Add inclusive range support for Rust
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 innermost_block_tracker innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Documented at it's declaration. */
125
126 void
127 innermost_block_tracker::update (const struct block *b,
128 innermost_block_tracker_types t)
129 {
130 if ((m_types & t) != 0
131 && (m_innermost_block == NULL
132 || contained_in (b, m_innermost_block)))
133 m_innermost_block = b;
134 }
135
136 /* Data structure for saving values of arglist_len for function calls whose
137 arguments contain other function calls. */
138
139 static std::vector<int> *funcall_chain;
140
141 /* Begin counting arguments for a function call,
142 saving the data about any containing call. */
143
144 void
145 start_arglist (void)
146 {
147 funcall_chain->push_back (arglist_len);
148 arglist_len = 0;
149 }
150
151 /* Return the number of arguments in a function call just terminated,
152 and restore the data for the containing function call. */
153
154 int
155 end_arglist (void)
156 {
157 int val = arglist_len;
158 arglist_len = funcall_chain->back ();
159 funcall_chain->pop_back ();
160 return val;
161 }
162
163 \f
164
165 /* See definition in parser-defs.h. */
166
167 parser_state::parser_state (size_t initial_size,
168 const struct language_defn *lang,
169 struct gdbarch *gdbarch)
170 : expout_size (initial_size),
171 expout (XNEWVAR (expression,
172 (sizeof (expression)
173 + EXP_ELEM_TO_BYTES (expout_size)))),
174 expout_ptr (0)
175 {
176 expout->language_defn = lang;
177 expout->gdbarch = gdbarch;
178 }
179
180 expression_up
181 parser_state::release ()
182 {
183 /* Record the actual number of expression elements, and then
184 reallocate the expression memory so that we free up any
185 excess elements. */
186
187 expout->nelts = expout_ptr;
188 expout.reset (XRESIZEVAR (expression, expout.release (),
189 (sizeof (expression)
190 + EXP_ELEM_TO_BYTES (expout_ptr))));
191
192 return std::move (expout);
193 }
194
195 /* This page contains the functions for adding data to the struct expression
196 being constructed. */
197
198 /* Add one element to the end of the expression. */
199
200 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
201 a register through here. */
202
203 static void
204 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
205 {
206 if (ps->expout_ptr >= ps->expout_size)
207 {
208 ps->expout_size *= 2;
209 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
210 (sizeof (expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_size))));
212 }
213 ps->expout->elts[ps->expout_ptr++] = *expelt;
214 }
215
216 void
217 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
218 {
219 union exp_element tmp;
220
221 memset (&tmp, 0, sizeof (union exp_element));
222 tmp.opcode = expelt;
223 write_exp_elt (ps, &tmp);
224 }
225
226 void
227 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
228 {
229 union exp_element tmp;
230
231 memset (&tmp, 0, sizeof (union exp_element));
232 tmp.symbol = expelt;
233 write_exp_elt (ps, &tmp);
234 }
235
236 void
237 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.msymbol = expelt;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_block (struct parser_state *ps, const struct block *b)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.block = b;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.objfile = objfile;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.longconst = expelt;
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
278 {
279 union exp_element tmp;
280 int index;
281
282 for (index = 0; index < 16; index++)
283 tmp.floatconst[index] = expelt[index];
284
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.type = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
300 {
301 union exp_element tmp;
302
303 memset (&tmp, 0, sizeof (union exp_element));
304 tmp.internalvar = expelt;
305 write_exp_elt (ps, &tmp);
306 }
307
308 /* Add a string constant to the end of the expression.
309
310 String constants are stored by first writing an expression element
311 that contains the length of the string, then stuffing the string
312 constant itself into however many expression elements are needed
313 to hold it, and then writing another expression element that contains
314 the length of the string. I.e. an expression element at each end of
315 the string records the string length, so you can skip over the
316 expression elements containing the actual string bytes from either
317 end of the string. Note that this also allows gdb to handle
318 strings with embedded null bytes, as is required for some languages.
319
320 Don't be fooled by the fact that the string is null byte terminated,
321 this is strictly for the convenience of debugging gdb itself.
322 Gdb does not depend up the string being null terminated, since the
323 actual length is recorded in expression elements at each end of the
324 string. The null byte is taken into consideration when computing how
325 many expression elements are required to hold the string constant, of
326 course. */
327
328
329 void
330 write_exp_string (struct parser_state *ps, struct stoken str)
331 {
332 int len = str.length;
333 size_t lenelt;
334 char *strdata;
335
336 /* Compute the number of expression elements required to hold the string
337 (including a null byte terminator), along with one expression element
338 at each end to record the actual string length (not including the
339 null byte terminator). */
340
341 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
342
343 increase_expout_size (ps, lenelt);
344
345 /* Write the leading length expression element (which advances the current
346 expression element index), then write the string constant followed by a
347 terminating null byte, and then write the trailing length expression
348 element. */
349
350 write_exp_elt_longcst (ps, (LONGEST) len);
351 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 *(strdata + len) = '\0';
354 ps->expout_ptr += lenelt - 2;
355 write_exp_elt_longcst (ps, (LONGEST) len);
356 }
357
358 /* Add a vector of string constants to the end of the expression.
359
360 This adds an OP_STRING operation, but encodes the contents
361 differently from write_exp_string. The language is expected to
362 handle evaluation of this expression itself.
363
364 After the usual OP_STRING header, TYPE is written into the
365 expression as a long constant. The interpretation of this field is
366 up to the language evaluator.
367
368 Next, each string in VEC is written. The length is written as a
369 long constant, followed by the contents of the string. */
370
371 void
372 write_exp_string_vector (struct parser_state *ps, int type,
373 struct stoken_vector *vec)
374 {
375 int i, len;
376 size_t n_slots;
377
378 /* Compute the size. We compute the size in number of slots to
379 avoid issues with string padding. */
380 n_slots = 0;
381 for (i = 0; i < vec->len; ++i)
382 {
383 /* One slot for the length of this element, plus the number of
384 slots needed for this string. */
385 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
386 }
387
388 /* One more slot for the type of the string. */
389 ++n_slots;
390
391 /* Now compute a phony string length. */
392 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
393
394 n_slots += 4;
395 increase_expout_size (ps, n_slots);
396
397 write_exp_elt_opcode (ps, OP_STRING);
398 write_exp_elt_longcst (ps, len);
399 write_exp_elt_longcst (ps, type);
400
401 for (i = 0; i < vec->len; ++i)
402 {
403 write_exp_elt_longcst (ps, vec->tokens[i].length);
404 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
405 vec->tokens[i].length);
406 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 write_exp_elt_longcst (ps, len);
410 write_exp_elt_opcode (ps, OP_STRING);
411 }
412
413 /* Add a bitstring constant to the end of the expression.
414
415 Bitstring constants are stored by first writing an expression element
416 that contains the length of the bitstring (in bits), then stuffing the
417 bitstring constant itself into however many expression elements are
418 needed to hold it, and then writing another expression element that
419 contains the length of the bitstring. I.e. an expression element at
420 each end of the bitstring records the bitstring length, so you can skip
421 over the expression elements containing the actual bitstring bytes from
422 either end of the bitstring. */
423
424 void
425 write_exp_bitstring (struct parser_state *ps, struct stoken str)
426 {
427 int bits = str.length; /* length in bits */
428 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
429 size_t lenelt;
430 char *strdata;
431
432 /* Compute the number of expression elements required to hold the bitstring,
433 along with one expression element at each end to record the actual
434 bitstring length in bits. */
435
436 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
437
438 increase_expout_size (ps, lenelt);
439
440 /* Write the leading length expression element (which advances the current
441 expression element index), then write the bitstring constant, and then
442 write the trailing length expression element. */
443
444 write_exp_elt_longcst (ps, (LONGEST) bits);
445 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
446 memcpy (strdata, str.ptr, len);
447 ps->expout_ptr += lenelt - 2;
448 write_exp_elt_longcst (ps, (LONGEST) bits);
449 }
450
451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
452 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
453 address. */
454
455 type *
456 find_minsym_type_and_address (minimal_symbol *msymbol,
457 struct objfile *objfile,
458 CORE_ADDR *address_p)
459 {
460 bound_minimal_symbol bound_msym = {msymbol, objfile};
461 struct gdbarch *gdbarch = get_objfile_arch (objfile);
462 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
463 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
464
465 bool is_tls = (section != NULL
466 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
467
468 /* The minimal symbol might point to a function descriptor;
469 resolve it to the actual code address instead. */
470 CORE_ADDR addr;
471 if (is_tls)
472 {
473 /* Addresses of TLS symbols are really offsets into a
474 per-objfile/per-thread storage block. */
475 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
476 }
477 else if (msymbol_is_function (objfile, msymbol, &addr))
478 {
479 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
480 {
481 /* This means we resolved a function descriptor, and we now
482 have an address for a code/text symbol instead of a data
483 symbol. */
484 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
485 type = mst_text_gnu_ifunc;
486 else
487 type = mst_text;
488 section = NULL;
489 }
490 }
491 else
492 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
493
494 if (overlay_debugging)
495 addr = symbol_overlayed_address (addr, section);
496
497 if (is_tls)
498 {
499 /* Skip translation if caller does not need the address. */
500 if (address_p != NULL)
501 *address_p = target_translate_tls_address (objfile, addr);
502 return objfile_type (objfile)->nodebug_tls_symbol;
503 }
504
505 if (address_p != NULL)
506 *address_p = addr;
507
508 switch (type)
509 {
510 case mst_text:
511 case mst_file_text:
512 case mst_solib_trampoline:
513 return objfile_type (objfile)->nodebug_text_symbol;
514
515 case mst_text_gnu_ifunc:
516 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
517
518 case mst_data:
519 case mst_file_data:
520 case mst_bss:
521 case mst_file_bss:
522 return objfile_type (objfile)->nodebug_data_symbol;
523
524 case mst_slot_got_plt:
525 return objfile_type (objfile)->nodebug_got_plt_symbol;
526
527 default:
528 return objfile_type (objfile)->nodebug_unknown_symbol;
529 }
530 }
531
532 /* Add the appropriate elements for a minimal symbol to the end of
533 the expression. */
534
535 void
536 write_exp_msymbol (struct parser_state *ps,
537 struct bound_minimal_symbol bound_msym)
538 {
539 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
540 write_exp_elt_objfile (ps, bound_msym.objfile);
541 write_exp_elt_msym (ps, bound_msym.minsym);
542 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
543 }
544
545 /* Mark the current index as the starting location of a structure
546 expression. This is used when completing on field names. */
547
548 void
549 mark_struct_expression (struct parser_state *ps)
550 {
551 gdb_assert (parse_completion
552 && expout_tag_completion_type == TYPE_CODE_UNDEF);
553 expout_last_struct = ps->expout_ptr;
554 }
555
556 /* Indicate that the current parser invocation is completing a tag.
557 TAG is the type code of the tag, and PTR and LENGTH represent the
558 start of the tag name. */
559
560 void
561 mark_completion_tag (enum type_code tag, const char *ptr, int length)
562 {
563 gdb_assert (parse_completion
564 && expout_tag_completion_type == TYPE_CODE_UNDEF
565 && expout_completion_name == NULL
566 && expout_last_struct == -1);
567 gdb_assert (tag == TYPE_CODE_UNION
568 || tag == TYPE_CODE_STRUCT
569 || tag == TYPE_CODE_ENUM);
570 expout_tag_completion_type = tag;
571 expout_completion_name.reset (xstrndup (ptr, length));
572 }
573
574 \f
575 /* Recognize tokens that start with '$'. These include:
576
577 $regname A native register name or a "standard
578 register name".
579
580 $variable A convenience variable with a name chosen
581 by the user.
582
583 $digits Value history with index <digits>, starting
584 from the first value which has index 1.
585
586 $$digits Value history with index <digits> relative
587 to the last value. I.e. $$0 is the last
588 value, $$1 is the one previous to that, $$2
589 is the one previous to $$1, etc.
590
591 $ | $0 | $$0 The last value in the value history.
592
593 $$ An abbreviation for the second to the last
594 value in the value history, I.e. $$1 */
595
596 void
597 write_dollar_variable (struct parser_state *ps, struct stoken str)
598 {
599 struct block_symbol sym;
600 struct bound_minimal_symbol msym;
601 struct internalvar *isym = NULL;
602
603 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
604 and $$digits (equivalent to $<-digits> if you could type that). */
605
606 int negate = 0;
607 int i = 1;
608 /* Double dollar means negate the number and add -1 as well.
609 Thus $$ alone means -1. */
610 if (str.length >= 2 && str.ptr[1] == '$')
611 {
612 negate = 1;
613 i = 2;
614 }
615 if (i == str.length)
616 {
617 /* Just dollars (one or two). */
618 i = -negate;
619 goto handle_last;
620 }
621 /* Is the rest of the token digits? */
622 for (; i < str.length; i++)
623 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
624 break;
625 if (i == str.length)
626 {
627 i = atoi (str.ptr + 1 + negate);
628 if (negate)
629 i = -i;
630 goto handle_last;
631 }
632
633 /* Handle tokens that refer to machine registers:
634 $ followed by a register name. */
635 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
636 str.ptr + 1, str.length - 1);
637 if (i >= 0)
638 goto handle_register;
639
640 /* Any names starting with $ are probably debugger internal variables. */
641
642 isym = lookup_only_internalvar (copy_name (str) + 1);
643 if (isym)
644 {
645 write_exp_elt_opcode (ps, OP_INTERNALVAR);
646 write_exp_elt_intern (ps, isym);
647 write_exp_elt_opcode (ps, OP_INTERNALVAR);
648 return;
649 }
650
651 /* On some systems, such as HP-UX and hppa-linux, certain system routines
652 have names beginning with $ or $$. Check for those, first. */
653
654 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
655 VAR_DOMAIN, NULL);
656 if (sym.symbol)
657 {
658 write_exp_elt_opcode (ps, OP_VAR_VALUE);
659 write_exp_elt_block (ps, sym.block);
660 write_exp_elt_sym (ps, sym.symbol);
661 write_exp_elt_opcode (ps, OP_VAR_VALUE);
662 return;
663 }
664 msym = lookup_bound_minimal_symbol (copy_name (str));
665 if (msym.minsym)
666 {
667 write_exp_msymbol (ps, msym);
668 return;
669 }
670
671 /* Any other names are assumed to be debugger internal variables. */
672
673 write_exp_elt_opcode (ps, OP_INTERNALVAR);
674 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
675 write_exp_elt_opcode (ps, OP_INTERNALVAR);
676 return;
677 handle_last:
678 write_exp_elt_opcode (ps, OP_LAST);
679 write_exp_elt_longcst (ps, (LONGEST) i);
680 write_exp_elt_opcode (ps, OP_LAST);
681 return;
682 handle_register:
683 write_exp_elt_opcode (ps, OP_REGISTER);
684 str.length--;
685 str.ptr++;
686 write_exp_string (ps, str);
687 write_exp_elt_opcode (ps, OP_REGISTER);
688 innermost_block.update (expression_context_block,
689 INNERMOST_BLOCK_FOR_REGISTERS);
690 return;
691 }
692
693
694 const char *
695 find_template_name_end (const char *p)
696 {
697 int depth = 1;
698 int just_seen_right = 0;
699 int just_seen_colon = 0;
700 int just_seen_space = 0;
701
702 if (!p || (*p != '<'))
703 return 0;
704
705 while (*++p)
706 {
707 switch (*p)
708 {
709 case '\'':
710 case '\"':
711 case '{':
712 case '}':
713 /* In future, may want to allow these?? */
714 return 0;
715 case '<':
716 depth++; /* start nested template */
717 if (just_seen_colon || just_seen_right || just_seen_space)
718 return 0; /* but not after : or :: or > or space */
719 break;
720 case '>':
721 if (just_seen_colon || just_seen_right)
722 return 0; /* end a (nested?) template */
723 just_seen_right = 1; /* but not after : or :: */
724 if (--depth == 0) /* also disallow >>, insist on > > */
725 return ++p; /* if outermost ended, return */
726 break;
727 case ':':
728 if (just_seen_space || (just_seen_colon > 1))
729 return 0; /* nested class spec coming up */
730 just_seen_colon++; /* we allow :: but not :::: */
731 break;
732 case ' ':
733 break;
734 default:
735 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
736 (*p >= 'A' && *p <= 'Z') ||
737 (*p >= '0' && *p <= '9') ||
738 (*p == '_') || (*p == ',') || /* commas for template args */
739 (*p == '&') || (*p == '*') || /* pointer and ref types */
740 (*p == '(') || (*p == ')') || /* function types */
741 (*p == '[') || (*p == ']'))) /* array types */
742 return 0;
743 }
744 if (*p != ' ')
745 just_seen_space = 0;
746 if (*p != ':')
747 just_seen_colon = 0;
748 if (*p != '>')
749 just_seen_right = 0;
750 }
751 return 0;
752 }
753 \f
754
755 /* Return a null-terminated temporary copy of the name of a string token.
756
757 Tokens that refer to names do so with explicit pointer and length,
758 so they can share the storage that lexptr is parsing.
759 When it is necessary to pass a name to a function that expects
760 a null-terminated string, the substring is copied out
761 into a separate block of storage.
762
763 N.B. A single buffer is reused on each call. */
764
765 char *
766 copy_name (struct stoken token)
767 {
768 /* A temporary buffer for identifiers, so we can null-terminate them.
769 We allocate this with xrealloc. parse_exp_1 used to allocate with
770 alloca, using the size of the whole expression as a conservative
771 estimate of the space needed. However, macro expansion can
772 introduce names longer than the original expression; there's no
773 practical way to know beforehand how large that might be. */
774 static char *namecopy;
775 static size_t namecopy_size;
776
777 /* Make sure there's enough space for the token. */
778 if (namecopy_size < token.length + 1)
779 {
780 namecopy_size = token.length + 1;
781 namecopy = (char *) xrealloc (namecopy, token.length + 1);
782 }
783
784 memcpy (namecopy, token.ptr, token.length);
785 namecopy[token.length] = 0;
786
787 return namecopy;
788 }
789 \f
790
791 /* See comments on parser-defs.h. */
792
793 int
794 prefixify_expression (struct expression *expr)
795 {
796 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
797 struct expression *temp;
798 int inpos = expr->nelts, outpos = 0;
799
800 temp = (struct expression *) alloca (len);
801
802 /* Copy the original expression into temp. */
803 memcpy (temp, expr, len);
804
805 return prefixify_subexp (temp, expr, inpos, outpos);
806 }
807
808 /* Return the number of exp_elements in the postfix subexpression
809 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
810
811 static int
812 length_of_subexp (struct expression *expr, int endpos)
813 {
814 int oplen, args;
815
816 operator_length (expr, endpos, &oplen, &args);
817
818 while (args > 0)
819 {
820 oplen += length_of_subexp (expr, endpos - oplen);
821 args--;
822 }
823
824 return oplen;
825 }
826
827 /* Sets *OPLENP to the length of the operator whose (last) index is
828 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
829 operator takes. */
830
831 void
832 operator_length (const struct expression *expr, int endpos, int *oplenp,
833 int *argsp)
834 {
835 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
836 oplenp, argsp);
837 }
838
839 /* Default value for operator_length in exp_descriptor vectors. */
840
841 void
842 operator_length_standard (const struct expression *expr, int endpos,
843 int *oplenp, int *argsp)
844 {
845 int oplen = 1;
846 int args = 0;
847 enum range_type range_type;
848 int i;
849
850 if (endpos < 1)
851 error (_("?error in operator_length_standard"));
852
853 i = (int) expr->elts[endpos - 1].opcode;
854
855 switch (i)
856 {
857 /* C++ */
858 case OP_SCOPE:
859 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
860 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
861 break;
862
863 case OP_LONG:
864 case OP_FLOAT:
865 case OP_VAR_VALUE:
866 case OP_VAR_MSYM_VALUE:
867 oplen = 4;
868 break;
869
870 case OP_FUNC_STATIC_VAR:
871 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
872 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
873 args = 1;
874 break;
875
876 case OP_TYPE:
877 case OP_BOOL:
878 case OP_LAST:
879 case OP_INTERNALVAR:
880 case OP_VAR_ENTRY_VALUE:
881 oplen = 3;
882 break;
883
884 case OP_COMPLEX:
885 oplen = 3;
886 args = 2;
887 break;
888
889 case OP_FUNCALL:
890 case OP_F77_UNDETERMINED_ARGLIST:
891 oplen = 3;
892 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893 break;
894
895 case TYPE_INSTANCE:
896 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
897 args = 1;
898 break;
899
900 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
901 oplen = 4;
902 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903 break;
904
905 case UNOP_MAX:
906 case UNOP_MIN:
907 oplen = 3;
908 break;
909
910 case UNOP_CAST_TYPE:
911 case UNOP_DYNAMIC_CAST:
912 case UNOP_REINTERPRET_CAST:
913 case UNOP_MEMVAL_TYPE:
914 oplen = 1;
915 args = 2;
916 break;
917
918 case BINOP_VAL:
919 case UNOP_CAST:
920 case UNOP_MEMVAL:
921 oplen = 3;
922 args = 1;
923 break;
924
925 case UNOP_ABS:
926 case UNOP_CAP:
927 case UNOP_CHR:
928 case UNOP_FLOAT:
929 case UNOP_HIGH:
930 case UNOP_ODD:
931 case UNOP_ORD:
932 case UNOP_TRUNC:
933 case OP_TYPEOF:
934 case OP_DECLTYPE:
935 case OP_TYPEID:
936 oplen = 1;
937 args = 1;
938 break;
939
940 case OP_ADL_FUNC:
941 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
942 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
943 oplen++;
944 oplen++;
945 break;
946
947 case STRUCTOP_STRUCT:
948 case STRUCTOP_PTR:
949 args = 1;
950 /* fall through */
951 case OP_REGISTER:
952 case OP_M2_STRING:
953 case OP_STRING:
954 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
955 NSString constant. */
956 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
957 case OP_NAME:
958 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
959 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
960 break;
961
962 case OP_ARRAY:
963 oplen = 4;
964 args = longest_to_int (expr->elts[endpos - 2].longconst);
965 args -= longest_to_int (expr->elts[endpos - 3].longconst);
966 args += 1;
967 break;
968
969 case TERNOP_COND:
970 case TERNOP_SLICE:
971 args = 3;
972 break;
973
974 /* Modula-2 */
975 case MULTI_SUBSCRIPT:
976 oplen = 3;
977 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
978 break;
979
980 case BINOP_ASSIGN_MODIFY:
981 oplen = 3;
982 args = 2;
983 break;
984
985 /* C++ */
986 case OP_THIS:
987 oplen = 2;
988 break;
989
990 case OP_RANGE:
991 oplen = 3;
992 range_type = (enum range_type)
993 longest_to_int (expr->elts[endpos - 2].longconst);
994
995 switch (range_type)
996 {
997 case LOW_BOUND_DEFAULT:
998 case LOW_BOUND_DEFAULT_EXCLUSIVE:
999 case HIGH_BOUND_DEFAULT:
1000 args = 1;
1001 break;
1002 case BOTH_BOUND_DEFAULT:
1003 args = 0;
1004 break;
1005 case NONE_BOUND_DEFAULT:
1006 case NONE_BOUND_DEFAULT_EXCLUSIVE:
1007 args = 2;
1008 break;
1009 }
1010
1011 break;
1012
1013 default:
1014 args = 1 + (i < (int) BINOP_END);
1015 }
1016
1017 *oplenp = oplen;
1018 *argsp = args;
1019 }
1020
1021 /* Copy the subexpression ending just before index INEND in INEXPR
1022 into OUTEXPR, starting at index OUTBEG.
1023 In the process, convert it from suffix to prefix form.
1024 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1025 Otherwise, it returns the index of the subexpression which is the
1026 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1027
1028 static int
1029 prefixify_subexp (struct expression *inexpr,
1030 struct expression *outexpr, int inend, int outbeg)
1031 {
1032 int oplen;
1033 int args;
1034 int i;
1035 int *arglens;
1036 int result = -1;
1037
1038 operator_length (inexpr, inend, &oplen, &args);
1039
1040 /* Copy the final operator itself, from the end of the input
1041 to the beginning of the output. */
1042 inend -= oplen;
1043 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1044 EXP_ELEM_TO_BYTES (oplen));
1045 outbeg += oplen;
1046
1047 if (expout_last_struct == inend)
1048 result = outbeg - oplen;
1049
1050 /* Find the lengths of the arg subexpressions. */
1051 arglens = (int *) alloca (args * sizeof (int));
1052 for (i = args - 1; i >= 0; i--)
1053 {
1054 oplen = length_of_subexp (inexpr, inend);
1055 arglens[i] = oplen;
1056 inend -= oplen;
1057 }
1058
1059 /* Now copy each subexpression, preserving the order of
1060 the subexpressions, but prefixifying each one.
1061 In this loop, inend starts at the beginning of
1062 the expression this level is working on
1063 and marches forward over the arguments.
1064 outbeg does similarly in the output. */
1065 for (i = 0; i < args; i++)
1066 {
1067 int r;
1068
1069 oplen = arglens[i];
1070 inend += oplen;
1071 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1072 if (r != -1)
1073 {
1074 /* Return immediately. We probably have only parsed a
1075 partial expression, so we don't want to try to reverse
1076 the other operands. */
1077 return r;
1078 }
1079 outbeg += oplen;
1080 }
1081
1082 return result;
1083 }
1084 \f
1085 /* Read an expression from the string *STRINGPTR points to,
1086 parse it, and return a pointer to a struct expression that we malloc.
1087 Use block BLOCK as the lexical context for variable names;
1088 if BLOCK is zero, use the block of the selected stack frame.
1089 Meanwhile, advance *STRINGPTR to point after the expression,
1090 at the first nonwhite character that is not part of the expression
1091 (possibly a null character).
1092
1093 If COMMA is nonzero, stop if a comma is reached. */
1094
1095 expression_up
1096 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1097 int comma)
1098 {
1099 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1100 }
1101
1102 static expression_up
1103 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1104 const struct block *block,
1105 int comma, int void_context_p, int *out_subexp)
1106 {
1107 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1108 void_context_p, out_subexp);
1109 }
1110
1111 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1112 no value is expected from the expression.
1113 OUT_SUBEXP is set when attempting to complete a field name; in this
1114 case it is set to the index of the subexpression on the
1115 left-hand-side of the struct op. If not doing such completion, it
1116 is left untouched. */
1117
1118 static expression_up
1119 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1120 const struct block *block,
1121 int comma, int void_context_p, int *out_subexp)
1122 {
1123 const struct language_defn *lang = NULL;
1124 int subexp;
1125
1126 lexptr = *stringptr;
1127 prev_lexptr = NULL;
1128
1129 paren_depth = 0;
1130 type_stack.depth = 0;
1131 expout_last_struct = -1;
1132 expout_tag_completion_type = TYPE_CODE_UNDEF;
1133 expout_completion_name.reset ();
1134
1135 comma_terminates = comma;
1136
1137 if (lexptr == 0 || *lexptr == 0)
1138 error_no_arg (_("expression to compute"));
1139
1140 std::vector<int> funcalls;
1141 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1142 &funcalls);
1143
1144 expression_context_block = block;
1145
1146 /* If no context specified, try using the current frame, if any. */
1147 if (!expression_context_block)
1148 expression_context_block = get_selected_block (&expression_context_pc);
1149 else if (pc == 0)
1150 expression_context_pc = BLOCK_START (expression_context_block);
1151 else
1152 expression_context_pc = pc;
1153
1154 /* Fall back to using the current source static context, if any. */
1155
1156 if (!expression_context_block)
1157 {
1158 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1159 if (cursal.symtab)
1160 expression_context_block
1161 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1162 STATIC_BLOCK);
1163 if (expression_context_block)
1164 expression_context_pc = BLOCK_START (expression_context_block);
1165 }
1166
1167 if (language_mode == language_mode_auto && block != NULL)
1168 {
1169 /* Find the language associated to the given context block.
1170 Default to the current language if it can not be determined.
1171
1172 Note that using the language corresponding to the current frame
1173 can sometimes give unexpected results. For instance, this
1174 routine is often called several times during the inferior
1175 startup phase to re-parse breakpoint expressions after
1176 a new shared library has been loaded. The language associated
1177 to the current frame at this moment is not relevant for
1178 the breakpoint. Using it would therefore be silly, so it seems
1179 better to rely on the current language rather than relying on
1180 the current frame language to parse the expression. That's why
1181 we do the following language detection only if the context block
1182 has been specifically provided. */
1183 struct symbol *func = block_linkage_function (block);
1184
1185 if (func != NULL)
1186 lang = language_def (SYMBOL_LANGUAGE (func));
1187 if (lang == NULL || lang->la_language == language_unknown)
1188 lang = current_language;
1189 }
1190 else
1191 lang = current_language;
1192
1193 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1194 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1195 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1196 to the value matching SELECTED_FRAME as set by get_current_arch. */
1197
1198 parser_state ps (10, lang, get_current_arch ());
1199
1200 scoped_restore_current_language lang_saver;
1201 set_language (lang->la_language);
1202
1203 TRY
1204 {
1205 if (lang->la_parser (&ps))
1206 lang->la_error (NULL);
1207 }
1208 CATCH (except, RETURN_MASK_ALL)
1209 {
1210 if (! parse_completion)
1211 throw_exception (except);
1212 }
1213 END_CATCH
1214
1215 /* We have to operate on an "expression *", due to la_post_parser,
1216 which explains this funny-looking double release. */
1217 expression_up result = ps.release ();
1218
1219 /* Convert expression from postfix form as generated by yacc
1220 parser, to a prefix form. */
1221
1222 if (expressiondebug)
1223 dump_raw_expression (result.get (), gdb_stdlog,
1224 "before conversion to prefix form");
1225
1226 subexp = prefixify_expression (result.get ());
1227 if (out_subexp)
1228 *out_subexp = subexp;
1229
1230 lang->la_post_parser (&result, void_context_p);
1231
1232 if (expressiondebug)
1233 dump_prefix_expression (result.get (), gdb_stdlog);
1234
1235 *stringptr = lexptr;
1236 return result;
1237 }
1238
1239 /* Parse STRING as an expression, and complain if this fails
1240 to use up all of the contents of STRING. */
1241
1242 expression_up
1243 parse_expression (const char *string)
1244 {
1245 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1246 if (*string)
1247 error (_("Junk after end of expression."));
1248 return exp;
1249 }
1250
1251 /* Same as parse_expression, but using the given language (LANG)
1252 to parse the expression. */
1253
1254 expression_up
1255 parse_expression_with_language (const char *string, enum language lang)
1256 {
1257 gdb::optional<scoped_restore_current_language> lang_saver;
1258 if (current_language->la_language != lang)
1259 {
1260 lang_saver.emplace ();
1261 set_language (lang);
1262 }
1263
1264 return parse_expression (string);
1265 }
1266
1267 /* Parse STRING as an expression. If parsing ends in the middle of a
1268 field reference, return the type of the left-hand-side of the
1269 reference; furthermore, if the parsing ends in the field name,
1270 return the field name in *NAME. If the parsing ends in the middle
1271 of a field reference, but the reference is somehow invalid, throw
1272 an exception. In all other cases, return NULL. */
1273
1274 struct type *
1275 parse_expression_for_completion (const char *string,
1276 gdb::unique_xmalloc_ptr<char> *name,
1277 enum type_code *code)
1278 {
1279 expression_up exp;
1280 struct value *val;
1281 int subexp;
1282
1283 TRY
1284 {
1285 parse_completion = 1;
1286 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1287 }
1288 CATCH (except, RETURN_MASK_ERROR)
1289 {
1290 /* Nothing, EXP remains NULL. */
1291 }
1292 END_CATCH
1293
1294 parse_completion = 0;
1295 if (exp == NULL)
1296 return NULL;
1297
1298 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1299 {
1300 *code = expout_tag_completion_type;
1301 *name = std::move (expout_completion_name);
1302 return NULL;
1303 }
1304
1305 if (expout_last_struct == -1)
1306 return NULL;
1307
1308 const char *fieldname = extract_field_op (exp.get (), &subexp);
1309 if (fieldname == NULL)
1310 {
1311 name->reset ();
1312 return NULL;
1313 }
1314
1315 name->reset (xstrdup (fieldname));
1316 /* This might throw an exception. If so, we want to let it
1317 propagate. */
1318 val = evaluate_subexpression_type (exp.get (), subexp);
1319
1320 return value_type (val);
1321 }
1322
1323 /* A post-parser that does nothing. */
1324
1325 void
1326 null_post_parser (expression_up *exp, int void_context_p)
1327 {
1328 }
1329
1330 /* Parse floating point value P of length LEN.
1331 Return false if invalid, true if valid.
1332 The successfully parsed number is stored in DATA in
1333 target format for floating-point type TYPE.
1334
1335 NOTE: This accepts the floating point syntax that sscanf accepts. */
1336
1337 bool
1338 parse_float (const char *p, int len,
1339 const struct type *type, gdb_byte *data)
1340 {
1341 return target_float_from_string (data, type, std::string (p, len));
1342 }
1343 \f
1344 /* Stuff for maintaining a stack of types. Currently just used by C, but
1345 probably useful for any language which declares its types "backwards". */
1346
1347 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1348
1349 static void
1350 type_stack_reserve (struct type_stack *stack, int howmuch)
1351 {
1352 if (stack->depth + howmuch >= stack->size)
1353 {
1354 stack->size *= 2;
1355 if (stack->size < howmuch)
1356 stack->size = howmuch;
1357 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1358 stack->size);
1359 }
1360 }
1361
1362 /* Ensure that there is a single open slot in the global type stack. */
1363
1364 static void
1365 check_type_stack_depth (void)
1366 {
1367 type_stack_reserve (&type_stack, 1);
1368 }
1369
1370 /* A helper function for insert_type and insert_type_address_space.
1371 This does work of expanding the type stack and inserting the new
1372 element, ELEMENT, into the stack at location SLOT. */
1373
1374 static void
1375 insert_into_type_stack (int slot, union type_stack_elt element)
1376 {
1377 check_type_stack_depth ();
1378
1379 if (slot < type_stack.depth)
1380 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1381 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1382 type_stack.elements[slot] = element;
1383 ++type_stack.depth;
1384 }
1385
1386 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1387 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1388 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1389 previous tp_pointer) if there is anything on the stack, or simply pushed
1390 if the stack is empty. Other values for TP are invalid. */
1391
1392 void
1393 insert_type (enum type_pieces tp)
1394 {
1395 union type_stack_elt element;
1396 int slot;
1397
1398 gdb_assert (tp == tp_pointer || tp == tp_reference
1399 || tp == tp_rvalue_reference || tp == tp_const
1400 || tp == tp_volatile);
1401
1402 /* If there is anything on the stack (we know it will be a
1403 tp_pointer), insert the qualifier above it. Otherwise, simply
1404 push this on the top of the stack. */
1405 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1406 slot = 1;
1407 else
1408 slot = 0;
1409
1410 element.piece = tp;
1411 insert_into_type_stack (slot, element);
1412 }
1413
1414 void
1415 push_type (enum type_pieces tp)
1416 {
1417 check_type_stack_depth ();
1418 type_stack.elements[type_stack.depth++].piece = tp;
1419 }
1420
1421 void
1422 push_type_int (int n)
1423 {
1424 check_type_stack_depth ();
1425 type_stack.elements[type_stack.depth++].int_val = n;
1426 }
1427
1428 /* Insert a tp_space_identifier and the corresponding address space
1429 value into the stack. STRING is the name of an address space, as
1430 recognized by address_space_name_to_int. If the stack is empty,
1431 the new elements are simply pushed. If the stack is not empty,
1432 this function assumes that the first item on the stack is a
1433 tp_pointer, and the new values are inserted above the first
1434 item. */
1435
1436 void
1437 insert_type_address_space (struct parser_state *pstate, char *string)
1438 {
1439 union type_stack_elt element;
1440 int slot;
1441
1442 /* If there is anything on the stack (we know it will be a
1443 tp_pointer), insert the address space qualifier above it.
1444 Otherwise, simply push this on the top of the stack. */
1445 if (type_stack.depth)
1446 slot = 1;
1447 else
1448 slot = 0;
1449
1450 element.piece = tp_space_identifier;
1451 insert_into_type_stack (slot, element);
1452 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1453 string);
1454 insert_into_type_stack (slot, element);
1455 }
1456
1457 enum type_pieces
1458 pop_type (void)
1459 {
1460 if (type_stack.depth)
1461 return type_stack.elements[--type_stack.depth].piece;
1462 return tp_end;
1463 }
1464
1465 int
1466 pop_type_int (void)
1467 {
1468 if (type_stack.depth)
1469 return type_stack.elements[--type_stack.depth].int_val;
1470 /* "Can't happen". */
1471 return 0;
1472 }
1473
1474 /* Pop a type list element from the global type stack. */
1475
1476 static VEC (type_ptr) *
1477 pop_typelist (void)
1478 {
1479 gdb_assert (type_stack.depth);
1480 return type_stack.elements[--type_stack.depth].typelist_val;
1481 }
1482
1483 /* Pop a type_stack element from the global type stack. */
1484
1485 static struct type_stack *
1486 pop_type_stack (void)
1487 {
1488 gdb_assert (type_stack.depth);
1489 return type_stack.elements[--type_stack.depth].stack_val;
1490 }
1491
1492 /* Append the elements of the type stack FROM to the type stack TO.
1493 Always returns TO. */
1494
1495 struct type_stack *
1496 append_type_stack (struct type_stack *to, struct type_stack *from)
1497 {
1498 type_stack_reserve (to, from->depth);
1499
1500 memcpy (&to->elements[to->depth], &from->elements[0],
1501 from->depth * sizeof (union type_stack_elt));
1502 to->depth += from->depth;
1503
1504 return to;
1505 }
1506
1507 /* Push the type stack STACK as an element on the global type stack. */
1508
1509 void
1510 push_type_stack (struct type_stack *stack)
1511 {
1512 check_type_stack_depth ();
1513 type_stack.elements[type_stack.depth++].stack_val = stack;
1514 push_type (tp_type_stack);
1515 }
1516
1517 /* Copy the global type stack into a newly allocated type stack and
1518 return it. The global stack is cleared. The returned type stack
1519 must be freed with type_stack_cleanup. */
1520
1521 struct type_stack *
1522 get_type_stack (void)
1523 {
1524 struct type_stack *result = XNEW (struct type_stack);
1525
1526 *result = type_stack;
1527 type_stack.depth = 0;
1528 type_stack.size = 0;
1529 type_stack.elements = NULL;
1530
1531 return result;
1532 }
1533
1534 /* A cleanup function that destroys a single type stack. */
1535
1536 void
1537 type_stack_cleanup (void *arg)
1538 {
1539 struct type_stack *stack = (struct type_stack *) arg;
1540
1541 xfree (stack->elements);
1542 xfree (stack);
1543 }
1544
1545 /* Push a function type with arguments onto the global type stack.
1546 LIST holds the argument types. If the final item in LIST is NULL,
1547 then the function will be varargs. */
1548
1549 void
1550 push_typelist (VEC (type_ptr) *list)
1551 {
1552 check_type_stack_depth ();
1553 type_stack.elements[type_stack.depth++].typelist_val = list;
1554 push_type (tp_function_with_arguments);
1555 }
1556
1557 /* Pop the type stack and return a type_instance_flags that
1558 corresponds the const/volatile qualifiers on the stack. This is
1559 called by the C++ parser when parsing methods types, and as such no
1560 other kind of type in the type stack is expected. */
1561
1562 type_instance_flags
1563 follow_type_instance_flags ()
1564 {
1565 type_instance_flags flags = 0;
1566
1567 for (;;)
1568 switch (pop_type ())
1569 {
1570 case tp_end:
1571 return flags;
1572 case tp_const:
1573 flags |= TYPE_INSTANCE_FLAG_CONST;
1574 break;
1575 case tp_volatile:
1576 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1577 break;
1578 default:
1579 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1580 }
1581 }
1582
1583
1584 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1585 as modified by all the stuff on the stack. */
1586 struct type *
1587 follow_types (struct type *follow_type)
1588 {
1589 int done = 0;
1590 int make_const = 0;
1591 int make_volatile = 0;
1592 int make_addr_space = 0;
1593 int array_size;
1594
1595 while (!done)
1596 switch (pop_type ())
1597 {
1598 case tp_end:
1599 done = 1;
1600 if (make_const)
1601 follow_type = make_cv_type (make_const,
1602 TYPE_VOLATILE (follow_type),
1603 follow_type, 0);
1604 if (make_volatile)
1605 follow_type = make_cv_type (TYPE_CONST (follow_type),
1606 make_volatile,
1607 follow_type, 0);
1608 if (make_addr_space)
1609 follow_type = make_type_with_address_space (follow_type,
1610 make_addr_space);
1611 make_const = make_volatile = 0;
1612 make_addr_space = 0;
1613 break;
1614 case tp_const:
1615 make_const = 1;
1616 break;
1617 case tp_volatile:
1618 make_volatile = 1;
1619 break;
1620 case tp_space_identifier:
1621 make_addr_space = pop_type_int ();
1622 break;
1623 case tp_pointer:
1624 follow_type = lookup_pointer_type (follow_type);
1625 if (make_const)
1626 follow_type = make_cv_type (make_const,
1627 TYPE_VOLATILE (follow_type),
1628 follow_type, 0);
1629 if (make_volatile)
1630 follow_type = make_cv_type (TYPE_CONST (follow_type),
1631 make_volatile,
1632 follow_type, 0);
1633 if (make_addr_space)
1634 follow_type = make_type_with_address_space (follow_type,
1635 make_addr_space);
1636 make_const = make_volatile = 0;
1637 make_addr_space = 0;
1638 break;
1639 case tp_reference:
1640 follow_type = lookup_lvalue_reference_type (follow_type);
1641 goto process_reference;
1642 case tp_rvalue_reference:
1643 follow_type = lookup_rvalue_reference_type (follow_type);
1644 process_reference:
1645 if (make_const)
1646 follow_type = make_cv_type (make_const,
1647 TYPE_VOLATILE (follow_type),
1648 follow_type, 0);
1649 if (make_volatile)
1650 follow_type = make_cv_type (TYPE_CONST (follow_type),
1651 make_volatile,
1652 follow_type, 0);
1653 if (make_addr_space)
1654 follow_type = make_type_with_address_space (follow_type,
1655 make_addr_space);
1656 make_const = make_volatile = 0;
1657 make_addr_space = 0;
1658 break;
1659 case tp_array:
1660 array_size = pop_type_int ();
1661 /* FIXME-type-allocation: need a way to free this type when we are
1662 done with it. */
1663 follow_type =
1664 lookup_array_range_type (follow_type,
1665 0, array_size >= 0 ? array_size - 1 : 0);
1666 if (array_size < 0)
1667 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1668 = PROP_UNDEFINED;
1669 break;
1670 case tp_function:
1671 /* FIXME-type-allocation: need a way to free this type when we are
1672 done with it. */
1673 follow_type = lookup_function_type (follow_type);
1674 break;
1675
1676 case tp_function_with_arguments:
1677 {
1678 VEC (type_ptr) *args = pop_typelist ();
1679
1680 follow_type
1681 = lookup_function_type_with_arguments (follow_type,
1682 VEC_length (type_ptr, args),
1683 VEC_address (type_ptr,
1684 args));
1685 VEC_free (type_ptr, args);
1686 }
1687 break;
1688
1689 case tp_type_stack:
1690 {
1691 struct type_stack *stack = pop_type_stack ();
1692 /* Sort of ugly, but not really much worse than the
1693 alternatives. */
1694 struct type_stack save = type_stack;
1695
1696 type_stack = *stack;
1697 follow_type = follow_types (follow_type);
1698 gdb_assert (type_stack.depth == 0);
1699
1700 type_stack = save;
1701 }
1702 break;
1703 default:
1704 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1705 }
1706 return follow_type;
1707 }
1708 \f
1709 /* This function avoids direct calls to fprintf
1710 in the parser generated debug code. */
1711 void
1712 parser_fprintf (FILE *x, const char *y, ...)
1713 {
1714 va_list args;
1715
1716 va_start (args, y);
1717 if (x == stderr)
1718 vfprintf_unfiltered (gdb_stderr, y, args);
1719 else
1720 {
1721 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1722 vfprintf_unfiltered (gdb_stderr, y, args);
1723 }
1724 va_end (args);
1725 }
1726
1727 /* Implementation of the exp_descriptor method operator_check. */
1728
1729 int
1730 operator_check_standard (struct expression *exp, int pos,
1731 int (*objfile_func) (struct objfile *objfile,
1732 void *data),
1733 void *data)
1734 {
1735 const union exp_element *const elts = exp->elts;
1736 struct type *type = NULL;
1737 struct objfile *objfile = NULL;
1738
1739 /* Extended operators should have been already handled by exp_descriptor
1740 iterate method of its specific language. */
1741 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1742
1743 /* Track the callers of write_exp_elt_type for this table. */
1744
1745 switch (elts[pos].opcode)
1746 {
1747 case BINOP_VAL:
1748 case OP_COMPLEX:
1749 case OP_FLOAT:
1750 case OP_LONG:
1751 case OP_SCOPE:
1752 case OP_TYPE:
1753 case UNOP_CAST:
1754 case UNOP_MAX:
1755 case UNOP_MEMVAL:
1756 case UNOP_MIN:
1757 type = elts[pos + 1].type;
1758 break;
1759
1760 case TYPE_INSTANCE:
1761 {
1762 LONGEST arg, nargs = elts[pos + 2].longconst;
1763
1764 for (arg = 0; arg < nargs; arg++)
1765 {
1766 struct type *type = elts[pos + 3 + arg].type;
1767 struct objfile *objfile = TYPE_OBJFILE (type);
1768
1769 if (objfile && (*objfile_func) (objfile, data))
1770 return 1;
1771 }
1772 }
1773 break;
1774
1775 case OP_VAR_VALUE:
1776 {
1777 const struct block *const block = elts[pos + 1].block;
1778 const struct symbol *const symbol = elts[pos + 2].symbol;
1779
1780 /* Check objfile where the variable itself is placed.
1781 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1782 if ((*objfile_func) (symbol_objfile (symbol), data))
1783 return 1;
1784
1785 /* Check objfile where is placed the code touching the variable. */
1786 objfile = lookup_objfile_from_block (block);
1787
1788 type = SYMBOL_TYPE (symbol);
1789 }
1790 break;
1791 case OP_VAR_MSYM_VALUE:
1792 objfile = elts[pos + 1].objfile;
1793 break;
1794 }
1795
1796 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1797
1798 if (type && TYPE_OBJFILE (type)
1799 && (*objfile_func) (TYPE_OBJFILE (type), data))
1800 return 1;
1801 if (objfile && (*objfile_func) (objfile, data))
1802 return 1;
1803
1804 return 0;
1805 }
1806
1807 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1808 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1809 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1810 returns non-zero value then (any other) non-zero value is immediately
1811 returned to the caller. Otherwise zero is returned after iterating
1812 through whole EXP. */
1813
1814 static int
1815 exp_iterate (struct expression *exp,
1816 int (*objfile_func) (struct objfile *objfile, void *data),
1817 void *data)
1818 {
1819 int endpos;
1820
1821 for (endpos = exp->nelts; endpos > 0; )
1822 {
1823 int pos, args, oplen = 0;
1824
1825 operator_length (exp, endpos, &oplen, &args);
1826 gdb_assert (oplen > 0);
1827
1828 pos = endpos - oplen;
1829 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1830 objfile_func, data))
1831 return 1;
1832
1833 endpos = pos;
1834 }
1835
1836 return 0;
1837 }
1838
1839 /* Helper for exp_uses_objfile. */
1840
1841 static int
1842 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1843 {
1844 struct objfile *objfile = (struct objfile *) objfile_voidp;
1845
1846 if (exp_objfile->separate_debug_objfile_backlink)
1847 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1848
1849 return exp_objfile == objfile;
1850 }
1851
1852 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1853 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1854 file. */
1855
1856 int
1857 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1858 {
1859 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1860
1861 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1862 }
1863
1864 /* See definition in parser-defs.h. */
1865
1866 void
1867 increase_expout_size (struct parser_state *ps, size_t lenelt)
1868 {
1869 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1870 {
1871 ps->expout_size = std::max (ps->expout_size * 2,
1872 ps->expout_ptr + lenelt + 10);
1873 ps->expout.reset (XRESIZEVAR (expression,
1874 ps->expout.release (),
1875 (sizeof (struct expression)
1876 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1877 }
1878 }
1879
1880 void
1881 _initialize_parse (void)
1882 {
1883 type_stack.size = 0;
1884 type_stack.depth = 0;
1885 type_stack.elements = NULL;
1886
1887 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1888 &expressiondebug,
1889 _("Set expression debugging."),
1890 _("Show expression debugging."),
1891 _("When non-zero, the internal representation "
1892 "of expressions will be printed."),
1893 NULL,
1894 show_expressiondebug,
1895 &setdebuglist, &showdebuglist);
1896 add_setshow_boolean_cmd ("parser", class_maintenance,
1897 &parser_debug,
1898 _("Set parser debugging."),
1899 _("Show parser debugging."),
1900 _("When non-zero, expression parser "
1901 "tracing will be enabled."),
1902 NULL,
1903 show_parserdebug,
1904 &setdebuglist, &showdebuglist);
1905 }
This page took 0.074809 seconds and 5 git commands to generate.