Remove unnecessary function prototypes.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 const struct block *innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static char *expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Data structure for saving values of arglist_len for function calls whose
125 arguments contain other function calls. */
126
127 static std::vector<int> *funcall_chain;
128
129 /* Begin counting arguments for a function call,
130 saving the data about any containing call. */
131
132 void
133 start_arglist (void)
134 {
135 funcall_chain->push_back (arglist_len);
136 arglist_len = 0;
137 }
138
139 /* Return the number of arguments in a function call just terminated,
140 and restore the data for the containing function call. */
141
142 int
143 end_arglist (void)
144 {
145 int val = arglist_len;
146 arglist_len = funcall_chain->back ();
147 funcall_chain->pop_back ();
148 return val;
149 }
150
151 \f
152
153 /* See definition in parser-defs.h. */
154
155 void
156 initialize_expout (struct parser_state *ps, size_t initial_size,
157 const struct language_defn *lang,
158 struct gdbarch *gdbarch)
159 {
160 ps->expout_size = initial_size;
161 ps->expout_ptr = 0;
162 ps->expout
163 = (struct expression *) xmalloc (sizeof (struct expression)
164 + EXP_ELEM_TO_BYTES (ps->expout_size));
165 ps->expout->language_defn = lang;
166 ps->expout->gdbarch = gdbarch;
167 }
168
169 /* See definition in parser-defs.h. */
170
171 void
172 reallocate_expout (struct parser_state *ps)
173 {
174 /* Record the actual number of expression elements, and then
175 reallocate the expression memory so that we free up any
176 excess elements. */
177
178 ps->expout->nelts = ps->expout_ptr;
179 ps->expout = (struct expression *)
180 xrealloc (ps->expout,
181 sizeof (struct expression)
182 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
183 }
184
185 /* This page contains the functions for adding data to the struct expression
186 being constructed. */
187
188 /* Add one element to the end of the expression. */
189
190 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
191 a register through here. */
192
193 static void
194 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
195 {
196 if (ps->expout_ptr >= ps->expout_size)
197 {
198 ps->expout_size *= 2;
199 ps->expout = (struct expression *)
200 xrealloc (ps->expout, sizeof (struct expression)
201 + EXP_ELEM_TO_BYTES (ps->expout_size));
202 }
203 ps->expout->elts[ps->expout_ptr++] = *expelt;
204 }
205
206 void
207 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
208 {
209 union exp_element tmp;
210
211 memset (&tmp, 0, sizeof (union exp_element));
212 tmp.opcode = expelt;
213 write_exp_elt (ps, &tmp);
214 }
215
216 void
217 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
218 {
219 union exp_element tmp;
220
221 memset (&tmp, 0, sizeof (union exp_element));
222 tmp.symbol = expelt;
223 write_exp_elt (ps, &tmp);
224 }
225
226 void
227 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
228 {
229 union exp_element tmp;
230
231 memset (&tmp, 0, sizeof (union exp_element));
232 tmp.msymbol = expelt;
233 write_exp_elt (ps, &tmp);
234 }
235
236 void
237 write_exp_elt_block (struct parser_state *ps, const struct block *b)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.block = b;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.objfile = objfile;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.longconst = expelt;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.doubleconst = expelt;
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
278 {
279 union exp_element tmp;
280 int index;
281
282 for (index = 0; index < 16; index++)
283 tmp.decfloatconst[index] = expelt[index];
284
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.type = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
300 {
301 union exp_element tmp;
302
303 memset (&tmp, 0, sizeof (union exp_element));
304 tmp.internalvar = expelt;
305 write_exp_elt (ps, &tmp);
306 }
307
308 /* Add a string constant to the end of the expression.
309
310 String constants are stored by first writing an expression element
311 that contains the length of the string, then stuffing the string
312 constant itself into however many expression elements are needed
313 to hold it, and then writing another expression element that contains
314 the length of the string. I.e. an expression element at each end of
315 the string records the string length, so you can skip over the
316 expression elements containing the actual string bytes from either
317 end of the string. Note that this also allows gdb to handle
318 strings with embedded null bytes, as is required for some languages.
319
320 Don't be fooled by the fact that the string is null byte terminated,
321 this is strictly for the convenience of debugging gdb itself.
322 Gdb does not depend up the string being null terminated, since the
323 actual length is recorded in expression elements at each end of the
324 string. The null byte is taken into consideration when computing how
325 many expression elements are required to hold the string constant, of
326 course. */
327
328
329 void
330 write_exp_string (struct parser_state *ps, struct stoken str)
331 {
332 int len = str.length;
333 size_t lenelt;
334 char *strdata;
335
336 /* Compute the number of expression elements required to hold the string
337 (including a null byte terminator), along with one expression element
338 at each end to record the actual string length (not including the
339 null byte terminator). */
340
341 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
342
343 increase_expout_size (ps, lenelt);
344
345 /* Write the leading length expression element (which advances the current
346 expression element index), then write the string constant followed by a
347 terminating null byte, and then write the trailing length expression
348 element. */
349
350 write_exp_elt_longcst (ps, (LONGEST) len);
351 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 *(strdata + len) = '\0';
354 ps->expout_ptr += lenelt - 2;
355 write_exp_elt_longcst (ps, (LONGEST) len);
356 }
357
358 /* Add a vector of string constants to the end of the expression.
359
360 This adds an OP_STRING operation, but encodes the contents
361 differently from write_exp_string. The language is expected to
362 handle evaluation of this expression itself.
363
364 After the usual OP_STRING header, TYPE is written into the
365 expression as a long constant. The interpretation of this field is
366 up to the language evaluator.
367
368 Next, each string in VEC is written. The length is written as a
369 long constant, followed by the contents of the string. */
370
371 void
372 write_exp_string_vector (struct parser_state *ps, int type,
373 struct stoken_vector *vec)
374 {
375 int i, len;
376 size_t n_slots;
377
378 /* Compute the size. We compute the size in number of slots to
379 avoid issues with string padding. */
380 n_slots = 0;
381 for (i = 0; i < vec->len; ++i)
382 {
383 /* One slot for the length of this element, plus the number of
384 slots needed for this string. */
385 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
386 }
387
388 /* One more slot for the type of the string. */
389 ++n_slots;
390
391 /* Now compute a phony string length. */
392 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
393
394 n_slots += 4;
395 increase_expout_size (ps, n_slots);
396
397 write_exp_elt_opcode (ps, OP_STRING);
398 write_exp_elt_longcst (ps, len);
399 write_exp_elt_longcst (ps, type);
400
401 for (i = 0; i < vec->len; ++i)
402 {
403 write_exp_elt_longcst (ps, vec->tokens[i].length);
404 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
405 vec->tokens[i].length);
406 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 write_exp_elt_longcst (ps, len);
410 write_exp_elt_opcode (ps, OP_STRING);
411 }
412
413 /* Add a bitstring constant to the end of the expression.
414
415 Bitstring constants are stored by first writing an expression element
416 that contains the length of the bitstring (in bits), then stuffing the
417 bitstring constant itself into however many expression elements are
418 needed to hold it, and then writing another expression element that
419 contains the length of the bitstring. I.e. an expression element at
420 each end of the bitstring records the bitstring length, so you can skip
421 over the expression elements containing the actual bitstring bytes from
422 either end of the bitstring. */
423
424 void
425 write_exp_bitstring (struct parser_state *ps, struct stoken str)
426 {
427 int bits = str.length; /* length in bits */
428 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
429 size_t lenelt;
430 char *strdata;
431
432 /* Compute the number of expression elements required to hold the bitstring,
433 along with one expression element at each end to record the actual
434 bitstring length in bits. */
435
436 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
437
438 increase_expout_size (ps, lenelt);
439
440 /* Write the leading length expression element (which advances the current
441 expression element index), then write the bitstring constant, and then
442 write the trailing length expression element. */
443
444 write_exp_elt_longcst (ps, (LONGEST) bits);
445 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
446 memcpy (strdata, str.ptr, len);
447 ps->expout_ptr += lenelt - 2;
448 write_exp_elt_longcst (ps, (LONGEST) bits);
449 }
450
451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
452 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
453 address. */
454
455 type *
456 find_minsym_type_and_address (minimal_symbol *msymbol,
457 struct objfile *objfile,
458 CORE_ADDR *address_p)
459 {
460 bound_minimal_symbol bound_msym = {msymbol, objfile};
461 struct gdbarch *gdbarch = get_objfile_arch (objfile);
462 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
463 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
464 CORE_ADDR pc;
465
466 bool is_tls = (section != NULL
467 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
468
469 /* Addresses of TLS symbols are really offsets into a
470 per-objfile/per-thread storage block. */
471 CORE_ADDR addr = (is_tls
472 ? MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym)
473 : BMSYMBOL_VALUE_ADDRESS (bound_msym));
474
475 /* The minimal symbol might point to a function descriptor;
476 resolve it to the actual code address instead. */
477 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
478 if (pc != addr)
479 {
480 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
481
482 /* In this case, assume we have a code symbol instead of
483 a data symbol. */
484
485 if (ifunc_msym.minsym != NULL
486 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
487 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
488 {
489 /* A function descriptor has been resolved but PC is still in the
490 STT_GNU_IFUNC resolver body (such as because inferior does not
491 run to be able to call it). */
492
493 type = mst_text_gnu_ifunc;
494 }
495 else
496 type = mst_text;
497 section = NULL;
498 addr = pc;
499 }
500
501 if (overlay_debugging)
502 addr = symbol_overlayed_address (addr, section);
503
504 if (is_tls)
505 {
506 /* Skip translation if caller does not need the address. */
507 if (address_p != NULL)
508 *address_p = target_translate_tls_address (objfile, addr);
509 return objfile_type (objfile)->nodebug_tls_symbol;
510 }
511
512 if (address_p != NULL)
513 *address_p = addr;
514
515 struct type *the_type;
516
517 switch (type)
518 {
519 case mst_text:
520 case mst_file_text:
521 case mst_solib_trampoline:
522 return objfile_type (objfile)->nodebug_text_symbol;
523
524 case mst_text_gnu_ifunc:
525 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
526
527 case mst_data:
528 case mst_file_data:
529 case mst_bss:
530 case mst_file_bss:
531 return objfile_type (objfile)->nodebug_data_symbol;
532
533 case mst_slot_got_plt:
534 return objfile_type (objfile)->nodebug_got_plt_symbol;
535
536 default:
537 return objfile_type (objfile)->nodebug_unknown_symbol;
538 }
539 }
540
541 /* Add the appropriate elements for a minimal symbol to the end of
542 the expression. */
543
544 void
545 write_exp_msymbol (struct parser_state *ps,
546 struct bound_minimal_symbol bound_msym)
547 {
548 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
549 write_exp_elt_objfile (ps, bound_msym.objfile);
550 write_exp_elt_msym (ps, bound_msym.minsym);
551 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
552 }
553
554 /* Mark the current index as the starting location of a structure
555 expression. This is used when completing on field names. */
556
557 void
558 mark_struct_expression (struct parser_state *ps)
559 {
560 gdb_assert (parse_completion
561 && expout_tag_completion_type == TYPE_CODE_UNDEF);
562 expout_last_struct = ps->expout_ptr;
563 }
564
565 /* Indicate that the current parser invocation is completing a tag.
566 TAG is the type code of the tag, and PTR and LENGTH represent the
567 start of the tag name. */
568
569 void
570 mark_completion_tag (enum type_code tag, const char *ptr, int length)
571 {
572 gdb_assert (parse_completion
573 && expout_tag_completion_type == TYPE_CODE_UNDEF
574 && expout_completion_name == NULL
575 && expout_last_struct == -1);
576 gdb_assert (tag == TYPE_CODE_UNION
577 || tag == TYPE_CODE_STRUCT
578 || tag == TYPE_CODE_ENUM);
579 expout_tag_completion_type = tag;
580 expout_completion_name = (char *) xmalloc (length + 1);
581 memcpy (expout_completion_name, ptr, length);
582 expout_completion_name[length] = '\0';
583 }
584
585 \f
586 /* Recognize tokens that start with '$'. These include:
587
588 $regname A native register name or a "standard
589 register name".
590
591 $variable A convenience variable with a name chosen
592 by the user.
593
594 $digits Value history with index <digits>, starting
595 from the first value which has index 1.
596
597 $$digits Value history with index <digits> relative
598 to the last value. I.e. $$0 is the last
599 value, $$1 is the one previous to that, $$2
600 is the one previous to $$1, etc.
601
602 $ | $0 | $$0 The last value in the value history.
603
604 $$ An abbreviation for the second to the last
605 value in the value history, I.e. $$1 */
606
607 void
608 write_dollar_variable (struct parser_state *ps, struct stoken str)
609 {
610 struct block_symbol sym;
611 struct bound_minimal_symbol msym;
612 struct internalvar *isym = NULL;
613
614 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
615 and $$digits (equivalent to $<-digits> if you could type that). */
616
617 int negate = 0;
618 int i = 1;
619 /* Double dollar means negate the number and add -1 as well.
620 Thus $$ alone means -1. */
621 if (str.length >= 2 && str.ptr[1] == '$')
622 {
623 negate = 1;
624 i = 2;
625 }
626 if (i == str.length)
627 {
628 /* Just dollars (one or two). */
629 i = -negate;
630 goto handle_last;
631 }
632 /* Is the rest of the token digits? */
633 for (; i < str.length; i++)
634 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
635 break;
636 if (i == str.length)
637 {
638 i = atoi (str.ptr + 1 + negate);
639 if (negate)
640 i = -i;
641 goto handle_last;
642 }
643
644 /* Handle tokens that refer to machine registers:
645 $ followed by a register name. */
646 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
647 str.ptr + 1, str.length - 1);
648 if (i >= 0)
649 goto handle_register;
650
651 /* Any names starting with $ are probably debugger internal variables. */
652
653 isym = lookup_only_internalvar (copy_name (str) + 1);
654 if (isym)
655 {
656 write_exp_elt_opcode (ps, OP_INTERNALVAR);
657 write_exp_elt_intern (ps, isym);
658 write_exp_elt_opcode (ps, OP_INTERNALVAR);
659 return;
660 }
661
662 /* On some systems, such as HP-UX and hppa-linux, certain system routines
663 have names beginning with $ or $$. Check for those, first. */
664
665 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
666 VAR_DOMAIN, NULL);
667 if (sym.symbol)
668 {
669 write_exp_elt_opcode (ps, OP_VAR_VALUE);
670 write_exp_elt_block (ps, sym.block);
671 write_exp_elt_sym (ps, sym.symbol);
672 write_exp_elt_opcode (ps, OP_VAR_VALUE);
673 return;
674 }
675 msym = lookup_bound_minimal_symbol (copy_name (str));
676 if (msym.minsym)
677 {
678 write_exp_msymbol (ps, msym);
679 return;
680 }
681
682 /* Any other names are assumed to be debugger internal variables. */
683
684 write_exp_elt_opcode (ps, OP_INTERNALVAR);
685 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
686 write_exp_elt_opcode (ps, OP_INTERNALVAR);
687 return;
688 handle_last:
689 write_exp_elt_opcode (ps, OP_LAST);
690 write_exp_elt_longcst (ps, (LONGEST) i);
691 write_exp_elt_opcode (ps, OP_LAST);
692 return;
693 handle_register:
694 write_exp_elt_opcode (ps, OP_REGISTER);
695 str.length--;
696 str.ptr++;
697 write_exp_string (ps, str);
698 write_exp_elt_opcode (ps, OP_REGISTER);
699 return;
700 }
701
702
703 const char *
704 find_template_name_end (const char *p)
705 {
706 int depth = 1;
707 int just_seen_right = 0;
708 int just_seen_colon = 0;
709 int just_seen_space = 0;
710
711 if (!p || (*p != '<'))
712 return 0;
713
714 while (*++p)
715 {
716 switch (*p)
717 {
718 case '\'':
719 case '\"':
720 case '{':
721 case '}':
722 /* In future, may want to allow these?? */
723 return 0;
724 case '<':
725 depth++; /* start nested template */
726 if (just_seen_colon || just_seen_right || just_seen_space)
727 return 0; /* but not after : or :: or > or space */
728 break;
729 case '>':
730 if (just_seen_colon || just_seen_right)
731 return 0; /* end a (nested?) template */
732 just_seen_right = 1; /* but not after : or :: */
733 if (--depth == 0) /* also disallow >>, insist on > > */
734 return ++p; /* if outermost ended, return */
735 break;
736 case ':':
737 if (just_seen_space || (just_seen_colon > 1))
738 return 0; /* nested class spec coming up */
739 just_seen_colon++; /* we allow :: but not :::: */
740 break;
741 case ' ':
742 break;
743 default:
744 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
745 (*p >= 'A' && *p <= 'Z') ||
746 (*p >= '0' && *p <= '9') ||
747 (*p == '_') || (*p == ',') || /* commas for template args */
748 (*p == '&') || (*p == '*') || /* pointer and ref types */
749 (*p == '(') || (*p == ')') || /* function types */
750 (*p == '[') || (*p == ']'))) /* array types */
751 return 0;
752 }
753 if (*p != ' ')
754 just_seen_space = 0;
755 if (*p != ':')
756 just_seen_colon = 0;
757 if (*p != '>')
758 just_seen_right = 0;
759 }
760 return 0;
761 }
762 \f
763
764 /* Return a null-terminated temporary copy of the name of a string token.
765
766 Tokens that refer to names do so with explicit pointer and length,
767 so they can share the storage that lexptr is parsing.
768 When it is necessary to pass a name to a function that expects
769 a null-terminated string, the substring is copied out
770 into a separate block of storage.
771
772 N.B. A single buffer is reused on each call. */
773
774 char *
775 copy_name (struct stoken token)
776 {
777 /* A temporary buffer for identifiers, so we can null-terminate them.
778 We allocate this with xrealloc. parse_exp_1 used to allocate with
779 alloca, using the size of the whole expression as a conservative
780 estimate of the space needed. However, macro expansion can
781 introduce names longer than the original expression; there's no
782 practical way to know beforehand how large that might be. */
783 static char *namecopy;
784 static size_t namecopy_size;
785
786 /* Make sure there's enough space for the token. */
787 if (namecopy_size < token.length + 1)
788 {
789 namecopy_size = token.length + 1;
790 namecopy = (char *) xrealloc (namecopy, token.length + 1);
791 }
792
793 memcpy (namecopy, token.ptr, token.length);
794 namecopy[token.length] = 0;
795
796 return namecopy;
797 }
798 \f
799
800 /* See comments on parser-defs.h. */
801
802 int
803 prefixify_expression (struct expression *expr)
804 {
805 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
806 struct expression *temp;
807 int inpos = expr->nelts, outpos = 0;
808
809 temp = (struct expression *) alloca (len);
810
811 /* Copy the original expression into temp. */
812 memcpy (temp, expr, len);
813
814 return prefixify_subexp (temp, expr, inpos, outpos);
815 }
816
817 /* Return the number of exp_elements in the postfix subexpression
818 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
819
820 static int
821 length_of_subexp (struct expression *expr, int endpos)
822 {
823 int oplen, args;
824
825 operator_length (expr, endpos, &oplen, &args);
826
827 while (args > 0)
828 {
829 oplen += length_of_subexp (expr, endpos - oplen);
830 args--;
831 }
832
833 return oplen;
834 }
835
836 /* Sets *OPLENP to the length of the operator whose (last) index is
837 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
838 operator takes. */
839
840 void
841 operator_length (const struct expression *expr, int endpos, int *oplenp,
842 int *argsp)
843 {
844 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
845 oplenp, argsp);
846 }
847
848 /* Default value for operator_length in exp_descriptor vectors. */
849
850 void
851 operator_length_standard (const struct expression *expr, int endpos,
852 int *oplenp, int *argsp)
853 {
854 int oplen = 1;
855 int args = 0;
856 enum range_type range_type;
857 int i;
858
859 if (endpos < 1)
860 error (_("?error in operator_length_standard"));
861
862 i = (int) expr->elts[endpos - 1].opcode;
863
864 switch (i)
865 {
866 /* C++ */
867 case OP_SCOPE:
868 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
869 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
870 break;
871
872 case OP_LONG:
873 case OP_DOUBLE:
874 case OP_DECFLOAT:
875 case OP_VAR_VALUE:
876 case OP_VAR_MSYM_VALUE:
877 oplen = 4;
878 break;
879
880 case OP_FUNC_STATIC_VAR:
881 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
882 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
883 args = 1;
884 break;
885
886 case OP_TYPE:
887 case OP_BOOL:
888 case OP_LAST:
889 case OP_INTERNALVAR:
890 case OP_VAR_ENTRY_VALUE:
891 oplen = 3;
892 break;
893
894 case OP_COMPLEX:
895 oplen = 3;
896 args = 2;
897 break;
898
899 case OP_FUNCALL:
900 case OP_F77_UNDETERMINED_ARGLIST:
901 oplen = 3;
902 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903 break;
904
905 case TYPE_INSTANCE:
906 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
907 args = 1;
908 break;
909
910 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
911 oplen = 4;
912 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
913 break;
914
915 case UNOP_MAX:
916 case UNOP_MIN:
917 oplen = 3;
918 break;
919
920 case UNOP_CAST_TYPE:
921 case UNOP_DYNAMIC_CAST:
922 case UNOP_REINTERPRET_CAST:
923 case UNOP_MEMVAL_TYPE:
924 oplen = 1;
925 args = 2;
926 break;
927
928 case BINOP_VAL:
929 case UNOP_CAST:
930 case UNOP_MEMVAL:
931 oplen = 3;
932 args = 1;
933 break;
934
935 case UNOP_ABS:
936 case UNOP_CAP:
937 case UNOP_CHR:
938 case UNOP_FLOAT:
939 case UNOP_HIGH:
940 case UNOP_ODD:
941 case UNOP_ORD:
942 case UNOP_TRUNC:
943 case OP_TYPEOF:
944 case OP_DECLTYPE:
945 case OP_TYPEID:
946 oplen = 1;
947 args = 1;
948 break;
949
950 case OP_ADL_FUNC:
951 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
952 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
953 oplen++;
954 oplen++;
955 break;
956
957 case STRUCTOP_STRUCT:
958 case STRUCTOP_PTR:
959 args = 1;
960 /* fall through */
961 case OP_REGISTER:
962 case OP_M2_STRING:
963 case OP_STRING:
964 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
965 NSString constant. */
966 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
967 case OP_NAME:
968 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
969 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
970 break;
971
972 case OP_ARRAY:
973 oplen = 4;
974 args = longest_to_int (expr->elts[endpos - 2].longconst);
975 args -= longest_to_int (expr->elts[endpos - 3].longconst);
976 args += 1;
977 break;
978
979 case TERNOP_COND:
980 case TERNOP_SLICE:
981 args = 3;
982 break;
983
984 /* Modula-2 */
985 case MULTI_SUBSCRIPT:
986 oplen = 3;
987 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
988 break;
989
990 case BINOP_ASSIGN_MODIFY:
991 oplen = 3;
992 args = 2;
993 break;
994
995 /* C++ */
996 case OP_THIS:
997 oplen = 2;
998 break;
999
1000 case OP_RANGE:
1001 oplen = 3;
1002 range_type = (enum range_type)
1003 longest_to_int (expr->elts[endpos - 2].longconst);
1004
1005 switch (range_type)
1006 {
1007 case LOW_BOUND_DEFAULT:
1008 case HIGH_BOUND_DEFAULT:
1009 args = 1;
1010 break;
1011 case BOTH_BOUND_DEFAULT:
1012 args = 0;
1013 break;
1014 case NONE_BOUND_DEFAULT:
1015 args = 2;
1016 break;
1017 }
1018
1019 break;
1020
1021 default:
1022 args = 1 + (i < (int) BINOP_END);
1023 }
1024
1025 *oplenp = oplen;
1026 *argsp = args;
1027 }
1028
1029 /* Copy the subexpression ending just before index INEND in INEXPR
1030 into OUTEXPR, starting at index OUTBEG.
1031 In the process, convert it from suffix to prefix form.
1032 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1033 Otherwise, it returns the index of the subexpression which is the
1034 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1035
1036 static int
1037 prefixify_subexp (struct expression *inexpr,
1038 struct expression *outexpr, int inend, int outbeg)
1039 {
1040 int oplen;
1041 int args;
1042 int i;
1043 int *arglens;
1044 int result = -1;
1045
1046 operator_length (inexpr, inend, &oplen, &args);
1047
1048 /* Copy the final operator itself, from the end of the input
1049 to the beginning of the output. */
1050 inend -= oplen;
1051 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1052 EXP_ELEM_TO_BYTES (oplen));
1053 outbeg += oplen;
1054
1055 if (expout_last_struct == inend)
1056 result = outbeg - oplen;
1057
1058 /* Find the lengths of the arg subexpressions. */
1059 arglens = (int *) alloca (args * sizeof (int));
1060 for (i = args - 1; i >= 0; i--)
1061 {
1062 oplen = length_of_subexp (inexpr, inend);
1063 arglens[i] = oplen;
1064 inend -= oplen;
1065 }
1066
1067 /* Now copy each subexpression, preserving the order of
1068 the subexpressions, but prefixifying each one.
1069 In this loop, inend starts at the beginning of
1070 the expression this level is working on
1071 and marches forward over the arguments.
1072 outbeg does similarly in the output. */
1073 for (i = 0; i < args; i++)
1074 {
1075 int r;
1076
1077 oplen = arglens[i];
1078 inend += oplen;
1079 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1080 if (r != -1)
1081 {
1082 /* Return immediately. We probably have only parsed a
1083 partial expression, so we don't want to try to reverse
1084 the other operands. */
1085 return r;
1086 }
1087 outbeg += oplen;
1088 }
1089
1090 return result;
1091 }
1092 \f
1093 /* Read an expression from the string *STRINGPTR points to,
1094 parse it, and return a pointer to a struct expression that we malloc.
1095 Use block BLOCK as the lexical context for variable names;
1096 if BLOCK is zero, use the block of the selected stack frame.
1097 Meanwhile, advance *STRINGPTR to point after the expression,
1098 at the first nonwhite character that is not part of the expression
1099 (possibly a null character).
1100
1101 If COMMA is nonzero, stop if a comma is reached. */
1102
1103 expression_up
1104 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1105 int comma)
1106 {
1107 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1108 }
1109
1110 static expression_up
1111 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1112 const struct block *block,
1113 int comma, int void_context_p, int *out_subexp)
1114 {
1115 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1116 void_context_p, out_subexp);
1117 }
1118
1119 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1120 no value is expected from the expression.
1121 OUT_SUBEXP is set when attempting to complete a field name; in this
1122 case it is set to the index of the subexpression on the
1123 left-hand-side of the struct op. If not doing such completion, it
1124 is left untouched. */
1125
1126 static expression_up
1127 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1128 const struct block *block,
1129 int comma, int void_context_p, int *out_subexp)
1130 {
1131 const struct language_defn *lang = NULL;
1132 struct parser_state ps;
1133 int subexp;
1134
1135 lexptr = *stringptr;
1136 prev_lexptr = NULL;
1137
1138 paren_depth = 0;
1139 type_stack.depth = 0;
1140 expout_last_struct = -1;
1141 expout_tag_completion_type = TYPE_CODE_UNDEF;
1142 xfree (expout_completion_name);
1143 expout_completion_name = NULL;
1144
1145 comma_terminates = comma;
1146
1147 if (lexptr == 0 || *lexptr == 0)
1148 error_no_arg (_("expression to compute"));
1149
1150 std::vector<int> funcalls;
1151 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1152 &funcalls);
1153
1154 expression_context_block = block;
1155
1156 /* If no context specified, try using the current frame, if any. */
1157 if (!expression_context_block)
1158 expression_context_block = get_selected_block (&expression_context_pc);
1159 else if (pc == 0)
1160 expression_context_pc = BLOCK_START (expression_context_block);
1161 else
1162 expression_context_pc = pc;
1163
1164 /* Fall back to using the current source static context, if any. */
1165
1166 if (!expression_context_block)
1167 {
1168 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1169 if (cursal.symtab)
1170 expression_context_block
1171 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1172 STATIC_BLOCK);
1173 if (expression_context_block)
1174 expression_context_pc = BLOCK_START (expression_context_block);
1175 }
1176
1177 if (language_mode == language_mode_auto && block != NULL)
1178 {
1179 /* Find the language associated to the given context block.
1180 Default to the current language if it can not be determined.
1181
1182 Note that using the language corresponding to the current frame
1183 can sometimes give unexpected results. For instance, this
1184 routine is often called several times during the inferior
1185 startup phase to re-parse breakpoint expressions after
1186 a new shared library has been loaded. The language associated
1187 to the current frame at this moment is not relevant for
1188 the breakpoint. Using it would therefore be silly, so it seems
1189 better to rely on the current language rather than relying on
1190 the current frame language to parse the expression. That's why
1191 we do the following language detection only if the context block
1192 has been specifically provided. */
1193 struct symbol *func = block_linkage_function (block);
1194
1195 if (func != NULL)
1196 lang = language_def (SYMBOL_LANGUAGE (func));
1197 if (lang == NULL || lang->la_language == language_unknown)
1198 lang = current_language;
1199 }
1200 else
1201 lang = current_language;
1202
1203 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1204 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1205 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1206 to the value matching SELECTED_FRAME as set by get_current_arch. */
1207
1208 initialize_expout (&ps, 10, lang, get_current_arch ());
1209
1210 scoped_restore_current_language lang_saver;
1211 set_language (lang->la_language);
1212
1213 TRY
1214 {
1215 if (lang->la_parser (&ps))
1216 lang->la_error (NULL);
1217 }
1218 CATCH (except, RETURN_MASK_ALL)
1219 {
1220 if (! parse_completion)
1221 {
1222 xfree (ps.expout);
1223 throw_exception (except);
1224 }
1225 }
1226 END_CATCH
1227
1228 reallocate_expout (&ps);
1229
1230 /* Convert expression from postfix form as generated by yacc
1231 parser, to a prefix form. */
1232
1233 if (expressiondebug)
1234 dump_raw_expression (ps.expout, gdb_stdlog,
1235 "before conversion to prefix form");
1236
1237 subexp = prefixify_expression (ps.expout);
1238 if (out_subexp)
1239 *out_subexp = subexp;
1240
1241 lang->la_post_parser (&ps.expout, void_context_p);
1242
1243 if (expressiondebug)
1244 dump_prefix_expression (ps.expout, gdb_stdlog);
1245
1246 *stringptr = lexptr;
1247 return expression_up (ps.expout);
1248 }
1249
1250 /* Parse STRING as an expression, and complain if this fails
1251 to use up all of the contents of STRING. */
1252
1253 expression_up
1254 parse_expression (const char *string)
1255 {
1256 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1257 if (*string)
1258 error (_("Junk after end of expression."));
1259 return exp;
1260 }
1261
1262 /* Same as parse_expression, but using the given language (LANG)
1263 to parse the expression. */
1264
1265 expression_up
1266 parse_expression_with_language (const char *string, enum language lang)
1267 {
1268 gdb::optional<scoped_restore_current_language> lang_saver;
1269 if (current_language->la_language != lang)
1270 {
1271 lang_saver.emplace ();
1272 set_language (lang);
1273 }
1274
1275 return parse_expression (string);
1276 }
1277
1278 /* Parse STRING as an expression. If parsing ends in the middle of a
1279 field reference, return the type of the left-hand-side of the
1280 reference; furthermore, if the parsing ends in the field name,
1281 return the field name in *NAME. If the parsing ends in the middle
1282 of a field reference, but the reference is somehow invalid, throw
1283 an exception. In all other cases, return NULL. Returned non-NULL
1284 *NAME must be freed by the caller. */
1285
1286 struct type *
1287 parse_expression_for_completion (const char *string, char **name,
1288 enum type_code *code)
1289 {
1290 expression_up exp;
1291 struct value *val;
1292 int subexp;
1293
1294 TRY
1295 {
1296 parse_completion = 1;
1297 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1298 }
1299 CATCH (except, RETURN_MASK_ERROR)
1300 {
1301 /* Nothing, EXP remains NULL. */
1302 }
1303 END_CATCH
1304
1305 parse_completion = 0;
1306 if (exp == NULL)
1307 return NULL;
1308
1309 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1310 {
1311 *code = expout_tag_completion_type;
1312 *name = expout_completion_name;
1313 expout_completion_name = NULL;
1314 return NULL;
1315 }
1316
1317 if (expout_last_struct == -1)
1318 return NULL;
1319
1320 *name = extract_field_op (exp.get (), &subexp);
1321 if (!*name)
1322 return NULL;
1323
1324 /* This might throw an exception. If so, we want to let it
1325 propagate. */
1326 val = evaluate_subexpression_type (exp.get (), subexp);
1327 /* (*NAME) is a part of the EXP memory block freed below. */
1328 *name = xstrdup (*name);
1329
1330 return value_type (val);
1331 }
1332
1333 /* A post-parser that does nothing. */
1334
1335 void
1336 null_post_parser (struct expression **exp, int void_context_p)
1337 {
1338 }
1339
1340 /* Parse floating point value P of length LEN.
1341 Return 0 (false) if invalid, 1 (true) if valid.
1342 The successfully parsed number is stored in D.
1343 *SUFFIX points to the suffix of the number in P.
1344
1345 NOTE: This accepts the floating point syntax that sscanf accepts. */
1346
1347 int
1348 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1349 {
1350 char *copy;
1351 int n, num;
1352
1353 copy = (char *) xmalloc (len + 1);
1354 memcpy (copy, p, len);
1355 copy[len] = 0;
1356
1357 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1358 xfree (copy);
1359
1360 /* The sscanf man page suggests not making any assumptions on the effect
1361 of %n on the result, so we don't.
1362 That is why we simply test num == 0. */
1363 if (num == 0)
1364 return 0;
1365
1366 *suffix = p + n;
1367 return 1;
1368 }
1369
1370 /* Parse floating point value P of length LEN, using the C syntax for floats.
1371 Return 0 (false) if invalid, 1 (true) if valid.
1372 The successfully parsed number is stored in *D.
1373 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1374
1375 int
1376 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1377 DOUBLEST *d, struct type **t)
1378 {
1379 const char *suffix;
1380 int suffix_len;
1381 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1382
1383 if (! parse_float (p, len, d, &suffix))
1384 return 0;
1385
1386 suffix_len = p + len - suffix;
1387
1388 if (suffix_len == 0)
1389 *t = builtin_types->builtin_double;
1390 else if (suffix_len == 1)
1391 {
1392 /* Handle suffixes: 'f' for float, 'l' for long double. */
1393 if (tolower (*suffix) == 'f')
1394 *t = builtin_types->builtin_float;
1395 else if (tolower (*suffix) == 'l')
1396 *t = builtin_types->builtin_long_double;
1397 else
1398 return 0;
1399 }
1400 else
1401 return 0;
1402
1403 return 1;
1404 }
1405 \f
1406 /* Stuff for maintaining a stack of types. Currently just used by C, but
1407 probably useful for any language which declares its types "backwards". */
1408
1409 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1410
1411 static void
1412 type_stack_reserve (struct type_stack *stack, int howmuch)
1413 {
1414 if (stack->depth + howmuch >= stack->size)
1415 {
1416 stack->size *= 2;
1417 if (stack->size < howmuch)
1418 stack->size = howmuch;
1419 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1420 stack->size);
1421 }
1422 }
1423
1424 /* Ensure that there is a single open slot in the global type stack. */
1425
1426 static void
1427 check_type_stack_depth (void)
1428 {
1429 type_stack_reserve (&type_stack, 1);
1430 }
1431
1432 /* A helper function for insert_type and insert_type_address_space.
1433 This does work of expanding the type stack and inserting the new
1434 element, ELEMENT, into the stack at location SLOT. */
1435
1436 static void
1437 insert_into_type_stack (int slot, union type_stack_elt element)
1438 {
1439 check_type_stack_depth ();
1440
1441 if (slot < type_stack.depth)
1442 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1443 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1444 type_stack.elements[slot] = element;
1445 ++type_stack.depth;
1446 }
1447
1448 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1449 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1450 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1451 previous tp_pointer) if there is anything on the stack, or simply pushed
1452 if the stack is empty. Other values for TP are invalid. */
1453
1454 void
1455 insert_type (enum type_pieces tp)
1456 {
1457 union type_stack_elt element;
1458 int slot;
1459
1460 gdb_assert (tp == tp_pointer || tp == tp_reference
1461 || tp == tp_rvalue_reference || tp == tp_const
1462 || tp == tp_volatile);
1463
1464 /* If there is anything on the stack (we know it will be a
1465 tp_pointer), insert the qualifier above it. Otherwise, simply
1466 push this on the top of the stack. */
1467 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1468 slot = 1;
1469 else
1470 slot = 0;
1471
1472 element.piece = tp;
1473 insert_into_type_stack (slot, element);
1474 }
1475
1476 void
1477 push_type (enum type_pieces tp)
1478 {
1479 check_type_stack_depth ();
1480 type_stack.elements[type_stack.depth++].piece = tp;
1481 }
1482
1483 void
1484 push_type_int (int n)
1485 {
1486 check_type_stack_depth ();
1487 type_stack.elements[type_stack.depth++].int_val = n;
1488 }
1489
1490 /* Insert a tp_space_identifier and the corresponding address space
1491 value into the stack. STRING is the name of an address space, as
1492 recognized by address_space_name_to_int. If the stack is empty,
1493 the new elements are simply pushed. If the stack is not empty,
1494 this function assumes that the first item on the stack is a
1495 tp_pointer, and the new values are inserted above the first
1496 item. */
1497
1498 void
1499 insert_type_address_space (struct parser_state *pstate, char *string)
1500 {
1501 union type_stack_elt element;
1502 int slot;
1503
1504 /* If there is anything on the stack (we know it will be a
1505 tp_pointer), insert the address space qualifier above it.
1506 Otherwise, simply push this on the top of the stack. */
1507 if (type_stack.depth)
1508 slot = 1;
1509 else
1510 slot = 0;
1511
1512 element.piece = tp_space_identifier;
1513 insert_into_type_stack (slot, element);
1514 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1515 string);
1516 insert_into_type_stack (slot, element);
1517 }
1518
1519 enum type_pieces
1520 pop_type (void)
1521 {
1522 if (type_stack.depth)
1523 return type_stack.elements[--type_stack.depth].piece;
1524 return tp_end;
1525 }
1526
1527 int
1528 pop_type_int (void)
1529 {
1530 if (type_stack.depth)
1531 return type_stack.elements[--type_stack.depth].int_val;
1532 /* "Can't happen". */
1533 return 0;
1534 }
1535
1536 /* Pop a type list element from the global type stack. */
1537
1538 static VEC (type_ptr) *
1539 pop_typelist (void)
1540 {
1541 gdb_assert (type_stack.depth);
1542 return type_stack.elements[--type_stack.depth].typelist_val;
1543 }
1544
1545 /* Pop a type_stack element from the global type stack. */
1546
1547 static struct type_stack *
1548 pop_type_stack (void)
1549 {
1550 gdb_assert (type_stack.depth);
1551 return type_stack.elements[--type_stack.depth].stack_val;
1552 }
1553
1554 /* Append the elements of the type stack FROM to the type stack TO.
1555 Always returns TO. */
1556
1557 struct type_stack *
1558 append_type_stack (struct type_stack *to, struct type_stack *from)
1559 {
1560 type_stack_reserve (to, from->depth);
1561
1562 memcpy (&to->elements[to->depth], &from->elements[0],
1563 from->depth * sizeof (union type_stack_elt));
1564 to->depth += from->depth;
1565
1566 return to;
1567 }
1568
1569 /* Push the type stack STACK as an element on the global type stack. */
1570
1571 void
1572 push_type_stack (struct type_stack *stack)
1573 {
1574 check_type_stack_depth ();
1575 type_stack.elements[type_stack.depth++].stack_val = stack;
1576 push_type (tp_type_stack);
1577 }
1578
1579 /* Copy the global type stack into a newly allocated type stack and
1580 return it. The global stack is cleared. The returned type stack
1581 must be freed with type_stack_cleanup. */
1582
1583 struct type_stack *
1584 get_type_stack (void)
1585 {
1586 struct type_stack *result = XNEW (struct type_stack);
1587
1588 *result = type_stack;
1589 type_stack.depth = 0;
1590 type_stack.size = 0;
1591 type_stack.elements = NULL;
1592
1593 return result;
1594 }
1595
1596 /* A cleanup function that destroys a single type stack. */
1597
1598 void
1599 type_stack_cleanup (void *arg)
1600 {
1601 struct type_stack *stack = (struct type_stack *) arg;
1602
1603 xfree (stack->elements);
1604 xfree (stack);
1605 }
1606
1607 /* Push a function type with arguments onto the global type stack.
1608 LIST holds the argument types. If the final item in LIST is NULL,
1609 then the function will be varargs. */
1610
1611 void
1612 push_typelist (VEC (type_ptr) *list)
1613 {
1614 check_type_stack_depth ();
1615 type_stack.elements[type_stack.depth++].typelist_val = list;
1616 push_type (tp_function_with_arguments);
1617 }
1618
1619 /* Pop the type stack and return a type_instance_flags that
1620 corresponds the const/volatile qualifiers on the stack. This is
1621 called by the C++ parser when parsing methods types, and as such no
1622 other kind of type in the type stack is expected. */
1623
1624 type_instance_flags
1625 follow_type_instance_flags ()
1626 {
1627 type_instance_flags flags = 0;
1628
1629 for (;;)
1630 switch (pop_type ())
1631 {
1632 case tp_end:
1633 return flags;
1634 case tp_const:
1635 flags |= TYPE_INSTANCE_FLAG_CONST;
1636 break;
1637 case tp_volatile:
1638 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1639 break;
1640 default:
1641 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1642 }
1643 }
1644
1645
1646 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1647 as modified by all the stuff on the stack. */
1648 struct type *
1649 follow_types (struct type *follow_type)
1650 {
1651 int done = 0;
1652 int make_const = 0;
1653 int make_volatile = 0;
1654 int make_addr_space = 0;
1655 int array_size;
1656
1657 while (!done)
1658 switch (pop_type ())
1659 {
1660 case tp_end:
1661 done = 1;
1662 if (make_const)
1663 follow_type = make_cv_type (make_const,
1664 TYPE_VOLATILE (follow_type),
1665 follow_type, 0);
1666 if (make_volatile)
1667 follow_type = make_cv_type (TYPE_CONST (follow_type),
1668 make_volatile,
1669 follow_type, 0);
1670 if (make_addr_space)
1671 follow_type = make_type_with_address_space (follow_type,
1672 make_addr_space);
1673 make_const = make_volatile = 0;
1674 make_addr_space = 0;
1675 break;
1676 case tp_const:
1677 make_const = 1;
1678 break;
1679 case tp_volatile:
1680 make_volatile = 1;
1681 break;
1682 case tp_space_identifier:
1683 make_addr_space = pop_type_int ();
1684 break;
1685 case tp_pointer:
1686 follow_type = lookup_pointer_type (follow_type);
1687 if (make_const)
1688 follow_type = make_cv_type (make_const,
1689 TYPE_VOLATILE (follow_type),
1690 follow_type, 0);
1691 if (make_volatile)
1692 follow_type = make_cv_type (TYPE_CONST (follow_type),
1693 make_volatile,
1694 follow_type, 0);
1695 if (make_addr_space)
1696 follow_type = make_type_with_address_space (follow_type,
1697 make_addr_space);
1698 make_const = make_volatile = 0;
1699 make_addr_space = 0;
1700 break;
1701 case tp_reference:
1702 follow_type = lookup_lvalue_reference_type (follow_type);
1703 goto process_reference;
1704 case tp_rvalue_reference:
1705 follow_type = lookup_rvalue_reference_type (follow_type);
1706 process_reference:
1707 if (make_const)
1708 follow_type = make_cv_type (make_const,
1709 TYPE_VOLATILE (follow_type),
1710 follow_type, 0);
1711 if (make_volatile)
1712 follow_type = make_cv_type (TYPE_CONST (follow_type),
1713 make_volatile,
1714 follow_type, 0);
1715 if (make_addr_space)
1716 follow_type = make_type_with_address_space (follow_type,
1717 make_addr_space);
1718 make_const = make_volatile = 0;
1719 make_addr_space = 0;
1720 break;
1721 case tp_array:
1722 array_size = pop_type_int ();
1723 /* FIXME-type-allocation: need a way to free this type when we are
1724 done with it. */
1725 follow_type =
1726 lookup_array_range_type (follow_type,
1727 0, array_size >= 0 ? array_size - 1 : 0);
1728 if (array_size < 0)
1729 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1730 = PROP_UNDEFINED;
1731 break;
1732 case tp_function:
1733 /* FIXME-type-allocation: need a way to free this type when we are
1734 done with it. */
1735 follow_type = lookup_function_type (follow_type);
1736 break;
1737
1738 case tp_function_with_arguments:
1739 {
1740 VEC (type_ptr) *args = pop_typelist ();
1741
1742 follow_type
1743 = lookup_function_type_with_arguments (follow_type,
1744 VEC_length (type_ptr, args),
1745 VEC_address (type_ptr,
1746 args));
1747 VEC_free (type_ptr, args);
1748 }
1749 break;
1750
1751 case tp_type_stack:
1752 {
1753 struct type_stack *stack = pop_type_stack ();
1754 /* Sort of ugly, but not really much worse than the
1755 alternatives. */
1756 struct type_stack save = type_stack;
1757
1758 type_stack = *stack;
1759 follow_type = follow_types (follow_type);
1760 gdb_assert (type_stack.depth == 0);
1761
1762 type_stack = save;
1763 }
1764 break;
1765 default:
1766 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1767 }
1768 return follow_type;
1769 }
1770 \f
1771 /* This function avoids direct calls to fprintf
1772 in the parser generated debug code. */
1773 void
1774 parser_fprintf (FILE *x, const char *y, ...)
1775 {
1776 va_list args;
1777
1778 va_start (args, y);
1779 if (x == stderr)
1780 vfprintf_unfiltered (gdb_stderr, y, args);
1781 else
1782 {
1783 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1784 vfprintf_unfiltered (gdb_stderr, y, args);
1785 }
1786 va_end (args);
1787 }
1788
1789 /* Implementation of the exp_descriptor method operator_check. */
1790
1791 int
1792 operator_check_standard (struct expression *exp, int pos,
1793 int (*objfile_func) (struct objfile *objfile,
1794 void *data),
1795 void *data)
1796 {
1797 const union exp_element *const elts = exp->elts;
1798 struct type *type = NULL;
1799 struct objfile *objfile = NULL;
1800
1801 /* Extended operators should have been already handled by exp_descriptor
1802 iterate method of its specific language. */
1803 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1804
1805 /* Track the callers of write_exp_elt_type for this table. */
1806
1807 switch (elts[pos].opcode)
1808 {
1809 case BINOP_VAL:
1810 case OP_COMPLEX:
1811 case OP_DECFLOAT:
1812 case OP_DOUBLE:
1813 case OP_LONG:
1814 case OP_SCOPE:
1815 case OP_TYPE:
1816 case UNOP_CAST:
1817 case UNOP_MAX:
1818 case UNOP_MEMVAL:
1819 case UNOP_MIN:
1820 type = elts[pos + 1].type;
1821 break;
1822
1823 case TYPE_INSTANCE:
1824 {
1825 LONGEST arg, nargs = elts[pos + 2].longconst;
1826
1827 for (arg = 0; arg < nargs; arg++)
1828 {
1829 struct type *type = elts[pos + 3 + arg].type;
1830 struct objfile *objfile = TYPE_OBJFILE (type);
1831
1832 if (objfile && (*objfile_func) (objfile, data))
1833 return 1;
1834 }
1835 }
1836 break;
1837
1838 case OP_VAR_VALUE:
1839 {
1840 const struct block *const block = elts[pos + 1].block;
1841 const struct symbol *const symbol = elts[pos + 2].symbol;
1842
1843 /* Check objfile where the variable itself is placed.
1844 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1845 if ((*objfile_func) (symbol_objfile (symbol), data))
1846 return 1;
1847
1848 /* Check objfile where is placed the code touching the variable. */
1849 objfile = lookup_objfile_from_block (block);
1850
1851 type = SYMBOL_TYPE (symbol);
1852 }
1853 break;
1854 case OP_VAR_MSYM_VALUE:
1855 objfile = elts[pos + 1].objfile;
1856 break;
1857 }
1858
1859 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1860
1861 if (type && TYPE_OBJFILE (type)
1862 && (*objfile_func) (TYPE_OBJFILE (type), data))
1863 return 1;
1864 if (objfile && (*objfile_func) (objfile, data))
1865 return 1;
1866
1867 return 0;
1868 }
1869
1870 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1871 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1872 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1873 returns non-zero value then (any other) non-zero value is immediately
1874 returned to the caller. Otherwise zero is returned after iterating
1875 through whole EXP. */
1876
1877 static int
1878 exp_iterate (struct expression *exp,
1879 int (*objfile_func) (struct objfile *objfile, void *data),
1880 void *data)
1881 {
1882 int endpos;
1883
1884 for (endpos = exp->nelts; endpos > 0; )
1885 {
1886 int pos, args, oplen = 0;
1887
1888 operator_length (exp, endpos, &oplen, &args);
1889 gdb_assert (oplen > 0);
1890
1891 pos = endpos - oplen;
1892 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1893 objfile_func, data))
1894 return 1;
1895
1896 endpos = pos;
1897 }
1898
1899 return 0;
1900 }
1901
1902 /* Helper for exp_uses_objfile. */
1903
1904 static int
1905 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1906 {
1907 struct objfile *objfile = (struct objfile *) objfile_voidp;
1908
1909 if (exp_objfile->separate_debug_objfile_backlink)
1910 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1911
1912 return exp_objfile == objfile;
1913 }
1914
1915 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1916 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1917 file. */
1918
1919 int
1920 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1921 {
1922 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1923
1924 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1925 }
1926
1927 /* See definition in parser-defs.h. */
1928
1929 void
1930 increase_expout_size (struct parser_state *ps, size_t lenelt)
1931 {
1932 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1933 {
1934 ps->expout_size = std::max (ps->expout_size * 2,
1935 ps->expout_ptr + lenelt + 10);
1936 ps->expout = (struct expression *)
1937 xrealloc (ps->expout, (sizeof (struct expression)
1938 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1939 }
1940 }
1941
1942 void
1943 _initialize_parse (void)
1944 {
1945 type_stack.size = 0;
1946 type_stack.depth = 0;
1947 type_stack.elements = NULL;
1948
1949 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1950 &expressiondebug,
1951 _("Set expression debugging."),
1952 _("Show expression debugging."),
1953 _("When non-zero, the internal representation "
1954 "of expressions will be printed."),
1955 NULL,
1956 show_expressiondebug,
1957 &setdebuglist, &showdebuglist);
1958 add_setshow_boolean_cmd ("parser", class_maintenance,
1959 &parser_debug,
1960 _("Set parser debugging."),
1961 _("Show parser debugging."),
1962 _("When non-zero, expression parser "
1963 "tracing will be enabled."),
1964 NULL,
1965 show_parserdebug,
1966 &setdebuglist, &showdebuglist);
1967 }
This page took 0.09845 seconds and 5 git commands to generate.