switch (elts[pos].opcode)
1770 {
1771 case BINOP_VAL:
1772 case OP_COMPLEX:
1773 case OP_DECFLOAT:
1774 case OP_DOUBLE:
1775 case OP_LONG:
1776 case OP_SCOPE:
1777 case OP_TYPE:
1778 case UNOP_CAST:
1779 case UNOP_MAX:
1780 case UNOP_MEMVAL:
1781 case UNOP_MIN:
1782 type = elts[pos + 1].type;
1783 break;
1784
1785 case TYPE_INSTANCE:
1786 {
1787 LONGEST arg, nargs = elts[pos + 1].longconst;
1788
1789 for (arg = 0; arg < nargs; arg++)
1790 {
1791 struct type *type = elts[pos + 2 + arg].type;
1792 struct objfile *objfile = TYPE_OBJFILE (type);
1793
1794 if (objfile && (*objfile_func) (objfile, data))
1795 return 1;
1796 }
1797 }
1798 break;
1799
1800 case UNOP_MEMVAL_TLS:
1801 objfile = elts[pos + 1].objfile;
1802 type = elts[pos + 2].type;
1803 break;
1804
1805 case OP_VAR_VALUE:
1806 {
1807 const struct block *const block = elts[pos + 1].block;
1808 const struct symbol *const symbol = elts[pos + 2].symbol;
1809
1810 /* Check objfile where the variable itself is placed.
1811 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1812 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1813 return 1;
1814
1815 /* Check objfile where is placed the code touching the variable. */
1816 objfile = lookup_objfile_from_block (block);
1817
1818 type = SYMBOL_TYPE (symbol);
1819 }
1820 break;
1821 }
1822
1823 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1824
1825 if (type && TYPE_OBJFILE (type)
1826 && (*objfile_func) (TYPE_OBJFILE (type), data))
1827 return 1;
1828 if (objfile && (*objfile_func) (objfile, data))
1829 return 1;
1830
1831 return 0;
1832 }
1833
1834 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1835 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1836 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1837 returns non-zero value then (any other) non-zero value is immediately
1838 returned to the caller. Otherwise zero is returned after iterating
1839 through whole EXP. */
1840
1841 static int
1842 exp_iterate (struct expression *exp,
1843 int (*objfile_func) (struct objfile *objfile, void *data),
1844 void *data)
1845 {
1846 int endpos;
1847
1848 for (endpos = exp->nelts; endpos > 0; )
1849 {
1850 int pos, args, oplen = 0;
1851
1852 operator_length (exp, endpos, &oplen, &args);
1853 gdb_assert (oplen > 0);
1854
1855 pos = endpos - oplen;
1856 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1857 objfile_func, data))
1858 return 1;
1859
1860 endpos = pos;
1861 }
1862
1863 return 0;
1864 }
1865
1866 /* Helper for exp_uses_objfile. */
1867
1868 static int
1869 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1870 {
1871 struct objfile *objfile = objfile_voidp;
1872
1873 if (exp_objfile->separate_debug_objfile_backlink)
1874 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1875
1876 return exp_objfile == objfile;
1877 }
1878
1879 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1880 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1881 file. */
1882
1883 int
1884 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1885 {
1886 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1887
1888 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1889 }
1890
1891 /* See definition in parser-defs.h. */
1892
1893 void
1894 increase_expout_size (struct parser_state *ps, size_t lenelt)
1895 {
1896 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1897 {
1898 ps->expout_size = max (ps->expout_size * 2,
1899 ps->expout_ptr + lenelt + 10);
1900 ps->expout = (struct expression *)
1901 xrealloc (ps->expout, (sizeof (struct expression)
1902 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1903 }
1904 }
1905
1906 void
1907 _initialize_parse (void)
1908 {
1909 type_stack.size = 0;
1910 type_stack.depth = 0;
1911 type_stack.elements = NULL;
1912
1913 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1914 &expressiondebug,
1915 _("Set expression debugging."),
1916 _("Show expression debugging."),
1917 _("When non-zero, the internal representation "
1918 "of expressions will be printed."),
1919 NULL,
1920 show_expressiondebug,
1921 &setdebuglist, &showdebuglist);
1922 add_setshow_boolean_cmd ("parser", class_maintenance,
1923 &parser_debug,
1924 _("Set parser debugging."),
1925 _("Show parser debugging."),
1926 _("When non-zero, expression parser "
1927 "tracing will be enabled."),
1928 NULL,
1929 show_parserdebug,
1930 &setdebuglist, &showdebuglist);
1931 }
This page took 0.111971 seconds and 5 git commands to generate.