7f209f4955f92b091e7e0b08a3bd922ff965aa72
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observable.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "regset.h"
28 #include "target.h"
29 #include "linux-nat.h"
30 #include <sys/types.h>
31 #include <signal.h>
32 #include <sys/user.h>
33 #include <sys/ioctl.h>
34 #include "gdb_wait.h"
35 #include <fcntl.h>
36 #include <sys/procfs.h>
37 #include "nat/gdb_ptrace.h"
38 #include "inf-ptrace.h"
39
40 /* Prototypes for supply_gregset etc. */
41 #include "gregset.h"
42 #include "ppc-tdep.h"
43 #include "ppc-linux-tdep.h"
44
45 /* Required when using the AUXV. */
46 #include "elf/common.h"
47 #include "auxv.h"
48
49 #include "arch/ppc-linux-common.h"
50 #include "arch/ppc-linux-tdesc.h"
51 #include "nat/ppc-linux.h"
52
53 /* Similarly for the hardware watchpoint support. These requests are used
54 when the PowerPC HWDEBUG ptrace interface is not available. */
55 #ifndef PTRACE_GET_DEBUGREG
56 #define PTRACE_GET_DEBUGREG 25
57 #endif
58 #ifndef PTRACE_SET_DEBUGREG
59 #define PTRACE_SET_DEBUGREG 26
60 #endif
61 #ifndef PTRACE_GETSIGINFO
62 #define PTRACE_GETSIGINFO 0x4202
63 #endif
64
65 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
66 available. It exposes the debug facilities of PowerPC processors, as well
67 as additional features of BookE processors, such as ranged breakpoints and
68 watchpoints and hardware-accelerated condition evaluation. */
69 #ifndef PPC_PTRACE_GETHWDBGINFO
70
71 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
72 ptrace interface is not present in ptrace.h, so we'll have to pretty much
73 include it all here so that the code at least compiles on older systems. */
74 #define PPC_PTRACE_GETHWDBGINFO 0x89
75 #define PPC_PTRACE_SETHWDEBUG 0x88
76 #define PPC_PTRACE_DELHWDEBUG 0x87
77
78 struct ppc_debug_info
79 {
80 uint32_t version; /* Only version 1 exists to date. */
81 uint32_t num_instruction_bps;
82 uint32_t num_data_bps;
83 uint32_t num_condition_regs;
84 uint32_t data_bp_alignment;
85 uint32_t sizeof_condition; /* size of the DVC register. */
86 uint64_t features;
87 };
88
89 /* Features will have bits indicating whether there is support for: */
90 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
91 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
92 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
93 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
94
95 struct ppc_hw_breakpoint
96 {
97 uint32_t version; /* currently, version must be 1 */
98 uint32_t trigger_type; /* only some combinations allowed */
99 uint32_t addr_mode; /* address match mode */
100 uint32_t condition_mode; /* break/watchpoint condition flags */
101 uint64_t addr; /* break/watchpoint address */
102 uint64_t addr2; /* range end or mask */
103 uint64_t condition_value; /* contents of the DVC register */
104 };
105
106 /* Trigger type. */
107 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
108 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
109 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
110 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
111
112 /* Address mode. */
113 #define PPC_BREAKPOINT_MODE_EXACT 0x0
114 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
115 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
116 #define PPC_BREAKPOINT_MODE_MASK 0x3
117
118 /* Condition mode. */
119 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
120 #define PPC_BREAKPOINT_CONDITION_AND 0x1
121 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
122 #define PPC_BREAKPOINT_CONDITION_OR 0x2
123 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
124 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
125 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
126 #define PPC_BREAKPOINT_CONDITION_BE(n) \
127 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
128 #endif /* PPC_PTRACE_GETHWDBGINFO */
129
130 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
131 watchpoint (up to 512 bytes). */
132 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
133 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
134 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
135
136 /* Similarly for the general-purpose (gp0 -- gp31)
137 and floating-point registers (fp0 -- fp31). */
138 #ifndef PTRACE_GETREGS
139 #define PTRACE_GETREGS 12
140 #endif
141 #ifndef PTRACE_SETREGS
142 #define PTRACE_SETREGS 13
143 #endif
144 #ifndef PTRACE_GETFPREGS
145 #define PTRACE_GETFPREGS 14
146 #endif
147 #ifndef PTRACE_SETFPREGS
148 #define PTRACE_SETFPREGS 15
149 #endif
150
151 /* This oddity is because the Linux kernel defines elf_vrregset_t as
152 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
153 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
154 the vrsave as an extra 4 bytes at the end. I opted for creating a
155 flat array of chars, so that it is easier to manipulate for gdb.
156
157 There are 32 vector registers 16 bytes longs, plus a VSCR register
158 which is only 4 bytes long, but is fetched as a 16 bytes
159 quantity. Up to here we have the elf_vrregset_t structure.
160 Appended to this there is space for the VRSAVE register: 4 bytes.
161 Even though this vrsave register is not included in the regset
162 typedef, it is handled by the ptrace requests.
163
164 The layout is like this (where x is the actual value of the vscr reg): */
165
166 /* *INDENT-OFF* */
167 /*
168 Big-Endian:
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
171 VR0 VR31 VSCR VRSAVE
172 Little-Endian:
173 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
174 <-------> <-------><-------><->
175 VR0 VR31 VSCR VRSAVE
176 */
177 /* *INDENT-ON* */
178
179 typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
180
181 /* This is the layout of the POWER7 VSX registers and the way they overlap
182 with the existing FPR and VMX registers.
183
184 VSR doubleword 0 VSR doubleword 1
185 ----------------------------------------------------------------
186 VSR[0] | FPR[0] | |
187 ----------------------------------------------------------------
188 VSR[1] | FPR[1] | |
189 ----------------------------------------------------------------
190 | ... | |
191 | ... | |
192 ----------------------------------------------------------------
193 VSR[30] | FPR[30] | |
194 ----------------------------------------------------------------
195 VSR[31] | FPR[31] | |
196 ----------------------------------------------------------------
197 VSR[32] | VR[0] |
198 ----------------------------------------------------------------
199 VSR[33] | VR[1] |
200 ----------------------------------------------------------------
201 | ... |
202 | ... |
203 ----------------------------------------------------------------
204 VSR[62] | VR[30] |
205 ----------------------------------------------------------------
206 VSR[63] | VR[31] |
207 ----------------------------------------------------------------
208
209 VSX has 64 128bit registers. The first 32 registers overlap with
210 the FP registers (doubleword 0) and hence extend them with additional
211 64 bits (doubleword 1). The other 32 regs overlap with the VMX
212 registers. */
213 typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
214
215 /* On PPC processors that support the Signal Processing Extension
216 (SPE) APU, the general-purpose registers are 64 bits long.
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
223
224 GDB itself continues to claim the general-purpose registers are 32
225 bits long. It has unnamed raw registers that hold the upper halves
226 of the gprs, and the full 64-bit SIMD views of the registers,
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
229
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232 struct gdb_evrregset_t
233 {
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
237 };
238
239 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244 int have_ptrace_getsetvsxregs = 1;
245
246 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
249 error. */
250 int have_ptrace_getvrregs = 1;
251
252 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
255 error. */
256 int have_ptrace_getsetevrregs = 1;
257
258 /* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262 int have_ptrace_getsetregs = 1;
263
264 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268 int have_ptrace_getsetfpregs = 1;
269
270 struct ppc_linux_nat_target final : public linux_nat_target
271 {
272 /* Add our register access methods. */
273 void fetch_registers (struct regcache *, int) override;
274 void store_registers (struct regcache *, int) override;
275
276 /* Add our breakpoint/watchpoint methods. */
277 int can_use_hw_breakpoint (enum bptype, int, int) override;
278
279 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
280 override;
281
282 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
283 override;
284
285 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
286
287 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
288 struct expression *) override;
289
290 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
291 struct expression *) override;
292
293 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
294 override;
295
296 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
297 override;
298
299 bool stopped_by_watchpoint () override;
300
301 bool stopped_data_address (CORE_ADDR *) override;
302
303 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
304
305 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
306 override;
307
308 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
309
310 int ranged_break_num_registers () override;
311
312 const struct target_desc *read_description () override;
313
314 int auxv_parse (gdb_byte **readptr,
315 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
316 override;
317
318 /* Override linux_nat_target low methods. */
319 void low_new_thread (struct lwp_info *lp) override;
320 };
321
322 static ppc_linux_nat_target the_ppc_linux_nat_target;
323
324 /* *INDENT-OFF* */
325 /* registers layout, as presented by the ptrace interface:
326 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
327 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
328 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
329 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
330 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
331 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
332 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
333 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
334 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
335 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
336 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
337 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
338 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
339 /* *INDENT_ON * */
340
341 static int
342 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
343 {
344 int u_addr = -1;
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
347 interface, and not the wordsize of the program's ABI. */
348 int wordsize = sizeof (long);
349
350 /* General purpose registers occupy 1 slot each in the buffer. */
351 if (regno >= tdep->ppc_gp0_regnum
352 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
353 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
354
355 /* Floating point regs: eight bytes each in both 32- and 64-bit
356 ptrace interfaces. Thus, two slots each in 32-bit interface, one
357 slot each in 64-bit interface. */
358 if (tdep->ppc_fp0_regnum >= 0
359 && regno >= tdep->ppc_fp0_regnum
360 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
361 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
362
363 /* UISA special purpose registers: 1 slot each. */
364 if (regno == gdbarch_pc_regnum (gdbarch))
365 u_addr = PT_NIP * wordsize;
366 if (regno == tdep->ppc_lr_regnum)
367 u_addr = PT_LNK * wordsize;
368 if (regno == tdep->ppc_cr_regnum)
369 u_addr = PT_CCR * wordsize;
370 if (regno == tdep->ppc_xer_regnum)
371 u_addr = PT_XER * wordsize;
372 if (regno == tdep->ppc_ctr_regnum)
373 u_addr = PT_CTR * wordsize;
374 #ifdef PT_MQ
375 if (regno == tdep->ppc_mq_regnum)
376 u_addr = PT_MQ * wordsize;
377 #endif
378 if (regno == tdep->ppc_ps_regnum)
379 u_addr = PT_MSR * wordsize;
380 if (regno == PPC_ORIG_R3_REGNUM)
381 u_addr = PT_ORIG_R3 * wordsize;
382 if (regno == PPC_TRAP_REGNUM)
383 u_addr = PT_TRAP * wordsize;
384 if (tdep->ppc_fpscr_regnum >= 0
385 && regno == tdep->ppc_fpscr_regnum)
386 {
387 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
388 kernel headers incorrectly contained the 32-bit definition of
389 PT_FPSCR. For the 32-bit definition, floating-point
390 registers occupy two 32-bit "slots", and the FPSCR lives in
391 the second half of such a slot-pair (hence +1). For 64-bit,
392 the FPSCR instead occupies the full 64-bit 2-word-slot and
393 hence no adjustment is necessary. Hack around this. */
394 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
395 u_addr = (48 + 32) * wordsize;
396 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
397 slot and not just its second word. The PT_FPSCR supplied when
398 GDB is compiled as a 32-bit app doesn't reflect this. */
399 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
400 && PT_FPSCR == (48 + 2*32 + 1))
401 u_addr = (48 + 2*32) * wordsize;
402 else
403 u_addr = PT_FPSCR * wordsize;
404 }
405 return u_addr;
406 }
407
408 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
409 registers set mechanism, as opposed to the interface for all the
410 other registers, that stores/fetches each register individually. */
411 static void
412 fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
413 {
414 int ret;
415 gdb_vsxregset_t regs;
416 const struct regset *vsxregset = ppc_linux_vsxregset ();
417
418 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
419 if (ret < 0)
420 {
421 if (errno == EIO)
422 {
423 have_ptrace_getsetvsxregs = 0;
424 return;
425 }
426 perror_with_name (_("Unable to fetch VSX registers"));
427 }
428
429 vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
430 PPC_LINUX_SIZEOF_VSXREGSET);
431 }
432
433 /* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436 static void
437 fetch_altivec_registers (struct regcache *regcache, int tid,
438 int regno)
439 {
440 int ret;
441 gdb_vrregset_t regs;
442 struct gdbarch *gdbarch = regcache->arch ();
443 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
444
445 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
446 if (ret < 0)
447 {
448 if (errno == EIO)
449 {
450 have_ptrace_getvrregs = 0;
451 return;
452 }
453 perror_with_name (_("Unable to fetch AltiVec registers"));
454 }
455
456 vrregset->supply_regset (vrregset, regcache, regno, &regs,
457 PPC_LINUX_SIZEOF_VRREGSET);
458 }
459
460 /* Fetch the top 32 bits of TID's general-purpose registers and the
461 SPE-specific registers, and place the results in EVRREGSET. If we
462 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
463 zeros.
464
465 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
466 PTRACE_SETEVRREGS requests are supported is isolated here, and in
467 set_spe_registers. */
468 static void
469 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
470 {
471 if (have_ptrace_getsetevrregs)
472 {
473 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
474 return;
475 else
476 {
477 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
478 we just return zeros. */
479 if (errno == EIO)
480 have_ptrace_getsetevrregs = 0;
481 else
482 /* Anything else needs to be reported. */
483 perror_with_name (_("Unable to fetch SPE registers"));
484 }
485 }
486
487 memset (evrregset, 0, sizeof (*evrregset));
488 }
489
490 /* Supply values from TID for SPE-specific raw registers: the upper
491 halves of the GPRs, the accumulator, and the spefscr. REGNO must
492 be the number of an upper half register, acc, spefscr, or -1 to
493 supply the values of all registers. */
494 static void
495 fetch_spe_register (struct regcache *regcache, int tid, int regno)
496 {
497 struct gdbarch *gdbarch = regcache->arch ();
498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
499 struct gdb_evrregset_t evrregs;
500
501 gdb_assert (sizeof (evrregs.evr[0])
502 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
503 gdb_assert (sizeof (evrregs.acc)
504 == register_size (gdbarch, tdep->ppc_acc_regnum));
505 gdb_assert (sizeof (evrregs.spefscr)
506 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
507
508 get_spe_registers (tid, &evrregs);
509
510 if (regno == -1)
511 {
512 int i;
513
514 for (i = 0; i < ppc_num_gprs; i++)
515 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
516 }
517 else if (tdep->ppc_ev0_upper_regnum <= regno
518 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
519 regcache->raw_supply (regno,
520 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
521
522 if (regno == -1
523 || regno == tdep->ppc_acc_regnum)
524 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
525
526 if (regno == -1
527 || regno == tdep->ppc_spefscr_regnum)
528 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
529 }
530
531 static void
532 fetch_register (struct regcache *regcache, int tid, int regno)
533 {
534 struct gdbarch *gdbarch = regcache->arch ();
535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
536 /* This isn't really an address. But ptrace thinks of it as one. */
537 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
538 int bytes_transferred;
539 unsigned int offset; /* Offset of registers within the u area. */
540 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
541
542 if (altivec_register_p (gdbarch, regno))
543 {
544 /* If this is the first time through, or if it is not the first
545 time through, and we have comfirmed that there is kernel
546 support for such a ptrace request, then go and fetch the
547 register. */
548 if (have_ptrace_getvrregs)
549 {
550 fetch_altivec_registers (regcache, tid, regno);
551 return;
552 }
553 /* If we have discovered that there is no ptrace support for
554 AltiVec registers, fall through and return zeroes, because
555 regaddr will be -1 in this case. */
556 }
557 if (vsx_register_p (gdbarch, regno))
558 {
559 if (have_ptrace_getsetvsxregs)
560 {
561 fetch_vsx_registers (regcache, tid, regno);
562 return;
563 }
564 }
565 else if (spe_register_p (gdbarch, regno))
566 {
567 fetch_spe_register (regcache, tid, regno);
568 return;
569 }
570
571 if (regaddr == -1)
572 {
573 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
574 regcache->raw_supply (regno, buf);
575 return;
576 }
577
578 /* Read the raw register using sizeof(long) sized chunks. On a
579 32-bit platform, 64-bit floating-point registers will require two
580 transfers. */
581 for (bytes_transferred = 0;
582 bytes_transferred < register_size (gdbarch, regno);
583 bytes_transferred += sizeof (long))
584 {
585 long l;
586
587 errno = 0;
588 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
589 regaddr += sizeof (long);
590 if (errno != 0)
591 {
592 char message[128];
593 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
594 gdbarch_register_name (gdbarch, regno), regno);
595 perror_with_name (message);
596 }
597 memcpy (&buf[bytes_transferred], &l, sizeof (l));
598 }
599
600 /* Now supply the register. Keep in mind that the regcache's idea
601 of the register's size may not be a multiple of sizeof
602 (long). */
603 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
604 {
605 /* Little-endian values are always found at the left end of the
606 bytes transferred. */
607 regcache->raw_supply (regno, buf);
608 }
609 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
610 {
611 /* Big-endian values are found at the right end of the bytes
612 transferred. */
613 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
614 regcache->raw_supply (regno, buf + padding);
615 }
616 else
617 internal_error (__FILE__, __LINE__,
618 _("fetch_register: unexpected byte order: %d"),
619 gdbarch_byte_order (gdbarch));
620 }
621
622 /* This function actually issues the request to ptrace, telling
623 it to get all general-purpose registers and put them into the
624 specified regset.
625
626 If the ptrace request does not exist, this function returns 0
627 and properly sets the have_ptrace_* flag. If the request fails,
628 this function calls perror_with_name. Otherwise, if the request
629 succeeds, then the regcache gets filled and 1 is returned. */
630 static int
631 fetch_all_gp_regs (struct regcache *regcache, int tid)
632 {
633 struct gdbarch *gdbarch = regcache->arch ();
634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
635 gdb_gregset_t gregset;
636
637 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
638 {
639 if (errno == EIO)
640 {
641 have_ptrace_getsetregs = 0;
642 return 0;
643 }
644 perror_with_name (_("Couldn't get general-purpose registers."));
645 }
646
647 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
648
649 return 1;
650 }
651
652 /* This is a wrapper for the fetch_all_gp_regs function. It is
653 responsible for verifying if this target has the ptrace request
654 that can be used to fetch all general-purpose registers at one
655 shot. If it doesn't, then we should fetch them using the
656 old-fashioned way, which is to iterate over the registers and
657 request them one by one. */
658 static void
659 fetch_gp_regs (struct regcache *regcache, int tid)
660 {
661 struct gdbarch *gdbarch = regcache->arch ();
662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
663 int i;
664
665 if (have_ptrace_getsetregs)
666 if (fetch_all_gp_regs (regcache, tid))
667 return;
668
669 /* If we've hit this point, it doesn't really matter which
670 architecture we are using. We just need to read the
671 registers in the "old-fashioned way". */
672 for (i = 0; i < ppc_num_gprs; i++)
673 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
674 }
675
676 /* This function actually issues the request to ptrace, telling
677 it to get all floating-point registers and put them into the
678 specified regset.
679
680 If the ptrace request does not exist, this function returns 0
681 and properly sets the have_ptrace_* flag. If the request fails,
682 this function calls perror_with_name. Otherwise, if the request
683 succeeds, then the regcache gets filled and 1 is returned. */
684 static int
685 fetch_all_fp_regs (struct regcache *regcache, int tid)
686 {
687 gdb_fpregset_t fpregs;
688
689 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
690 {
691 if (errno == EIO)
692 {
693 have_ptrace_getsetfpregs = 0;
694 return 0;
695 }
696 perror_with_name (_("Couldn't get floating-point registers."));
697 }
698
699 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
700
701 return 1;
702 }
703
704 /* This is a wrapper for the fetch_all_fp_regs function. It is
705 responsible for verifying if this target has the ptrace request
706 that can be used to fetch all floating-point registers at one
707 shot. If it doesn't, then we should fetch them using the
708 old-fashioned way, which is to iterate over the registers and
709 request them one by one. */
710 static void
711 fetch_fp_regs (struct regcache *regcache, int tid)
712 {
713 struct gdbarch *gdbarch = regcache->arch ();
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715 int i;
716
717 if (have_ptrace_getsetfpregs)
718 if (fetch_all_fp_regs (regcache, tid))
719 return;
720
721 /* If we've hit this point, it doesn't really matter which
722 architecture we are using. We just need to read the
723 registers in the "old-fashioned way". */
724 for (i = 0; i < ppc_num_fprs; i++)
725 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
726 }
727
728 static void
729 fetch_ppc_registers (struct regcache *regcache, int tid)
730 {
731 int i;
732 struct gdbarch *gdbarch = regcache->arch ();
733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
734
735 fetch_gp_regs (regcache, tid);
736 if (tdep->ppc_fp0_regnum >= 0)
737 fetch_fp_regs (regcache, tid);
738 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
739 if (tdep->ppc_ps_regnum != -1)
740 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
741 if (tdep->ppc_cr_regnum != -1)
742 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
743 if (tdep->ppc_lr_regnum != -1)
744 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
745 if (tdep->ppc_ctr_regnum != -1)
746 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
747 if (tdep->ppc_xer_regnum != -1)
748 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
749 if (tdep->ppc_mq_regnum != -1)
750 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
751 if (ppc_linux_trap_reg_p (gdbarch))
752 {
753 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
754 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
755 }
756 if (tdep->ppc_fpscr_regnum != -1)
757 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
758 if (have_ptrace_getvrregs)
759 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
760 fetch_altivec_registers (regcache, tid, -1);
761 if (have_ptrace_getsetvsxregs)
762 if (tdep->ppc_vsr0_upper_regnum != -1)
763 fetch_vsx_registers (regcache, tid, -1);
764 if (tdep->ppc_ev0_upper_regnum >= 0)
765 fetch_spe_register (regcache, tid, -1);
766 }
767
768 /* Fetch registers from the child process. Fetch all registers if
769 regno == -1, otherwise fetch all general registers or all floating
770 point registers depending upon the value of regno. */
771 void
772 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
773 {
774 pid_t tid = get_ptrace_pid (regcache->ptid ());
775
776 if (regno == -1)
777 fetch_ppc_registers (regcache, tid);
778 else
779 fetch_register (regcache, tid, regno);
780 }
781
782 static void
783 store_vsx_registers (const struct regcache *regcache, int tid, int regno)
784 {
785 int ret;
786 gdb_vsxregset_t regs;
787 const struct regset *vsxregset = ppc_linux_vsxregset ();
788
789 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
790 if (ret < 0)
791 {
792 if (errno == EIO)
793 {
794 have_ptrace_getsetvsxregs = 0;
795 return;
796 }
797 perror_with_name (_("Unable to fetch VSX registers"));
798 }
799
800 vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
801 PPC_LINUX_SIZEOF_VSXREGSET);
802
803 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
804 if (ret < 0)
805 perror_with_name (_("Unable to store VSX registers"));
806 }
807
808 static void
809 store_altivec_registers (const struct regcache *regcache, int tid,
810 int regno)
811 {
812 int ret;
813 gdb_vrregset_t regs;
814 struct gdbarch *gdbarch = regcache->arch ();
815 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
816
817 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
818 if (ret < 0)
819 {
820 if (errno == EIO)
821 {
822 have_ptrace_getvrregs = 0;
823 return;
824 }
825 perror_with_name (_("Unable to fetch AltiVec registers"));
826 }
827
828 vrregset->collect_regset (vrregset, regcache, regno, &regs,
829 PPC_LINUX_SIZEOF_VRREGSET);
830
831 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
832 if (ret < 0)
833 perror_with_name (_("Unable to store AltiVec registers"));
834 }
835
836 /* Assuming TID referrs to an SPE process, set the top halves of TID's
837 general-purpose registers and its SPE-specific registers to the
838 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
839 nothing.
840
841 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
842 PTRACE_SETEVRREGS requests are supported is isolated here, and in
843 get_spe_registers. */
844 static void
845 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
846 {
847 if (have_ptrace_getsetevrregs)
848 {
849 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
850 return;
851 else
852 {
853 /* EIO means that the PTRACE_SETEVRREGS request isn't
854 supported; we fail silently, and don't try the call
855 again. */
856 if (errno == EIO)
857 have_ptrace_getsetevrregs = 0;
858 else
859 /* Anything else needs to be reported. */
860 perror_with_name (_("Unable to set SPE registers"));
861 }
862 }
863 }
864
865 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
866 If REGNO is -1, write the values of all the SPE-specific
867 registers. */
868 static void
869 store_spe_register (const struct regcache *regcache, int tid, int regno)
870 {
871 struct gdbarch *gdbarch = regcache->arch ();
872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
873 struct gdb_evrregset_t evrregs;
874
875 gdb_assert (sizeof (evrregs.evr[0])
876 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
877 gdb_assert (sizeof (evrregs.acc)
878 == register_size (gdbarch, tdep->ppc_acc_regnum));
879 gdb_assert (sizeof (evrregs.spefscr)
880 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
881
882 if (regno == -1)
883 /* Since we're going to write out every register, the code below
884 should store to every field of evrregs; if that doesn't happen,
885 make it obvious by initializing it with suspicious values. */
886 memset (&evrregs, 42, sizeof (evrregs));
887 else
888 /* We can only read and write the entire EVR register set at a
889 time, so to write just a single register, we do a
890 read-modify-write maneuver. */
891 get_spe_registers (tid, &evrregs);
892
893 if (regno == -1)
894 {
895 int i;
896
897 for (i = 0; i < ppc_num_gprs; i++)
898 regcache_raw_collect (regcache,
899 tdep->ppc_ev0_upper_regnum + i,
900 &evrregs.evr[i]);
901 }
902 else if (tdep->ppc_ev0_upper_regnum <= regno
903 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
904 regcache_raw_collect (regcache, regno,
905 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
906
907 if (regno == -1
908 || regno == tdep->ppc_acc_regnum)
909 regcache_raw_collect (regcache,
910 tdep->ppc_acc_regnum,
911 &evrregs.acc);
912
913 if (regno == -1
914 || regno == tdep->ppc_spefscr_regnum)
915 regcache_raw_collect (regcache,
916 tdep->ppc_spefscr_regnum,
917 &evrregs.spefscr);
918
919 /* Write back the modified register set. */
920 set_spe_registers (tid, &evrregs);
921 }
922
923 static void
924 store_register (const struct regcache *regcache, int tid, int regno)
925 {
926 struct gdbarch *gdbarch = regcache->arch ();
927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
928 /* This isn't really an address. But ptrace thinks of it as one. */
929 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
930 int i;
931 size_t bytes_to_transfer;
932 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
933
934 if (altivec_register_p (gdbarch, regno))
935 {
936 store_altivec_registers (regcache, tid, regno);
937 return;
938 }
939 if (vsx_register_p (gdbarch, regno))
940 {
941 store_vsx_registers (regcache, tid, regno);
942 return;
943 }
944 else if (spe_register_p (gdbarch, regno))
945 {
946 store_spe_register (regcache, tid, regno);
947 return;
948 }
949
950 if (regaddr == -1)
951 return;
952
953 /* First collect the register. Keep in mind that the regcache's
954 idea of the register's size may not be a multiple of sizeof
955 (long). */
956 memset (buf, 0, sizeof buf);
957 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
958 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
959 {
960 /* Little-endian values always sit at the left end of the buffer. */
961 regcache_raw_collect (regcache, regno, buf);
962 }
963 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
964 {
965 /* Big-endian values sit at the right end of the buffer. */
966 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
967 regcache_raw_collect (regcache, regno, buf + padding);
968 }
969
970 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
971 {
972 long l;
973
974 memcpy (&l, &buf[i], sizeof (l));
975 errno = 0;
976 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
977 regaddr += sizeof (long);
978
979 if (errno == EIO
980 && (regno == tdep->ppc_fpscr_regnum
981 || regno == PPC_ORIG_R3_REGNUM
982 || regno == PPC_TRAP_REGNUM))
983 {
984 /* Some older kernel versions don't allow fpscr, orig_r3
985 or trap to be written. */
986 continue;
987 }
988
989 if (errno != 0)
990 {
991 char message[128];
992 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
993 gdbarch_register_name (gdbarch, regno), regno);
994 perror_with_name (message);
995 }
996 }
997 }
998
999 /* This function actually issues the request to ptrace, telling
1000 it to store all general-purpose registers present in the specified
1001 regset.
1002
1003 If the ptrace request does not exist, this function returns 0
1004 and properly sets the have_ptrace_* flag. If the request fails,
1005 this function calls perror_with_name. Otherwise, if the request
1006 succeeds, then the regcache is stored and 1 is returned. */
1007 static int
1008 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1009 {
1010 struct gdbarch *gdbarch = regcache->arch ();
1011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1012 gdb_gregset_t gregset;
1013
1014 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1015 {
1016 if (errno == EIO)
1017 {
1018 have_ptrace_getsetregs = 0;
1019 return 0;
1020 }
1021 perror_with_name (_("Couldn't get general-purpose registers."));
1022 }
1023
1024 fill_gregset (regcache, &gregset, regno);
1025
1026 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1027 {
1028 if (errno == EIO)
1029 {
1030 have_ptrace_getsetregs = 0;
1031 return 0;
1032 }
1033 perror_with_name (_("Couldn't set general-purpose registers."));
1034 }
1035
1036 return 1;
1037 }
1038
1039 /* This is a wrapper for the store_all_gp_regs function. It is
1040 responsible for verifying if this target has the ptrace request
1041 that can be used to store all general-purpose registers at one
1042 shot. If it doesn't, then we should store them using the
1043 old-fashioned way, which is to iterate over the registers and
1044 store them one by one. */
1045 static void
1046 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1047 {
1048 struct gdbarch *gdbarch = regcache->arch ();
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050 int i;
1051
1052 if (have_ptrace_getsetregs)
1053 if (store_all_gp_regs (regcache, tid, regno))
1054 return;
1055
1056 /* If we hit this point, it doesn't really matter which
1057 architecture we are using. We just need to store the
1058 registers in the "old-fashioned way". */
1059 for (i = 0; i < ppc_num_gprs; i++)
1060 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1061 }
1062
1063 /* This function actually issues the request to ptrace, telling
1064 it to store all floating-point registers present in the specified
1065 regset.
1066
1067 If the ptrace request does not exist, this function returns 0
1068 and properly sets the have_ptrace_* flag. If the request fails,
1069 this function calls perror_with_name. Otherwise, if the request
1070 succeeds, then the regcache is stored and 1 is returned. */
1071 static int
1072 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1073 {
1074 gdb_fpregset_t fpregs;
1075
1076 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1077 {
1078 if (errno == EIO)
1079 {
1080 have_ptrace_getsetfpregs = 0;
1081 return 0;
1082 }
1083 perror_with_name (_("Couldn't get floating-point registers."));
1084 }
1085
1086 fill_fpregset (regcache, &fpregs, regno);
1087
1088 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1089 {
1090 if (errno == EIO)
1091 {
1092 have_ptrace_getsetfpregs = 0;
1093 return 0;
1094 }
1095 perror_with_name (_("Couldn't set floating-point registers."));
1096 }
1097
1098 return 1;
1099 }
1100
1101 /* This is a wrapper for the store_all_fp_regs function. It is
1102 responsible for verifying if this target has the ptrace request
1103 that can be used to store all floating-point registers at one
1104 shot. If it doesn't, then we should store them using the
1105 old-fashioned way, which is to iterate over the registers and
1106 store them one by one. */
1107 static void
1108 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1109 {
1110 struct gdbarch *gdbarch = regcache->arch ();
1111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1112 int i;
1113
1114 if (have_ptrace_getsetfpregs)
1115 if (store_all_fp_regs (regcache, tid, regno))
1116 return;
1117
1118 /* If we hit this point, it doesn't really matter which
1119 architecture we are using. We just need to store the
1120 registers in the "old-fashioned way". */
1121 for (i = 0; i < ppc_num_fprs; i++)
1122 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1123 }
1124
1125 static void
1126 store_ppc_registers (const struct regcache *regcache, int tid)
1127 {
1128 int i;
1129 struct gdbarch *gdbarch = regcache->arch ();
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1131
1132 store_gp_regs (regcache, tid, -1);
1133 if (tdep->ppc_fp0_regnum >= 0)
1134 store_fp_regs (regcache, tid, -1);
1135 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1136 if (tdep->ppc_ps_regnum != -1)
1137 store_register (regcache, tid, tdep->ppc_ps_regnum);
1138 if (tdep->ppc_cr_regnum != -1)
1139 store_register (regcache, tid, tdep->ppc_cr_regnum);
1140 if (tdep->ppc_lr_regnum != -1)
1141 store_register (regcache, tid, tdep->ppc_lr_regnum);
1142 if (tdep->ppc_ctr_regnum != -1)
1143 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1144 if (tdep->ppc_xer_regnum != -1)
1145 store_register (regcache, tid, tdep->ppc_xer_regnum);
1146 if (tdep->ppc_mq_regnum != -1)
1147 store_register (regcache, tid, tdep->ppc_mq_regnum);
1148 if (tdep->ppc_fpscr_regnum != -1)
1149 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1150 if (ppc_linux_trap_reg_p (gdbarch))
1151 {
1152 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1153 store_register (regcache, tid, PPC_TRAP_REGNUM);
1154 }
1155 if (have_ptrace_getvrregs)
1156 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1157 store_altivec_registers (regcache, tid, -1);
1158 if (have_ptrace_getsetvsxregs)
1159 if (tdep->ppc_vsr0_upper_regnum != -1)
1160 store_vsx_registers (regcache, tid, -1);
1161 if (tdep->ppc_ev0_upper_regnum >= 0)
1162 store_spe_register (regcache, tid, -1);
1163 }
1164
1165 /* Fetch the AT_HWCAP entry from the aux vector. */
1166 static CORE_ADDR
1167 ppc_linux_get_hwcap (void)
1168 {
1169 CORE_ADDR field;
1170
1171 if (target_auxv_search (target_stack, AT_HWCAP, &field) != 1)
1172 return 0;
1173
1174 return field;
1175 }
1176
1177 /* The cached DABR value, to install in new threads.
1178 This variable is used when the PowerPC HWDEBUG ptrace
1179 interface is not available. */
1180 static long saved_dabr_value;
1181
1182 /* Global structure that will store information about the available
1183 features provided by the PowerPC HWDEBUG ptrace interface. */
1184 static struct ppc_debug_info hwdebug_info;
1185
1186 /* Global variable that holds the maximum number of slots that the
1187 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1188 is available. */
1189 static size_t max_slots_number = 0;
1190
1191 struct hw_break_tuple
1192 {
1193 long slot;
1194 struct ppc_hw_breakpoint *hw_break;
1195 };
1196
1197 /* This is an internal VEC created to store information about *points inserted
1198 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1199 available. */
1200 typedef struct thread_points
1201 {
1202 /* The TID to which this *point relates. */
1203 int tid;
1204 /* Information about the *point, such as its address, type, etc.
1205
1206 Each element inside this vector corresponds to a hardware
1207 breakpoint or watchpoint in the thread represented by TID. The maximum
1208 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1209 the tuple is NULL, then the position in the vector is free. */
1210 struct hw_break_tuple *hw_breaks;
1211 } *thread_points_p;
1212 DEF_VEC_P (thread_points_p);
1213
1214 VEC(thread_points_p) *ppc_threads = NULL;
1215
1216 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1217 available. */
1218 #define PPC_DEBUG_CURRENT_VERSION 1
1219
1220 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1221 static int
1222 have_ptrace_hwdebug_interface (void)
1223 {
1224 static int have_ptrace_hwdebug_interface = -1;
1225
1226 if (have_ptrace_hwdebug_interface == -1)
1227 {
1228 int tid;
1229
1230 tid = ptid_get_lwp (inferior_ptid);
1231 if (tid == 0)
1232 tid = ptid_get_pid (inferior_ptid);
1233
1234 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1235 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1236 {
1237 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1238 provides any supported feature. */
1239 if (hwdebug_info.features != 0)
1240 {
1241 have_ptrace_hwdebug_interface = 1;
1242 max_slots_number = hwdebug_info.num_instruction_bps
1243 + hwdebug_info.num_data_bps
1244 + hwdebug_info.num_condition_regs;
1245 return have_ptrace_hwdebug_interface;
1246 }
1247 }
1248 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1249 have_ptrace_hwdebug_interface = 0;
1250 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1251 }
1252
1253 return have_ptrace_hwdebug_interface;
1254 }
1255
1256 int
1257 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
1258 {
1259 int total_hw_wp, total_hw_bp;
1260
1261 if (have_ptrace_hwdebug_interface ())
1262 {
1263 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1264 available hardware watchpoints and breakpoints is stored at the
1265 hwdebug_info struct. */
1266 total_hw_bp = hwdebug_info.num_instruction_bps;
1267 total_hw_wp = hwdebug_info.num_data_bps;
1268 }
1269 else
1270 {
1271 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1272 consider having 1 hardware watchpoint and no hardware breakpoints. */
1273 total_hw_bp = 0;
1274 total_hw_wp = 1;
1275 }
1276
1277 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1278 || type == bp_access_watchpoint || type == bp_watchpoint)
1279 {
1280 if (cnt + ot > total_hw_wp)
1281 return -1;
1282 }
1283 else if (type == bp_hardware_breakpoint)
1284 {
1285 if (total_hw_bp == 0)
1286 {
1287 /* No hardware breakpoint support. */
1288 return 0;
1289 }
1290 if (cnt > total_hw_bp)
1291 return -1;
1292 }
1293
1294 if (!have_ptrace_hwdebug_interface ())
1295 {
1296 int tid;
1297 ptid_t ptid = inferior_ptid;
1298
1299 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1300 and whether the target has DABR. If either answer is no, the
1301 ptrace call will return -1. Fail in that case. */
1302 tid = ptid_get_lwp (ptid);
1303 if (tid == 0)
1304 tid = ptid_get_pid (ptid);
1305
1306 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1307 return 0;
1308 }
1309
1310 return 1;
1311 }
1312
1313 int
1314 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1315 {
1316 /* Handle sub-8-byte quantities. */
1317 if (len <= 0)
1318 return 0;
1319
1320 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1321 restrictions for watchpoints in the processors. In that case, we use that
1322 information to determine the hardcoded watchable region for
1323 watchpoints. */
1324 if (have_ptrace_hwdebug_interface ())
1325 {
1326 int region_size;
1327 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1328 watchpoints and can watch any access within an arbitrary memory
1329 region. This is useful to watch arrays and structs, for instance. It
1330 takes two hardware watchpoints though. */
1331 if (len > 1
1332 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1333 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1334 return 2;
1335 /* Check if the processor provides DAWR interface. */
1336 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1337 /* DAWR interface allows to watch up to 512 byte wide ranges which
1338 can't cross a 512 byte boundary. */
1339 region_size = 512;
1340 else
1341 region_size = hwdebug_info.data_bp_alignment;
1342 /* Server processors provide one hardware watchpoint and addr+len should
1343 fall in the watchable region provided by the ptrace interface. */
1344 if (region_size
1345 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1346 return 0;
1347 }
1348 /* addr+len must fall in the 8 byte watchable region for DABR-based
1349 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1350 ptrace interface, DAC-based processors (i.e., embedded processors) will
1351 use addresses aligned to 4-bytes due to the way the read/write flags are
1352 passed in the old ptrace interface. */
1353 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1354 && (addr + len) > (addr & ~3) + 4)
1355 || (addr + len) > (addr & ~7) + 8)
1356 return 0;
1357
1358 return 1;
1359 }
1360
1361 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1362 static int
1363 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1364 {
1365 return (a->trigger_type == b->trigger_type
1366 && a->addr_mode == b->addr_mode
1367 && a->condition_mode == b->condition_mode
1368 && a->addr == b->addr
1369 && a->addr2 == b->addr2
1370 && a->condition_value == b->condition_value);
1371 }
1372
1373 /* This function can be used to retrieve a thread_points by the TID of the
1374 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1375 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1376 provided TID will be created and returned. */
1377 static struct thread_points *
1378 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1379 {
1380 int i;
1381 struct thread_points *t;
1382
1383 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1384 if (t->tid == tid)
1385 return t;
1386
1387 t = NULL;
1388
1389 /* Do we need to allocate a new point_item
1390 if the wanted one does not exist? */
1391 if (alloc_new)
1392 {
1393 t = XNEW (struct thread_points);
1394 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1395 t->tid = tid;
1396 VEC_safe_push (thread_points_p, ppc_threads, t);
1397 }
1398
1399 return t;
1400 }
1401
1402 /* This function is a generic wrapper that is responsible for inserting a
1403 *point (i.e., calling `ptrace' in order to issue the request to the
1404 kernel) and registering it internally in GDB. */
1405 static void
1406 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1407 {
1408 int i;
1409 long slot;
1410 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
1411 struct hw_break_tuple *hw_breaks;
1412 struct thread_points *t;
1413 struct hw_break_tuple *tuple;
1414
1415 errno = 0;
1416 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
1417 if (slot < 0)
1418 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1419
1420 /* Everything went fine, so we have to register this *point. */
1421 t = hwdebug_find_thread_points_by_tid (tid, 1);
1422 gdb_assert (t != NULL);
1423 hw_breaks = t->hw_breaks;
1424
1425 /* Find a free element in the hw_breaks vector. */
1426 for (i = 0; i < max_slots_number; i++)
1427 if (hw_breaks[i].hw_break == NULL)
1428 {
1429 hw_breaks[i].slot = slot;
1430 hw_breaks[i].hw_break = p.release ();
1431 break;
1432 }
1433
1434 gdb_assert (i != max_slots_number);
1435 }
1436
1437 /* This function is a generic wrapper that is responsible for removing a
1438 *point (i.e., calling `ptrace' in order to issue the request to the
1439 kernel), and unregistering it internally at GDB. */
1440 static void
1441 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1442 {
1443 int i;
1444 struct hw_break_tuple *hw_breaks;
1445 struct thread_points *t;
1446
1447 t = hwdebug_find_thread_points_by_tid (tid, 0);
1448 gdb_assert (t != NULL);
1449 hw_breaks = t->hw_breaks;
1450
1451 for (i = 0; i < max_slots_number; i++)
1452 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1453 break;
1454
1455 gdb_assert (i != max_slots_number);
1456
1457 /* We have to ignore ENOENT errors because the kernel implements hardware
1458 breakpoints/watchpoints as "one-shot", that is, they are automatically
1459 deleted when hit. */
1460 errno = 0;
1461 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1462 if (errno != ENOENT)
1463 perror_with_name (_("Unexpected error deleting "
1464 "breakpoint or watchpoint"));
1465
1466 xfree (hw_breaks[i].hw_break);
1467 hw_breaks[i].hw_break = NULL;
1468 }
1469
1470 /* Return the number of registers needed for a ranged breakpoint. */
1471
1472 int
1473 ppc_linux_nat_target::ranged_break_num_registers ()
1474 {
1475 return ((have_ptrace_hwdebug_interface ()
1476 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1477 2 : -1);
1478 }
1479
1480 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1481 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1482
1483 int
1484 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1485 struct bp_target_info *bp_tgt)
1486 {
1487 struct lwp_info *lp;
1488 struct ppc_hw_breakpoint p;
1489
1490 if (!have_ptrace_hwdebug_interface ())
1491 return -1;
1492
1493 p.version = PPC_DEBUG_CURRENT_VERSION;
1494 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1495 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1496 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1497 p.condition_value = 0;
1498
1499 if (bp_tgt->length)
1500 {
1501 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1502
1503 /* The breakpoint will trigger if the address of the instruction is
1504 within the defined range, as follows: p.addr <= address < p.addr2. */
1505 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1506 }
1507 else
1508 {
1509 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1510 p.addr2 = 0;
1511 }
1512
1513 ALL_LWPS (lp)
1514 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1515
1516 return 0;
1517 }
1518
1519 int
1520 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1521 struct bp_target_info *bp_tgt)
1522 {
1523 struct lwp_info *lp;
1524 struct ppc_hw_breakpoint p;
1525
1526 if (!have_ptrace_hwdebug_interface ())
1527 return -1;
1528
1529 p.version = PPC_DEBUG_CURRENT_VERSION;
1530 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1531 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1532 p.addr = (uint64_t) bp_tgt->placed_address;
1533 p.condition_value = 0;
1534
1535 if (bp_tgt->length)
1536 {
1537 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1538
1539 /* The breakpoint will trigger if the address of the instruction is within
1540 the defined range, as follows: p.addr <= address < p.addr2. */
1541 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1542 }
1543 else
1544 {
1545 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1546 p.addr2 = 0;
1547 }
1548
1549 ALL_LWPS (lp)
1550 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1551
1552 return 0;
1553 }
1554
1555 static int
1556 get_trigger_type (enum target_hw_bp_type type)
1557 {
1558 int t;
1559
1560 if (type == hw_read)
1561 t = PPC_BREAKPOINT_TRIGGER_READ;
1562 else if (type == hw_write)
1563 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1564 else
1565 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1566
1567 return t;
1568 }
1569
1570 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1571 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1572 or hw_access for an access watchpoint. Returns 0 on success and throws
1573 an error on failure. */
1574
1575 int
1576 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1577 target_hw_bp_type rw)
1578 {
1579 struct lwp_info *lp;
1580 struct ppc_hw_breakpoint p;
1581
1582 gdb_assert (have_ptrace_hwdebug_interface ());
1583
1584 p.version = PPC_DEBUG_CURRENT_VERSION;
1585 p.trigger_type = get_trigger_type (rw);
1586 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1587 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1588 p.addr = addr;
1589 p.addr2 = mask;
1590 p.condition_value = 0;
1591
1592 ALL_LWPS (lp)
1593 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1594
1595 return 0;
1596 }
1597
1598 /* Remove a masked watchpoint at ADDR with the mask MASK.
1599 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1600 or hw_access for an access watchpoint. Returns 0 on success and throws
1601 an error on failure. */
1602
1603 int
1604 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1605 target_hw_bp_type rw)
1606 {
1607 struct lwp_info *lp;
1608 struct ppc_hw_breakpoint p;
1609
1610 gdb_assert (have_ptrace_hwdebug_interface ());
1611
1612 p.version = PPC_DEBUG_CURRENT_VERSION;
1613 p.trigger_type = get_trigger_type (rw);
1614 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1615 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1616 p.addr = addr;
1617 p.addr2 = mask;
1618 p.condition_value = 0;
1619
1620 ALL_LWPS (lp)
1621 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1622
1623 return 0;
1624 }
1625
1626 /* Check whether we have at least one free DVC register. */
1627 static int
1628 can_use_watchpoint_cond_accel (void)
1629 {
1630 struct thread_points *p;
1631 int tid = ptid_get_lwp (inferior_ptid);
1632 int cnt = hwdebug_info.num_condition_regs, i;
1633 CORE_ADDR tmp_value;
1634
1635 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1636 return 0;
1637
1638 p = hwdebug_find_thread_points_by_tid (tid, 0);
1639
1640 if (p)
1641 {
1642 for (i = 0; i < max_slots_number; i++)
1643 if (p->hw_breaks[i].hw_break != NULL
1644 && (p->hw_breaks[i].hw_break->condition_mode
1645 != PPC_BREAKPOINT_CONDITION_NONE))
1646 cnt--;
1647
1648 /* There are no available slots now. */
1649 if (cnt <= 0)
1650 return 0;
1651 }
1652
1653 return 1;
1654 }
1655
1656 /* Calculate the enable bits and the contents of the Data Value Compare
1657 debug register present in BookE processors.
1658
1659 ADDR is the address to be watched, LEN is the length of watched data
1660 and DATA_VALUE is the value which will trigger the watchpoint.
1661 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1662 CONDITION_VALUE will hold the value which should be put in the
1663 DVC register. */
1664 static void
1665 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1666 uint32_t *condition_mode, uint64_t *condition_value)
1667 {
1668 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1669 rightmost_enabled_byte;
1670 CORE_ADDR addr_end_data, addr_end_dvc;
1671
1672 /* The DVC register compares bytes within fixed-length windows which
1673 are word-aligned, with length equal to that of the DVC register.
1674 We need to calculate where our watch region is relative to that
1675 window and enable comparison of the bytes which fall within it. */
1676
1677 align_offset = addr % hwdebug_info.sizeof_condition;
1678 addr_end_data = addr + len;
1679 addr_end_dvc = (addr - align_offset
1680 + hwdebug_info.sizeof_condition);
1681 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1682 addr_end_data - addr_end_dvc : 0;
1683 num_byte_enable = len - num_bytes_off_dvc;
1684 /* Here, bytes are numbered from right to left. */
1685 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1686 addr_end_dvc - addr_end_data : 0;
1687
1688 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1689 for (i = 0; i < num_byte_enable; i++)
1690 *condition_mode
1691 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1692
1693 /* Now we need to match the position within the DVC of the comparison
1694 value with where the watch region is relative to the window
1695 (i.e., the ALIGN_OFFSET). */
1696
1697 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1698 << rightmost_enabled_byte * 8);
1699 }
1700
1701 /* Return the number of memory locations that need to be accessed to
1702 evaluate the expression which generated the given value chain.
1703 Returns -1 if there's any register access involved, or if there are
1704 other kinds of values which are not acceptable in a condition
1705 expression (e.g., lval_computed or lval_internalvar). */
1706 static int
1707 num_memory_accesses (const std::vector<value_ref_ptr> &chain)
1708 {
1709 int found_memory_cnt = 0;
1710
1711 /* The idea here is that evaluating an expression generates a series
1712 of values, one holding the value of every subexpression. (The
1713 expression a*b+c has five subexpressions: a, b, a*b, c, and
1714 a*b+c.) GDB's values hold almost enough information to establish
1715 the criteria given above --- they identify memory lvalues,
1716 register lvalues, computed values, etcetera. So we can evaluate
1717 the expression, and then scan the chain of values that leaves
1718 behind to determine the memory locations involved in the evaluation
1719 of an expression.
1720
1721 However, I don't think that the values returned by inferior
1722 function calls are special in any way. So this function may not
1723 notice that an expression contains an inferior function call.
1724 FIXME. */
1725
1726 for (const value_ref_ptr &iter : chain)
1727 {
1728 struct value *v = iter.get ();
1729
1730 /* Constants and values from the history are fine. */
1731 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1732 continue;
1733 else if (VALUE_LVAL (v) == lval_memory)
1734 {
1735 /* A lazy memory lvalue is one that GDB never needed to fetch;
1736 we either just used its address (e.g., `a' in `a.b') or
1737 we never needed it at all (e.g., `a' in `a,b'). */
1738 if (!value_lazy (v))
1739 found_memory_cnt++;
1740 }
1741 /* Other kinds of values are not fine. */
1742 else
1743 return -1;
1744 }
1745
1746 return found_memory_cnt;
1747 }
1748
1749 /* Verifies whether the expression COND can be implemented using the
1750 DVC (Data Value Compare) register in BookE processors. The expression
1751 must test the watch value for equality with a constant expression.
1752 If the function returns 1, DATA_VALUE will contain the constant against
1753 which the watch value should be compared and LEN will contain the size
1754 of the constant. */
1755 static int
1756 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1757 CORE_ADDR *data_value, int *len)
1758 {
1759 int pc = 1, num_accesses_left, num_accesses_right;
1760 struct value *left_val, *right_val;
1761 std::vector<value_ref_ptr> left_chain, right_chain;
1762
1763 if (cond->elts[0].opcode != BINOP_EQUAL)
1764 return 0;
1765
1766 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1767 num_accesses_left = num_memory_accesses (left_chain);
1768
1769 if (left_val == NULL || num_accesses_left < 0)
1770 return 0;
1771
1772 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1773 num_accesses_right = num_memory_accesses (right_chain);
1774
1775 if (right_val == NULL || num_accesses_right < 0)
1776 return 0;
1777
1778 if (num_accesses_left == 1 && num_accesses_right == 0
1779 && VALUE_LVAL (left_val) == lval_memory
1780 && value_address (left_val) == watch_addr)
1781 {
1782 *data_value = value_as_long (right_val);
1783
1784 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1785 the same type as the memory region referenced by LEFT_VAL. */
1786 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1787 }
1788 else if (num_accesses_left == 0 && num_accesses_right == 1
1789 && VALUE_LVAL (right_val) == lval_memory
1790 && value_address (right_val) == watch_addr)
1791 {
1792 *data_value = value_as_long (left_val);
1793
1794 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1795 the same type as the memory region referenced by RIGHT_VAL. */
1796 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1797 }
1798 else
1799 return 0;
1800
1801 return 1;
1802 }
1803
1804 /* Return non-zero if the target is capable of using hardware to evaluate
1805 the condition expression, thus only triggering the watchpoint when it is
1806 true. */
1807 bool
1808 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1809 int rw,
1810 struct expression *cond)
1811 {
1812 CORE_ADDR data_value;
1813
1814 return (have_ptrace_hwdebug_interface ()
1815 && hwdebug_info.num_condition_regs > 0
1816 && check_condition (addr, cond, &data_value, &len));
1817 }
1818
1819 /* Set up P with the parameters necessary to request a watchpoint covering
1820 LEN bytes starting at ADDR and if possible with condition expression COND
1821 evaluated by hardware. INSERT tells if we are creating a request for
1822 inserting or removing the watchpoint. */
1823
1824 static void
1825 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
1826 int len, enum target_hw_bp_type type,
1827 struct expression *cond, int insert)
1828 {
1829 if (len == 1
1830 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
1831 {
1832 int use_condition;
1833 CORE_ADDR data_value;
1834
1835 use_condition = (insert? can_use_watchpoint_cond_accel ()
1836 : hwdebug_info.num_condition_regs > 0);
1837 if (cond && use_condition && check_condition (addr, cond,
1838 &data_value, &len))
1839 calculate_dvc (addr, len, data_value, &p->condition_mode,
1840 &p->condition_value);
1841 else
1842 {
1843 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1844 p->condition_value = 0;
1845 }
1846
1847 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1848 p->addr2 = 0;
1849 }
1850 else
1851 {
1852 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1853 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1854 p->condition_value = 0;
1855
1856 /* The watchpoint will trigger if the address of the memory access is
1857 within the defined range, as follows: p->addr <= address < p->addr2.
1858
1859 Note that the above sentence just documents how ptrace interprets
1860 its arguments; the watchpoint is set to watch the range defined by
1861 the user _inclusively_, as specified by the user interface. */
1862 p->addr2 = (uint64_t) addr + len;
1863 }
1864
1865 p->version = PPC_DEBUG_CURRENT_VERSION;
1866 p->trigger_type = get_trigger_type (type);
1867 p->addr = (uint64_t) addr;
1868 }
1869
1870 int
1871 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1872 enum target_hw_bp_type type,
1873 struct expression *cond)
1874 {
1875 struct lwp_info *lp;
1876 int ret = -1;
1877
1878 if (have_ptrace_hwdebug_interface ())
1879 {
1880 struct ppc_hw_breakpoint p;
1881
1882 create_watchpoint_request (&p, addr, len, type, cond, 1);
1883
1884 ALL_LWPS (lp)
1885 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1886
1887 ret = 0;
1888 }
1889 else
1890 {
1891 long dabr_value;
1892 long read_mode, write_mode;
1893
1894 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1895 {
1896 /* PowerPC 440 requires only the read/write flags to be passed
1897 to the kernel. */
1898 read_mode = 1;
1899 write_mode = 2;
1900 }
1901 else
1902 {
1903 /* PowerPC 970 and other DABR-based processors are required to pass
1904 the Breakpoint Translation bit together with the flags. */
1905 read_mode = 5;
1906 write_mode = 6;
1907 }
1908
1909 dabr_value = addr & ~(read_mode | write_mode);
1910 switch (type)
1911 {
1912 case hw_read:
1913 /* Set read and translate bits. */
1914 dabr_value |= read_mode;
1915 break;
1916 case hw_write:
1917 /* Set write and translate bits. */
1918 dabr_value |= write_mode;
1919 break;
1920 case hw_access:
1921 /* Set read, write and translate bits. */
1922 dabr_value |= read_mode | write_mode;
1923 break;
1924 }
1925
1926 saved_dabr_value = dabr_value;
1927
1928 ALL_LWPS (lp)
1929 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
1930 saved_dabr_value) < 0)
1931 return -1;
1932
1933 ret = 0;
1934 }
1935
1936 return ret;
1937 }
1938
1939 int
1940 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
1941 enum target_hw_bp_type type,
1942 struct expression *cond)
1943 {
1944 struct lwp_info *lp;
1945 int ret = -1;
1946
1947 if (have_ptrace_hwdebug_interface ())
1948 {
1949 struct ppc_hw_breakpoint p;
1950
1951 create_watchpoint_request (&p, addr, len, type, cond, 0);
1952
1953 ALL_LWPS (lp)
1954 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1955
1956 ret = 0;
1957 }
1958 else
1959 {
1960 saved_dabr_value = 0;
1961 ALL_LWPS (lp)
1962 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
1963 saved_dabr_value) < 0)
1964 return -1;
1965
1966 ret = 0;
1967 }
1968
1969 return ret;
1970 }
1971
1972 void
1973 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
1974 {
1975 int tid = ptid_get_lwp (lp->ptid);
1976
1977 if (have_ptrace_hwdebug_interface ())
1978 {
1979 int i;
1980 struct thread_points *p;
1981 struct hw_break_tuple *hw_breaks;
1982
1983 if (VEC_empty (thread_points_p, ppc_threads))
1984 return;
1985
1986 /* Get a list of breakpoints from any thread. */
1987 p = VEC_last (thread_points_p, ppc_threads);
1988 hw_breaks = p->hw_breaks;
1989
1990 /* Copy that thread's breakpoints and watchpoints to the new thread. */
1991 for (i = 0; i < max_slots_number; i++)
1992 if (hw_breaks[i].hw_break)
1993 {
1994 /* Older kernels did not make new threads inherit their parent
1995 thread's debug state, so we always clear the slot and replicate
1996 the debug state ourselves, ensuring compatibility with all
1997 kernels. */
1998
1999 /* The ppc debug resource accounting is done through "slots".
2000 Ask the kernel the deallocate this specific *point's slot. */
2001 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2002
2003 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2004 }
2005 }
2006 else
2007 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2008 }
2009
2010 static void
2011 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2012 {
2013 int i;
2014 int tid = ptid_get_lwp (tp->ptid);
2015 struct hw_break_tuple *hw_breaks;
2016 struct thread_points *t = NULL, *p;
2017
2018 if (!have_ptrace_hwdebug_interface ())
2019 return;
2020
2021 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2022 if (p->tid == tid)
2023 {
2024 t = p;
2025 break;
2026 }
2027
2028 if (t == NULL)
2029 return;
2030
2031 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2032
2033 hw_breaks = t->hw_breaks;
2034
2035 for (i = 0; i < max_slots_number; i++)
2036 if (hw_breaks[i].hw_break)
2037 xfree (hw_breaks[i].hw_break);
2038
2039 xfree (t->hw_breaks);
2040 xfree (t);
2041 }
2042
2043 bool
2044 ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2045 {
2046 siginfo_t siginfo;
2047
2048 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2049 return false;
2050
2051 if (siginfo.si_signo != SIGTRAP
2052 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2053 return false;
2054
2055 if (have_ptrace_hwdebug_interface ())
2056 {
2057 int i;
2058 struct thread_points *t;
2059 struct hw_break_tuple *hw_breaks;
2060 /* The index (or slot) of the *point is passed in the si_errno field. */
2061 int slot = siginfo.si_errno;
2062
2063 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2064
2065 /* Find out if this *point is a hardware breakpoint.
2066 If so, we should return 0. */
2067 if (t)
2068 {
2069 hw_breaks = t->hw_breaks;
2070 for (i = 0; i < max_slots_number; i++)
2071 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2072 && hw_breaks[i].hw_break->trigger_type
2073 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2074 return false;
2075 }
2076 }
2077
2078 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2079 return true;
2080 }
2081
2082 bool
2083 ppc_linux_nat_target::stopped_by_watchpoint ()
2084 {
2085 CORE_ADDR addr;
2086 return stopped_data_address (&addr);
2087 }
2088
2089 bool
2090 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2091 CORE_ADDR start,
2092 int length)
2093 {
2094 int mask;
2095
2096 if (have_ptrace_hwdebug_interface ()
2097 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2098 return start <= addr && start + length >= addr;
2099 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2100 mask = 3;
2101 else
2102 mask = 7;
2103
2104 addr &= ~mask;
2105
2106 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2107 return start <= addr + mask && start + length - 1 >= addr;
2108 }
2109
2110 /* Return the number of registers needed for a masked hardware watchpoint. */
2111
2112 int
2113 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
2114 {
2115 if (!have_ptrace_hwdebug_interface ()
2116 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2117 return -1;
2118 else if ((mask & 0xC0000000) != 0xC0000000)
2119 {
2120 warning (_("The given mask covers kernel address space "
2121 "and cannot be used.\n"));
2122
2123 return -2;
2124 }
2125 else
2126 return 2;
2127 }
2128
2129 void
2130 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
2131 {
2132 pid_t tid = get_ptrace_pid (regcache->ptid ());
2133
2134 if (regno >= 0)
2135 store_register (regcache, tid, regno);
2136 else
2137 store_ppc_registers (regcache, tid);
2138 }
2139
2140 /* Functions for transferring registers between a gregset_t or fpregset_t
2141 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2142 by the ptrace interface, not the current program's ABI. Eg. if a
2143 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2144 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2145
2146 void
2147 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2148 {
2149 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2150
2151 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2152 }
2153
2154 void
2155 fill_gregset (const struct regcache *regcache,
2156 gdb_gregset_t *gregsetp, int regno)
2157 {
2158 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2159
2160 if (regno == -1)
2161 memset (gregsetp, 0, sizeof (*gregsetp));
2162 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2163 }
2164
2165 void
2166 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2167 {
2168 const struct regset *regset = ppc_linux_fpregset ();
2169
2170 ppc_supply_fpregset (regset, regcache, -1,
2171 fpregsetp, sizeof (*fpregsetp));
2172 }
2173
2174 void
2175 fill_fpregset (const struct regcache *regcache,
2176 gdb_fpregset_t *fpregsetp, int regno)
2177 {
2178 const struct regset *regset = ppc_linux_fpregset ();
2179
2180 ppc_collect_fpregset (regset, regcache, regno,
2181 fpregsetp, sizeof (*fpregsetp));
2182 }
2183
2184 int
2185 ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2186 gdb_byte *endptr, CORE_ADDR *typep,
2187 CORE_ADDR *valp)
2188 {
2189 int tid = ptid_get_lwp (inferior_ptid);
2190 if (tid == 0)
2191 tid = ptid_get_pid (inferior_ptid);
2192
2193 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
2194
2195 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2196 gdb_byte *ptr = *readptr;
2197
2198 if (endptr == ptr)
2199 return 0;
2200
2201 if (endptr - ptr < sizeof_auxv_field * 2)
2202 return -1;
2203
2204 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2205 ptr += sizeof_auxv_field;
2206 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2207 ptr += sizeof_auxv_field;
2208
2209 *readptr = ptr;
2210 return 1;
2211 }
2212
2213 const struct target_desc *
2214 ppc_linux_nat_target::read_description ()
2215 {
2216 int tid = ptid_get_lwp (inferior_ptid);
2217 if (tid == 0)
2218 tid = ptid_get_pid (inferior_ptid);
2219
2220 if (have_ptrace_getsetevrregs)
2221 {
2222 struct gdb_evrregset_t evrregset;
2223
2224 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2225 return tdesc_powerpc_e500l;
2226
2227 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2228 Anything else needs to be reported. */
2229 else if (errno != EIO)
2230 perror_with_name (_("Unable to fetch SPE registers"));
2231 }
2232
2233 struct ppc_linux_features features = ppc_linux_no_features;
2234
2235 features.wordsize = ppc_linux_target_wordsize (tid);
2236
2237 CORE_ADDR hwcap = ppc_linux_get_hwcap ();
2238
2239 if (have_ptrace_getsetvsxregs
2240 && (hwcap & PPC_FEATURE_HAS_VSX))
2241 {
2242 gdb_vsxregset_t vsxregset;
2243
2244 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2245 features.vsx = true;
2246
2247 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2248 Anything else needs to be reported. */
2249 else if (errno != EIO)
2250 perror_with_name (_("Unable to fetch VSX registers"));
2251 }
2252
2253 if (have_ptrace_getvrregs
2254 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
2255 {
2256 gdb_vrregset_t vrregset;
2257
2258 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2259 features.altivec = true;
2260
2261 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2262 Anything else needs to be reported. */
2263 else if (errno != EIO)
2264 perror_with_name (_("Unable to fetch AltiVec registers"));
2265 }
2266
2267 if (hwcap & PPC_FEATURE_CELL)
2268 features.cell = true;
2269
2270 features.isa205 = ppc_linux_has_isa205 (hwcap);
2271
2272 return ppc_linux_match_description (features);
2273 }
2274
2275 void
2276 _initialize_ppc_linux_nat (void)
2277 {
2278 linux_target = &the_ppc_linux_nat_target;
2279
2280 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
2281
2282 /* Register the target. */
2283 add_inf_child_target (linux_target);
2284 }
This page took 0.087567 seconds and 3 git commands to generate.