remove msymbol_objfile
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126 static struct expression *parse_exp_in_context_1 (char **, CORE_ADDR,
127 const struct block *, int,
128 int, int *);
129
130 void _initialize_parse (void);
131
132 /* Data structure for saving values of arglist_len for function calls whose
133 arguments contain other function calls. */
134
135 struct funcall
136 {
137 struct funcall *next;
138 int arglist_len;
139 };
140
141 static struct funcall *funcall_chain;
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist (void)
148 {
149 struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist (void)
163 {
164 int val = arglist_len;
165 struct funcall *call = funcall_chain;
166
167 funcall_chain = call->next;
168 arglist_len = call->arglist_len;
169 xfree (call);
170 return val;
171 }
172
173 /* Free everything in the funcall chain.
174 Used when there is an error inside parsing. */
175
176 static void
177 free_funcalls (void *ignore)
178 {
179 struct funcall *call, *next;
180
181 for (call = funcall_chain; call; call = next)
182 {
183 next = call->next;
184 xfree (call);
185 }
186 }
187 \f
188 /* This page contains the functions for adding data to the struct expression
189 being constructed. */
190
191 /* See definition in parser-defs.h. */
192
193 void
194 initialize_expout (int initial_size, const struct language_defn *lang,
195 struct gdbarch *gdbarch)
196 {
197 expout_size = initial_size;
198 expout_ptr = 0;
199 expout = xmalloc (sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 expout->language_defn = lang;
202 expout->gdbarch = gdbarch;
203 }
204
205 /* See definition in parser-defs.h. */
206
207 void
208 reallocate_expout (void)
209 {
210 /* Record the actual number of expression elements, and then
211 reallocate the expression memory so that we free up any
212 excess elements. */
213
214 expout->nelts = expout_ptr;
215 expout = xrealloc ((char *) expout,
216 sizeof (struct expression)
217 + EXP_ELEM_TO_BYTES (expout_ptr));
218 }
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (const union exp_element *expelt)
227 {
228 if (expout_ptr >= expout_size)
229 {
230 expout_size *= 2;
231 expout = (struct expression *)
232 xrealloc ((char *) expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (expout_size));
234 }
235 expout->elts[expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (&tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (&tmp);
256 }
257
258 void
259 write_exp_elt_block (const struct block *b)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.block = b;
265 write_exp_elt (&tmp);
266 }
267
268 void
269 write_exp_elt_objfile (struct objfile *objfile)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
275 write_exp_elt (&tmp);
276 }
277
278 void
279 write_exp_elt_longcst (LONGEST expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.longconst = expelt;
285 write_exp_elt (&tmp);
286 }
287
288 void
289 write_exp_elt_dblcst (DOUBLEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.doubleconst = expelt;
295 write_exp_elt (&tmp);
296 }
297
298 void
299 write_exp_elt_decfloatcst (gdb_byte expelt[16])
300 {
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
307 write_exp_elt (&tmp);
308 }
309
310 void
311 write_exp_elt_type (struct type *expelt)
312 {
313 union exp_element tmp;
314
315 memset (&tmp, 0, sizeof (union exp_element));
316 tmp.type = expelt;
317 write_exp_elt (&tmp);
318 }
319
320 void
321 write_exp_elt_intern (struct internalvar *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.internalvar = expelt;
327 write_exp_elt (&tmp);
328 }
329
330 /* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
336 the length of the string. I.e. an expression element at each end of
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
343 this is strictly for the convenience of debugging gdb itself.
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
348 course. */
349
350
351 void
352 write_exp_string (struct stoken str)
353 {
354 int len = str.length;
355 int lenelt;
356 char *strdata;
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
361 null byte terminator). */
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 /* Ensure that we have enough available expression elements to store
366 everything. */
367
368 if ((expout_ptr + lenelt) >= expout_size)
369 {
370 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
371 expout = (struct expression *)
372 xrealloc ((char *) expout, (sizeof (struct expression)
373 + EXP_ELEM_TO_BYTES (expout_size)));
374 }
375
376 /* Write the leading length expression element (which advances the current
377 expression element index), then write the string constant followed by a
378 terminating null byte, and then write the trailing length expression
379 element. */
380
381 write_exp_elt_longcst ((LONGEST) len);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 *(strdata + len) = '\0';
385 expout_ptr += lenelt - 2;
386 write_exp_elt_longcst ((LONGEST) len);
387 }
388
389 /* Add a vector of string constants to the end of the expression.
390
391 This adds an OP_STRING operation, but encodes the contents
392 differently from write_exp_string. The language is expected to
393 handle evaluation of this expression itself.
394
395 After the usual OP_STRING header, TYPE is written into the
396 expression as a long constant. The interpretation of this field is
397 up to the language evaluator.
398
399 Next, each string in VEC is written. The length is written as a
400 long constant, followed by the contents of the string. */
401
402 void
403 write_exp_string_vector (int type, struct stoken_vector *vec)
404 {
405 int i, n_slots, len;
406
407 /* Compute the size. We compute the size in number of slots to
408 avoid issues with string padding. */
409 n_slots = 0;
410 for (i = 0; i < vec->len; ++i)
411 {
412 /* One slot for the length of this element, plus the number of
413 slots needed for this string. */
414 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
415 }
416
417 /* One more slot for the type of the string. */
418 ++n_slots;
419
420 /* Now compute a phony string length. */
421 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
422
423 n_slots += 4;
424 if ((expout_ptr + n_slots) >= expout_size)
425 {
426 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
427 expout = (struct expression *)
428 xrealloc ((char *) expout, (sizeof (struct expression)
429 + EXP_ELEM_TO_BYTES (expout_size)));
430 }
431
432 write_exp_elt_opcode (OP_STRING);
433 write_exp_elt_longcst (len);
434 write_exp_elt_longcst (type);
435
436 for (i = 0; i < vec->len; ++i)
437 {
438 write_exp_elt_longcst (vec->tokens[i].length);
439 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
440 vec->tokens[i].length);
441 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
442 }
443
444 write_exp_elt_longcst (len);
445 write_exp_elt_opcode (OP_STRING);
446 }
447
448 /* Add a bitstring constant to the end of the expression.
449
450 Bitstring constants are stored by first writing an expression element
451 that contains the length of the bitstring (in bits), then stuffing the
452 bitstring constant itself into however many expression elements are
453 needed to hold it, and then writing another expression element that
454 contains the length of the bitstring. I.e. an expression element at
455 each end of the bitstring records the bitstring length, so you can skip
456 over the expression elements containing the actual bitstring bytes from
457 either end of the bitstring. */
458
459 void
460 write_exp_bitstring (struct stoken str)
461 {
462 int bits = str.length; /* length in bits */
463 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
464 int lenelt;
465 char *strdata;
466
467 /* Compute the number of expression elements required to hold the bitstring,
468 along with one expression element at each end to record the actual
469 bitstring length in bits. */
470
471 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
472
473 /* Ensure that we have enough available expression elements to store
474 everything. */
475
476 if ((expout_ptr + lenelt) >= expout_size)
477 {
478 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
479 expout = (struct expression *)
480 xrealloc ((char *) expout, (sizeof (struct expression)
481 + EXP_ELEM_TO_BYTES (expout_size)));
482 }
483
484 /* Write the leading length expression element (which advances the current
485 expression element index), then write the bitstring constant, and then
486 write the trailing length expression element. */
487
488 write_exp_elt_longcst ((LONGEST) bits);
489 strdata = (char *) &expout->elts[expout_ptr];
490 memcpy (strdata, str.ptr, len);
491 expout_ptr += lenelt - 2;
492 write_exp_elt_longcst ((LONGEST) bits);
493 }
494
495 /* Add the appropriate elements for a minimal symbol to the end of
496 the expression. */
497
498 void
499 write_exp_msymbol (struct bound_minimal_symbol bound_msym)
500 {
501 struct minimal_symbol *msymbol = bound_msym.minsym;
502 struct objfile *objfile = bound_msym.objfile;
503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
504
505 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
506 struct obj_section *section = SYMBOL_OBJ_SECTION (objfile, msymbol);
507 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
508 CORE_ADDR pc;
509
510 /* The minimal symbol might point to a function descriptor;
511 resolve it to the actual code address instead. */
512 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
513 if (pc != addr)
514 {
515 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
516
517 /* In this case, assume we have a code symbol instead of
518 a data symbol. */
519
520 if (ifunc_msym.minsym != NULL
521 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
522 && SYMBOL_VALUE_ADDRESS (ifunc_msym.minsym) == pc)
523 {
524 /* A function descriptor has been resolved but PC is still in the
525 STT_GNU_IFUNC resolver body (such as because inferior does not
526 run to be able to call it). */
527
528 type = mst_text_gnu_ifunc;
529 }
530 else
531 type = mst_text;
532 section = NULL;
533 addr = pc;
534 }
535
536 if (overlay_debugging)
537 addr = symbol_overlayed_address (addr, section);
538
539 write_exp_elt_opcode (OP_LONG);
540 /* Let's make the type big enough to hold a 64-bit address. */
541 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
542 write_exp_elt_longcst ((LONGEST) addr);
543 write_exp_elt_opcode (OP_LONG);
544
545 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
546 {
547 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
548 write_exp_elt_objfile (objfile);
549 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
550 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
551 return;
552 }
553
554 write_exp_elt_opcode (UNOP_MEMVAL);
555 switch (type)
556 {
557 case mst_text:
558 case mst_file_text:
559 case mst_solib_trampoline:
560 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
561 break;
562
563 case mst_text_gnu_ifunc:
564 write_exp_elt_type (objfile_type (objfile)
565 ->nodebug_text_gnu_ifunc_symbol);
566 break;
567
568 case mst_data:
569 case mst_file_data:
570 case mst_bss:
571 case mst_file_bss:
572 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
573 break;
574
575 case mst_slot_got_plt:
576 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
577 break;
578
579 default:
580 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
581 break;
582 }
583 write_exp_elt_opcode (UNOP_MEMVAL);
584 }
585
586 /* Mark the current index as the starting location of a structure
587 expression. This is used when completing on field names. */
588
589 void
590 mark_struct_expression (void)
591 {
592 gdb_assert (parse_completion
593 && expout_tag_completion_type == TYPE_CODE_UNDEF);
594 expout_last_struct = expout_ptr;
595 }
596
597 /* Indicate that the current parser invocation is completing a tag.
598 TAG is the type code of the tag, and PTR and LENGTH represent the
599 start of the tag name. */
600
601 void
602 mark_completion_tag (enum type_code tag, const char *ptr, int length)
603 {
604 gdb_assert (parse_completion
605 && expout_tag_completion_type == TYPE_CODE_UNDEF
606 && expout_completion_name == NULL
607 && expout_last_struct == -1);
608 gdb_assert (tag == TYPE_CODE_UNION
609 || tag == TYPE_CODE_STRUCT
610 || tag == TYPE_CODE_CLASS
611 || tag == TYPE_CODE_ENUM);
612 expout_tag_completion_type = tag;
613 expout_completion_name = xmalloc (length + 1);
614 memcpy (expout_completion_name, ptr, length);
615 expout_completion_name[length] = '\0';
616 }
617
618 \f
619 /* Recognize tokens that start with '$'. These include:
620
621 $regname A native register name or a "standard
622 register name".
623
624 $variable A convenience variable with a name chosen
625 by the user.
626
627 $digits Value history with index <digits>, starting
628 from the first value which has index 1.
629
630 $$digits Value history with index <digits> relative
631 to the last value. I.e. $$0 is the last
632 value, $$1 is the one previous to that, $$2
633 is the one previous to $$1, etc.
634
635 $ | $0 | $$0 The last value in the value history.
636
637 $$ An abbreviation for the second to the last
638 value in the value history, I.e. $$1 */
639
640 void
641 write_dollar_variable (struct stoken str)
642 {
643 struct symbol *sym = NULL;
644 struct bound_minimal_symbol msym;
645 struct internalvar *isym = NULL;
646
647 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
648 and $$digits (equivalent to $<-digits> if you could type that). */
649
650 int negate = 0;
651 int i = 1;
652 /* Double dollar means negate the number and add -1 as well.
653 Thus $$ alone means -1. */
654 if (str.length >= 2 && str.ptr[1] == '$')
655 {
656 negate = 1;
657 i = 2;
658 }
659 if (i == str.length)
660 {
661 /* Just dollars (one or two). */
662 i = -negate;
663 goto handle_last;
664 }
665 /* Is the rest of the token digits? */
666 for (; i < str.length; i++)
667 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
668 break;
669 if (i == str.length)
670 {
671 i = atoi (str.ptr + 1 + negate);
672 if (negate)
673 i = -i;
674 goto handle_last;
675 }
676
677 /* Handle tokens that refer to machine registers:
678 $ followed by a register name. */
679 i = user_reg_map_name_to_regnum (parse_gdbarch,
680 str.ptr + 1, str.length - 1);
681 if (i >= 0)
682 goto handle_register;
683
684 /* Any names starting with $ are probably debugger internal variables. */
685
686 isym = lookup_only_internalvar (copy_name (str) + 1);
687 if (isym)
688 {
689 write_exp_elt_opcode (OP_INTERNALVAR);
690 write_exp_elt_intern (isym);
691 write_exp_elt_opcode (OP_INTERNALVAR);
692 return;
693 }
694
695 /* On some systems, such as HP-UX and hppa-linux, certain system routines
696 have names beginning with $ or $$. Check for those, first. */
697
698 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
699 VAR_DOMAIN, NULL);
700 if (sym)
701 {
702 write_exp_elt_opcode (OP_VAR_VALUE);
703 write_exp_elt_block (block_found); /* set by lookup_symbol */
704 write_exp_elt_sym (sym);
705 write_exp_elt_opcode (OP_VAR_VALUE);
706 return;
707 }
708 msym = lookup_bound_minimal_symbol (copy_name (str));
709 if (msym.minsym)
710 {
711 write_exp_msymbol (msym);
712 return;
713 }
714
715 /* Any other names are assumed to be debugger internal variables. */
716
717 write_exp_elt_opcode (OP_INTERNALVAR);
718 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
719 write_exp_elt_opcode (OP_INTERNALVAR);
720 return;
721 handle_last:
722 write_exp_elt_opcode (OP_LAST);
723 write_exp_elt_longcst ((LONGEST) i);
724 write_exp_elt_opcode (OP_LAST);
725 return;
726 handle_register:
727 write_exp_elt_opcode (OP_REGISTER);
728 str.length--;
729 str.ptr++;
730 write_exp_string (str);
731 write_exp_elt_opcode (OP_REGISTER);
732 return;
733 }
734
735
736 char *
737 find_template_name_end (char *p)
738 {
739 int depth = 1;
740 int just_seen_right = 0;
741 int just_seen_colon = 0;
742 int just_seen_space = 0;
743
744 if (!p || (*p != '<'))
745 return 0;
746
747 while (*++p)
748 {
749 switch (*p)
750 {
751 case '\'':
752 case '\"':
753 case '{':
754 case '}':
755 /* In future, may want to allow these?? */
756 return 0;
757 case '<':
758 depth++; /* start nested template */
759 if (just_seen_colon || just_seen_right || just_seen_space)
760 return 0; /* but not after : or :: or > or space */
761 break;
762 case '>':
763 if (just_seen_colon || just_seen_right)
764 return 0; /* end a (nested?) template */
765 just_seen_right = 1; /* but not after : or :: */
766 if (--depth == 0) /* also disallow >>, insist on > > */
767 return ++p; /* if outermost ended, return */
768 break;
769 case ':':
770 if (just_seen_space || (just_seen_colon > 1))
771 return 0; /* nested class spec coming up */
772 just_seen_colon++; /* we allow :: but not :::: */
773 break;
774 case ' ':
775 break;
776 default:
777 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
778 (*p >= 'A' && *p <= 'Z') ||
779 (*p >= '0' && *p <= '9') ||
780 (*p == '_') || (*p == ',') || /* commas for template args */
781 (*p == '&') || (*p == '*') || /* pointer and ref types */
782 (*p == '(') || (*p == ')') || /* function types */
783 (*p == '[') || (*p == ']'))) /* array types */
784 return 0;
785 }
786 if (*p != ' ')
787 just_seen_space = 0;
788 if (*p != ':')
789 just_seen_colon = 0;
790 if (*p != '>')
791 just_seen_right = 0;
792 }
793 return 0;
794 }
795 \f
796
797 /* Return a null-terminated temporary copy of the name of a string token.
798
799 Tokens that refer to names do so with explicit pointer and length,
800 so they can share the storage that lexptr is parsing.
801 When it is necessary to pass a name to a function that expects
802 a null-terminated string, the substring is copied out
803 into a separate block of storage.
804
805 N.B. A single buffer is reused on each call. */
806
807 char *
808 copy_name (struct stoken token)
809 {
810 /* A temporary buffer for identifiers, so we can null-terminate them.
811 We allocate this with xrealloc. parse_exp_1 used to allocate with
812 alloca, using the size of the whole expression as a conservative
813 estimate of the space needed. However, macro expansion can
814 introduce names longer than the original expression; there's no
815 practical way to know beforehand how large that might be. */
816 static char *namecopy;
817 static size_t namecopy_size;
818
819 /* Make sure there's enough space for the token. */
820 if (namecopy_size < token.length + 1)
821 {
822 namecopy_size = token.length + 1;
823 namecopy = xrealloc (namecopy, token.length + 1);
824 }
825
826 memcpy (namecopy, token.ptr, token.length);
827 namecopy[token.length] = 0;
828
829 return namecopy;
830 }
831 \f
832
833 /* See comments on parser-defs.h. */
834
835 int
836 prefixify_expression (struct expression *expr)
837 {
838 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
839 struct expression *temp;
840 int inpos = expr->nelts, outpos = 0;
841
842 temp = (struct expression *) alloca (len);
843
844 /* Copy the original expression into temp. */
845 memcpy (temp, expr, len);
846
847 return prefixify_subexp (temp, expr, inpos, outpos);
848 }
849
850 /* Return the number of exp_elements in the postfix subexpression
851 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
852
853 int
854 length_of_subexp (struct expression *expr, int endpos)
855 {
856 int oplen, args;
857
858 operator_length (expr, endpos, &oplen, &args);
859
860 while (args > 0)
861 {
862 oplen += length_of_subexp (expr, endpos - oplen);
863 args--;
864 }
865
866 return oplen;
867 }
868
869 /* Sets *OPLENP to the length of the operator whose (last) index is
870 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
871 operator takes. */
872
873 void
874 operator_length (const struct expression *expr, int endpos, int *oplenp,
875 int *argsp)
876 {
877 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
878 oplenp, argsp);
879 }
880
881 /* Default value for operator_length in exp_descriptor vectors. */
882
883 void
884 operator_length_standard (const struct expression *expr, int endpos,
885 int *oplenp, int *argsp)
886 {
887 int oplen = 1;
888 int args = 0;
889 enum f90_range_type range_type;
890 int i;
891
892 if (endpos < 1)
893 error (_("?error in operator_length_standard"));
894
895 i = (int) expr->elts[endpos - 1].opcode;
896
897 switch (i)
898 {
899 /* C++ */
900 case OP_SCOPE:
901 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
902 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
903 break;
904
905 case OP_LONG:
906 case OP_DOUBLE:
907 case OP_DECFLOAT:
908 case OP_VAR_VALUE:
909 oplen = 4;
910 break;
911
912 case OP_TYPE:
913 case OP_BOOL:
914 case OP_LAST:
915 case OP_INTERNALVAR:
916 case OP_VAR_ENTRY_VALUE:
917 oplen = 3;
918 break;
919
920 case OP_COMPLEX:
921 oplen = 3;
922 args = 2;
923 break;
924
925 case OP_FUNCALL:
926 case OP_F77_UNDETERMINED_ARGLIST:
927 oplen = 3;
928 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
929 break;
930
931 case TYPE_INSTANCE:
932 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
933 args = 1;
934 break;
935
936 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
937 oplen = 4;
938 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
939 break;
940
941 case UNOP_MAX:
942 case UNOP_MIN:
943 oplen = 3;
944 break;
945
946 case UNOP_CAST_TYPE:
947 case UNOP_DYNAMIC_CAST:
948 case UNOP_REINTERPRET_CAST:
949 case UNOP_MEMVAL_TYPE:
950 oplen = 1;
951 args = 2;
952 break;
953
954 case BINOP_VAL:
955 case UNOP_CAST:
956 case UNOP_MEMVAL:
957 oplen = 3;
958 args = 1;
959 break;
960
961 case UNOP_MEMVAL_TLS:
962 oplen = 4;
963 args = 1;
964 break;
965
966 case UNOP_ABS:
967 case UNOP_CAP:
968 case UNOP_CHR:
969 case UNOP_FLOAT:
970 case UNOP_HIGH:
971 case UNOP_ODD:
972 case UNOP_ORD:
973 case UNOP_TRUNC:
974 case OP_TYPEOF:
975 case OP_DECLTYPE:
976 case OP_TYPEID:
977 oplen = 1;
978 args = 1;
979 break;
980
981 case OP_ADL_FUNC:
982 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
983 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
984 oplen++;
985 oplen++;
986 break;
987
988 case STRUCTOP_STRUCT:
989 case STRUCTOP_PTR:
990 args = 1;
991 /* fall through */
992 case OP_REGISTER:
993 case OP_M2_STRING:
994 case OP_STRING:
995 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
996 NSString constant. */
997 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
998 case OP_NAME:
999 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
1000 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1001 break;
1002
1003 case OP_ARRAY:
1004 oplen = 4;
1005 args = longest_to_int (expr->elts[endpos - 2].longconst);
1006 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1007 args += 1;
1008 break;
1009
1010 case TERNOP_COND:
1011 case TERNOP_SLICE:
1012 args = 3;
1013 break;
1014
1015 /* Modula-2 */
1016 case MULTI_SUBSCRIPT:
1017 oplen = 3;
1018 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1019 break;
1020
1021 case BINOP_ASSIGN_MODIFY:
1022 oplen = 3;
1023 args = 2;
1024 break;
1025
1026 /* C++ */
1027 case OP_THIS:
1028 oplen = 2;
1029 break;
1030
1031 case OP_F90_RANGE:
1032 oplen = 3;
1033
1034 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1035 switch (range_type)
1036 {
1037 case LOW_BOUND_DEFAULT:
1038 case HIGH_BOUND_DEFAULT:
1039 args = 1;
1040 break;
1041 case BOTH_BOUND_DEFAULT:
1042 args = 0;
1043 break;
1044 case NONE_BOUND_DEFAULT:
1045 args = 2;
1046 break;
1047 }
1048
1049 break;
1050
1051 default:
1052 args = 1 + (i < (int) BINOP_END);
1053 }
1054
1055 *oplenp = oplen;
1056 *argsp = args;
1057 }
1058
1059 /* Copy the subexpression ending just before index INEND in INEXPR
1060 into OUTEXPR, starting at index OUTBEG.
1061 In the process, convert it from suffix to prefix form.
1062 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1063 Otherwise, it returns the index of the subexpression which is the
1064 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1065
1066 static int
1067 prefixify_subexp (struct expression *inexpr,
1068 struct expression *outexpr, int inend, int outbeg)
1069 {
1070 int oplen;
1071 int args;
1072 int i;
1073 int *arglens;
1074 int result = -1;
1075
1076 operator_length (inexpr, inend, &oplen, &args);
1077
1078 /* Copy the final operator itself, from the end of the input
1079 to the beginning of the output. */
1080 inend -= oplen;
1081 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1082 EXP_ELEM_TO_BYTES (oplen));
1083 outbeg += oplen;
1084
1085 if (expout_last_struct == inend)
1086 result = outbeg - oplen;
1087
1088 /* Find the lengths of the arg subexpressions. */
1089 arglens = (int *) alloca (args * sizeof (int));
1090 for (i = args - 1; i >= 0; i--)
1091 {
1092 oplen = length_of_subexp (inexpr, inend);
1093 arglens[i] = oplen;
1094 inend -= oplen;
1095 }
1096
1097 /* Now copy each subexpression, preserving the order of
1098 the subexpressions, but prefixifying each one.
1099 In this loop, inend starts at the beginning of
1100 the expression this level is working on
1101 and marches forward over the arguments.
1102 outbeg does similarly in the output. */
1103 for (i = 0; i < args; i++)
1104 {
1105 int r;
1106
1107 oplen = arglens[i];
1108 inend += oplen;
1109 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1110 if (r != -1)
1111 {
1112 /* Return immediately. We probably have only parsed a
1113 partial expression, so we don't want to try to reverse
1114 the other operands. */
1115 return r;
1116 }
1117 outbeg += oplen;
1118 }
1119
1120 return result;
1121 }
1122 \f
1123 /* Read an expression from the string *STRINGPTR points to,
1124 parse it, and return a pointer to a struct expression that we malloc.
1125 Use block BLOCK as the lexical context for variable names;
1126 if BLOCK is zero, use the block of the selected stack frame.
1127 Meanwhile, advance *STRINGPTR to point after the expression,
1128 at the first nonwhite character that is not part of the expression
1129 (possibly a null character).
1130
1131 If COMMA is nonzero, stop if a comma is reached. */
1132
1133 struct expression *
1134 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1135 int comma)
1136 {
1137 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1138 }
1139
1140 static struct expression *
1141 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1142 const struct block *block,
1143 int comma, int void_context_p, int *out_subexp)
1144 {
1145 struct expression *expr;
1146 char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL;
1147 char *orig = const_hack;
1148 struct cleanup *back_to = make_cleanup (xfree, const_hack);
1149
1150 expr = parse_exp_in_context_1 (&const_hack, pc, block, comma,
1151 void_context_p, out_subexp);
1152 (*stringptr) += const_hack - orig;
1153 do_cleanups (back_to);
1154 return expr;
1155 }
1156
1157 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1158 no value is expected from the expression.
1159 OUT_SUBEXP is set when attempting to complete a field name; in this
1160 case it is set to the index of the subexpression on the
1161 left-hand-side of the struct op. If not doing such completion, it
1162 is left untouched. */
1163
1164 static struct expression *
1165 parse_exp_in_context_1 (char **stringptr, CORE_ADDR pc,
1166 const struct block *block,
1167 int comma, int void_context_p, int *out_subexp)
1168 {
1169 volatile struct gdb_exception except;
1170 struct cleanup *old_chain, *inner_chain;
1171 const struct language_defn *lang = NULL;
1172 int subexp;
1173
1174 lexptr = *stringptr;
1175 prev_lexptr = NULL;
1176
1177 paren_depth = 0;
1178 type_stack.depth = 0;
1179 expout_last_struct = -1;
1180 expout_tag_completion_type = TYPE_CODE_UNDEF;
1181 xfree (expout_completion_name);
1182 expout_completion_name = NULL;
1183
1184 comma_terminates = comma;
1185
1186 if (lexptr == 0 || *lexptr == 0)
1187 error_no_arg (_("expression to compute"));
1188
1189 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1190 funcall_chain = 0;
1191
1192 expression_context_block = block;
1193
1194 /* If no context specified, try using the current frame, if any. */
1195 if (!expression_context_block)
1196 expression_context_block = get_selected_block (&expression_context_pc);
1197 else if (pc == 0)
1198 expression_context_pc = BLOCK_START (expression_context_block);
1199 else
1200 expression_context_pc = pc;
1201
1202 /* Fall back to using the current source static context, if any. */
1203
1204 if (!expression_context_block)
1205 {
1206 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1207 if (cursal.symtab)
1208 expression_context_block
1209 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1210 if (expression_context_block)
1211 expression_context_pc = BLOCK_START (expression_context_block);
1212 }
1213
1214 if (language_mode == language_mode_auto && block != NULL)
1215 {
1216 /* Find the language associated to the given context block.
1217 Default to the current language if it can not be determined.
1218
1219 Note that using the language corresponding to the current frame
1220 can sometimes give unexpected results. For instance, this
1221 routine is often called several times during the inferior
1222 startup phase to re-parse breakpoint expressions after
1223 a new shared library has been loaded. The language associated
1224 to the current frame at this moment is not relevant for
1225 the breakpoint. Using it would therefore be silly, so it seems
1226 better to rely on the current language rather than relying on
1227 the current frame language to parse the expression. That's why
1228 we do the following language detection only if the context block
1229 has been specifically provided. */
1230 struct symbol *func = block_linkage_function (block);
1231
1232 if (func != NULL)
1233 lang = language_def (SYMBOL_LANGUAGE (func));
1234 if (lang == NULL || lang->la_language == language_unknown)
1235 lang = current_language;
1236 }
1237 else
1238 lang = current_language;
1239
1240 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1241 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1242 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1243 to the value matching SELECTED_FRAME as set by get_current_arch. */
1244 initialize_expout (10, lang, get_current_arch ());
1245 inner_chain = make_cleanup_restore_current_language ();
1246 set_language (lang->la_language);
1247
1248 TRY_CATCH (except, RETURN_MASK_ALL)
1249 {
1250 if (lang->la_parser ())
1251 lang->la_error (NULL);
1252 }
1253 if (except.reason < 0)
1254 {
1255 if (! parse_completion)
1256 {
1257 xfree (expout);
1258 throw_exception (except);
1259 }
1260 }
1261
1262 reallocate_expout ();
1263
1264 /* Convert expression from postfix form as generated by yacc
1265 parser, to a prefix form. */
1266
1267 if (expressiondebug)
1268 dump_raw_expression (expout, gdb_stdlog,
1269 "before conversion to prefix form");
1270
1271 subexp = prefixify_expression (expout);
1272 if (out_subexp)
1273 *out_subexp = subexp;
1274
1275 lang->la_post_parser (&expout, void_context_p);
1276
1277 if (expressiondebug)
1278 dump_prefix_expression (expout, gdb_stdlog);
1279
1280 do_cleanups (inner_chain);
1281 discard_cleanups (old_chain);
1282
1283 *stringptr = lexptr;
1284 return expout;
1285 }
1286
1287 /* Parse STRING as an expression, and complain if this fails
1288 to use up all of the contents of STRING. */
1289
1290 struct expression *
1291 parse_expression (const char *string)
1292 {
1293 struct expression *exp;
1294
1295 exp = parse_exp_1 (&string, 0, 0, 0);
1296 if (*string)
1297 error (_("Junk after end of expression."));
1298 return exp;
1299 }
1300
1301 /* Parse STRING as an expression. If parsing ends in the middle of a
1302 field reference, return the type of the left-hand-side of the
1303 reference; furthermore, if the parsing ends in the field name,
1304 return the field name in *NAME. If the parsing ends in the middle
1305 of a field reference, but the reference is somehow invalid, throw
1306 an exception. In all other cases, return NULL. Returned non-NULL
1307 *NAME must be freed by the caller. */
1308
1309 struct type *
1310 parse_expression_for_completion (const char *string, char **name,
1311 enum type_code *code)
1312 {
1313 struct expression *exp = NULL;
1314 struct value *val;
1315 int subexp;
1316 volatile struct gdb_exception except;
1317
1318 TRY_CATCH (except, RETURN_MASK_ERROR)
1319 {
1320 parse_completion = 1;
1321 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1322 }
1323 parse_completion = 0;
1324 if (except.reason < 0 || ! exp)
1325 return NULL;
1326
1327 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1328 {
1329 *code = expout_tag_completion_type;
1330 *name = expout_completion_name;
1331 expout_completion_name = NULL;
1332 return NULL;
1333 }
1334
1335 if (expout_last_struct == -1)
1336 {
1337 xfree (exp);
1338 return NULL;
1339 }
1340
1341 *name = extract_field_op (exp, &subexp);
1342 if (!*name)
1343 {
1344 xfree (exp);
1345 return NULL;
1346 }
1347
1348 /* This might throw an exception. If so, we want to let it
1349 propagate. */
1350 val = evaluate_subexpression_type (exp, subexp);
1351 /* (*NAME) is a part of the EXP memory block freed below. */
1352 *name = xstrdup (*name);
1353 xfree (exp);
1354
1355 return value_type (val);
1356 }
1357
1358 /* A post-parser that does nothing. */
1359
1360 void
1361 null_post_parser (struct expression **exp, int void_context_p)
1362 {
1363 }
1364
1365 /* Parse floating point value P of length LEN.
1366 Return 0 (false) if invalid, 1 (true) if valid.
1367 The successfully parsed number is stored in D.
1368 *SUFFIX points to the suffix of the number in P.
1369
1370 NOTE: This accepts the floating point syntax that sscanf accepts. */
1371
1372 int
1373 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1374 {
1375 char *copy;
1376 int n, num;
1377
1378 copy = xmalloc (len + 1);
1379 memcpy (copy, p, len);
1380 copy[len] = 0;
1381
1382 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1383 xfree (copy);
1384
1385 /* The sscanf man page suggests not making any assumptions on the effect
1386 of %n on the result, so we don't.
1387 That is why we simply test num == 0. */
1388 if (num == 0)
1389 return 0;
1390
1391 *suffix = p + n;
1392 return 1;
1393 }
1394
1395 /* Parse floating point value P of length LEN, using the C syntax for floats.
1396 Return 0 (false) if invalid, 1 (true) if valid.
1397 The successfully parsed number is stored in *D.
1398 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1399
1400 int
1401 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1402 DOUBLEST *d, struct type **t)
1403 {
1404 const char *suffix;
1405 int suffix_len;
1406 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1407
1408 if (! parse_float (p, len, d, &suffix))
1409 return 0;
1410
1411 suffix_len = p + len - suffix;
1412
1413 if (suffix_len == 0)
1414 *t = builtin_types->builtin_double;
1415 else if (suffix_len == 1)
1416 {
1417 /* Handle suffixes: 'f' for float, 'l' for long double. */
1418 if (tolower (*suffix) == 'f')
1419 *t = builtin_types->builtin_float;
1420 else if (tolower (*suffix) == 'l')
1421 *t = builtin_types->builtin_long_double;
1422 else
1423 return 0;
1424 }
1425 else
1426 return 0;
1427
1428 return 1;
1429 }
1430 \f
1431 /* Stuff for maintaining a stack of types. Currently just used by C, but
1432 probably useful for any language which declares its types "backwards". */
1433
1434 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1435
1436 static void
1437 type_stack_reserve (struct type_stack *stack, int howmuch)
1438 {
1439 if (stack->depth + howmuch >= stack->size)
1440 {
1441 stack->size *= 2;
1442 if (stack->size < howmuch)
1443 stack->size = howmuch;
1444 stack->elements = xrealloc (stack->elements,
1445 stack->size * sizeof (union type_stack_elt));
1446 }
1447 }
1448
1449 /* Ensure that there is a single open slot in the global type stack. */
1450
1451 static void
1452 check_type_stack_depth (void)
1453 {
1454 type_stack_reserve (&type_stack, 1);
1455 }
1456
1457 /* A helper function for insert_type and insert_type_address_space.
1458 This does work of expanding the type stack and inserting the new
1459 element, ELEMENT, into the stack at location SLOT. */
1460
1461 static void
1462 insert_into_type_stack (int slot, union type_stack_elt element)
1463 {
1464 check_type_stack_depth ();
1465
1466 if (slot < type_stack.depth)
1467 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1468 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1469 type_stack.elements[slot] = element;
1470 ++type_stack.depth;
1471 }
1472
1473 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1474 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1475 a qualifier, it is inserted at slot 1 (just above a previous
1476 tp_pointer) if there is anything on the stack, or simply pushed if
1477 the stack is empty. Other values for TP are invalid. */
1478
1479 void
1480 insert_type (enum type_pieces tp)
1481 {
1482 union type_stack_elt element;
1483 int slot;
1484
1485 gdb_assert (tp == tp_pointer || tp == tp_reference
1486 || tp == tp_const || tp == tp_volatile);
1487
1488 /* If there is anything on the stack (we know it will be a
1489 tp_pointer), insert the qualifier above it. Otherwise, simply
1490 push this on the top of the stack. */
1491 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1492 slot = 1;
1493 else
1494 slot = 0;
1495
1496 element.piece = tp;
1497 insert_into_type_stack (slot, element);
1498 }
1499
1500 void
1501 push_type (enum type_pieces tp)
1502 {
1503 check_type_stack_depth ();
1504 type_stack.elements[type_stack.depth++].piece = tp;
1505 }
1506
1507 void
1508 push_type_int (int n)
1509 {
1510 check_type_stack_depth ();
1511 type_stack.elements[type_stack.depth++].int_val = n;
1512 }
1513
1514 /* Insert a tp_space_identifier and the corresponding address space
1515 value into the stack. STRING is the name of an address space, as
1516 recognized by address_space_name_to_int. If the stack is empty,
1517 the new elements are simply pushed. If the stack is not empty,
1518 this function assumes that the first item on the stack is a
1519 tp_pointer, and the new values are inserted above the first
1520 item. */
1521
1522 void
1523 insert_type_address_space (char *string)
1524 {
1525 union type_stack_elt element;
1526 int slot;
1527
1528 /* If there is anything on the stack (we know it will be a
1529 tp_pointer), insert the address space qualifier above it.
1530 Otherwise, simply push this on the top of the stack. */
1531 if (type_stack.depth)
1532 slot = 1;
1533 else
1534 slot = 0;
1535
1536 element.piece = tp_space_identifier;
1537 insert_into_type_stack (slot, element);
1538 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1539 insert_into_type_stack (slot, element);
1540 }
1541
1542 enum type_pieces
1543 pop_type (void)
1544 {
1545 if (type_stack.depth)
1546 return type_stack.elements[--type_stack.depth].piece;
1547 return tp_end;
1548 }
1549
1550 int
1551 pop_type_int (void)
1552 {
1553 if (type_stack.depth)
1554 return type_stack.elements[--type_stack.depth].int_val;
1555 /* "Can't happen". */
1556 return 0;
1557 }
1558
1559 /* Pop a type list element from the global type stack. */
1560
1561 static VEC (type_ptr) *
1562 pop_typelist (void)
1563 {
1564 gdb_assert (type_stack.depth);
1565 return type_stack.elements[--type_stack.depth].typelist_val;
1566 }
1567
1568 /* Pop a type_stack element from the global type stack. */
1569
1570 static struct type_stack *
1571 pop_type_stack (void)
1572 {
1573 gdb_assert (type_stack.depth);
1574 return type_stack.elements[--type_stack.depth].stack_val;
1575 }
1576
1577 /* Append the elements of the type stack FROM to the type stack TO.
1578 Always returns TO. */
1579
1580 struct type_stack *
1581 append_type_stack (struct type_stack *to, struct type_stack *from)
1582 {
1583 type_stack_reserve (to, from->depth);
1584
1585 memcpy (&to->elements[to->depth], &from->elements[0],
1586 from->depth * sizeof (union type_stack_elt));
1587 to->depth += from->depth;
1588
1589 return to;
1590 }
1591
1592 /* Push the type stack STACK as an element on the global type stack. */
1593
1594 void
1595 push_type_stack (struct type_stack *stack)
1596 {
1597 check_type_stack_depth ();
1598 type_stack.elements[type_stack.depth++].stack_val = stack;
1599 push_type (tp_type_stack);
1600 }
1601
1602 /* Copy the global type stack into a newly allocated type stack and
1603 return it. The global stack is cleared. The returned type stack
1604 must be freed with type_stack_cleanup. */
1605
1606 struct type_stack *
1607 get_type_stack (void)
1608 {
1609 struct type_stack *result = XNEW (struct type_stack);
1610
1611 *result = type_stack;
1612 type_stack.depth = 0;
1613 type_stack.size = 0;
1614 type_stack.elements = NULL;
1615
1616 return result;
1617 }
1618
1619 /* A cleanup function that destroys a single type stack. */
1620
1621 void
1622 type_stack_cleanup (void *arg)
1623 {
1624 struct type_stack *stack = arg;
1625
1626 xfree (stack->elements);
1627 xfree (stack);
1628 }
1629
1630 /* Push a function type with arguments onto the global type stack.
1631 LIST holds the argument types. If the final item in LIST is NULL,
1632 then the function will be varargs. */
1633
1634 void
1635 push_typelist (VEC (type_ptr) *list)
1636 {
1637 check_type_stack_depth ();
1638 type_stack.elements[type_stack.depth++].typelist_val = list;
1639 push_type (tp_function_with_arguments);
1640 }
1641
1642 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1643 as modified by all the stuff on the stack. */
1644 struct type *
1645 follow_types (struct type *follow_type)
1646 {
1647 int done = 0;
1648 int make_const = 0;
1649 int make_volatile = 0;
1650 int make_addr_space = 0;
1651 int array_size;
1652
1653 while (!done)
1654 switch (pop_type ())
1655 {
1656 case tp_end:
1657 done = 1;
1658 if (make_const)
1659 follow_type = make_cv_type (make_const,
1660 TYPE_VOLATILE (follow_type),
1661 follow_type, 0);
1662 if (make_volatile)
1663 follow_type = make_cv_type (TYPE_CONST (follow_type),
1664 make_volatile,
1665 follow_type, 0);
1666 if (make_addr_space)
1667 follow_type = make_type_with_address_space (follow_type,
1668 make_addr_space);
1669 make_const = make_volatile = 0;
1670 make_addr_space = 0;
1671 break;
1672 case tp_const:
1673 make_const = 1;
1674 break;
1675 case tp_volatile:
1676 make_volatile = 1;
1677 break;
1678 case tp_space_identifier:
1679 make_addr_space = pop_type_int ();
1680 break;
1681 case tp_pointer:
1682 follow_type = lookup_pointer_type (follow_type);
1683 if (make_const)
1684 follow_type = make_cv_type (make_const,
1685 TYPE_VOLATILE (follow_type),
1686 follow_type, 0);
1687 if (make_volatile)
1688 follow_type = make_cv_type (TYPE_CONST (follow_type),
1689 make_volatile,
1690 follow_type, 0);
1691 if (make_addr_space)
1692 follow_type = make_type_with_address_space (follow_type,
1693 make_addr_space);
1694 make_const = make_volatile = 0;
1695 make_addr_space = 0;
1696 break;
1697 case tp_reference:
1698 follow_type = lookup_reference_type (follow_type);
1699 if (make_const)
1700 follow_type = make_cv_type (make_const,
1701 TYPE_VOLATILE (follow_type),
1702 follow_type, 0);
1703 if (make_volatile)
1704 follow_type = make_cv_type (TYPE_CONST (follow_type),
1705 make_volatile,
1706 follow_type, 0);
1707 if (make_addr_space)
1708 follow_type = make_type_with_address_space (follow_type,
1709 make_addr_space);
1710 make_const = make_volatile = 0;
1711 make_addr_space = 0;
1712 break;
1713 case tp_array:
1714 array_size = pop_type_int ();
1715 /* FIXME-type-allocation: need a way to free this type when we are
1716 done with it. */
1717 follow_type =
1718 lookup_array_range_type (follow_type,
1719 0, array_size >= 0 ? array_size - 1 : 0);
1720 if (array_size < 0)
1721 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1722 break;
1723 case tp_function:
1724 /* FIXME-type-allocation: need a way to free this type when we are
1725 done with it. */
1726 follow_type = lookup_function_type (follow_type);
1727 break;
1728
1729 case tp_function_with_arguments:
1730 {
1731 VEC (type_ptr) *args = pop_typelist ();
1732
1733 follow_type
1734 = lookup_function_type_with_arguments (follow_type,
1735 VEC_length (type_ptr, args),
1736 VEC_address (type_ptr,
1737 args));
1738 VEC_free (type_ptr, args);
1739 }
1740 break;
1741
1742 case tp_type_stack:
1743 {
1744 struct type_stack *stack = pop_type_stack ();
1745 /* Sort of ugly, but not really much worse than the
1746 alternatives. */
1747 struct type_stack save = type_stack;
1748
1749 type_stack = *stack;
1750 follow_type = follow_types (follow_type);
1751 gdb_assert (type_stack.depth == 0);
1752
1753 type_stack = save;
1754 }
1755 break;
1756 default:
1757 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1758 }
1759 return follow_type;
1760 }
1761 \f
1762 /* This function avoids direct calls to fprintf
1763 in the parser generated debug code. */
1764 void
1765 parser_fprintf (FILE *x, const char *y, ...)
1766 {
1767 va_list args;
1768
1769 va_start (args, y);
1770 if (x == stderr)
1771 vfprintf_unfiltered (gdb_stderr, y, args);
1772 else
1773 {
1774 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1775 vfprintf_unfiltered (gdb_stderr, y, args);
1776 }
1777 va_end (args);
1778 }
1779
1780 /* Implementation of the exp_descriptor method operator_check. */
1781
1782 int
1783 operator_check_standard (struct expression *exp, int pos,
1784 int (*objfile_func) (struct objfile *objfile,
1785 void *data),
1786 void *data)
1787 {
1788 const union exp_element *const elts = exp->elts;
1789 struct type *type = NULL;
1790 struct objfile *objfile = NULL;
1791
1792 /* Extended operators should have been already handled by exp_descriptor
1793 iterate method of its specific language. */
1794 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1795
1796 /* Track the callers of write_exp_elt_type for this table. */
1797
1798 switch (elts[pos].opcode)
1799 {
1800 case BINOP_VAL:
1801 case OP_COMPLEX:
1802 case OP_DECFLOAT:
1803 case OP_DOUBLE:
1804 case OP_LONG:
1805 case OP_SCOPE:
1806 case OP_TYPE:
1807 case UNOP_CAST:
1808 case UNOP_MAX:
1809 case UNOP_MEMVAL:
1810 case UNOP_MIN:
1811 type = elts[pos + 1].type;
1812 break;
1813
1814 case TYPE_INSTANCE:
1815 {
1816 LONGEST arg, nargs = elts[pos + 1].longconst;
1817
1818 for (arg = 0; arg < nargs; arg++)
1819 {
1820 struct type *type = elts[pos + 2 + arg].type;
1821 struct objfile *objfile = TYPE_OBJFILE (type);
1822
1823 if (objfile && (*objfile_func) (objfile, data))
1824 return 1;
1825 }
1826 }
1827 break;
1828
1829 case UNOP_MEMVAL_TLS:
1830 objfile = elts[pos + 1].objfile;
1831 type = elts[pos + 2].type;
1832 break;
1833
1834 case OP_VAR_VALUE:
1835 {
1836 const struct block *const block = elts[pos + 1].block;
1837 const struct symbol *const symbol = elts[pos + 2].symbol;
1838
1839 /* Check objfile where the variable itself is placed.
1840 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1841 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1842 return 1;
1843
1844 /* Check objfile where is placed the code touching the variable. */
1845 objfile = lookup_objfile_from_block (block);
1846
1847 type = SYMBOL_TYPE (symbol);
1848 }
1849 break;
1850 }
1851
1852 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1853
1854 if (type && TYPE_OBJFILE (type)
1855 && (*objfile_func) (TYPE_OBJFILE (type), data))
1856 return 1;
1857 if (objfile && (*objfile_func) (objfile, data))
1858 return 1;
1859
1860 return 0;
1861 }
1862
1863 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1864 The functions are never called with NULL OBJFILE. Functions get passed an
1865 arbitrary caller supplied DATA pointer. If any of the functions returns
1866 non-zero value then (any other) non-zero value is immediately returned to
1867 the caller. Otherwise zero is returned after iterating through whole EXP.
1868 */
1869
1870 static int
1871 exp_iterate (struct expression *exp,
1872 int (*objfile_func) (struct objfile *objfile, void *data),
1873 void *data)
1874 {
1875 int endpos;
1876
1877 for (endpos = exp->nelts; endpos > 0; )
1878 {
1879 int pos, args, oplen = 0;
1880
1881 operator_length (exp, endpos, &oplen, &args);
1882 gdb_assert (oplen > 0);
1883
1884 pos = endpos - oplen;
1885 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1886 objfile_func, data))
1887 return 1;
1888
1889 endpos = pos;
1890 }
1891
1892 return 0;
1893 }
1894
1895 /* Helper for exp_uses_objfile. */
1896
1897 static int
1898 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1899 {
1900 struct objfile *objfile = objfile_voidp;
1901
1902 if (exp_objfile->separate_debug_objfile_backlink)
1903 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1904
1905 return exp_objfile == objfile;
1906 }
1907
1908 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1909 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1910 file. */
1911
1912 int
1913 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1914 {
1915 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1916
1917 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1918 }
1919
1920 void
1921 _initialize_parse (void)
1922 {
1923 type_stack.size = 0;
1924 type_stack.depth = 0;
1925 type_stack.elements = NULL;
1926
1927 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1928 &expressiondebug,
1929 _("Set expression debugging."),
1930 _("Show expression debugging."),
1931 _("When non-zero, the internal representation "
1932 "of expressions will be printed."),
1933 NULL,
1934 show_expressiondebug,
1935 &setdebuglist, &showdebuglist);
1936 add_setshow_boolean_cmd ("parser", class_maintenance,
1937 &parser_debug,
1938 _("Set parser debugging."),
1939 _("Show parser debugging."),
1940 _("When non-zero, expression parser "
1941 "tracing will be enabled."),
1942 NULL,
1943 show_parserdebug,
1944 &setdebuglist, &showdebuglist);
1945 }
This page took 0.091821 seconds and 5 git commands to generate.