* minsyms.h (struct bound_minimal_symbol): New.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126 static struct expression *parse_exp_in_context_1 (char **, CORE_ADDR,
127 const struct block *, int,
128 int, int *);
129
130 void _initialize_parse (void);
131
132 /* Data structure for saving values of arglist_len for function calls whose
133 arguments contain other function calls. */
134
135 struct funcall
136 {
137 struct funcall *next;
138 int arglist_len;
139 };
140
141 static struct funcall *funcall_chain;
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist (void)
148 {
149 struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist (void)
163 {
164 int val = arglist_len;
165 struct funcall *call = funcall_chain;
166
167 funcall_chain = call->next;
168 arglist_len = call->arglist_len;
169 xfree (call);
170 return val;
171 }
172
173 /* Free everything in the funcall chain.
174 Used when there is an error inside parsing. */
175
176 static void
177 free_funcalls (void *ignore)
178 {
179 struct funcall *call, *next;
180
181 for (call = funcall_chain; call; call = next)
182 {
183 next = call->next;
184 xfree (call);
185 }
186 }
187 \f
188 /* This page contains the functions for adding data to the struct expression
189 being constructed. */
190
191 /* See definition in parser-defs.h. */
192
193 void
194 initialize_expout (int initial_size, const struct language_defn *lang,
195 struct gdbarch *gdbarch)
196 {
197 expout_size = initial_size;
198 expout_ptr = 0;
199 expout = xmalloc (sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 expout->language_defn = lang;
202 expout->gdbarch = gdbarch;
203 }
204
205 /* See definition in parser-defs.h. */
206
207 void
208 reallocate_expout (void)
209 {
210 /* Record the actual number of expression elements, and then
211 reallocate the expression memory so that we free up any
212 excess elements. */
213
214 expout->nelts = expout_ptr;
215 expout = xrealloc ((char *) expout,
216 sizeof (struct expression)
217 + EXP_ELEM_TO_BYTES (expout_ptr));
218 }
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (const union exp_element *expelt)
227 {
228 if (expout_ptr >= expout_size)
229 {
230 expout_size *= 2;
231 expout = (struct expression *)
232 xrealloc ((char *) expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (expout_size));
234 }
235 expout->elts[expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (&tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (&tmp);
256 }
257
258 void
259 write_exp_elt_block (const struct block *b)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.block = b;
265 write_exp_elt (&tmp);
266 }
267
268 void
269 write_exp_elt_objfile (struct objfile *objfile)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
275 write_exp_elt (&tmp);
276 }
277
278 void
279 write_exp_elt_longcst (LONGEST expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.longconst = expelt;
285 write_exp_elt (&tmp);
286 }
287
288 void
289 write_exp_elt_dblcst (DOUBLEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.doubleconst = expelt;
295 write_exp_elt (&tmp);
296 }
297
298 void
299 write_exp_elt_decfloatcst (gdb_byte expelt[16])
300 {
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
307 write_exp_elt (&tmp);
308 }
309
310 void
311 write_exp_elt_type (struct type *expelt)
312 {
313 union exp_element tmp;
314
315 memset (&tmp, 0, sizeof (union exp_element));
316 tmp.type = expelt;
317 write_exp_elt (&tmp);
318 }
319
320 void
321 write_exp_elt_intern (struct internalvar *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.internalvar = expelt;
327 write_exp_elt (&tmp);
328 }
329
330 /* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
336 the length of the string. I.e. an expression element at each end of
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
343 this is strictly for the convenience of debugging gdb itself.
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
348 course. */
349
350
351 void
352 write_exp_string (struct stoken str)
353 {
354 int len = str.length;
355 int lenelt;
356 char *strdata;
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
361 null byte terminator). */
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 /* Ensure that we have enough available expression elements to store
366 everything. */
367
368 if ((expout_ptr + lenelt) >= expout_size)
369 {
370 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
371 expout = (struct expression *)
372 xrealloc ((char *) expout, (sizeof (struct expression)
373 + EXP_ELEM_TO_BYTES (expout_size)));
374 }
375
376 /* Write the leading length expression element (which advances the current
377 expression element index), then write the string constant followed by a
378 terminating null byte, and then write the trailing length expression
379 element. */
380
381 write_exp_elt_longcst ((LONGEST) len);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 *(strdata + len) = '\0';
385 expout_ptr += lenelt - 2;
386 write_exp_elt_longcst ((LONGEST) len);
387 }
388
389 /* Add a vector of string constants to the end of the expression.
390
391 This adds an OP_STRING operation, but encodes the contents
392 differently from write_exp_string. The language is expected to
393 handle evaluation of this expression itself.
394
395 After the usual OP_STRING header, TYPE is written into the
396 expression as a long constant. The interpretation of this field is
397 up to the language evaluator.
398
399 Next, each string in VEC is written. The length is written as a
400 long constant, followed by the contents of the string. */
401
402 void
403 write_exp_string_vector (int type, struct stoken_vector *vec)
404 {
405 int i, n_slots, len;
406
407 /* Compute the size. We compute the size in number of slots to
408 avoid issues with string padding. */
409 n_slots = 0;
410 for (i = 0; i < vec->len; ++i)
411 {
412 /* One slot for the length of this element, plus the number of
413 slots needed for this string. */
414 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
415 }
416
417 /* One more slot for the type of the string. */
418 ++n_slots;
419
420 /* Now compute a phony string length. */
421 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
422
423 n_slots += 4;
424 if ((expout_ptr + n_slots) >= expout_size)
425 {
426 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
427 expout = (struct expression *)
428 xrealloc ((char *) expout, (sizeof (struct expression)
429 + EXP_ELEM_TO_BYTES (expout_size)));
430 }
431
432 write_exp_elt_opcode (OP_STRING);
433 write_exp_elt_longcst (len);
434 write_exp_elt_longcst (type);
435
436 for (i = 0; i < vec->len; ++i)
437 {
438 write_exp_elt_longcst (vec->tokens[i].length);
439 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
440 vec->tokens[i].length);
441 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
442 }
443
444 write_exp_elt_longcst (len);
445 write_exp_elt_opcode (OP_STRING);
446 }
447
448 /* Add a bitstring constant to the end of the expression.
449
450 Bitstring constants are stored by first writing an expression element
451 that contains the length of the bitstring (in bits), then stuffing the
452 bitstring constant itself into however many expression elements are
453 needed to hold it, and then writing another expression element that
454 contains the length of the bitstring. I.e. an expression element at
455 each end of the bitstring records the bitstring length, so you can skip
456 over the expression elements containing the actual bitstring bytes from
457 either end of the bitstring. */
458
459 void
460 write_exp_bitstring (struct stoken str)
461 {
462 int bits = str.length; /* length in bits */
463 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
464 int lenelt;
465 char *strdata;
466
467 /* Compute the number of expression elements required to hold the bitstring,
468 along with one expression element at each end to record the actual
469 bitstring length in bits. */
470
471 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
472
473 /* Ensure that we have enough available expression elements to store
474 everything. */
475
476 if ((expout_ptr + lenelt) >= expout_size)
477 {
478 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
479 expout = (struct expression *)
480 xrealloc ((char *) expout, (sizeof (struct expression)
481 + EXP_ELEM_TO_BYTES (expout_size)));
482 }
483
484 /* Write the leading length expression element (which advances the current
485 expression element index), then write the bitstring constant, and then
486 write the trailing length expression element. */
487
488 write_exp_elt_longcst ((LONGEST) bits);
489 strdata = (char *) &expout->elts[expout_ptr];
490 memcpy (strdata, str.ptr, len);
491 expout_ptr += lenelt - 2;
492 write_exp_elt_longcst ((LONGEST) bits);
493 }
494
495 /* Add the appropriate elements for a minimal symbol to the end of
496 the expression. */
497
498 void
499 write_exp_msymbol (struct minimal_symbol *msymbol)
500 {
501 struct objfile *objfile = msymbol_objfile (msymbol);
502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
503
504 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
505 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
506 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
507 CORE_ADDR pc;
508
509 /* The minimal symbol might point to a function descriptor;
510 resolve it to the actual code address instead. */
511 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
512 if (pc != addr)
513 {
514 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
515
516 /* In this case, assume we have a code symbol instead of
517 a data symbol. */
518
519 if (ifunc_msym.minsym != NULL
520 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
521 && SYMBOL_VALUE_ADDRESS (ifunc_msym.minsym) == pc)
522 {
523 /* A function descriptor has been resolved but PC is still in the
524 STT_GNU_IFUNC resolver body (such as because inferior does not
525 run to be able to call it). */
526
527 type = mst_text_gnu_ifunc;
528 }
529 else
530 type = mst_text;
531 section = NULL;
532 addr = pc;
533 }
534
535 if (overlay_debugging)
536 addr = symbol_overlayed_address (addr, section);
537
538 write_exp_elt_opcode (OP_LONG);
539 /* Let's make the type big enough to hold a 64-bit address. */
540 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
541 write_exp_elt_longcst ((LONGEST) addr);
542 write_exp_elt_opcode (OP_LONG);
543
544 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
545 {
546 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
547 write_exp_elt_objfile (objfile);
548 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
549 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
550 return;
551 }
552
553 write_exp_elt_opcode (UNOP_MEMVAL);
554 switch (type)
555 {
556 case mst_text:
557 case mst_file_text:
558 case mst_solib_trampoline:
559 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
560 break;
561
562 case mst_text_gnu_ifunc:
563 write_exp_elt_type (objfile_type (objfile)
564 ->nodebug_text_gnu_ifunc_symbol);
565 break;
566
567 case mst_data:
568 case mst_file_data:
569 case mst_bss:
570 case mst_file_bss:
571 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
572 break;
573
574 case mst_slot_got_plt:
575 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
576 break;
577
578 default:
579 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
580 break;
581 }
582 write_exp_elt_opcode (UNOP_MEMVAL);
583 }
584
585 /* Mark the current index as the starting location of a structure
586 expression. This is used when completing on field names. */
587
588 void
589 mark_struct_expression (void)
590 {
591 gdb_assert (parse_completion
592 && expout_tag_completion_type == TYPE_CODE_UNDEF);
593 expout_last_struct = expout_ptr;
594 }
595
596 /* Indicate that the current parser invocation is completing a tag.
597 TAG is the type code of the tag, and PTR and LENGTH represent the
598 start of the tag name. */
599
600 void
601 mark_completion_tag (enum type_code tag, const char *ptr, int length)
602 {
603 gdb_assert (parse_completion
604 && expout_tag_completion_type == TYPE_CODE_UNDEF
605 && expout_completion_name == NULL
606 && expout_last_struct == -1);
607 gdb_assert (tag == TYPE_CODE_UNION
608 || tag == TYPE_CODE_STRUCT
609 || tag == TYPE_CODE_CLASS
610 || tag == TYPE_CODE_ENUM);
611 expout_tag_completion_type = tag;
612 expout_completion_name = xmalloc (length + 1);
613 memcpy (expout_completion_name, ptr, length);
614 expout_completion_name[length] = '\0';
615 }
616
617 \f
618 /* Recognize tokens that start with '$'. These include:
619
620 $regname A native register name or a "standard
621 register name".
622
623 $variable A convenience variable with a name chosen
624 by the user.
625
626 $digits Value history with index <digits>, starting
627 from the first value which has index 1.
628
629 $$digits Value history with index <digits> relative
630 to the last value. I.e. $$0 is the last
631 value, $$1 is the one previous to that, $$2
632 is the one previous to $$1, etc.
633
634 $ | $0 | $$0 The last value in the value history.
635
636 $$ An abbreviation for the second to the last
637 value in the value history, I.e. $$1 */
638
639 void
640 write_dollar_variable (struct stoken str)
641 {
642 struct symbol *sym = NULL;
643 struct minimal_symbol *msym = NULL;
644 struct internalvar *isym = NULL;
645
646 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
647 and $$digits (equivalent to $<-digits> if you could type that). */
648
649 int negate = 0;
650 int i = 1;
651 /* Double dollar means negate the number and add -1 as well.
652 Thus $$ alone means -1. */
653 if (str.length >= 2 && str.ptr[1] == '$')
654 {
655 negate = 1;
656 i = 2;
657 }
658 if (i == str.length)
659 {
660 /* Just dollars (one or two). */
661 i = -negate;
662 goto handle_last;
663 }
664 /* Is the rest of the token digits? */
665 for (; i < str.length; i++)
666 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
667 break;
668 if (i == str.length)
669 {
670 i = atoi (str.ptr + 1 + negate);
671 if (negate)
672 i = -i;
673 goto handle_last;
674 }
675
676 /* Handle tokens that refer to machine registers:
677 $ followed by a register name. */
678 i = user_reg_map_name_to_regnum (parse_gdbarch,
679 str.ptr + 1, str.length - 1);
680 if (i >= 0)
681 goto handle_register;
682
683 /* Any names starting with $ are probably debugger internal variables. */
684
685 isym = lookup_only_internalvar (copy_name (str) + 1);
686 if (isym)
687 {
688 write_exp_elt_opcode (OP_INTERNALVAR);
689 write_exp_elt_intern (isym);
690 write_exp_elt_opcode (OP_INTERNALVAR);
691 return;
692 }
693
694 /* On some systems, such as HP-UX and hppa-linux, certain system routines
695 have names beginning with $ or $$. Check for those, first. */
696
697 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
698 VAR_DOMAIN, NULL);
699 if (sym)
700 {
701 write_exp_elt_opcode (OP_VAR_VALUE);
702 write_exp_elt_block (block_found); /* set by lookup_symbol */
703 write_exp_elt_sym (sym);
704 write_exp_elt_opcode (OP_VAR_VALUE);
705 return;
706 }
707 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
708 if (msym)
709 {
710 write_exp_msymbol (msym);
711 return;
712 }
713
714 /* Any other names are assumed to be debugger internal variables. */
715
716 write_exp_elt_opcode (OP_INTERNALVAR);
717 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
718 write_exp_elt_opcode (OP_INTERNALVAR);
719 return;
720 handle_last:
721 write_exp_elt_opcode (OP_LAST);
722 write_exp_elt_longcst ((LONGEST) i);
723 write_exp_elt_opcode (OP_LAST);
724 return;
725 handle_register:
726 write_exp_elt_opcode (OP_REGISTER);
727 str.length--;
728 str.ptr++;
729 write_exp_string (str);
730 write_exp_elt_opcode (OP_REGISTER);
731 return;
732 }
733
734
735 char *
736 find_template_name_end (char *p)
737 {
738 int depth = 1;
739 int just_seen_right = 0;
740 int just_seen_colon = 0;
741 int just_seen_space = 0;
742
743 if (!p || (*p != '<'))
744 return 0;
745
746 while (*++p)
747 {
748 switch (*p)
749 {
750 case '\'':
751 case '\"':
752 case '{':
753 case '}':
754 /* In future, may want to allow these?? */
755 return 0;
756 case '<':
757 depth++; /* start nested template */
758 if (just_seen_colon || just_seen_right || just_seen_space)
759 return 0; /* but not after : or :: or > or space */
760 break;
761 case '>':
762 if (just_seen_colon || just_seen_right)
763 return 0; /* end a (nested?) template */
764 just_seen_right = 1; /* but not after : or :: */
765 if (--depth == 0) /* also disallow >>, insist on > > */
766 return ++p; /* if outermost ended, return */
767 break;
768 case ':':
769 if (just_seen_space || (just_seen_colon > 1))
770 return 0; /* nested class spec coming up */
771 just_seen_colon++; /* we allow :: but not :::: */
772 break;
773 case ' ':
774 break;
775 default:
776 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
777 (*p >= 'A' && *p <= 'Z') ||
778 (*p >= '0' && *p <= '9') ||
779 (*p == '_') || (*p == ',') || /* commas for template args */
780 (*p == '&') || (*p == '*') || /* pointer and ref types */
781 (*p == '(') || (*p == ')') || /* function types */
782 (*p == '[') || (*p == ']'))) /* array types */
783 return 0;
784 }
785 if (*p != ' ')
786 just_seen_space = 0;
787 if (*p != ':')
788 just_seen_colon = 0;
789 if (*p != '>')
790 just_seen_right = 0;
791 }
792 return 0;
793 }
794 \f
795
796 /* Return a null-terminated temporary copy of the name of a string token.
797
798 Tokens that refer to names do so with explicit pointer and length,
799 so they can share the storage that lexptr is parsing.
800 When it is necessary to pass a name to a function that expects
801 a null-terminated string, the substring is copied out
802 into a separate block of storage.
803
804 N.B. A single buffer is reused on each call. */
805
806 char *
807 copy_name (struct stoken token)
808 {
809 /* A temporary buffer for identifiers, so we can null-terminate them.
810 We allocate this with xrealloc. parse_exp_1 used to allocate with
811 alloca, using the size of the whole expression as a conservative
812 estimate of the space needed. However, macro expansion can
813 introduce names longer than the original expression; there's no
814 practical way to know beforehand how large that might be. */
815 static char *namecopy;
816 static size_t namecopy_size;
817
818 /* Make sure there's enough space for the token. */
819 if (namecopy_size < token.length + 1)
820 {
821 namecopy_size = token.length + 1;
822 namecopy = xrealloc (namecopy, token.length + 1);
823 }
824
825 memcpy (namecopy, token.ptr, token.length);
826 namecopy[token.length] = 0;
827
828 return namecopy;
829 }
830 \f
831
832 /* See comments on parser-defs.h. */
833
834 int
835 prefixify_expression (struct expression *expr)
836 {
837 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
838 struct expression *temp;
839 int inpos = expr->nelts, outpos = 0;
840
841 temp = (struct expression *) alloca (len);
842
843 /* Copy the original expression into temp. */
844 memcpy (temp, expr, len);
845
846 return prefixify_subexp (temp, expr, inpos, outpos);
847 }
848
849 /* Return the number of exp_elements in the postfix subexpression
850 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
851
852 int
853 length_of_subexp (struct expression *expr, int endpos)
854 {
855 int oplen, args;
856
857 operator_length (expr, endpos, &oplen, &args);
858
859 while (args > 0)
860 {
861 oplen += length_of_subexp (expr, endpos - oplen);
862 args--;
863 }
864
865 return oplen;
866 }
867
868 /* Sets *OPLENP to the length of the operator whose (last) index is
869 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
870 operator takes. */
871
872 void
873 operator_length (const struct expression *expr, int endpos, int *oplenp,
874 int *argsp)
875 {
876 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
877 oplenp, argsp);
878 }
879
880 /* Default value for operator_length in exp_descriptor vectors. */
881
882 void
883 operator_length_standard (const struct expression *expr, int endpos,
884 int *oplenp, int *argsp)
885 {
886 int oplen = 1;
887 int args = 0;
888 enum f90_range_type range_type;
889 int i;
890
891 if (endpos < 1)
892 error (_("?error in operator_length_standard"));
893
894 i = (int) expr->elts[endpos - 1].opcode;
895
896 switch (i)
897 {
898 /* C++ */
899 case OP_SCOPE:
900 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
901 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
902 break;
903
904 case OP_LONG:
905 case OP_DOUBLE:
906 case OP_DECFLOAT:
907 case OP_VAR_VALUE:
908 oplen = 4;
909 break;
910
911 case OP_TYPE:
912 case OP_BOOL:
913 case OP_LAST:
914 case OP_INTERNALVAR:
915 case OP_VAR_ENTRY_VALUE:
916 oplen = 3;
917 break;
918
919 case OP_COMPLEX:
920 oplen = 3;
921 args = 2;
922 break;
923
924 case OP_FUNCALL:
925 case OP_F77_UNDETERMINED_ARGLIST:
926 oplen = 3;
927 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
928 break;
929
930 case TYPE_INSTANCE:
931 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
932 args = 1;
933 break;
934
935 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
936 oplen = 4;
937 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
938 break;
939
940 case UNOP_MAX:
941 case UNOP_MIN:
942 oplen = 3;
943 break;
944
945 case UNOP_CAST_TYPE:
946 case UNOP_DYNAMIC_CAST:
947 case UNOP_REINTERPRET_CAST:
948 case UNOP_MEMVAL_TYPE:
949 oplen = 1;
950 args = 2;
951 break;
952
953 case BINOP_VAL:
954 case UNOP_CAST:
955 case UNOP_MEMVAL:
956 oplen = 3;
957 args = 1;
958 break;
959
960 case UNOP_MEMVAL_TLS:
961 oplen = 4;
962 args = 1;
963 break;
964
965 case UNOP_ABS:
966 case UNOP_CAP:
967 case UNOP_CHR:
968 case UNOP_FLOAT:
969 case UNOP_HIGH:
970 case UNOP_ODD:
971 case UNOP_ORD:
972 case UNOP_TRUNC:
973 case OP_TYPEOF:
974 case OP_DECLTYPE:
975 oplen = 1;
976 args = 1;
977 break;
978
979 case OP_ADL_FUNC:
980 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
981 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
982 oplen++;
983 oplen++;
984 break;
985
986 case STRUCTOP_STRUCT:
987 case STRUCTOP_PTR:
988 args = 1;
989 /* fall through */
990 case OP_REGISTER:
991 case OP_M2_STRING:
992 case OP_STRING:
993 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
994 NSString constant. */
995 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
996 case OP_NAME:
997 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
998 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
999 break;
1000
1001 case OP_ARRAY:
1002 oplen = 4;
1003 args = longest_to_int (expr->elts[endpos - 2].longconst);
1004 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1005 args += 1;
1006 break;
1007
1008 case TERNOP_COND:
1009 case TERNOP_SLICE:
1010 args = 3;
1011 break;
1012
1013 /* Modula-2 */
1014 case MULTI_SUBSCRIPT:
1015 oplen = 3;
1016 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1017 break;
1018
1019 case BINOP_ASSIGN_MODIFY:
1020 oplen = 3;
1021 args = 2;
1022 break;
1023
1024 /* C++ */
1025 case OP_THIS:
1026 oplen = 2;
1027 break;
1028
1029 case OP_F90_RANGE:
1030 oplen = 3;
1031
1032 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1033 switch (range_type)
1034 {
1035 case LOW_BOUND_DEFAULT:
1036 case HIGH_BOUND_DEFAULT:
1037 args = 1;
1038 break;
1039 case BOTH_BOUND_DEFAULT:
1040 args = 0;
1041 break;
1042 case NONE_BOUND_DEFAULT:
1043 args = 2;
1044 break;
1045 }
1046
1047 break;
1048
1049 default:
1050 args = 1 + (i < (int) BINOP_END);
1051 }
1052
1053 *oplenp = oplen;
1054 *argsp = args;
1055 }
1056
1057 /* Copy the subexpression ending just before index INEND in INEXPR
1058 into OUTEXPR, starting at index OUTBEG.
1059 In the process, convert it from suffix to prefix form.
1060 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1061 Otherwise, it returns the index of the subexpression which is the
1062 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1063
1064 static int
1065 prefixify_subexp (struct expression *inexpr,
1066 struct expression *outexpr, int inend, int outbeg)
1067 {
1068 int oplen;
1069 int args;
1070 int i;
1071 int *arglens;
1072 int result = -1;
1073
1074 operator_length (inexpr, inend, &oplen, &args);
1075
1076 /* Copy the final operator itself, from the end of the input
1077 to the beginning of the output. */
1078 inend -= oplen;
1079 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1080 EXP_ELEM_TO_BYTES (oplen));
1081 outbeg += oplen;
1082
1083 if (expout_last_struct == inend)
1084 result = outbeg - oplen;
1085
1086 /* Find the lengths of the arg subexpressions. */
1087 arglens = (int *) alloca (args * sizeof (int));
1088 for (i = args - 1; i >= 0; i--)
1089 {
1090 oplen = length_of_subexp (inexpr, inend);
1091 arglens[i] = oplen;
1092 inend -= oplen;
1093 }
1094
1095 /* Now copy each subexpression, preserving the order of
1096 the subexpressions, but prefixifying each one.
1097 In this loop, inend starts at the beginning of
1098 the expression this level is working on
1099 and marches forward over the arguments.
1100 outbeg does similarly in the output. */
1101 for (i = 0; i < args; i++)
1102 {
1103 int r;
1104
1105 oplen = arglens[i];
1106 inend += oplen;
1107 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1108 if (r != -1)
1109 {
1110 /* Return immediately. We probably have only parsed a
1111 partial expression, so we don't want to try to reverse
1112 the other operands. */
1113 return r;
1114 }
1115 outbeg += oplen;
1116 }
1117
1118 return result;
1119 }
1120 \f
1121 /* Read an expression from the string *STRINGPTR points to,
1122 parse it, and return a pointer to a struct expression that we malloc.
1123 Use block BLOCK as the lexical context for variable names;
1124 if BLOCK is zero, use the block of the selected stack frame.
1125 Meanwhile, advance *STRINGPTR to point after the expression,
1126 at the first nonwhite character that is not part of the expression
1127 (possibly a null character).
1128
1129 If COMMA is nonzero, stop if a comma is reached. */
1130
1131 struct expression *
1132 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1133 int comma)
1134 {
1135 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1136 }
1137
1138 static struct expression *
1139 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1140 const struct block *block,
1141 int comma, int void_context_p, int *out_subexp)
1142 {
1143 struct expression *expr;
1144 char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL;
1145 char *orig = const_hack;
1146 struct cleanup *back_to = make_cleanup (xfree, const_hack);
1147
1148 expr = parse_exp_in_context_1 (&const_hack, pc, block, comma,
1149 void_context_p, out_subexp);
1150 (*stringptr) += const_hack - orig;
1151 do_cleanups (back_to);
1152 return expr;
1153 }
1154
1155 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1156 no value is expected from the expression.
1157 OUT_SUBEXP is set when attempting to complete a field name; in this
1158 case it is set to the index of the subexpression on the
1159 left-hand-side of the struct op. If not doing such completion, it
1160 is left untouched. */
1161
1162 static struct expression *
1163 parse_exp_in_context_1 (char **stringptr, CORE_ADDR pc,
1164 const struct block *block,
1165 int comma, int void_context_p, int *out_subexp)
1166 {
1167 volatile struct gdb_exception except;
1168 struct cleanup *old_chain, *inner_chain;
1169 const struct language_defn *lang = NULL;
1170 int subexp;
1171
1172 lexptr = *stringptr;
1173 prev_lexptr = NULL;
1174
1175 paren_depth = 0;
1176 type_stack.depth = 0;
1177 expout_last_struct = -1;
1178 expout_tag_completion_type = TYPE_CODE_UNDEF;
1179 xfree (expout_completion_name);
1180 expout_completion_name = NULL;
1181
1182 comma_terminates = comma;
1183
1184 if (lexptr == 0 || *lexptr == 0)
1185 error_no_arg (_("expression to compute"));
1186
1187 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1188 funcall_chain = 0;
1189
1190 expression_context_block = block;
1191
1192 /* If no context specified, try using the current frame, if any. */
1193 if (!expression_context_block)
1194 expression_context_block = get_selected_block (&expression_context_pc);
1195 else if (pc == 0)
1196 expression_context_pc = BLOCK_START (expression_context_block);
1197 else
1198 expression_context_pc = pc;
1199
1200 /* Fall back to using the current source static context, if any. */
1201
1202 if (!expression_context_block)
1203 {
1204 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1205 if (cursal.symtab)
1206 expression_context_block
1207 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1208 if (expression_context_block)
1209 expression_context_pc = BLOCK_START (expression_context_block);
1210 }
1211
1212 if (language_mode == language_mode_auto && block != NULL)
1213 {
1214 /* Find the language associated to the given context block.
1215 Default to the current language if it can not be determined.
1216
1217 Note that using the language corresponding to the current frame
1218 can sometimes give unexpected results. For instance, this
1219 routine is often called several times during the inferior
1220 startup phase to re-parse breakpoint expressions after
1221 a new shared library has been loaded. The language associated
1222 to the current frame at this moment is not relevant for
1223 the breakpoint. Using it would therefore be silly, so it seems
1224 better to rely on the current language rather than relying on
1225 the current frame language to parse the expression. That's why
1226 we do the following language detection only if the context block
1227 has been specifically provided. */
1228 struct symbol *func = block_linkage_function (block);
1229
1230 if (func != NULL)
1231 lang = language_def (SYMBOL_LANGUAGE (func));
1232 if (lang == NULL || lang->la_language == language_unknown)
1233 lang = current_language;
1234 }
1235 else
1236 lang = current_language;
1237
1238 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1239 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1240 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1241 to the value matching SELECTED_FRAME as set by get_current_arch. */
1242 initialize_expout (10, lang, get_current_arch ());
1243 inner_chain = make_cleanup_restore_current_language ();
1244 set_language (lang->la_language);
1245
1246 TRY_CATCH (except, RETURN_MASK_ALL)
1247 {
1248 if (lang->la_parser ())
1249 lang->la_error (NULL);
1250 }
1251 if (except.reason < 0)
1252 {
1253 if (! parse_completion)
1254 {
1255 xfree (expout);
1256 throw_exception (except);
1257 }
1258 }
1259
1260 reallocate_expout ();
1261
1262 /* Convert expression from postfix form as generated by yacc
1263 parser, to a prefix form. */
1264
1265 if (expressiondebug)
1266 dump_raw_expression (expout, gdb_stdlog,
1267 "before conversion to prefix form");
1268
1269 subexp = prefixify_expression (expout);
1270 if (out_subexp)
1271 *out_subexp = subexp;
1272
1273 lang->la_post_parser (&expout, void_context_p);
1274
1275 if (expressiondebug)
1276 dump_prefix_expression (expout, gdb_stdlog);
1277
1278 do_cleanups (inner_chain);
1279 discard_cleanups (old_chain);
1280
1281 *stringptr = lexptr;
1282 return expout;
1283 }
1284
1285 /* Parse STRING as an expression, and complain if this fails
1286 to use up all of the contents of STRING. */
1287
1288 struct expression *
1289 parse_expression (const char *string)
1290 {
1291 struct expression *exp;
1292
1293 exp = parse_exp_1 (&string, 0, 0, 0);
1294 if (*string)
1295 error (_("Junk after end of expression."));
1296 return exp;
1297 }
1298
1299 /* Parse STRING as an expression. If parsing ends in the middle of a
1300 field reference, return the type of the left-hand-side of the
1301 reference; furthermore, if the parsing ends in the field name,
1302 return the field name in *NAME. If the parsing ends in the middle
1303 of a field reference, but the reference is somehow invalid, throw
1304 an exception. In all other cases, return NULL. Returned non-NULL
1305 *NAME must be freed by the caller. */
1306
1307 struct type *
1308 parse_expression_for_completion (const char *string, char **name,
1309 enum type_code *code)
1310 {
1311 struct expression *exp = NULL;
1312 struct value *val;
1313 int subexp;
1314 volatile struct gdb_exception except;
1315
1316 TRY_CATCH (except, RETURN_MASK_ERROR)
1317 {
1318 parse_completion = 1;
1319 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1320 }
1321 parse_completion = 0;
1322 if (except.reason < 0 || ! exp)
1323 return NULL;
1324
1325 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1326 {
1327 *code = expout_tag_completion_type;
1328 *name = expout_completion_name;
1329 expout_completion_name = NULL;
1330 return NULL;
1331 }
1332
1333 if (expout_last_struct == -1)
1334 {
1335 xfree (exp);
1336 return NULL;
1337 }
1338
1339 *name = extract_field_op (exp, &subexp);
1340 if (!*name)
1341 {
1342 xfree (exp);
1343 return NULL;
1344 }
1345
1346 /* This might throw an exception. If so, we want to let it
1347 propagate. */
1348 val = evaluate_subexpression_type (exp, subexp);
1349 /* (*NAME) is a part of the EXP memory block freed below. */
1350 *name = xstrdup (*name);
1351 xfree (exp);
1352
1353 return value_type (val);
1354 }
1355
1356 /* A post-parser that does nothing. */
1357
1358 void
1359 null_post_parser (struct expression **exp, int void_context_p)
1360 {
1361 }
1362
1363 /* Parse floating point value P of length LEN.
1364 Return 0 (false) if invalid, 1 (true) if valid.
1365 The successfully parsed number is stored in D.
1366 *SUFFIX points to the suffix of the number in P.
1367
1368 NOTE: This accepts the floating point syntax that sscanf accepts. */
1369
1370 int
1371 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1372 {
1373 char *copy;
1374 int n, num;
1375
1376 copy = xmalloc (len + 1);
1377 memcpy (copy, p, len);
1378 copy[len] = 0;
1379
1380 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1381 xfree (copy);
1382
1383 /* The sscanf man page suggests not making any assumptions on the effect
1384 of %n on the result, so we don't.
1385 That is why we simply test num == 0. */
1386 if (num == 0)
1387 return 0;
1388
1389 *suffix = p + n;
1390 return 1;
1391 }
1392
1393 /* Parse floating point value P of length LEN, using the C syntax for floats.
1394 Return 0 (false) if invalid, 1 (true) if valid.
1395 The successfully parsed number is stored in *D.
1396 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1397
1398 int
1399 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1400 DOUBLEST *d, struct type **t)
1401 {
1402 const char *suffix;
1403 int suffix_len;
1404 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1405
1406 if (! parse_float (p, len, d, &suffix))
1407 return 0;
1408
1409 suffix_len = p + len - suffix;
1410
1411 if (suffix_len == 0)
1412 *t = builtin_types->builtin_double;
1413 else if (suffix_len == 1)
1414 {
1415 /* Handle suffixes: 'f' for float, 'l' for long double. */
1416 if (tolower (*suffix) == 'f')
1417 *t = builtin_types->builtin_float;
1418 else if (tolower (*suffix) == 'l')
1419 *t = builtin_types->builtin_long_double;
1420 else
1421 return 0;
1422 }
1423 else
1424 return 0;
1425
1426 return 1;
1427 }
1428 \f
1429 /* Stuff for maintaining a stack of types. Currently just used by C, but
1430 probably useful for any language which declares its types "backwards". */
1431
1432 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1433
1434 static void
1435 type_stack_reserve (struct type_stack *stack, int howmuch)
1436 {
1437 if (stack->depth + howmuch >= stack->size)
1438 {
1439 stack->size *= 2;
1440 if (stack->size < howmuch)
1441 stack->size = howmuch;
1442 stack->elements = xrealloc (stack->elements,
1443 stack->size * sizeof (union type_stack_elt));
1444 }
1445 }
1446
1447 /* Ensure that there is a single open slot in the global type stack. */
1448
1449 static void
1450 check_type_stack_depth (void)
1451 {
1452 type_stack_reserve (&type_stack, 1);
1453 }
1454
1455 /* A helper function for insert_type and insert_type_address_space.
1456 This does work of expanding the type stack and inserting the new
1457 element, ELEMENT, into the stack at location SLOT. */
1458
1459 static void
1460 insert_into_type_stack (int slot, union type_stack_elt element)
1461 {
1462 check_type_stack_depth ();
1463
1464 if (slot < type_stack.depth)
1465 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1466 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1467 type_stack.elements[slot] = element;
1468 ++type_stack.depth;
1469 }
1470
1471 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1472 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1473 a qualifier, it is inserted at slot 1 (just above a previous
1474 tp_pointer) if there is anything on the stack, or simply pushed if
1475 the stack is empty. Other values for TP are invalid. */
1476
1477 void
1478 insert_type (enum type_pieces tp)
1479 {
1480 union type_stack_elt element;
1481 int slot;
1482
1483 gdb_assert (tp == tp_pointer || tp == tp_reference
1484 || tp == tp_const || tp == tp_volatile);
1485
1486 /* If there is anything on the stack (we know it will be a
1487 tp_pointer), insert the qualifier above it. Otherwise, simply
1488 push this on the top of the stack. */
1489 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1490 slot = 1;
1491 else
1492 slot = 0;
1493
1494 element.piece = tp;
1495 insert_into_type_stack (slot, element);
1496 }
1497
1498 void
1499 push_type (enum type_pieces tp)
1500 {
1501 check_type_stack_depth ();
1502 type_stack.elements[type_stack.depth++].piece = tp;
1503 }
1504
1505 void
1506 push_type_int (int n)
1507 {
1508 check_type_stack_depth ();
1509 type_stack.elements[type_stack.depth++].int_val = n;
1510 }
1511
1512 /* Insert a tp_space_identifier and the corresponding address space
1513 value into the stack. STRING is the name of an address space, as
1514 recognized by address_space_name_to_int. If the stack is empty,
1515 the new elements are simply pushed. If the stack is not empty,
1516 this function assumes that the first item on the stack is a
1517 tp_pointer, and the new values are inserted above the first
1518 item. */
1519
1520 void
1521 insert_type_address_space (char *string)
1522 {
1523 union type_stack_elt element;
1524 int slot;
1525
1526 /* If there is anything on the stack (we know it will be a
1527 tp_pointer), insert the address space qualifier above it.
1528 Otherwise, simply push this on the top of the stack. */
1529 if (type_stack.depth)
1530 slot = 1;
1531 else
1532 slot = 0;
1533
1534 element.piece = tp_space_identifier;
1535 insert_into_type_stack (slot, element);
1536 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1537 insert_into_type_stack (slot, element);
1538 }
1539
1540 enum type_pieces
1541 pop_type (void)
1542 {
1543 if (type_stack.depth)
1544 return type_stack.elements[--type_stack.depth].piece;
1545 return tp_end;
1546 }
1547
1548 int
1549 pop_type_int (void)
1550 {
1551 if (type_stack.depth)
1552 return type_stack.elements[--type_stack.depth].int_val;
1553 /* "Can't happen". */
1554 return 0;
1555 }
1556
1557 /* Pop a type list element from the global type stack. */
1558
1559 static VEC (type_ptr) *
1560 pop_typelist (void)
1561 {
1562 gdb_assert (type_stack.depth);
1563 return type_stack.elements[--type_stack.depth].typelist_val;
1564 }
1565
1566 /* Pop a type_stack element from the global type stack. */
1567
1568 static struct type_stack *
1569 pop_type_stack (void)
1570 {
1571 gdb_assert (type_stack.depth);
1572 return type_stack.elements[--type_stack.depth].stack_val;
1573 }
1574
1575 /* Append the elements of the type stack FROM to the type stack TO.
1576 Always returns TO. */
1577
1578 struct type_stack *
1579 append_type_stack (struct type_stack *to, struct type_stack *from)
1580 {
1581 type_stack_reserve (to, from->depth);
1582
1583 memcpy (&to->elements[to->depth], &from->elements[0],
1584 from->depth * sizeof (union type_stack_elt));
1585 to->depth += from->depth;
1586
1587 return to;
1588 }
1589
1590 /* Push the type stack STACK as an element on the global type stack. */
1591
1592 void
1593 push_type_stack (struct type_stack *stack)
1594 {
1595 check_type_stack_depth ();
1596 type_stack.elements[type_stack.depth++].stack_val = stack;
1597 push_type (tp_type_stack);
1598 }
1599
1600 /* Copy the global type stack into a newly allocated type stack and
1601 return it. The global stack is cleared. The returned type stack
1602 must be freed with type_stack_cleanup. */
1603
1604 struct type_stack *
1605 get_type_stack (void)
1606 {
1607 struct type_stack *result = XNEW (struct type_stack);
1608
1609 *result = type_stack;
1610 type_stack.depth = 0;
1611 type_stack.size = 0;
1612 type_stack.elements = NULL;
1613
1614 return result;
1615 }
1616
1617 /* A cleanup function that destroys a single type stack. */
1618
1619 void
1620 type_stack_cleanup (void *arg)
1621 {
1622 struct type_stack *stack = arg;
1623
1624 xfree (stack->elements);
1625 xfree (stack);
1626 }
1627
1628 /* Push a function type with arguments onto the global type stack.
1629 LIST holds the argument types. If the final item in LIST is NULL,
1630 then the function will be varargs. */
1631
1632 void
1633 push_typelist (VEC (type_ptr) *list)
1634 {
1635 check_type_stack_depth ();
1636 type_stack.elements[type_stack.depth++].typelist_val = list;
1637 push_type (tp_function_with_arguments);
1638 }
1639
1640 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1641 as modified by all the stuff on the stack. */
1642 struct type *
1643 follow_types (struct type *follow_type)
1644 {
1645 int done = 0;
1646 int make_const = 0;
1647 int make_volatile = 0;
1648 int make_addr_space = 0;
1649 int array_size;
1650
1651 while (!done)
1652 switch (pop_type ())
1653 {
1654 case tp_end:
1655 done = 1;
1656 if (make_const)
1657 follow_type = make_cv_type (make_const,
1658 TYPE_VOLATILE (follow_type),
1659 follow_type, 0);
1660 if (make_volatile)
1661 follow_type = make_cv_type (TYPE_CONST (follow_type),
1662 make_volatile,
1663 follow_type, 0);
1664 if (make_addr_space)
1665 follow_type = make_type_with_address_space (follow_type,
1666 make_addr_space);
1667 make_const = make_volatile = 0;
1668 make_addr_space = 0;
1669 break;
1670 case tp_const:
1671 make_const = 1;
1672 break;
1673 case tp_volatile:
1674 make_volatile = 1;
1675 break;
1676 case tp_space_identifier:
1677 make_addr_space = pop_type_int ();
1678 break;
1679 case tp_pointer:
1680 follow_type = lookup_pointer_type (follow_type);
1681 if (make_const)
1682 follow_type = make_cv_type (make_const,
1683 TYPE_VOLATILE (follow_type),
1684 follow_type, 0);
1685 if (make_volatile)
1686 follow_type = make_cv_type (TYPE_CONST (follow_type),
1687 make_volatile,
1688 follow_type, 0);
1689 if (make_addr_space)
1690 follow_type = make_type_with_address_space (follow_type,
1691 make_addr_space);
1692 make_const = make_volatile = 0;
1693 make_addr_space = 0;
1694 break;
1695 case tp_reference:
1696 follow_type = lookup_reference_type (follow_type);
1697 if (make_const)
1698 follow_type = make_cv_type (make_const,
1699 TYPE_VOLATILE (follow_type),
1700 follow_type, 0);
1701 if (make_volatile)
1702 follow_type = make_cv_type (TYPE_CONST (follow_type),
1703 make_volatile,
1704 follow_type, 0);
1705 if (make_addr_space)
1706 follow_type = make_type_with_address_space (follow_type,
1707 make_addr_space);
1708 make_const = make_volatile = 0;
1709 make_addr_space = 0;
1710 break;
1711 case tp_array:
1712 array_size = pop_type_int ();
1713 /* FIXME-type-allocation: need a way to free this type when we are
1714 done with it. */
1715 follow_type =
1716 lookup_array_range_type (follow_type,
1717 0, array_size >= 0 ? array_size - 1 : 0);
1718 if (array_size < 0)
1719 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1720 break;
1721 case tp_function:
1722 /* FIXME-type-allocation: need a way to free this type when we are
1723 done with it. */
1724 follow_type = lookup_function_type (follow_type);
1725 break;
1726
1727 case tp_function_with_arguments:
1728 {
1729 VEC (type_ptr) *args = pop_typelist ();
1730
1731 follow_type
1732 = lookup_function_type_with_arguments (follow_type,
1733 VEC_length (type_ptr, args),
1734 VEC_address (type_ptr,
1735 args));
1736 VEC_free (type_ptr, args);
1737 }
1738 break;
1739
1740 case tp_type_stack:
1741 {
1742 struct type_stack *stack = pop_type_stack ();
1743 /* Sort of ugly, but not really much worse than the
1744 alternatives. */
1745 struct type_stack save = type_stack;
1746
1747 type_stack = *stack;
1748 follow_type = follow_types (follow_type);
1749 gdb_assert (type_stack.depth == 0);
1750
1751 type_stack = save;
1752 }
1753 break;
1754 default:
1755 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1756 }
1757 return follow_type;
1758 }
1759 \f
1760 /* This function avoids direct calls to fprintf
1761 in the parser generated debug code. */
1762 void
1763 parser_fprintf (FILE *x, const char *y, ...)
1764 {
1765 va_list args;
1766
1767 va_start (args, y);
1768 if (x == stderr)
1769 vfprintf_unfiltered (gdb_stderr, y, args);
1770 else
1771 {
1772 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1773 vfprintf_unfiltered (gdb_stderr, y, args);
1774 }
1775 va_end (args);
1776 }
1777
1778 /* Implementation of the exp_descriptor method operator_check. */
1779
1780 int
1781 operator_check_standard (struct expression *exp, int pos,
1782 int (*objfile_func) (struct objfile *objfile,
1783 void *data),
1784 void *data)
1785 {
1786 const union exp_element *const elts = exp->elts;
1787 struct type *type = NULL;
1788 struct objfile *objfile = NULL;
1789
1790 /* Extended operators should have been already handled by exp_descriptor
1791 iterate method of its specific language. */
1792 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1793
1794 /* Track the callers of write_exp_elt_type for this table. */
1795
1796 switch (elts[pos].opcode)
1797 {
1798 case BINOP_VAL:
1799 case OP_COMPLEX:
1800 case OP_DECFLOAT:
1801 case OP_DOUBLE:
1802 case OP_LONG:
1803 case OP_SCOPE:
1804 case OP_TYPE:
1805 case UNOP_CAST:
1806 case UNOP_MAX:
1807 case UNOP_MEMVAL:
1808 case UNOP_MIN:
1809 type = elts[pos + 1].type;
1810 break;
1811
1812 case TYPE_INSTANCE:
1813 {
1814 LONGEST arg, nargs = elts[pos + 1].longconst;
1815
1816 for (arg = 0; arg < nargs; arg++)
1817 {
1818 struct type *type = elts[pos + 2 + arg].type;
1819 struct objfile *objfile = TYPE_OBJFILE (type);
1820
1821 if (objfile && (*objfile_func) (objfile, data))
1822 return 1;
1823 }
1824 }
1825 break;
1826
1827 case UNOP_MEMVAL_TLS:
1828 objfile = elts[pos + 1].objfile;
1829 type = elts[pos + 2].type;
1830 break;
1831
1832 case OP_VAR_VALUE:
1833 {
1834 const struct block *const block = elts[pos + 1].block;
1835 const struct symbol *const symbol = elts[pos + 2].symbol;
1836
1837 /* Check objfile where the variable itself is placed.
1838 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1839 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1840 return 1;
1841
1842 /* Check objfile where is placed the code touching the variable. */
1843 objfile = lookup_objfile_from_block (block);
1844
1845 type = SYMBOL_TYPE (symbol);
1846 }
1847 break;
1848 }
1849
1850 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1851
1852 if (type && TYPE_OBJFILE (type)
1853 && (*objfile_func) (TYPE_OBJFILE (type), data))
1854 return 1;
1855 if (objfile && (*objfile_func) (objfile, data))
1856 return 1;
1857
1858 return 0;
1859 }
1860
1861 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1862 The functions are never called with NULL OBJFILE. Functions get passed an
1863 arbitrary caller supplied DATA pointer. If any of the functions returns
1864 non-zero value then (any other) non-zero value is immediately returned to
1865 the caller. Otherwise zero is returned after iterating through whole EXP.
1866 */
1867
1868 static int
1869 exp_iterate (struct expression *exp,
1870 int (*objfile_func) (struct objfile *objfile, void *data),
1871 void *data)
1872 {
1873 int endpos;
1874
1875 for (endpos = exp->nelts; endpos > 0; )
1876 {
1877 int pos, args, oplen = 0;
1878
1879 operator_length (exp, endpos, &oplen, &args);
1880 gdb_assert (oplen > 0);
1881
1882 pos = endpos - oplen;
1883 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1884 objfile_func, data))
1885 return 1;
1886
1887 endpos = pos;
1888 }
1889
1890 return 0;
1891 }
1892
1893 /* Helper for exp_uses_objfile. */
1894
1895 static int
1896 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1897 {
1898 struct objfile *objfile = objfile_voidp;
1899
1900 if (exp_objfile->separate_debug_objfile_backlink)
1901 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1902
1903 return exp_objfile == objfile;
1904 }
1905
1906 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1907 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1908 file. */
1909
1910 int
1911 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1912 {
1913 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1914
1915 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1916 }
1917
1918 void
1919 _initialize_parse (void)
1920 {
1921 type_stack.size = 0;
1922 type_stack.depth = 0;
1923 type_stack.elements = NULL;
1924
1925 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1926 &expressiondebug,
1927 _("Set expression debugging."),
1928 _("Show expression debugging."),
1929 _("When non-zero, the internal representation "
1930 "of expressions will be printed."),
1931 NULL,
1932 show_expressiondebug,
1933 &setdebuglist, &showdebuglist);
1934 add_setshow_boolean_cmd ("parser", class_maintenance,
1935 &parser_debug,
1936 _("Set parser debugging."),
1937 _("Show parser debugging."),
1938 _("When non-zero, expression parser "
1939 "tracing will be enabled."),
1940 NULL,
1941 show_parserdebug,
1942 &setdebuglist, &showdebuglist);
1943 }
This page took 0.068929 seconds and 5 git commands to generate.