gdb/
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126
127 void _initialize_parse (void);
128
129 /* Data structure for saving values of arglist_len for function calls whose
130 arguments contain other function calls. */
131
132 struct funcall
133 {
134 struct funcall *next;
135 int arglist_len;
136 };
137
138 static struct funcall *funcall_chain;
139
140 /* Begin counting arguments for a function call,
141 saving the data about any containing call. */
142
143 void
144 start_arglist (void)
145 {
146 struct funcall *new;
147
148 new = (struct funcall *) xmalloc (sizeof (struct funcall));
149 new->next = funcall_chain;
150 new->arglist_len = arglist_len;
151 arglist_len = 0;
152 funcall_chain = new;
153 }
154
155 /* Return the number of arguments in a function call just terminated,
156 and restore the data for the containing function call. */
157
158 int
159 end_arglist (void)
160 {
161 int val = arglist_len;
162 struct funcall *call = funcall_chain;
163
164 funcall_chain = call->next;
165 arglist_len = call->arglist_len;
166 xfree (call);
167 return val;
168 }
169
170 /* Free everything in the funcall chain.
171 Used when there is an error inside parsing. */
172
173 static void
174 free_funcalls (void *ignore)
175 {
176 struct funcall *call, *next;
177
178 for (call = funcall_chain; call; call = next)
179 {
180 next = call->next;
181 xfree (call);
182 }
183 }
184 \f
185 /* This page contains the functions for adding data to the struct expression
186 being constructed. */
187
188 /* See definition in parser-defs.h. */
189
190 void
191 initialize_expout (int initial_size, const struct language_defn *lang,
192 struct gdbarch *gdbarch)
193 {
194 expout_size = initial_size;
195 expout_ptr = 0;
196 expout = xmalloc (sizeof (struct expression)
197 + EXP_ELEM_TO_BYTES (expout_size));
198 expout->language_defn = lang;
199 expout->gdbarch = gdbarch;
200 }
201
202 /* See definition in parser-defs.h. */
203
204 void
205 reallocate_expout (void)
206 {
207 /* Record the actual number of expression elements, and then
208 reallocate the expression memory so that we free up any
209 excess elements. */
210
211 expout->nelts = expout_ptr;
212 expout = xrealloc ((char *) expout,
213 sizeof (struct expression)
214 + EXP_ELEM_TO_BYTES (expout_ptr));
215 }
216
217 /* Add one element to the end of the expression. */
218
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220 a register through here. */
221
222 static void
223 write_exp_elt (const union exp_element *expelt)
224 {
225 if (expout_ptr >= expout_size)
226 {
227 expout_size *= 2;
228 expout = (struct expression *)
229 xrealloc ((char *) expout, sizeof (struct expression)
230 + EXP_ELEM_TO_BYTES (expout_size));
231 }
232 expout->elts[expout_ptr++] = *expelt;
233 }
234
235 void
236 write_exp_elt_opcode (enum exp_opcode expelt)
237 {
238 union exp_element tmp;
239
240 memset (&tmp, 0, sizeof (union exp_element));
241 tmp.opcode = expelt;
242 write_exp_elt (&tmp);
243 }
244
245 void
246 write_exp_elt_sym (struct symbol *expelt)
247 {
248 union exp_element tmp;
249
250 memset (&tmp, 0, sizeof (union exp_element));
251 tmp.symbol = expelt;
252 write_exp_elt (&tmp);
253 }
254
255 void
256 write_exp_elt_block (const struct block *b)
257 {
258 union exp_element tmp;
259
260 memset (&tmp, 0, sizeof (union exp_element));
261 tmp.block = b;
262 write_exp_elt (&tmp);
263 }
264
265 void
266 write_exp_elt_objfile (struct objfile *objfile)
267 {
268 union exp_element tmp;
269
270 memset (&tmp, 0, sizeof (union exp_element));
271 tmp.objfile = objfile;
272 write_exp_elt (&tmp);
273 }
274
275 void
276 write_exp_elt_longcst (LONGEST expelt)
277 {
278 union exp_element tmp;
279
280 memset (&tmp, 0, sizeof (union exp_element));
281 tmp.longconst = expelt;
282 write_exp_elt (&tmp);
283 }
284
285 void
286 write_exp_elt_dblcst (DOUBLEST expelt)
287 {
288 union exp_element tmp;
289
290 memset (&tmp, 0, sizeof (union exp_element));
291 tmp.doubleconst = expelt;
292 write_exp_elt (&tmp);
293 }
294
295 void
296 write_exp_elt_decfloatcst (gdb_byte expelt[16])
297 {
298 union exp_element tmp;
299 int index;
300
301 for (index = 0; index < 16; index++)
302 tmp.decfloatconst[index] = expelt[index];
303
304 write_exp_elt (&tmp);
305 }
306
307 void
308 write_exp_elt_type (struct type *expelt)
309 {
310 union exp_element tmp;
311
312 memset (&tmp, 0, sizeof (union exp_element));
313 tmp.type = expelt;
314 write_exp_elt (&tmp);
315 }
316
317 void
318 write_exp_elt_intern (struct internalvar *expelt)
319 {
320 union exp_element tmp;
321
322 memset (&tmp, 0, sizeof (union exp_element));
323 tmp.internalvar = expelt;
324 write_exp_elt (&tmp);
325 }
326
327 /* Add a string constant to the end of the expression.
328
329 String constants are stored by first writing an expression element
330 that contains the length of the string, then stuffing the string
331 constant itself into however many expression elements are needed
332 to hold it, and then writing another expression element that contains
333 the length of the string. I.e. an expression element at each end of
334 the string records the string length, so you can skip over the
335 expression elements containing the actual string bytes from either
336 end of the string. Note that this also allows gdb to handle
337 strings with embedded null bytes, as is required for some languages.
338
339 Don't be fooled by the fact that the string is null byte terminated,
340 this is strictly for the convenience of debugging gdb itself.
341 Gdb does not depend up the string being null terminated, since the
342 actual length is recorded in expression elements at each end of the
343 string. The null byte is taken into consideration when computing how
344 many expression elements are required to hold the string constant, of
345 course. */
346
347
348 void
349 write_exp_string (struct stoken str)
350 {
351 int len = str.length;
352 int lenelt;
353 char *strdata;
354
355 /* Compute the number of expression elements required to hold the string
356 (including a null byte terminator), along with one expression element
357 at each end to record the actual string length (not including the
358 null byte terminator). */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361
362 /* Ensure that we have enough available expression elements to store
363 everything. */
364
365 if ((expout_ptr + lenelt) >= expout_size)
366 {
367 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
368 expout = (struct expression *)
369 xrealloc ((char *) expout, (sizeof (struct expression)
370 + EXP_ELEM_TO_BYTES (expout_size)));
371 }
372
373 /* Write the leading length expression element (which advances the current
374 expression element index), then write the string constant followed by a
375 terminating null byte, and then write the trailing length expression
376 element. */
377
378 write_exp_elt_longcst ((LONGEST) len);
379 strdata = (char *) &expout->elts[expout_ptr];
380 memcpy (strdata, str.ptr, len);
381 *(strdata + len) = '\0';
382 expout_ptr += lenelt - 2;
383 write_exp_elt_longcst ((LONGEST) len);
384 }
385
386 /* Add a vector of string constants to the end of the expression.
387
388 This adds an OP_STRING operation, but encodes the contents
389 differently from write_exp_string. The language is expected to
390 handle evaluation of this expression itself.
391
392 After the usual OP_STRING header, TYPE is written into the
393 expression as a long constant. The interpretation of this field is
394 up to the language evaluator.
395
396 Next, each string in VEC is written. The length is written as a
397 long constant, followed by the contents of the string. */
398
399 void
400 write_exp_string_vector (int type, struct stoken_vector *vec)
401 {
402 int i, n_slots, len;
403
404 /* Compute the size. We compute the size in number of slots to
405 avoid issues with string padding. */
406 n_slots = 0;
407 for (i = 0; i < vec->len; ++i)
408 {
409 /* One slot for the length of this element, plus the number of
410 slots needed for this string. */
411 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
412 }
413
414 /* One more slot for the type of the string. */
415 ++n_slots;
416
417 /* Now compute a phony string length. */
418 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
419
420 n_slots += 4;
421 if ((expout_ptr + n_slots) >= expout_size)
422 {
423 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
424 expout = (struct expression *)
425 xrealloc ((char *) expout, (sizeof (struct expression)
426 + EXP_ELEM_TO_BYTES (expout_size)));
427 }
428
429 write_exp_elt_opcode (OP_STRING);
430 write_exp_elt_longcst (len);
431 write_exp_elt_longcst (type);
432
433 for (i = 0; i < vec->len; ++i)
434 {
435 write_exp_elt_longcst (vec->tokens[i].length);
436 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
437 vec->tokens[i].length);
438 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
439 }
440
441 write_exp_elt_longcst (len);
442 write_exp_elt_opcode (OP_STRING);
443 }
444
445 /* Add a bitstring constant to the end of the expression.
446
447 Bitstring constants are stored by first writing an expression element
448 that contains the length of the bitstring (in bits), then stuffing the
449 bitstring constant itself into however many expression elements are
450 needed to hold it, and then writing another expression element that
451 contains the length of the bitstring. I.e. an expression element at
452 each end of the bitstring records the bitstring length, so you can skip
453 over the expression elements containing the actual bitstring bytes from
454 either end of the bitstring. */
455
456 void
457 write_exp_bitstring (struct stoken str)
458 {
459 int bits = str.length; /* length in bits */
460 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
461 int lenelt;
462 char *strdata;
463
464 /* Compute the number of expression elements required to hold the bitstring,
465 along with one expression element at each end to record the actual
466 bitstring length in bits. */
467
468 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
469
470 /* Ensure that we have enough available expression elements to store
471 everything. */
472
473 if ((expout_ptr + lenelt) >= expout_size)
474 {
475 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
476 expout = (struct expression *)
477 xrealloc ((char *) expout, (sizeof (struct expression)
478 + EXP_ELEM_TO_BYTES (expout_size)));
479 }
480
481 /* Write the leading length expression element (which advances the current
482 expression element index), then write the bitstring constant, and then
483 write the trailing length expression element. */
484
485 write_exp_elt_longcst ((LONGEST) bits);
486 strdata = (char *) &expout->elts[expout_ptr];
487 memcpy (strdata, str.ptr, len);
488 expout_ptr += lenelt - 2;
489 write_exp_elt_longcst ((LONGEST) bits);
490 }
491
492 /* Add the appropriate elements for a minimal symbol to the end of
493 the expression. */
494
495 void
496 write_exp_msymbol (struct minimal_symbol *msymbol)
497 {
498 struct objfile *objfile = msymbol_objfile (msymbol);
499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
500
501 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
502 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
503 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
504 CORE_ADDR pc;
505
506 /* The minimal symbol might point to a function descriptor;
507 resolve it to the actual code address instead. */
508 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
509 if (pc != addr)
510 {
511 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
512
513 /* In this case, assume we have a code symbol instead of
514 a data symbol. */
515
516 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
517 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
518 {
519 /* A function descriptor has been resolved but PC is still in the
520 STT_GNU_IFUNC resolver body (such as because inferior does not
521 run to be able to call it). */
522
523 type = mst_text_gnu_ifunc;
524 }
525 else
526 type = mst_text;
527 section = NULL;
528 addr = pc;
529 }
530
531 if (overlay_debugging)
532 addr = symbol_overlayed_address (addr, section);
533
534 write_exp_elt_opcode (OP_LONG);
535 /* Let's make the type big enough to hold a 64-bit address. */
536 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
537 write_exp_elt_longcst ((LONGEST) addr);
538 write_exp_elt_opcode (OP_LONG);
539
540 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
541 {
542 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
543 write_exp_elt_objfile (objfile);
544 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
545 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
546 return;
547 }
548
549 write_exp_elt_opcode (UNOP_MEMVAL);
550 switch (type)
551 {
552 case mst_text:
553 case mst_file_text:
554 case mst_solib_trampoline:
555 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
556 break;
557
558 case mst_text_gnu_ifunc:
559 write_exp_elt_type (objfile_type (objfile)
560 ->nodebug_text_gnu_ifunc_symbol);
561 break;
562
563 case mst_data:
564 case mst_file_data:
565 case mst_bss:
566 case mst_file_bss:
567 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
568 break;
569
570 case mst_slot_got_plt:
571 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
572 break;
573
574 default:
575 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
576 break;
577 }
578 write_exp_elt_opcode (UNOP_MEMVAL);
579 }
580
581 /* Mark the current index as the starting location of a structure
582 expression. This is used when completing on field names. */
583
584 void
585 mark_struct_expression (void)
586 {
587 gdb_assert (parse_completion
588 && expout_tag_completion_type == TYPE_CODE_UNDEF);
589 expout_last_struct = expout_ptr;
590 }
591
592 /* Indicate that the current parser invocation is completing a tag.
593 TAG is the type code of the tag, and PTR and LENGTH represent the
594 start of the tag name. */
595
596 void
597 mark_completion_tag (enum type_code tag, const char *ptr, int length)
598 {
599 gdb_assert (parse_completion
600 && expout_tag_completion_type == TYPE_CODE_UNDEF
601 && expout_completion_name == NULL
602 && expout_last_struct == -1);
603 gdb_assert (tag == TYPE_CODE_UNION
604 || tag == TYPE_CODE_STRUCT
605 || tag == TYPE_CODE_CLASS
606 || tag == TYPE_CODE_ENUM);
607 expout_tag_completion_type = tag;
608 expout_completion_name = xmalloc (length + 1);
609 memcpy (expout_completion_name, ptr, length);
610 expout_completion_name[length] = '\0';
611 }
612
613 \f
614 /* Recognize tokens that start with '$'. These include:
615
616 $regname A native register name or a "standard
617 register name".
618
619 $variable A convenience variable with a name chosen
620 by the user.
621
622 $digits Value history with index <digits>, starting
623 from the first value which has index 1.
624
625 $$digits Value history with index <digits> relative
626 to the last value. I.e. $$0 is the last
627 value, $$1 is the one previous to that, $$2
628 is the one previous to $$1, etc.
629
630 $ | $0 | $$0 The last value in the value history.
631
632 $$ An abbreviation for the second to the last
633 value in the value history, I.e. $$1 */
634
635 void
636 write_dollar_variable (struct stoken str)
637 {
638 struct symbol *sym = NULL;
639 struct minimal_symbol *msym = NULL;
640 struct internalvar *isym = NULL;
641
642 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
643 and $$digits (equivalent to $<-digits> if you could type that). */
644
645 int negate = 0;
646 int i = 1;
647 /* Double dollar means negate the number and add -1 as well.
648 Thus $$ alone means -1. */
649 if (str.length >= 2 && str.ptr[1] == '$')
650 {
651 negate = 1;
652 i = 2;
653 }
654 if (i == str.length)
655 {
656 /* Just dollars (one or two). */
657 i = -negate;
658 goto handle_last;
659 }
660 /* Is the rest of the token digits? */
661 for (; i < str.length; i++)
662 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
663 break;
664 if (i == str.length)
665 {
666 i = atoi (str.ptr + 1 + negate);
667 if (negate)
668 i = -i;
669 goto handle_last;
670 }
671
672 /* Handle tokens that refer to machine registers:
673 $ followed by a register name. */
674 i = user_reg_map_name_to_regnum (parse_gdbarch,
675 str.ptr + 1, str.length - 1);
676 if (i >= 0)
677 goto handle_register;
678
679 /* Any names starting with $ are probably debugger internal variables. */
680
681 isym = lookup_only_internalvar (copy_name (str) + 1);
682 if (isym)
683 {
684 write_exp_elt_opcode (OP_INTERNALVAR);
685 write_exp_elt_intern (isym);
686 write_exp_elt_opcode (OP_INTERNALVAR);
687 return;
688 }
689
690 /* On some systems, such as HP-UX and hppa-linux, certain system routines
691 have names beginning with $ or $$. Check for those, first. */
692
693 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
694 VAR_DOMAIN, NULL);
695 if (sym)
696 {
697 write_exp_elt_opcode (OP_VAR_VALUE);
698 write_exp_elt_block (block_found); /* set by lookup_symbol */
699 write_exp_elt_sym (sym);
700 write_exp_elt_opcode (OP_VAR_VALUE);
701 return;
702 }
703 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
704 if (msym)
705 {
706 write_exp_msymbol (msym);
707 return;
708 }
709
710 /* Any other names are assumed to be debugger internal variables. */
711
712 write_exp_elt_opcode (OP_INTERNALVAR);
713 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
714 write_exp_elt_opcode (OP_INTERNALVAR);
715 return;
716 handle_last:
717 write_exp_elt_opcode (OP_LAST);
718 write_exp_elt_longcst ((LONGEST) i);
719 write_exp_elt_opcode (OP_LAST);
720 return;
721 handle_register:
722 write_exp_elt_opcode (OP_REGISTER);
723 str.length--;
724 str.ptr++;
725 write_exp_string (str);
726 write_exp_elt_opcode (OP_REGISTER);
727 return;
728 }
729
730
731 char *
732 find_template_name_end (char *p)
733 {
734 int depth = 1;
735 int just_seen_right = 0;
736 int just_seen_colon = 0;
737 int just_seen_space = 0;
738
739 if (!p || (*p != '<'))
740 return 0;
741
742 while (*++p)
743 {
744 switch (*p)
745 {
746 case '\'':
747 case '\"':
748 case '{':
749 case '}':
750 /* In future, may want to allow these?? */
751 return 0;
752 case '<':
753 depth++; /* start nested template */
754 if (just_seen_colon || just_seen_right || just_seen_space)
755 return 0; /* but not after : or :: or > or space */
756 break;
757 case '>':
758 if (just_seen_colon || just_seen_right)
759 return 0; /* end a (nested?) template */
760 just_seen_right = 1; /* but not after : or :: */
761 if (--depth == 0) /* also disallow >>, insist on > > */
762 return ++p; /* if outermost ended, return */
763 break;
764 case ':':
765 if (just_seen_space || (just_seen_colon > 1))
766 return 0; /* nested class spec coming up */
767 just_seen_colon++; /* we allow :: but not :::: */
768 break;
769 case ' ':
770 break;
771 default:
772 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
773 (*p >= 'A' && *p <= 'Z') ||
774 (*p >= '0' && *p <= '9') ||
775 (*p == '_') || (*p == ',') || /* commas for template args */
776 (*p == '&') || (*p == '*') || /* pointer and ref types */
777 (*p == '(') || (*p == ')') || /* function types */
778 (*p == '[') || (*p == ']'))) /* array types */
779 return 0;
780 }
781 if (*p != ' ')
782 just_seen_space = 0;
783 if (*p != ':')
784 just_seen_colon = 0;
785 if (*p != '>')
786 just_seen_right = 0;
787 }
788 return 0;
789 }
790 \f
791
792 /* Return a null-terminated temporary copy of the name of a string token.
793
794 Tokens that refer to names do so with explicit pointer and length,
795 so they can share the storage that lexptr is parsing.
796 When it is necessary to pass a name to a function that expects
797 a null-terminated string, the substring is copied out
798 into a separate block of storage.
799
800 N.B. A single buffer is reused on each call. */
801
802 char *
803 copy_name (struct stoken token)
804 {
805 /* A temporary buffer for identifiers, so we can null-terminate them.
806 We allocate this with xrealloc. parse_exp_1 used to allocate with
807 alloca, using the size of the whole expression as a conservative
808 estimate of the space needed. However, macro expansion can
809 introduce names longer than the original expression; there's no
810 practical way to know beforehand how large that might be. */
811 static char *namecopy;
812 static size_t namecopy_size;
813
814 /* Make sure there's enough space for the token. */
815 if (namecopy_size < token.length + 1)
816 {
817 namecopy_size = token.length + 1;
818 namecopy = xrealloc (namecopy, token.length + 1);
819 }
820
821 memcpy (namecopy, token.ptr, token.length);
822 namecopy[token.length] = 0;
823
824 return namecopy;
825 }
826 \f
827
828 /* See comments on parser-defs.h. */
829
830 int
831 prefixify_expression (struct expression *expr)
832 {
833 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
834 struct expression *temp;
835 int inpos = expr->nelts, outpos = 0;
836
837 temp = (struct expression *) alloca (len);
838
839 /* Copy the original expression into temp. */
840 memcpy (temp, expr, len);
841
842 return prefixify_subexp (temp, expr, inpos, outpos);
843 }
844
845 /* Return the number of exp_elements in the postfix subexpression
846 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
847
848 int
849 length_of_subexp (struct expression *expr, int endpos)
850 {
851 int oplen, args;
852
853 operator_length (expr, endpos, &oplen, &args);
854
855 while (args > 0)
856 {
857 oplen += length_of_subexp (expr, endpos - oplen);
858 args--;
859 }
860
861 return oplen;
862 }
863
864 /* Sets *OPLENP to the length of the operator whose (last) index is
865 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
866 operator takes. */
867
868 void
869 operator_length (const struct expression *expr, int endpos, int *oplenp,
870 int *argsp)
871 {
872 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
873 oplenp, argsp);
874 }
875
876 /* Default value for operator_length in exp_descriptor vectors. */
877
878 void
879 operator_length_standard (const struct expression *expr, int endpos,
880 int *oplenp, int *argsp)
881 {
882 int oplen = 1;
883 int args = 0;
884 enum f90_range_type range_type;
885 int i;
886
887 if (endpos < 1)
888 error (_("?error in operator_length_standard"));
889
890 i = (int) expr->elts[endpos - 1].opcode;
891
892 switch (i)
893 {
894 /* C++ */
895 case OP_SCOPE:
896 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
897 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
898 break;
899
900 case OP_LONG:
901 case OP_DOUBLE:
902 case OP_DECFLOAT:
903 case OP_VAR_VALUE:
904 oplen = 4;
905 break;
906
907 case OP_TYPE:
908 case OP_BOOL:
909 case OP_LAST:
910 case OP_INTERNALVAR:
911 case OP_VAR_ENTRY_VALUE:
912 oplen = 3;
913 break;
914
915 case OP_COMPLEX:
916 oplen = 3;
917 args = 2;
918 break;
919
920 case OP_FUNCALL:
921 case OP_F77_UNDETERMINED_ARGLIST:
922 oplen = 3;
923 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
924 break;
925
926 case TYPE_INSTANCE:
927 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
928 args = 1;
929 break;
930
931 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
932 oplen = 4;
933 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
934 break;
935
936 case UNOP_MAX:
937 case UNOP_MIN:
938 oplen = 3;
939 break;
940
941 case UNOP_CAST_TYPE:
942 case UNOP_DYNAMIC_CAST:
943 case UNOP_REINTERPRET_CAST:
944 case UNOP_MEMVAL_TYPE:
945 oplen = 1;
946 args = 2;
947 break;
948
949 case BINOP_VAL:
950 case UNOP_CAST:
951 case UNOP_MEMVAL:
952 oplen = 3;
953 args = 1;
954 break;
955
956 case UNOP_MEMVAL_TLS:
957 oplen = 4;
958 args = 1;
959 break;
960
961 case UNOP_ABS:
962 case UNOP_CAP:
963 case UNOP_CHR:
964 case UNOP_FLOAT:
965 case UNOP_HIGH:
966 case UNOP_ODD:
967 case UNOP_ORD:
968 case UNOP_TRUNC:
969 case OP_TYPEOF:
970 case OP_DECLTYPE:
971 oplen = 1;
972 args = 1;
973 break;
974
975 case OP_ADL_FUNC:
976 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
977 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
978 oplen++;
979 oplen++;
980 break;
981
982 case STRUCTOP_STRUCT:
983 case STRUCTOP_PTR:
984 args = 1;
985 /* fall through */
986 case OP_REGISTER:
987 case OP_M2_STRING:
988 case OP_STRING:
989 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
990 NSString constant. */
991 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
992 case OP_NAME:
993 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
994 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
995 break;
996
997 case OP_ARRAY:
998 oplen = 4;
999 args = longest_to_int (expr->elts[endpos - 2].longconst);
1000 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1001 args += 1;
1002 break;
1003
1004 case TERNOP_COND:
1005 case TERNOP_SLICE:
1006 args = 3;
1007 break;
1008
1009 /* Modula-2 */
1010 case MULTI_SUBSCRIPT:
1011 oplen = 3;
1012 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1013 break;
1014
1015 case BINOP_ASSIGN_MODIFY:
1016 oplen = 3;
1017 args = 2;
1018 break;
1019
1020 /* C++ */
1021 case OP_THIS:
1022 oplen = 2;
1023 break;
1024
1025 case OP_F90_RANGE:
1026 oplen = 3;
1027
1028 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1029 switch (range_type)
1030 {
1031 case LOW_BOUND_DEFAULT:
1032 case HIGH_BOUND_DEFAULT:
1033 args = 1;
1034 break;
1035 case BOTH_BOUND_DEFAULT:
1036 args = 0;
1037 break;
1038 case NONE_BOUND_DEFAULT:
1039 args = 2;
1040 break;
1041 }
1042
1043 break;
1044
1045 default:
1046 args = 1 + (i < (int) BINOP_END);
1047 }
1048
1049 *oplenp = oplen;
1050 *argsp = args;
1051 }
1052
1053 /* Copy the subexpression ending just before index INEND in INEXPR
1054 into OUTEXPR, starting at index OUTBEG.
1055 In the process, convert it from suffix to prefix form.
1056 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1057 Otherwise, it returns the index of the subexpression which is the
1058 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1059
1060 static int
1061 prefixify_subexp (struct expression *inexpr,
1062 struct expression *outexpr, int inend, int outbeg)
1063 {
1064 int oplen;
1065 int args;
1066 int i;
1067 int *arglens;
1068 int result = -1;
1069
1070 operator_length (inexpr, inend, &oplen, &args);
1071
1072 /* Copy the final operator itself, from the end of the input
1073 to the beginning of the output. */
1074 inend -= oplen;
1075 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1076 EXP_ELEM_TO_BYTES (oplen));
1077 outbeg += oplen;
1078
1079 if (expout_last_struct == inend)
1080 result = outbeg - oplen;
1081
1082 /* Find the lengths of the arg subexpressions. */
1083 arglens = (int *) alloca (args * sizeof (int));
1084 for (i = args - 1; i >= 0; i--)
1085 {
1086 oplen = length_of_subexp (inexpr, inend);
1087 arglens[i] = oplen;
1088 inend -= oplen;
1089 }
1090
1091 /* Now copy each subexpression, preserving the order of
1092 the subexpressions, but prefixifying each one.
1093 In this loop, inend starts at the beginning of
1094 the expression this level is working on
1095 and marches forward over the arguments.
1096 outbeg does similarly in the output. */
1097 for (i = 0; i < args; i++)
1098 {
1099 int r;
1100
1101 oplen = arglens[i];
1102 inend += oplen;
1103 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1104 if (r != -1)
1105 {
1106 /* Return immediately. We probably have only parsed a
1107 partial expression, so we don't want to try to reverse
1108 the other operands. */
1109 return r;
1110 }
1111 outbeg += oplen;
1112 }
1113
1114 return result;
1115 }
1116 \f
1117 /* Read an expression from the string *STRINGPTR points to,
1118 parse it, and return a pointer to a struct expression that we malloc.
1119 Use block BLOCK as the lexical context for variable names;
1120 if BLOCK is zero, use the block of the selected stack frame.
1121 Meanwhile, advance *STRINGPTR to point after the expression,
1122 at the first nonwhite character that is not part of the expression
1123 (possibly a null character).
1124
1125 If COMMA is nonzero, stop if a comma is reached. */
1126
1127 struct expression *
1128 parse_exp_1 (char **stringptr, CORE_ADDR pc, const struct block *block,
1129 int comma)
1130 {
1131 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1132 }
1133
1134 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1135 no value is expected from the expression.
1136 OUT_SUBEXP is set when attempting to complete a field name; in this
1137 case it is set to the index of the subexpression on the
1138 left-hand-side of the struct op. If not doing such completion, it
1139 is left untouched. */
1140
1141 static struct expression *
1142 parse_exp_in_context (char **stringptr, CORE_ADDR pc, const struct block *block,
1143 int comma, int void_context_p, int *out_subexp)
1144 {
1145 volatile struct gdb_exception except;
1146 struct cleanup *old_chain, *inner_chain;
1147 const struct language_defn *lang = NULL;
1148 int subexp;
1149
1150 lexptr = *stringptr;
1151 prev_lexptr = NULL;
1152
1153 paren_depth = 0;
1154 type_stack.depth = 0;
1155 expout_last_struct = -1;
1156 expout_tag_completion_type = TYPE_CODE_UNDEF;
1157 xfree (expout_completion_name);
1158 expout_completion_name = NULL;
1159
1160 comma_terminates = comma;
1161
1162 if (lexptr == 0 || *lexptr == 0)
1163 error_no_arg (_("expression to compute"));
1164
1165 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1166 funcall_chain = 0;
1167
1168 expression_context_block = block;
1169
1170 /* If no context specified, try using the current frame, if any. */
1171 if (!expression_context_block)
1172 expression_context_block = get_selected_block (&expression_context_pc);
1173 else if (pc == 0)
1174 expression_context_pc = BLOCK_START (expression_context_block);
1175 else
1176 expression_context_pc = pc;
1177
1178 /* Fall back to using the current source static context, if any. */
1179
1180 if (!expression_context_block)
1181 {
1182 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1183 if (cursal.symtab)
1184 expression_context_block
1185 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1186 if (expression_context_block)
1187 expression_context_pc = BLOCK_START (expression_context_block);
1188 }
1189
1190 if (language_mode == language_mode_auto && block != NULL)
1191 {
1192 /* Find the language associated to the given context block.
1193 Default to the current language if it can not be determined.
1194
1195 Note that using the language corresponding to the current frame
1196 can sometimes give unexpected results. For instance, this
1197 routine is often called several times during the inferior
1198 startup phase to re-parse breakpoint expressions after
1199 a new shared library has been loaded. The language associated
1200 to the current frame at this moment is not relevant for
1201 the breakpoint. Using it would therefore be silly, so it seems
1202 better to rely on the current language rather than relying on
1203 the current frame language to parse the expression. That's why
1204 we do the following language detection only if the context block
1205 has been specifically provided. */
1206 struct symbol *func = block_linkage_function (block);
1207
1208 if (func != NULL)
1209 lang = language_def (SYMBOL_LANGUAGE (func));
1210 if (lang == NULL || lang->la_language == language_unknown)
1211 lang = current_language;
1212 }
1213 else
1214 lang = current_language;
1215
1216 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1217 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1218 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1219 to the value matching SELECTED_FRAME as set by get_current_arch. */
1220 initialize_expout (10, lang, get_current_arch ());
1221 inner_chain = make_cleanup_restore_current_language ();
1222 set_language (lang->la_language);
1223
1224 TRY_CATCH (except, RETURN_MASK_ALL)
1225 {
1226 if (lang->la_parser ())
1227 lang->la_error (NULL);
1228 }
1229 if (except.reason < 0)
1230 {
1231 if (! parse_completion)
1232 {
1233 xfree (expout);
1234 throw_exception (except);
1235 }
1236 }
1237
1238 reallocate_expout ();
1239
1240 /* Convert expression from postfix form as generated by yacc
1241 parser, to a prefix form. */
1242
1243 if (expressiondebug)
1244 dump_raw_expression (expout, gdb_stdlog,
1245 "before conversion to prefix form");
1246
1247 subexp = prefixify_expression (expout);
1248 if (out_subexp)
1249 *out_subexp = subexp;
1250
1251 lang->la_post_parser (&expout, void_context_p);
1252
1253 if (expressiondebug)
1254 dump_prefix_expression (expout, gdb_stdlog);
1255
1256 do_cleanups (inner_chain);
1257 discard_cleanups (old_chain);
1258
1259 *stringptr = lexptr;
1260 return expout;
1261 }
1262
1263 /* Parse STRING as an expression, and complain if this fails
1264 to use up all of the contents of STRING. */
1265
1266 struct expression *
1267 parse_expression (char *string)
1268 {
1269 struct expression *exp;
1270
1271 exp = parse_exp_1 (&string, 0, 0, 0);
1272 if (*string)
1273 error (_("Junk after end of expression."));
1274 return exp;
1275 }
1276
1277 /* Parse STRING as an expression. If parsing ends in the middle of a
1278 field reference, return the type of the left-hand-side of the
1279 reference; furthermore, if the parsing ends in the field name,
1280 return the field name in *NAME. If the parsing ends in the middle
1281 of a field reference, but the reference is somehow invalid, throw
1282 an exception. In all other cases, return NULL. Returned non-NULL
1283 *NAME must be freed by the caller. */
1284
1285 struct type *
1286 parse_expression_for_completion (char *string, char **name,
1287 enum type_code *code)
1288 {
1289 struct expression *exp = NULL;
1290 struct value *val;
1291 int subexp;
1292 volatile struct gdb_exception except;
1293
1294 TRY_CATCH (except, RETURN_MASK_ERROR)
1295 {
1296 parse_completion = 1;
1297 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1298 }
1299 parse_completion = 0;
1300 if (except.reason < 0 || ! exp)
1301 return NULL;
1302
1303 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1304 {
1305 *code = expout_tag_completion_type;
1306 *name = expout_completion_name;
1307 expout_completion_name = NULL;
1308 return NULL;
1309 }
1310
1311 if (expout_last_struct == -1)
1312 {
1313 xfree (exp);
1314 return NULL;
1315 }
1316
1317 *name = extract_field_op (exp, &subexp);
1318 if (!*name)
1319 {
1320 xfree (exp);
1321 return NULL;
1322 }
1323
1324 /* This might throw an exception. If so, we want to let it
1325 propagate. */
1326 val = evaluate_subexpression_type (exp, subexp);
1327 /* (*NAME) is a part of the EXP memory block freed below. */
1328 *name = xstrdup (*name);
1329 xfree (exp);
1330
1331 return value_type (val);
1332 }
1333
1334 /* A post-parser that does nothing. */
1335
1336 void
1337 null_post_parser (struct expression **exp, int void_context_p)
1338 {
1339 }
1340
1341 /* Parse floating point value P of length LEN.
1342 Return 0 (false) if invalid, 1 (true) if valid.
1343 The successfully parsed number is stored in D.
1344 *SUFFIX points to the suffix of the number in P.
1345
1346 NOTE: This accepts the floating point syntax that sscanf accepts. */
1347
1348 int
1349 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1350 {
1351 char *copy;
1352 int n, num;
1353
1354 copy = xmalloc (len + 1);
1355 memcpy (copy, p, len);
1356 copy[len] = 0;
1357
1358 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1359 xfree (copy);
1360
1361 /* The sscanf man page suggests not making any assumptions on the effect
1362 of %n on the result, so we don't.
1363 That is why we simply test num == 0. */
1364 if (num == 0)
1365 return 0;
1366
1367 *suffix = p + n;
1368 return 1;
1369 }
1370
1371 /* Parse floating point value P of length LEN, using the C syntax for floats.
1372 Return 0 (false) if invalid, 1 (true) if valid.
1373 The successfully parsed number is stored in *D.
1374 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1375
1376 int
1377 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1378 DOUBLEST *d, struct type **t)
1379 {
1380 const char *suffix;
1381 int suffix_len;
1382 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1383
1384 if (! parse_float (p, len, d, &suffix))
1385 return 0;
1386
1387 suffix_len = p + len - suffix;
1388
1389 if (suffix_len == 0)
1390 *t = builtin_types->builtin_double;
1391 else if (suffix_len == 1)
1392 {
1393 /* Handle suffixes: 'f' for float, 'l' for long double. */
1394 if (tolower (*suffix) == 'f')
1395 *t = builtin_types->builtin_float;
1396 else if (tolower (*suffix) == 'l')
1397 *t = builtin_types->builtin_long_double;
1398 else
1399 return 0;
1400 }
1401 else
1402 return 0;
1403
1404 return 1;
1405 }
1406 \f
1407 /* Stuff for maintaining a stack of types. Currently just used by C, but
1408 probably useful for any language which declares its types "backwards". */
1409
1410 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1411
1412 static void
1413 type_stack_reserve (struct type_stack *stack, int howmuch)
1414 {
1415 if (stack->depth + howmuch >= stack->size)
1416 {
1417 stack->size *= 2;
1418 if (stack->size < howmuch)
1419 stack->size = howmuch;
1420 stack->elements = xrealloc (stack->elements,
1421 stack->size * sizeof (union type_stack_elt));
1422 }
1423 }
1424
1425 /* Ensure that there is a single open slot in the global type stack. */
1426
1427 static void
1428 check_type_stack_depth (void)
1429 {
1430 type_stack_reserve (&type_stack, 1);
1431 }
1432
1433 /* A helper function for insert_type and insert_type_address_space.
1434 This does work of expanding the type stack and inserting the new
1435 element, ELEMENT, into the stack at location SLOT. */
1436
1437 static void
1438 insert_into_type_stack (int slot, union type_stack_elt element)
1439 {
1440 check_type_stack_depth ();
1441
1442 if (slot < type_stack.depth)
1443 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1444 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1445 type_stack.elements[slot] = element;
1446 ++type_stack.depth;
1447 }
1448
1449 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1450 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1451 a qualifier, it is inserted at slot 1 (just above a previous
1452 tp_pointer) if there is anything on the stack, or simply pushed if
1453 the stack is empty. Other values for TP are invalid. */
1454
1455 void
1456 insert_type (enum type_pieces tp)
1457 {
1458 union type_stack_elt element;
1459 int slot;
1460
1461 gdb_assert (tp == tp_pointer || tp == tp_reference
1462 || tp == tp_const || tp == tp_volatile);
1463
1464 /* If there is anything on the stack (we know it will be a
1465 tp_pointer), insert the qualifier above it. Otherwise, simply
1466 push this on the top of the stack. */
1467 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1468 slot = 1;
1469 else
1470 slot = 0;
1471
1472 element.piece = tp;
1473 insert_into_type_stack (slot, element);
1474 }
1475
1476 void
1477 push_type (enum type_pieces tp)
1478 {
1479 check_type_stack_depth ();
1480 type_stack.elements[type_stack.depth++].piece = tp;
1481 }
1482
1483 void
1484 push_type_int (int n)
1485 {
1486 check_type_stack_depth ();
1487 type_stack.elements[type_stack.depth++].int_val = n;
1488 }
1489
1490 /* Insert a tp_space_identifier and the corresponding address space
1491 value into the stack. STRING is the name of an address space, as
1492 recognized by address_space_name_to_int. If the stack is empty,
1493 the new elements are simply pushed. If the stack is not empty,
1494 this function assumes that the first item on the stack is a
1495 tp_pointer, and the new values are inserted above the first
1496 item. */
1497
1498 void
1499 insert_type_address_space (char *string)
1500 {
1501 union type_stack_elt element;
1502 int slot;
1503
1504 /* If there is anything on the stack (we know it will be a
1505 tp_pointer), insert the address space qualifier above it.
1506 Otherwise, simply push this on the top of the stack. */
1507 if (type_stack.depth)
1508 slot = 1;
1509 else
1510 slot = 0;
1511
1512 element.piece = tp_space_identifier;
1513 insert_into_type_stack (slot, element);
1514 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1515 insert_into_type_stack (slot, element);
1516 }
1517
1518 enum type_pieces
1519 pop_type (void)
1520 {
1521 if (type_stack.depth)
1522 return type_stack.elements[--type_stack.depth].piece;
1523 return tp_end;
1524 }
1525
1526 int
1527 pop_type_int (void)
1528 {
1529 if (type_stack.depth)
1530 return type_stack.elements[--type_stack.depth].int_val;
1531 /* "Can't happen". */
1532 return 0;
1533 }
1534
1535 /* Pop a type list element from the global type stack. */
1536
1537 static VEC (type_ptr) *
1538 pop_typelist (void)
1539 {
1540 gdb_assert (type_stack.depth);
1541 return type_stack.elements[--type_stack.depth].typelist_val;
1542 }
1543
1544 /* Pop a type_stack element from the global type stack. */
1545
1546 static struct type_stack *
1547 pop_type_stack (void)
1548 {
1549 gdb_assert (type_stack.depth);
1550 return type_stack.elements[--type_stack.depth].stack_val;
1551 }
1552
1553 /* Append the elements of the type stack FROM to the type stack TO.
1554 Always returns TO. */
1555
1556 struct type_stack *
1557 append_type_stack (struct type_stack *to, struct type_stack *from)
1558 {
1559 type_stack_reserve (to, from->depth);
1560
1561 memcpy (&to->elements[to->depth], &from->elements[0],
1562 from->depth * sizeof (union type_stack_elt));
1563 to->depth += from->depth;
1564
1565 return to;
1566 }
1567
1568 /* Push the type stack STACK as an element on the global type stack. */
1569
1570 void
1571 push_type_stack (struct type_stack *stack)
1572 {
1573 check_type_stack_depth ();
1574 type_stack.elements[type_stack.depth++].stack_val = stack;
1575 push_type (tp_type_stack);
1576 }
1577
1578 /* Copy the global type stack into a newly allocated type stack and
1579 return it. The global stack is cleared. The returned type stack
1580 must be freed with type_stack_cleanup. */
1581
1582 struct type_stack *
1583 get_type_stack (void)
1584 {
1585 struct type_stack *result = XNEW (struct type_stack);
1586
1587 *result = type_stack;
1588 type_stack.depth = 0;
1589 type_stack.size = 0;
1590 type_stack.elements = NULL;
1591
1592 return result;
1593 }
1594
1595 /* A cleanup function that destroys a single type stack. */
1596
1597 void
1598 type_stack_cleanup (void *arg)
1599 {
1600 struct type_stack *stack = arg;
1601
1602 xfree (stack->elements);
1603 xfree (stack);
1604 }
1605
1606 /* Push a function type with arguments onto the global type stack.
1607 LIST holds the argument types. If the final item in LIST is NULL,
1608 then the function will be varargs. */
1609
1610 void
1611 push_typelist (VEC (type_ptr) *list)
1612 {
1613 check_type_stack_depth ();
1614 type_stack.elements[type_stack.depth++].typelist_val = list;
1615 push_type (tp_function_with_arguments);
1616 }
1617
1618 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1619 as modified by all the stuff on the stack. */
1620 struct type *
1621 follow_types (struct type *follow_type)
1622 {
1623 int done = 0;
1624 int make_const = 0;
1625 int make_volatile = 0;
1626 int make_addr_space = 0;
1627 int array_size;
1628
1629 while (!done)
1630 switch (pop_type ())
1631 {
1632 case tp_end:
1633 done = 1;
1634 if (make_const)
1635 follow_type = make_cv_type (make_const,
1636 TYPE_VOLATILE (follow_type),
1637 follow_type, 0);
1638 if (make_volatile)
1639 follow_type = make_cv_type (TYPE_CONST (follow_type),
1640 make_volatile,
1641 follow_type, 0);
1642 if (make_addr_space)
1643 follow_type = make_type_with_address_space (follow_type,
1644 make_addr_space);
1645 make_const = make_volatile = 0;
1646 make_addr_space = 0;
1647 break;
1648 case tp_const:
1649 make_const = 1;
1650 break;
1651 case tp_volatile:
1652 make_volatile = 1;
1653 break;
1654 case tp_space_identifier:
1655 make_addr_space = pop_type_int ();
1656 break;
1657 case tp_pointer:
1658 follow_type = lookup_pointer_type (follow_type);
1659 if (make_const)
1660 follow_type = make_cv_type (make_const,
1661 TYPE_VOLATILE (follow_type),
1662 follow_type, 0);
1663 if (make_volatile)
1664 follow_type = make_cv_type (TYPE_CONST (follow_type),
1665 make_volatile,
1666 follow_type, 0);
1667 if (make_addr_space)
1668 follow_type = make_type_with_address_space (follow_type,
1669 make_addr_space);
1670 make_const = make_volatile = 0;
1671 make_addr_space = 0;
1672 break;
1673 case tp_reference:
1674 follow_type = lookup_reference_type (follow_type);
1675 if (make_const)
1676 follow_type = make_cv_type (make_const,
1677 TYPE_VOLATILE (follow_type),
1678 follow_type, 0);
1679 if (make_volatile)
1680 follow_type = make_cv_type (TYPE_CONST (follow_type),
1681 make_volatile,
1682 follow_type, 0);
1683 if (make_addr_space)
1684 follow_type = make_type_with_address_space (follow_type,
1685 make_addr_space);
1686 make_const = make_volatile = 0;
1687 make_addr_space = 0;
1688 break;
1689 case tp_array:
1690 array_size = pop_type_int ();
1691 /* FIXME-type-allocation: need a way to free this type when we are
1692 done with it. */
1693 follow_type =
1694 lookup_array_range_type (follow_type,
1695 0, array_size >= 0 ? array_size - 1 : 0);
1696 if (array_size < 0)
1697 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1698 break;
1699 case tp_function:
1700 /* FIXME-type-allocation: need a way to free this type when we are
1701 done with it. */
1702 follow_type = lookup_function_type (follow_type);
1703 break;
1704
1705 case tp_function_with_arguments:
1706 {
1707 VEC (type_ptr) *args = pop_typelist ();
1708
1709 follow_type
1710 = lookup_function_type_with_arguments (follow_type,
1711 VEC_length (type_ptr, args),
1712 VEC_address (type_ptr,
1713 args));
1714 VEC_free (type_ptr, args);
1715 }
1716 break;
1717
1718 case tp_type_stack:
1719 {
1720 struct type_stack *stack = pop_type_stack ();
1721 /* Sort of ugly, but not really much worse than the
1722 alternatives. */
1723 struct type_stack save = type_stack;
1724
1725 type_stack = *stack;
1726 follow_type = follow_types (follow_type);
1727 gdb_assert (type_stack.depth == 0);
1728
1729 type_stack = save;
1730 }
1731 break;
1732 default:
1733 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1734 }
1735 return follow_type;
1736 }
1737 \f
1738 /* This function avoids direct calls to fprintf
1739 in the parser generated debug code. */
1740 void
1741 parser_fprintf (FILE *x, const char *y, ...)
1742 {
1743 va_list args;
1744
1745 va_start (args, y);
1746 if (x == stderr)
1747 vfprintf_unfiltered (gdb_stderr, y, args);
1748 else
1749 {
1750 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1751 vfprintf_unfiltered (gdb_stderr, y, args);
1752 }
1753 va_end (args);
1754 }
1755
1756 /* Implementation of the exp_descriptor method operator_check. */
1757
1758 int
1759 operator_check_standard (struct expression *exp, int pos,
1760 int (*objfile_func) (struct objfile *objfile,
1761 void *data),
1762 void *data)
1763 {
1764 const union exp_element *const elts = exp->elts;
1765 struct type *type = NULL;
1766 struct objfile *objfile = NULL;
1767
1768 /* Extended operators should have been already handled by exp_descriptor
1769 iterate method of its specific language. */
1770 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1771
1772 /* Track the callers of write_exp_elt_type for this table. */
1773
1774 switch (elts[pos].opcode)
1775 {
1776 case BINOP_VAL:
1777 case OP_COMPLEX:
1778 case OP_DECFLOAT:
1779 case OP_DOUBLE:
1780 case OP_LONG:
1781 case OP_SCOPE:
1782 case OP_TYPE:
1783 case UNOP_CAST:
1784 case UNOP_MAX:
1785 case UNOP_MEMVAL:
1786 case UNOP_MIN:
1787 type = elts[pos + 1].type;
1788 break;
1789
1790 case TYPE_INSTANCE:
1791 {
1792 LONGEST arg, nargs = elts[pos + 1].longconst;
1793
1794 for (arg = 0; arg < nargs; arg++)
1795 {
1796 struct type *type = elts[pos + 2 + arg].type;
1797 struct objfile *objfile = TYPE_OBJFILE (type);
1798
1799 if (objfile && (*objfile_func) (objfile, data))
1800 return 1;
1801 }
1802 }
1803 break;
1804
1805 case UNOP_MEMVAL_TLS:
1806 objfile = elts[pos + 1].objfile;
1807 type = elts[pos + 2].type;
1808 break;
1809
1810 case OP_VAR_VALUE:
1811 {
1812 const struct block *const block = elts[pos + 1].block;
1813 const struct symbol *const symbol = elts[pos + 2].symbol;
1814
1815 /* Check objfile where the variable itself is placed.
1816 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1817 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1818 return 1;
1819
1820 /* Check objfile where is placed the code touching the variable. */
1821 objfile = lookup_objfile_from_block (block);
1822
1823 type = SYMBOL_TYPE (symbol);
1824 }
1825 break;
1826 }
1827
1828 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1829
1830 if (type && TYPE_OBJFILE (type)
1831 && (*objfile_func) (TYPE_OBJFILE (type), data))
1832 return 1;
1833 if (objfile && (*objfile_func) (objfile, data))
1834 return 1;
1835
1836 return 0;
1837 }
1838
1839 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1840 The functions are never called with NULL OBJFILE. Functions get passed an
1841 arbitrary caller supplied DATA pointer. If any of the functions returns
1842 non-zero value then (any other) non-zero value is immediately returned to
1843 the caller. Otherwise zero is returned after iterating through whole EXP.
1844 */
1845
1846 static int
1847 exp_iterate (struct expression *exp,
1848 int (*objfile_func) (struct objfile *objfile, void *data),
1849 void *data)
1850 {
1851 int endpos;
1852
1853 for (endpos = exp->nelts; endpos > 0; )
1854 {
1855 int pos, args, oplen = 0;
1856
1857 operator_length (exp, endpos, &oplen, &args);
1858 gdb_assert (oplen > 0);
1859
1860 pos = endpos - oplen;
1861 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1862 objfile_func, data))
1863 return 1;
1864
1865 endpos = pos;
1866 }
1867
1868 return 0;
1869 }
1870
1871 /* Helper for exp_uses_objfile. */
1872
1873 static int
1874 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1875 {
1876 struct objfile *objfile = objfile_voidp;
1877
1878 if (exp_objfile->separate_debug_objfile_backlink)
1879 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1880
1881 return exp_objfile == objfile;
1882 }
1883
1884 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1885 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1886 file. */
1887
1888 int
1889 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1890 {
1891 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1892
1893 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1894 }
1895
1896 void
1897 _initialize_parse (void)
1898 {
1899 type_stack.size = 0;
1900 type_stack.depth = 0;
1901 type_stack.elements = NULL;
1902
1903 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1904 &expressiondebug,
1905 _("Set expression debugging."),
1906 _("Show expression debugging."),
1907 _("When non-zero, the internal representation "
1908 "of expressions will be printed."),
1909 NULL,
1910 show_expressiondebug,
1911 &setdebuglist, &showdebuglist);
1912 add_setshow_boolean_cmd ("parser", class_maintenance,
1913 &parser_debug,
1914 _("Set parser debugging."),
1915 _("Show parser debugging."),
1916 _("When non-zero, expression parser "
1917 "tracing will be enabled."),
1918 NULL,
1919 show_parserdebug,
1920 &setdebuglist, &showdebuglist);
1921 }
This page took 0.111609 seconds and 5 git commands to generate.