Support rvalue reference type in parser
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53
54 /* Standard set of definitions for printing, dumping, prefixifying,
55 * and evaluating expressions. */
56
57 const struct exp_descriptor exp_descriptor_standard =
58 {
59 print_subexp_standard,
60 operator_length_standard,
61 operator_check_standard,
62 op_name_standard,
63 dump_subexp_body_standard,
64 evaluate_subexp_standard
65 };
66 \f
67 /* Global variables declared in parser-defs.h (and commented there). */
68 const struct block *expression_context_block;
69 CORE_ADDR expression_context_pc;
70 const struct block *innermost_block;
71 int arglist_len;
72 static struct type_stack type_stack;
73 const char *lexptr;
74 const char *prev_lexptr;
75 int paren_depth;
76 int comma_terminates;
77
78 /* True if parsing an expression to attempt completion. */
79 int parse_completion;
80
81 /* The index of the last struct expression directly before a '.' or
82 '->'. This is set when parsing and is only used when completing a
83 field name. It is -1 if no dereference operation was found. */
84 static int expout_last_struct = -1;
85
86 /* If we are completing a tagged type name, this will be nonzero. */
87 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
88
89 /* The token for tagged type name completion. */
90 static char *expout_completion_name;
91
92 \f
93 static unsigned int expressiondebug = 0;
94 static void
95 show_expressiondebug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
99 }
100
101
102 /* Non-zero if an expression parser should set yydebug. */
103 int parser_debug;
104
105 static void
106 show_parserdebug (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
110 }
111
112
113 static void free_funcalls (void *ignore);
114
115 static int prefixify_subexp (struct expression *, struct expression *, int,
116 int);
117
118 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
119 const struct block *, int,
120 int, int *);
121 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
122 const struct block *, int,
123 int, int *);
124
125 void _initialize_parse (void);
126
127 /* Data structure for saving values of arglist_len for function calls whose
128 arguments contain other function calls. */
129
130 struct funcall
131 {
132 struct funcall *next;
133 int arglist_len;
134 };
135
136 static struct funcall *funcall_chain;
137
138 /* Begin counting arguments for a function call,
139 saving the data about any containing call. */
140
141 void
142 start_arglist (void)
143 {
144 struct funcall *newobj;
145
146 newobj = XNEW (struct funcall);
147 newobj->next = funcall_chain;
148 newobj->arglist_len = arglist_len;
149 arglist_len = 0;
150 funcall_chain = newobj;
151 }
152
153 /* Return the number of arguments in a function call just terminated,
154 and restore the data for the containing function call. */
155
156 int
157 end_arglist (void)
158 {
159 int val = arglist_len;
160 struct funcall *call = funcall_chain;
161
162 funcall_chain = call->next;
163 arglist_len = call->arglist_len;
164 xfree (call);
165 return val;
166 }
167
168 /* Free everything in the funcall chain.
169 Used when there is an error inside parsing. */
170
171 static void
172 free_funcalls (void *ignore)
173 {
174 struct funcall *call, *next;
175
176 for (call = funcall_chain; call; call = next)
177 {
178 next = call->next;
179 xfree (call);
180 }
181 }
182 \f
183
184 /* See definition in parser-defs.h. */
185
186 void
187 initialize_expout (struct parser_state *ps, size_t initial_size,
188 const struct language_defn *lang,
189 struct gdbarch *gdbarch)
190 {
191 ps->expout_size = initial_size;
192 ps->expout_ptr = 0;
193 ps->expout
194 = (struct expression *) xmalloc (sizeof (struct expression)
195 + EXP_ELEM_TO_BYTES (ps->expout_size));
196 ps->expout->language_defn = lang;
197 ps->expout->gdbarch = gdbarch;
198 }
199
200 /* See definition in parser-defs.h. */
201
202 void
203 reallocate_expout (struct parser_state *ps)
204 {
205 /* Record the actual number of expression elements, and then
206 reallocate the expression memory so that we free up any
207 excess elements. */
208
209 ps->expout->nelts = ps->expout_ptr;
210 ps->expout = (struct expression *)
211 xrealloc (ps->expout,
212 sizeof (struct expression)
213 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
214 }
215
216 /* This page contains the functions for adding data to the struct expression
217 being constructed. */
218
219 /* Add one element to the end of the expression. */
220
221 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
222 a register through here. */
223
224 static void
225 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
226 {
227 if (ps->expout_ptr >= ps->expout_size)
228 {
229 ps->expout_size *= 2;
230 ps->expout = (struct expression *)
231 xrealloc (ps->expout, sizeof (struct expression)
232 + EXP_ELEM_TO_BYTES (ps->expout_size));
233 }
234 ps->expout->elts[ps->expout_ptr++] = *expelt;
235 }
236
237 void
238 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
239 {
240 union exp_element tmp;
241
242 memset (&tmp, 0, sizeof (union exp_element));
243 tmp.opcode = expelt;
244 write_exp_elt (ps, &tmp);
245 }
246
247 void
248 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
249 {
250 union exp_element tmp;
251
252 memset (&tmp, 0, sizeof (union exp_element));
253 tmp.symbol = expelt;
254 write_exp_elt (ps, &tmp);
255 }
256
257 void
258 write_exp_elt_block (struct parser_state *ps, const struct block *b)
259 {
260 union exp_element tmp;
261
262 memset (&tmp, 0, sizeof (union exp_element));
263 tmp.block = b;
264 write_exp_elt (ps, &tmp);
265 }
266
267 void
268 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
269 {
270 union exp_element tmp;
271
272 memset (&tmp, 0, sizeof (union exp_element));
273 tmp.objfile = objfile;
274 write_exp_elt (ps, &tmp);
275 }
276
277 void
278 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
279 {
280 union exp_element tmp;
281
282 memset (&tmp, 0, sizeof (union exp_element));
283 tmp.longconst = expelt;
284 write_exp_elt (ps, &tmp);
285 }
286
287 void
288 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
289 {
290 union exp_element tmp;
291
292 memset (&tmp, 0, sizeof (union exp_element));
293 tmp.doubleconst = expelt;
294 write_exp_elt (ps, &tmp);
295 }
296
297 void
298 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
299 {
300 union exp_element tmp;
301 int index;
302
303 for (index = 0; index < 16; index++)
304 tmp.decfloatconst[index] = expelt[index];
305
306 write_exp_elt (ps, &tmp);
307 }
308
309 void
310 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
311 {
312 union exp_element tmp;
313
314 memset (&tmp, 0, sizeof (union exp_element));
315 tmp.type = expelt;
316 write_exp_elt (ps, &tmp);
317 }
318
319 void
320 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
321 {
322 union exp_element tmp;
323
324 memset (&tmp, 0, sizeof (union exp_element));
325 tmp.internalvar = expelt;
326 write_exp_elt (ps, &tmp);
327 }
328
329 /* Add a string constant to the end of the expression.
330
331 String constants are stored by first writing an expression element
332 that contains the length of the string, then stuffing the string
333 constant itself into however many expression elements are needed
334 to hold it, and then writing another expression element that contains
335 the length of the string. I.e. an expression element at each end of
336 the string records the string length, so you can skip over the
337 expression elements containing the actual string bytes from either
338 end of the string. Note that this also allows gdb to handle
339 strings with embedded null bytes, as is required for some languages.
340
341 Don't be fooled by the fact that the string is null byte terminated,
342 this is strictly for the convenience of debugging gdb itself.
343 Gdb does not depend up the string being null terminated, since the
344 actual length is recorded in expression elements at each end of the
345 string. The null byte is taken into consideration when computing how
346 many expression elements are required to hold the string constant, of
347 course. */
348
349
350 void
351 write_exp_string (struct parser_state *ps, struct stoken str)
352 {
353 int len = str.length;
354 size_t lenelt;
355 char *strdata;
356
357 /* Compute the number of expression elements required to hold the string
358 (including a null byte terminator), along with one expression element
359 at each end to record the actual string length (not including the
360 null byte terminator). */
361
362 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
363
364 increase_expout_size (ps, lenelt);
365
366 /* Write the leading length expression element (which advances the current
367 expression element index), then write the string constant followed by a
368 terminating null byte, and then write the trailing length expression
369 element. */
370
371 write_exp_elt_longcst (ps, (LONGEST) len);
372 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
373 memcpy (strdata, str.ptr, len);
374 *(strdata + len) = '\0';
375 ps->expout_ptr += lenelt - 2;
376 write_exp_elt_longcst (ps, (LONGEST) len);
377 }
378
379 /* Add a vector of string constants to the end of the expression.
380
381 This adds an OP_STRING operation, but encodes the contents
382 differently from write_exp_string. The language is expected to
383 handle evaluation of this expression itself.
384
385 After the usual OP_STRING header, TYPE is written into the
386 expression as a long constant. The interpretation of this field is
387 up to the language evaluator.
388
389 Next, each string in VEC is written. The length is written as a
390 long constant, followed by the contents of the string. */
391
392 void
393 write_exp_string_vector (struct parser_state *ps, int type,
394 struct stoken_vector *vec)
395 {
396 int i, len;
397 size_t n_slots;
398
399 /* Compute the size. We compute the size in number of slots to
400 avoid issues with string padding. */
401 n_slots = 0;
402 for (i = 0; i < vec->len; ++i)
403 {
404 /* One slot for the length of this element, plus the number of
405 slots needed for this string. */
406 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 /* One more slot for the type of the string. */
410 ++n_slots;
411
412 /* Now compute a phony string length. */
413 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
414
415 n_slots += 4;
416 increase_expout_size (ps, n_slots);
417
418 write_exp_elt_opcode (ps, OP_STRING);
419 write_exp_elt_longcst (ps, len);
420 write_exp_elt_longcst (ps, type);
421
422 for (i = 0; i < vec->len; ++i)
423 {
424 write_exp_elt_longcst (ps, vec->tokens[i].length);
425 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
426 vec->tokens[i].length);
427 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
428 }
429
430 write_exp_elt_longcst (ps, len);
431 write_exp_elt_opcode (ps, OP_STRING);
432 }
433
434 /* Add a bitstring constant to the end of the expression.
435
436 Bitstring constants are stored by first writing an expression element
437 that contains the length of the bitstring (in bits), then stuffing the
438 bitstring constant itself into however many expression elements are
439 needed to hold it, and then writing another expression element that
440 contains the length of the bitstring. I.e. an expression element at
441 each end of the bitstring records the bitstring length, so you can skip
442 over the expression elements containing the actual bitstring bytes from
443 either end of the bitstring. */
444
445 void
446 write_exp_bitstring (struct parser_state *ps, struct stoken str)
447 {
448 int bits = str.length; /* length in bits */
449 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
450 size_t lenelt;
451 char *strdata;
452
453 /* Compute the number of expression elements required to hold the bitstring,
454 along with one expression element at each end to record the actual
455 bitstring length in bits. */
456
457 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
458
459 increase_expout_size (ps, lenelt);
460
461 /* Write the leading length expression element (which advances the current
462 expression element index), then write the bitstring constant, and then
463 write the trailing length expression element. */
464
465 write_exp_elt_longcst (ps, (LONGEST) bits);
466 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
467 memcpy (strdata, str.ptr, len);
468 ps->expout_ptr += lenelt - 2;
469 write_exp_elt_longcst (ps, (LONGEST) bits);
470 }
471
472 /* Add the appropriate elements for a minimal symbol to the end of
473 the expression. */
474
475 void
476 write_exp_msymbol (struct parser_state *ps,
477 struct bound_minimal_symbol bound_msym)
478 {
479 struct minimal_symbol *msymbol = bound_msym.minsym;
480 struct objfile *objfile = bound_msym.objfile;
481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
482
483 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
484 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
485 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
486 CORE_ADDR pc;
487
488 /* The minimal symbol might point to a function descriptor;
489 resolve it to the actual code address instead. */
490 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
491 if (pc != addr)
492 {
493 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
494
495 /* In this case, assume we have a code symbol instead of
496 a data symbol. */
497
498 if (ifunc_msym.minsym != NULL
499 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
500 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
501 {
502 /* A function descriptor has been resolved but PC is still in the
503 STT_GNU_IFUNC resolver body (such as because inferior does not
504 run to be able to call it). */
505
506 type = mst_text_gnu_ifunc;
507 }
508 else
509 type = mst_text;
510 section = NULL;
511 addr = pc;
512 }
513
514 if (overlay_debugging)
515 addr = symbol_overlayed_address (addr, section);
516
517 write_exp_elt_opcode (ps, OP_LONG);
518 /* Let's make the type big enough to hold a 64-bit address. */
519 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
520 write_exp_elt_longcst (ps, (LONGEST) addr);
521 write_exp_elt_opcode (ps, OP_LONG);
522
523 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
524 {
525 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
526 write_exp_elt_objfile (ps, objfile);
527 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
528 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
529 return;
530 }
531
532 write_exp_elt_opcode (ps, UNOP_MEMVAL);
533 switch (type)
534 {
535 case mst_text:
536 case mst_file_text:
537 case mst_solib_trampoline:
538 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
539 break;
540
541 case mst_text_gnu_ifunc:
542 write_exp_elt_type (ps, objfile_type (objfile)
543 ->nodebug_text_gnu_ifunc_symbol);
544 break;
545
546 case mst_data:
547 case mst_file_data:
548 case mst_bss:
549 case mst_file_bss:
550 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
551 break;
552
553 case mst_slot_got_plt:
554 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
555 break;
556
557 default:
558 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
559 break;
560 }
561 write_exp_elt_opcode (ps, UNOP_MEMVAL);
562 }
563
564 /* Mark the current index as the starting location of a structure
565 expression. This is used when completing on field names. */
566
567 void
568 mark_struct_expression (struct parser_state *ps)
569 {
570 gdb_assert (parse_completion
571 && expout_tag_completion_type == TYPE_CODE_UNDEF);
572 expout_last_struct = ps->expout_ptr;
573 }
574
575 /* Indicate that the current parser invocation is completing a tag.
576 TAG is the type code of the tag, and PTR and LENGTH represent the
577 start of the tag name. */
578
579 void
580 mark_completion_tag (enum type_code tag, const char *ptr, int length)
581 {
582 gdb_assert (parse_completion
583 && expout_tag_completion_type == TYPE_CODE_UNDEF
584 && expout_completion_name == NULL
585 && expout_last_struct == -1);
586 gdb_assert (tag == TYPE_CODE_UNION
587 || tag == TYPE_CODE_STRUCT
588 || tag == TYPE_CODE_ENUM);
589 expout_tag_completion_type = tag;
590 expout_completion_name = (char *) xmalloc (length + 1);
591 memcpy (expout_completion_name, ptr, length);
592 expout_completion_name[length] = '\0';
593 }
594
595 \f
596 /* Recognize tokens that start with '$'. These include:
597
598 $regname A native register name or a "standard
599 register name".
600
601 $variable A convenience variable with a name chosen
602 by the user.
603
604 $digits Value history with index <digits>, starting
605 from the first value which has index 1.
606
607 $$digits Value history with index <digits> relative
608 to the last value. I.e. $$0 is the last
609 value, $$1 is the one previous to that, $$2
610 is the one previous to $$1, etc.
611
612 $ | $0 | $$0 The last value in the value history.
613
614 $$ An abbreviation for the second to the last
615 value in the value history, I.e. $$1 */
616
617 void
618 write_dollar_variable (struct parser_state *ps, struct stoken str)
619 {
620 struct block_symbol sym;
621 struct bound_minimal_symbol msym;
622 struct internalvar *isym = NULL;
623
624 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
625 and $$digits (equivalent to $<-digits> if you could type that). */
626
627 int negate = 0;
628 int i = 1;
629 /* Double dollar means negate the number and add -1 as well.
630 Thus $$ alone means -1. */
631 if (str.length >= 2 && str.ptr[1] == '$')
632 {
633 negate = 1;
634 i = 2;
635 }
636 if (i == str.length)
637 {
638 /* Just dollars (one or two). */
639 i = -negate;
640 goto handle_last;
641 }
642 /* Is the rest of the token digits? */
643 for (; i < str.length; i++)
644 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
645 break;
646 if (i == str.length)
647 {
648 i = atoi (str.ptr + 1 + negate);
649 if (negate)
650 i = -i;
651 goto handle_last;
652 }
653
654 /* Handle tokens that refer to machine registers:
655 $ followed by a register name. */
656 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
657 str.ptr + 1, str.length - 1);
658 if (i >= 0)
659 goto handle_register;
660
661 /* Any names starting with $ are probably debugger internal variables. */
662
663 isym = lookup_only_internalvar (copy_name (str) + 1);
664 if (isym)
665 {
666 write_exp_elt_opcode (ps, OP_INTERNALVAR);
667 write_exp_elt_intern (ps, isym);
668 write_exp_elt_opcode (ps, OP_INTERNALVAR);
669 return;
670 }
671
672 /* On some systems, such as HP-UX and hppa-linux, certain system routines
673 have names beginning with $ or $$. Check for those, first. */
674
675 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
676 VAR_DOMAIN, NULL);
677 if (sym.symbol)
678 {
679 write_exp_elt_opcode (ps, OP_VAR_VALUE);
680 write_exp_elt_block (ps, sym.block);
681 write_exp_elt_sym (ps, sym.symbol);
682 write_exp_elt_opcode (ps, OP_VAR_VALUE);
683 return;
684 }
685 msym = lookup_bound_minimal_symbol (copy_name (str));
686 if (msym.minsym)
687 {
688 write_exp_msymbol (ps, msym);
689 return;
690 }
691
692 /* Any other names are assumed to be debugger internal variables. */
693
694 write_exp_elt_opcode (ps, OP_INTERNALVAR);
695 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
696 write_exp_elt_opcode (ps, OP_INTERNALVAR);
697 return;
698 handle_last:
699 write_exp_elt_opcode (ps, OP_LAST);
700 write_exp_elt_longcst (ps, (LONGEST) i);
701 write_exp_elt_opcode (ps, OP_LAST);
702 return;
703 handle_register:
704 write_exp_elt_opcode (ps, OP_REGISTER);
705 str.length--;
706 str.ptr++;
707 write_exp_string (ps, str);
708 write_exp_elt_opcode (ps, OP_REGISTER);
709 return;
710 }
711
712
713 const char *
714 find_template_name_end (const char *p)
715 {
716 int depth = 1;
717 int just_seen_right = 0;
718 int just_seen_colon = 0;
719 int just_seen_space = 0;
720
721 if (!p || (*p != '<'))
722 return 0;
723
724 while (*++p)
725 {
726 switch (*p)
727 {
728 case '\'':
729 case '\"':
730 case '{':
731 case '}':
732 /* In future, may want to allow these?? */
733 return 0;
734 case '<':
735 depth++; /* start nested template */
736 if (just_seen_colon || just_seen_right || just_seen_space)
737 return 0; /* but not after : or :: or > or space */
738 break;
739 case '>':
740 if (just_seen_colon || just_seen_right)
741 return 0; /* end a (nested?) template */
742 just_seen_right = 1; /* but not after : or :: */
743 if (--depth == 0) /* also disallow >>, insist on > > */
744 return ++p; /* if outermost ended, return */
745 break;
746 case ':':
747 if (just_seen_space || (just_seen_colon > 1))
748 return 0; /* nested class spec coming up */
749 just_seen_colon++; /* we allow :: but not :::: */
750 break;
751 case ' ':
752 break;
753 default:
754 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
755 (*p >= 'A' && *p <= 'Z') ||
756 (*p >= '0' && *p <= '9') ||
757 (*p == '_') || (*p == ',') || /* commas for template args */
758 (*p == '&') || (*p == '*') || /* pointer and ref types */
759 (*p == '(') || (*p == ')') || /* function types */
760 (*p == '[') || (*p == ']'))) /* array types */
761 return 0;
762 }
763 if (*p != ' ')
764 just_seen_space = 0;
765 if (*p != ':')
766 just_seen_colon = 0;
767 if (*p != '>')
768 just_seen_right = 0;
769 }
770 return 0;
771 }
772 \f
773
774 /* Return a null-terminated temporary copy of the name of a string token.
775
776 Tokens that refer to names do so with explicit pointer and length,
777 so they can share the storage that lexptr is parsing.
778 When it is necessary to pass a name to a function that expects
779 a null-terminated string, the substring is copied out
780 into a separate block of storage.
781
782 N.B. A single buffer is reused on each call. */
783
784 char *
785 copy_name (struct stoken token)
786 {
787 /* A temporary buffer for identifiers, so we can null-terminate them.
788 We allocate this with xrealloc. parse_exp_1 used to allocate with
789 alloca, using the size of the whole expression as a conservative
790 estimate of the space needed. However, macro expansion can
791 introduce names longer than the original expression; there's no
792 practical way to know beforehand how large that might be. */
793 static char *namecopy;
794 static size_t namecopy_size;
795
796 /* Make sure there's enough space for the token. */
797 if (namecopy_size < token.length + 1)
798 {
799 namecopy_size = token.length + 1;
800 namecopy = (char *) xrealloc (namecopy, token.length + 1);
801 }
802
803 memcpy (namecopy, token.ptr, token.length);
804 namecopy[token.length] = 0;
805
806 return namecopy;
807 }
808 \f
809
810 /* See comments on parser-defs.h. */
811
812 int
813 prefixify_expression (struct expression *expr)
814 {
815 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
816 struct expression *temp;
817 int inpos = expr->nelts, outpos = 0;
818
819 temp = (struct expression *) alloca (len);
820
821 /* Copy the original expression into temp. */
822 memcpy (temp, expr, len);
823
824 return prefixify_subexp (temp, expr, inpos, outpos);
825 }
826
827 /* Return the number of exp_elements in the postfix subexpression
828 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
829
830 static int
831 length_of_subexp (struct expression *expr, int endpos)
832 {
833 int oplen, args;
834
835 operator_length (expr, endpos, &oplen, &args);
836
837 while (args > 0)
838 {
839 oplen += length_of_subexp (expr, endpos - oplen);
840 args--;
841 }
842
843 return oplen;
844 }
845
846 /* Sets *OPLENP to the length of the operator whose (last) index is
847 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
848 operator takes. */
849
850 void
851 operator_length (const struct expression *expr, int endpos, int *oplenp,
852 int *argsp)
853 {
854 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
855 oplenp, argsp);
856 }
857
858 /* Default value for operator_length in exp_descriptor vectors. */
859
860 void
861 operator_length_standard (const struct expression *expr, int endpos,
862 int *oplenp, int *argsp)
863 {
864 int oplen = 1;
865 int args = 0;
866 enum range_type range_type;
867 int i;
868
869 if (endpos < 1)
870 error (_("?error in operator_length_standard"));
871
872 i = (int) expr->elts[endpos - 1].opcode;
873
874 switch (i)
875 {
876 /* C++ */
877 case OP_SCOPE:
878 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
879 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
880 break;
881
882 case OP_LONG:
883 case OP_DOUBLE:
884 case OP_DECFLOAT:
885 case OP_VAR_VALUE:
886 oplen = 4;
887 break;
888
889 case OP_TYPE:
890 case OP_BOOL:
891 case OP_LAST:
892 case OP_INTERNALVAR:
893 case OP_VAR_ENTRY_VALUE:
894 oplen = 3;
895 break;
896
897 case OP_COMPLEX:
898 oplen = 3;
899 args = 2;
900 break;
901
902 case OP_FUNCALL:
903 case OP_F77_UNDETERMINED_ARGLIST:
904 oplen = 3;
905 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
906 break;
907
908 case TYPE_INSTANCE:
909 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
910 args = 1;
911 break;
912
913 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
914 oplen = 4;
915 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
916 break;
917
918 case UNOP_MAX:
919 case UNOP_MIN:
920 oplen = 3;
921 break;
922
923 case UNOP_CAST_TYPE:
924 case UNOP_DYNAMIC_CAST:
925 case UNOP_REINTERPRET_CAST:
926 case UNOP_MEMVAL_TYPE:
927 oplen = 1;
928 args = 2;
929 break;
930
931 case BINOP_VAL:
932 case UNOP_CAST:
933 case UNOP_MEMVAL:
934 oplen = 3;
935 args = 1;
936 break;
937
938 case UNOP_MEMVAL_TLS:
939 oplen = 4;
940 args = 1;
941 break;
942
943 case UNOP_ABS:
944 case UNOP_CAP:
945 case UNOP_CHR:
946 case UNOP_FLOAT:
947 case UNOP_HIGH:
948 case UNOP_ODD:
949 case UNOP_ORD:
950 case UNOP_TRUNC:
951 case OP_TYPEOF:
952 case OP_DECLTYPE:
953 case OP_TYPEID:
954 oplen = 1;
955 args = 1;
956 break;
957
958 case OP_ADL_FUNC:
959 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
960 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
961 oplen++;
962 oplen++;
963 break;
964
965 case STRUCTOP_STRUCT:
966 case STRUCTOP_PTR:
967 args = 1;
968 /* fall through */
969 case OP_REGISTER:
970 case OP_M2_STRING:
971 case OP_STRING:
972 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
973 NSString constant. */
974 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
975 case OP_NAME:
976 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
977 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
978 break;
979
980 case OP_ARRAY:
981 oplen = 4;
982 args = longest_to_int (expr->elts[endpos - 2].longconst);
983 args -= longest_to_int (expr->elts[endpos - 3].longconst);
984 args += 1;
985 break;
986
987 case TERNOP_COND:
988 case TERNOP_SLICE:
989 args = 3;
990 break;
991
992 /* Modula-2 */
993 case MULTI_SUBSCRIPT:
994 oplen = 3;
995 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
996 break;
997
998 case BINOP_ASSIGN_MODIFY:
999 oplen = 3;
1000 args = 2;
1001 break;
1002
1003 /* C++ */
1004 case OP_THIS:
1005 oplen = 2;
1006 break;
1007
1008 case OP_RANGE:
1009 oplen = 3;
1010 range_type = (enum range_type)
1011 longest_to_int (expr->elts[endpos - 2].longconst);
1012
1013 switch (range_type)
1014 {
1015 case LOW_BOUND_DEFAULT:
1016 case HIGH_BOUND_DEFAULT:
1017 args = 1;
1018 break;
1019 case BOTH_BOUND_DEFAULT:
1020 args = 0;
1021 break;
1022 case NONE_BOUND_DEFAULT:
1023 args = 2;
1024 break;
1025 }
1026
1027 break;
1028
1029 default:
1030 args = 1 + (i < (int) BINOP_END);
1031 }
1032
1033 *oplenp = oplen;
1034 *argsp = args;
1035 }
1036
1037 /* Copy the subexpression ending just before index INEND in INEXPR
1038 into OUTEXPR, starting at index OUTBEG.
1039 In the process, convert it from suffix to prefix form.
1040 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1041 Otherwise, it returns the index of the subexpression which is the
1042 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1043
1044 static int
1045 prefixify_subexp (struct expression *inexpr,
1046 struct expression *outexpr, int inend, int outbeg)
1047 {
1048 int oplen;
1049 int args;
1050 int i;
1051 int *arglens;
1052 int result = -1;
1053
1054 operator_length (inexpr, inend, &oplen, &args);
1055
1056 /* Copy the final operator itself, from the end of the input
1057 to the beginning of the output. */
1058 inend -= oplen;
1059 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1060 EXP_ELEM_TO_BYTES (oplen));
1061 outbeg += oplen;
1062
1063 if (expout_last_struct == inend)
1064 result = outbeg - oplen;
1065
1066 /* Find the lengths of the arg subexpressions. */
1067 arglens = (int *) alloca (args * sizeof (int));
1068 for (i = args - 1; i >= 0; i--)
1069 {
1070 oplen = length_of_subexp (inexpr, inend);
1071 arglens[i] = oplen;
1072 inend -= oplen;
1073 }
1074
1075 /* Now copy each subexpression, preserving the order of
1076 the subexpressions, but prefixifying each one.
1077 In this loop, inend starts at the beginning of
1078 the expression this level is working on
1079 and marches forward over the arguments.
1080 outbeg does similarly in the output. */
1081 for (i = 0; i < args; i++)
1082 {
1083 int r;
1084
1085 oplen = arglens[i];
1086 inend += oplen;
1087 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1088 if (r != -1)
1089 {
1090 /* Return immediately. We probably have only parsed a
1091 partial expression, so we don't want to try to reverse
1092 the other operands. */
1093 return r;
1094 }
1095 outbeg += oplen;
1096 }
1097
1098 return result;
1099 }
1100 \f
1101 /* Read an expression from the string *STRINGPTR points to,
1102 parse it, and return a pointer to a struct expression that we malloc.
1103 Use block BLOCK as the lexical context for variable names;
1104 if BLOCK is zero, use the block of the selected stack frame.
1105 Meanwhile, advance *STRINGPTR to point after the expression,
1106 at the first nonwhite character that is not part of the expression
1107 (possibly a null character).
1108
1109 If COMMA is nonzero, stop if a comma is reached. */
1110
1111 expression_up
1112 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1113 int comma)
1114 {
1115 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1116 }
1117
1118 static expression_up
1119 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1120 const struct block *block,
1121 int comma, int void_context_p, int *out_subexp)
1122 {
1123 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1124 void_context_p, out_subexp);
1125 }
1126
1127 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1128 no value is expected from the expression.
1129 OUT_SUBEXP is set when attempting to complete a field name; in this
1130 case it is set to the index of the subexpression on the
1131 left-hand-side of the struct op. If not doing such completion, it
1132 is left untouched. */
1133
1134 static expression_up
1135 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1136 const struct block *block,
1137 int comma, int void_context_p, int *out_subexp)
1138 {
1139 struct cleanup *old_chain, *inner_chain;
1140 const struct language_defn *lang = NULL;
1141 struct parser_state ps;
1142 int subexp;
1143
1144 lexptr = *stringptr;
1145 prev_lexptr = NULL;
1146
1147 paren_depth = 0;
1148 type_stack.depth = 0;
1149 expout_last_struct = -1;
1150 expout_tag_completion_type = TYPE_CODE_UNDEF;
1151 xfree (expout_completion_name);
1152 expout_completion_name = NULL;
1153
1154 comma_terminates = comma;
1155
1156 if (lexptr == 0 || *lexptr == 0)
1157 error_no_arg (_("expression to compute"));
1158
1159 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1160 funcall_chain = 0;
1161
1162 expression_context_block = block;
1163
1164 /* If no context specified, try using the current frame, if any. */
1165 if (!expression_context_block)
1166 expression_context_block = get_selected_block (&expression_context_pc);
1167 else if (pc == 0)
1168 expression_context_pc = BLOCK_START (expression_context_block);
1169 else
1170 expression_context_pc = pc;
1171
1172 /* Fall back to using the current source static context, if any. */
1173
1174 if (!expression_context_block)
1175 {
1176 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1177 if (cursal.symtab)
1178 expression_context_block
1179 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1180 STATIC_BLOCK);
1181 if (expression_context_block)
1182 expression_context_pc = BLOCK_START (expression_context_block);
1183 }
1184
1185 if (language_mode == language_mode_auto && block != NULL)
1186 {
1187 /* Find the language associated to the given context block.
1188 Default to the current language if it can not be determined.
1189
1190 Note that using the language corresponding to the current frame
1191 can sometimes give unexpected results. For instance, this
1192 routine is often called several times during the inferior
1193 startup phase to re-parse breakpoint expressions after
1194 a new shared library has been loaded. The language associated
1195 to the current frame at this moment is not relevant for
1196 the breakpoint. Using it would therefore be silly, so it seems
1197 better to rely on the current language rather than relying on
1198 the current frame language to parse the expression. That's why
1199 we do the following language detection only if the context block
1200 has been specifically provided. */
1201 struct symbol *func = block_linkage_function (block);
1202
1203 if (func != NULL)
1204 lang = language_def (SYMBOL_LANGUAGE (func));
1205 if (lang == NULL || lang->la_language == language_unknown)
1206 lang = current_language;
1207 }
1208 else
1209 lang = current_language;
1210
1211 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1212 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1213 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1214 to the value matching SELECTED_FRAME as set by get_current_arch. */
1215
1216 initialize_expout (&ps, 10, lang, get_current_arch ());
1217 inner_chain = make_cleanup_restore_current_language ();
1218 set_language (lang->la_language);
1219
1220 TRY
1221 {
1222 if (lang->la_parser (&ps))
1223 lang->la_error (NULL);
1224 }
1225 CATCH (except, RETURN_MASK_ALL)
1226 {
1227 if (! parse_completion)
1228 {
1229 xfree (ps.expout);
1230 throw_exception (except);
1231 }
1232 }
1233 END_CATCH
1234
1235 reallocate_expout (&ps);
1236
1237 /* Convert expression from postfix form as generated by yacc
1238 parser, to a prefix form. */
1239
1240 if (expressiondebug)
1241 dump_raw_expression (ps.expout, gdb_stdlog,
1242 "before conversion to prefix form");
1243
1244 subexp = prefixify_expression (ps.expout);
1245 if (out_subexp)
1246 *out_subexp = subexp;
1247
1248 lang->la_post_parser (&ps.expout, void_context_p);
1249
1250 if (expressiondebug)
1251 dump_prefix_expression (ps.expout, gdb_stdlog);
1252
1253 do_cleanups (inner_chain);
1254 discard_cleanups (old_chain);
1255
1256 *stringptr = lexptr;
1257 return expression_up (ps.expout);
1258 }
1259
1260 /* Parse STRING as an expression, and complain if this fails
1261 to use up all of the contents of STRING. */
1262
1263 expression_up
1264 parse_expression (const char *string)
1265 {
1266 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1267 if (*string)
1268 error (_("Junk after end of expression."));
1269 return exp;
1270 }
1271
1272 /* Same as parse_expression, but using the given language (LANG)
1273 to parse the expression. */
1274
1275 expression_up
1276 parse_expression_with_language (const char *string, enum language lang)
1277 {
1278 struct cleanup *old_chain = NULL;
1279
1280 if (current_language->la_language != lang)
1281 {
1282 old_chain = make_cleanup_restore_current_language ();
1283 set_language (lang);
1284 }
1285
1286 expression_up expr = parse_expression (string);
1287
1288 if (old_chain != NULL)
1289 do_cleanups (old_chain);
1290 return expr;
1291 }
1292
1293 /* Parse STRING as an expression. If parsing ends in the middle of a
1294 field reference, return the type of the left-hand-side of the
1295 reference; furthermore, if the parsing ends in the field name,
1296 return the field name in *NAME. If the parsing ends in the middle
1297 of a field reference, but the reference is somehow invalid, throw
1298 an exception. In all other cases, return NULL. Returned non-NULL
1299 *NAME must be freed by the caller. */
1300
1301 struct type *
1302 parse_expression_for_completion (const char *string, char **name,
1303 enum type_code *code)
1304 {
1305 expression_up exp;
1306 struct value *val;
1307 int subexp;
1308
1309 TRY
1310 {
1311 parse_completion = 1;
1312 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1313 }
1314 CATCH (except, RETURN_MASK_ERROR)
1315 {
1316 /* Nothing, EXP remains NULL. */
1317 }
1318 END_CATCH
1319
1320 parse_completion = 0;
1321 if (exp == NULL)
1322 return NULL;
1323
1324 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1325 {
1326 *code = expout_tag_completion_type;
1327 *name = expout_completion_name;
1328 expout_completion_name = NULL;
1329 return NULL;
1330 }
1331
1332 if (expout_last_struct == -1)
1333 return NULL;
1334
1335 *name = extract_field_op (exp.get (), &subexp);
1336 if (!*name)
1337 return NULL;
1338
1339 /* This might throw an exception. If so, we want to let it
1340 propagate. */
1341 val = evaluate_subexpression_type (exp.get (), subexp);
1342 /* (*NAME) is a part of the EXP memory block freed below. */
1343 *name = xstrdup (*name);
1344
1345 return value_type (val);
1346 }
1347
1348 /* A post-parser that does nothing. */
1349
1350 void
1351 null_post_parser (struct expression **exp, int void_context_p)
1352 {
1353 }
1354
1355 /* Parse floating point value P of length LEN.
1356 Return 0 (false) if invalid, 1 (true) if valid.
1357 The successfully parsed number is stored in D.
1358 *SUFFIX points to the suffix of the number in P.
1359
1360 NOTE: This accepts the floating point syntax that sscanf accepts. */
1361
1362 int
1363 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1364 {
1365 char *copy;
1366 int n, num;
1367
1368 copy = (char *) xmalloc (len + 1);
1369 memcpy (copy, p, len);
1370 copy[len] = 0;
1371
1372 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1373 xfree (copy);
1374
1375 /* The sscanf man page suggests not making any assumptions on the effect
1376 of %n on the result, so we don't.
1377 That is why we simply test num == 0. */
1378 if (num == 0)
1379 return 0;
1380
1381 *suffix = p + n;
1382 return 1;
1383 }
1384
1385 /* Parse floating point value P of length LEN, using the C syntax for floats.
1386 Return 0 (false) if invalid, 1 (true) if valid.
1387 The successfully parsed number is stored in *D.
1388 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1389
1390 int
1391 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1392 DOUBLEST *d, struct type **t)
1393 {
1394 const char *suffix;
1395 int suffix_len;
1396 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1397
1398 if (! parse_float (p, len, d, &suffix))
1399 return 0;
1400
1401 suffix_len = p + len - suffix;
1402
1403 if (suffix_len == 0)
1404 *t = builtin_types->builtin_double;
1405 else if (suffix_len == 1)
1406 {
1407 /* Handle suffixes: 'f' for float, 'l' for long double. */
1408 if (tolower (*suffix) == 'f')
1409 *t = builtin_types->builtin_float;
1410 else if (tolower (*suffix) == 'l')
1411 *t = builtin_types->builtin_long_double;
1412 else
1413 return 0;
1414 }
1415 else
1416 return 0;
1417
1418 return 1;
1419 }
1420 \f
1421 /* Stuff for maintaining a stack of types. Currently just used by C, but
1422 probably useful for any language which declares its types "backwards". */
1423
1424 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1425
1426 static void
1427 type_stack_reserve (struct type_stack *stack, int howmuch)
1428 {
1429 if (stack->depth + howmuch >= stack->size)
1430 {
1431 stack->size *= 2;
1432 if (stack->size < howmuch)
1433 stack->size = howmuch;
1434 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1435 stack->size);
1436 }
1437 }
1438
1439 /* Ensure that there is a single open slot in the global type stack. */
1440
1441 static void
1442 check_type_stack_depth (void)
1443 {
1444 type_stack_reserve (&type_stack, 1);
1445 }
1446
1447 /* A helper function for insert_type and insert_type_address_space.
1448 This does work of expanding the type stack and inserting the new
1449 element, ELEMENT, into the stack at location SLOT. */
1450
1451 static void
1452 insert_into_type_stack (int slot, union type_stack_elt element)
1453 {
1454 check_type_stack_depth ();
1455
1456 if (slot < type_stack.depth)
1457 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1458 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1459 type_stack.elements[slot] = element;
1460 ++type_stack.depth;
1461 }
1462
1463 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1464 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1465 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1466 previous tp_pointer) if there is anything on the stack, or simply pushed
1467 if the stack is empty. Other values for TP are invalid. */
1468
1469 void
1470 insert_type (enum type_pieces tp)
1471 {
1472 union type_stack_elt element;
1473 int slot;
1474
1475 gdb_assert (tp == tp_pointer || tp == tp_reference
1476 || tp == tp_rvalue_reference || tp == tp_const
1477 || tp == tp_volatile);
1478
1479 /* If there is anything on the stack (we know it will be a
1480 tp_pointer), insert the qualifier above it. Otherwise, simply
1481 push this on the top of the stack. */
1482 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1483 slot = 1;
1484 else
1485 slot = 0;
1486
1487 element.piece = tp;
1488 insert_into_type_stack (slot, element);
1489 }
1490
1491 void
1492 push_type (enum type_pieces tp)
1493 {
1494 check_type_stack_depth ();
1495 type_stack.elements[type_stack.depth++].piece = tp;
1496 }
1497
1498 void
1499 push_type_int (int n)
1500 {
1501 check_type_stack_depth ();
1502 type_stack.elements[type_stack.depth++].int_val = n;
1503 }
1504
1505 /* Insert a tp_space_identifier and the corresponding address space
1506 value into the stack. STRING is the name of an address space, as
1507 recognized by address_space_name_to_int. If the stack is empty,
1508 the new elements are simply pushed. If the stack is not empty,
1509 this function assumes that the first item on the stack is a
1510 tp_pointer, and the new values are inserted above the first
1511 item. */
1512
1513 void
1514 insert_type_address_space (struct parser_state *pstate, char *string)
1515 {
1516 union type_stack_elt element;
1517 int slot;
1518
1519 /* If there is anything on the stack (we know it will be a
1520 tp_pointer), insert the address space qualifier above it.
1521 Otherwise, simply push this on the top of the stack. */
1522 if (type_stack.depth)
1523 slot = 1;
1524 else
1525 slot = 0;
1526
1527 element.piece = tp_space_identifier;
1528 insert_into_type_stack (slot, element);
1529 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1530 string);
1531 insert_into_type_stack (slot, element);
1532 }
1533
1534 enum type_pieces
1535 pop_type (void)
1536 {
1537 if (type_stack.depth)
1538 return type_stack.elements[--type_stack.depth].piece;
1539 return tp_end;
1540 }
1541
1542 int
1543 pop_type_int (void)
1544 {
1545 if (type_stack.depth)
1546 return type_stack.elements[--type_stack.depth].int_val;
1547 /* "Can't happen". */
1548 return 0;
1549 }
1550
1551 /* Pop a type list element from the global type stack. */
1552
1553 static VEC (type_ptr) *
1554 pop_typelist (void)
1555 {
1556 gdb_assert (type_stack.depth);
1557 return type_stack.elements[--type_stack.depth].typelist_val;
1558 }
1559
1560 /* Pop a type_stack element from the global type stack. */
1561
1562 static struct type_stack *
1563 pop_type_stack (void)
1564 {
1565 gdb_assert (type_stack.depth);
1566 return type_stack.elements[--type_stack.depth].stack_val;
1567 }
1568
1569 /* Append the elements of the type stack FROM to the type stack TO.
1570 Always returns TO. */
1571
1572 struct type_stack *
1573 append_type_stack (struct type_stack *to, struct type_stack *from)
1574 {
1575 type_stack_reserve (to, from->depth);
1576
1577 memcpy (&to->elements[to->depth], &from->elements[0],
1578 from->depth * sizeof (union type_stack_elt));
1579 to->depth += from->depth;
1580
1581 return to;
1582 }
1583
1584 /* Push the type stack STACK as an element on the global type stack. */
1585
1586 void
1587 push_type_stack (struct type_stack *stack)
1588 {
1589 check_type_stack_depth ();
1590 type_stack.elements[type_stack.depth++].stack_val = stack;
1591 push_type (tp_type_stack);
1592 }
1593
1594 /* Copy the global type stack into a newly allocated type stack and
1595 return it. The global stack is cleared. The returned type stack
1596 must be freed with type_stack_cleanup. */
1597
1598 struct type_stack *
1599 get_type_stack (void)
1600 {
1601 struct type_stack *result = XNEW (struct type_stack);
1602
1603 *result = type_stack;
1604 type_stack.depth = 0;
1605 type_stack.size = 0;
1606 type_stack.elements = NULL;
1607
1608 return result;
1609 }
1610
1611 /* A cleanup function that destroys a single type stack. */
1612
1613 void
1614 type_stack_cleanup (void *arg)
1615 {
1616 struct type_stack *stack = (struct type_stack *) arg;
1617
1618 xfree (stack->elements);
1619 xfree (stack);
1620 }
1621
1622 /* Push a function type with arguments onto the global type stack.
1623 LIST holds the argument types. If the final item in LIST is NULL,
1624 then the function will be varargs. */
1625
1626 void
1627 push_typelist (VEC (type_ptr) *list)
1628 {
1629 check_type_stack_depth ();
1630 type_stack.elements[type_stack.depth++].typelist_val = list;
1631 push_type (tp_function_with_arguments);
1632 }
1633
1634 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1635 as modified by all the stuff on the stack. */
1636 struct type *
1637 follow_types (struct type *follow_type)
1638 {
1639 int done = 0;
1640 int make_const = 0;
1641 int make_volatile = 0;
1642 int make_addr_space = 0;
1643 int array_size;
1644
1645 while (!done)
1646 switch (pop_type ())
1647 {
1648 case tp_end:
1649 done = 1;
1650 if (make_const)
1651 follow_type = make_cv_type (make_const,
1652 TYPE_VOLATILE (follow_type),
1653 follow_type, 0);
1654 if (make_volatile)
1655 follow_type = make_cv_type (TYPE_CONST (follow_type),
1656 make_volatile,
1657 follow_type, 0);
1658 if (make_addr_space)
1659 follow_type = make_type_with_address_space (follow_type,
1660 make_addr_space);
1661 make_const = make_volatile = 0;
1662 make_addr_space = 0;
1663 break;
1664 case tp_const:
1665 make_const = 1;
1666 break;
1667 case tp_volatile:
1668 make_volatile = 1;
1669 break;
1670 case tp_space_identifier:
1671 make_addr_space = pop_type_int ();
1672 break;
1673 case tp_pointer:
1674 follow_type = lookup_pointer_type (follow_type);
1675 if (make_const)
1676 follow_type = make_cv_type (make_const,
1677 TYPE_VOLATILE (follow_type),
1678 follow_type, 0);
1679 if (make_volatile)
1680 follow_type = make_cv_type (TYPE_CONST (follow_type),
1681 make_volatile,
1682 follow_type, 0);
1683 if (make_addr_space)
1684 follow_type = make_type_with_address_space (follow_type,
1685 make_addr_space);
1686 make_const = make_volatile = 0;
1687 make_addr_space = 0;
1688 break;
1689 case tp_reference:
1690 follow_type = lookup_lvalue_reference_type (follow_type);
1691 goto process_reference;
1692 case tp_rvalue_reference:
1693 follow_type = lookup_rvalue_reference_type (follow_type);
1694 process_reference:
1695 if (make_const)
1696 follow_type = make_cv_type (make_const,
1697 TYPE_VOLATILE (follow_type),
1698 follow_type, 0);
1699 if (make_volatile)
1700 follow_type = make_cv_type (TYPE_CONST (follow_type),
1701 make_volatile,
1702 follow_type, 0);
1703 if (make_addr_space)
1704 follow_type = make_type_with_address_space (follow_type,
1705 make_addr_space);
1706 make_const = make_volatile = 0;
1707 make_addr_space = 0;
1708 break;
1709 case tp_array:
1710 array_size = pop_type_int ();
1711 /* FIXME-type-allocation: need a way to free this type when we are
1712 done with it. */
1713 follow_type =
1714 lookup_array_range_type (follow_type,
1715 0, array_size >= 0 ? array_size - 1 : 0);
1716 if (array_size < 0)
1717 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1718 = PROP_UNDEFINED;
1719 break;
1720 case tp_function:
1721 /* FIXME-type-allocation: need a way to free this type when we are
1722 done with it. */
1723 follow_type = lookup_function_type (follow_type);
1724 break;
1725
1726 case tp_function_with_arguments:
1727 {
1728 VEC (type_ptr) *args = pop_typelist ();
1729
1730 follow_type
1731 = lookup_function_type_with_arguments (follow_type,
1732 VEC_length (type_ptr, args),
1733 VEC_address (type_ptr,
1734 args));
1735 VEC_free (type_ptr, args);
1736 }
1737 break;
1738
1739 case tp_type_stack:
1740 {
1741 struct type_stack *stack = pop_type_stack ();
1742 /* Sort of ugly, but not really much worse than the
1743 alternatives. */
1744 struct type_stack save = type_stack;
1745
1746 type_stack = *stack;
1747 follow_type = follow_types (follow_type);
1748 gdb_assert (type_stack.depth == 0);
1749
1750 type_stack = save;
1751 }
1752 break;
1753 default:
1754 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1755 }
1756 return follow_type;
1757 }
1758 \f
1759 /* This function avoids direct calls to fprintf
1760 in the parser generated debug code. */
1761 void
1762 parser_fprintf (FILE *x, const char *y, ...)
1763 {
1764 va_list args;
1765
1766 va_start (args, y);
1767 if (x == stderr)
1768 vfprintf_unfiltered (gdb_stderr, y, args);
1769 else
1770 {
1771 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1772 vfprintf_unfiltered (gdb_stderr, y, args);
1773 }
1774 va_end (args);
1775 }
1776
1777 /* Implementation of the exp_descriptor method operator_check. */
1778
1779 int
1780 operator_check_standard (struct expression *exp, int pos,
1781 int (*objfile_func) (struct objfile *objfile,
1782 void *data),
1783 void *data)
1784 {
1785 const union exp_element *const elts = exp->elts;
1786 struct type *type = NULL;
1787 struct objfile *objfile = NULL;
1788
1789 /* Extended operators should have been already handled by exp_descriptor
1790 iterate method of its specific language. */
1791 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1792
1793 /* Track the callers of write_exp_elt_type for this table. */
1794
1795 switch (elts[pos].opcode)
1796 {
1797 case BINOP_VAL:
1798 case OP_COMPLEX:
1799 case OP_DECFLOAT:
1800 case OP_DOUBLE:
1801 case OP_LONG:
1802 case OP_SCOPE:
1803 case OP_TYPE:
1804 case UNOP_CAST:
1805 case UNOP_MAX:
1806 case UNOP_MEMVAL:
1807 case UNOP_MIN:
1808 type = elts[pos + 1].type;
1809 break;
1810
1811 case TYPE_INSTANCE:
1812 {
1813 LONGEST arg, nargs = elts[pos + 1].longconst;
1814
1815 for (arg = 0; arg < nargs; arg++)
1816 {
1817 struct type *type = elts[pos + 2 + arg].type;
1818 struct objfile *objfile = TYPE_OBJFILE (type);
1819
1820 if (objfile && (*objfile_func) (objfile, data))
1821 return 1;
1822 }
1823 }
1824 break;
1825
1826 case UNOP_MEMVAL_TLS:
1827 objfile = elts[pos + 1].objfile;
1828 type = elts[pos + 2].type;
1829 break;
1830
1831 case OP_VAR_VALUE:
1832 {
1833 const struct block *const block = elts[pos + 1].block;
1834 const struct symbol *const symbol = elts[pos + 2].symbol;
1835
1836 /* Check objfile where the variable itself is placed.
1837 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1838 if ((*objfile_func) (symbol_objfile (symbol), data))
1839 return 1;
1840
1841 /* Check objfile where is placed the code touching the variable. */
1842 objfile = lookup_objfile_from_block (block);
1843
1844 type = SYMBOL_TYPE (symbol);
1845 }
1846 break;
1847 }
1848
1849 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1850
1851 if (type && TYPE_OBJFILE (type)
1852 && (*objfile_func) (TYPE_OBJFILE (type), data))
1853 return 1;
1854 if (objfile && (*objfile_func) (objfile, data))
1855 return 1;
1856
1857 return 0;
1858 }
1859
1860 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1861 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1862 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1863 returns non-zero value then (any other) non-zero value is immediately
1864 returned to the caller. Otherwise zero is returned after iterating
1865 through whole EXP. */
1866
1867 static int
1868 exp_iterate (struct expression *exp,
1869 int (*objfile_func) (struct objfile *objfile, void *data),
1870 void *data)
1871 {
1872 int endpos;
1873
1874 for (endpos = exp->nelts; endpos > 0; )
1875 {
1876 int pos, args, oplen = 0;
1877
1878 operator_length (exp, endpos, &oplen, &args);
1879 gdb_assert (oplen > 0);
1880
1881 pos = endpos - oplen;
1882 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1883 objfile_func, data))
1884 return 1;
1885
1886 endpos = pos;
1887 }
1888
1889 return 0;
1890 }
1891
1892 /* Helper for exp_uses_objfile. */
1893
1894 static int
1895 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1896 {
1897 struct objfile *objfile = (struct objfile *) objfile_voidp;
1898
1899 if (exp_objfile->separate_debug_objfile_backlink)
1900 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1901
1902 return exp_objfile == objfile;
1903 }
1904
1905 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1906 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1907 file. */
1908
1909 int
1910 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1911 {
1912 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1913
1914 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1915 }
1916
1917 /* See definition in parser-defs.h. */
1918
1919 void
1920 increase_expout_size (struct parser_state *ps, size_t lenelt)
1921 {
1922 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1923 {
1924 ps->expout_size = std::max (ps->expout_size * 2,
1925 ps->expout_ptr + lenelt + 10);
1926 ps->expout = (struct expression *)
1927 xrealloc (ps->expout, (sizeof (struct expression)
1928 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1929 }
1930 }
1931
1932 void
1933 _initialize_parse (void)
1934 {
1935 type_stack.size = 0;
1936 type_stack.depth = 0;
1937 type_stack.elements = NULL;
1938
1939 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1940 &expressiondebug,
1941 _("Set expression debugging."),
1942 _("Show expression debugging."),
1943 _("When non-zero, the internal representation "
1944 "of expressions will be printed."),
1945 NULL,
1946 show_expressiondebug,
1947 &setdebuglist, &showdebuglist);
1948 add_setshow_boolean_cmd ("parser", class_maintenance,
1949 &parser_debug,
1950 _("Set parser debugging."),
1951 _("Show parser debugging."),
1952 _("When non-zero, expression parser "
1953 "tracing will be enabled."),
1954 NULL,
1955 show_parserdebug,
1956 &setdebuglist, &showdebuglist);
1957 }
This page took 0.113065 seconds and 5 git commands to generate.