gdb/
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-1989, 1991-1992, 1994, 1996, 2000-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "observer.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbthread.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "target.h"
31 #include "linux-nat.h"
32
33 #include <stdint.h>
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <signal.h>
37 #include <sys/user.h>
38 #include <sys/ioctl.h>
39 #include "gdb_wait.h"
40 #include <fcntl.h>
41 #include <sys/procfs.h>
42 #include <sys/ptrace.h>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47 #include "ppc-linux-tdep.h"
48
49 /* Required when using the AUXV. */
50 #include "elf/common.h"
51 #include "auxv.h"
52
53 /* This sometimes isn't defined. */
54 #ifndef PT_ORIG_R3
55 #define PT_ORIG_R3 34
56 #endif
57 #ifndef PT_TRAP
58 #define PT_TRAP 40
59 #endif
60
61 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
62 If they aren't, we can provide them ourselves (their values are fixed
63 because they are part of the kernel ABI). They are used in the AT_HWCAP
64 entry of the AUXV. */
65 #ifndef PPC_FEATURE_CELL
66 #define PPC_FEATURE_CELL 0x00010000
67 #endif
68 #ifndef PPC_FEATURE_BOOKE
69 #define PPC_FEATURE_BOOKE 0x00008000
70 #endif
71 #ifndef PPC_FEATURE_HAS_DFP
72 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
73 #endif
74
75 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
76 configure time check. Some older glibc's (for instance 2.2.1)
77 don't have a specific powerpc version of ptrace.h, and fall back on
78 a generic one. In such cases, sys/ptrace.h defines
79 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
80 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
81 PTRACE_SETVRREGS to be. This also makes a configury check pretty
82 much useless. */
83
84 /* These definitions should really come from the glibc header files,
85 but Glibc doesn't know about the vrregs yet. */
86 #ifndef PTRACE_GETVRREGS
87 #define PTRACE_GETVRREGS 18
88 #define PTRACE_SETVRREGS 19
89 #endif
90
91 /* PTRACE requests for POWER7 VSX registers. */
92 #ifndef PTRACE_GETVSXREGS
93 #define PTRACE_GETVSXREGS 27
94 #define PTRACE_SETVSXREGS 28
95 #endif
96
97 /* Similarly for the ptrace requests for getting / setting the SPE
98 registers (ev0 -- ev31, acc, and spefscr). See the description of
99 gdb_evrregset_t for details. */
100 #ifndef PTRACE_GETEVRREGS
101 #define PTRACE_GETEVRREGS 20
102 #define PTRACE_SETEVRREGS 21
103 #endif
104
105 /* Similarly for the hardware watchpoint support. These requests are used
106 when the BookE kernel interface is not available. */
107 #ifndef PTRACE_GET_DEBUGREG
108 #define PTRACE_GET_DEBUGREG 25
109 #endif
110 #ifndef PTRACE_SET_DEBUGREG
111 #define PTRACE_SET_DEBUGREG 26
112 #endif
113 #ifndef PTRACE_GETSIGINFO
114 #define PTRACE_GETSIGINFO 0x4202
115 #endif
116
117 /* These requests are used when the BookE kernel interface is available.
118 It exposes the additional debug features of BookE processors, such as
119 ranged breakpoints and watchpoints and hardware-accelerated condition
120 evaluation. */
121 #ifndef PPC_PTRACE_GETHWDBGINFO
122
123 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
124 interface is not present in ptrace.h, so we'll have to pretty much include
125 it all here so that the code at least compiles on older systems. */
126 #define PPC_PTRACE_GETHWDBGINFO 0x89
127 #define PPC_PTRACE_SETHWDEBUG 0x88
128 #define PPC_PTRACE_DELHWDEBUG 0x87
129
130 struct ppc_debug_info
131 {
132 uint32_t version; /* Only version 1 exists to date. */
133 uint32_t num_instruction_bps;
134 uint32_t num_data_bps;
135 uint32_t num_condition_regs;
136 uint32_t data_bp_alignment;
137 uint32_t sizeof_condition; /* size of the DVC register. */
138 uint64_t features;
139 };
140
141 /* Features will have bits indicating whether there is support for: */
142 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
143 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
144 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
145 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
146
147 struct ppc_hw_breakpoint
148 {
149 uint32_t version; /* currently, version must be 1 */
150 uint32_t trigger_type; /* only some combinations allowed */
151 uint32_t addr_mode; /* address match mode */
152 uint32_t condition_mode; /* break/watchpoint condition flags */
153 uint64_t addr; /* break/watchpoint address */
154 uint64_t addr2; /* range end or mask */
155 uint64_t condition_value; /* contents of the DVC register */
156 };
157
158 /* Trigger type. */
159 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
160 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
161 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
162 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
163
164 /* Address mode. */
165 #define PPC_BREAKPOINT_MODE_EXACT 0x0
166 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
167 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
168 #define PPC_BREAKPOINT_MODE_MASK 0x3
169
170 /* Condition mode. */
171 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
172 #define PPC_BREAKPOINT_CONDITION_AND 0x1
173 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
174 #define PPC_BREAKPOINT_CONDITION_OR 0x2
175 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
176 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
177 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
178 #define PPC_BREAKPOINT_CONDITION_BE(n) \
179 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
180 #endif /* PPC_PTRACE_GETHWDBGINFO */
181
182
183
184 /* Similarly for the general-purpose (gp0 -- gp31)
185 and floating-point registers (fp0 -- fp31). */
186 #ifndef PTRACE_GETREGS
187 #define PTRACE_GETREGS 12
188 #endif
189 #ifndef PTRACE_SETREGS
190 #define PTRACE_SETREGS 13
191 #endif
192 #ifndef PTRACE_GETFPREGS
193 #define PTRACE_GETFPREGS 14
194 #endif
195 #ifndef PTRACE_SETFPREGS
196 #define PTRACE_SETFPREGS 15
197 #endif
198
199 /* This oddity is because the Linux kernel defines elf_vrregset_t as
200 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
201 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
202 the vrsave as an extra 4 bytes at the end. I opted for creating a
203 flat array of chars, so that it is easier to manipulate for gdb.
204
205 There are 32 vector registers 16 bytes longs, plus a VSCR register
206 which is only 4 bytes long, but is fetched as a 16 bytes
207 quantity. Up to here we have the elf_vrregset_t structure.
208 Appended to this there is space for the VRSAVE register: 4 bytes.
209 Even though this vrsave register is not included in the regset
210 typedef, it is handled by the ptrace requests.
211
212 Note that GNU/Linux doesn't support little endian PPC hardware,
213 therefore the offset at which the real value of the VSCR register
214 is located will be always 12 bytes.
215
216 The layout is like this (where x is the actual value of the vscr reg): */
217
218 /* *INDENT-OFF* */
219 /*
220 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
221 <-------> <-------><-------><->
222 VR0 VR31 VSCR VRSAVE
223 */
224 /* *INDENT-ON* */
225
226 #define SIZEOF_VRREGS 33*16+4
227
228 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
229
230 /* This is the layout of the POWER7 VSX registers and the way they overlap
231 with the existing FPR and VMX registers.
232
233 VSR doubleword 0 VSR doubleword 1
234 ----------------------------------------------------------------
235 VSR[0] | FPR[0] | |
236 ----------------------------------------------------------------
237 VSR[1] | FPR[1] | |
238 ----------------------------------------------------------------
239 | ... | |
240 | ... | |
241 ----------------------------------------------------------------
242 VSR[30] | FPR[30] | |
243 ----------------------------------------------------------------
244 VSR[31] | FPR[31] | |
245 ----------------------------------------------------------------
246 VSR[32] | VR[0] |
247 ----------------------------------------------------------------
248 VSR[33] | VR[1] |
249 ----------------------------------------------------------------
250 | ... |
251 | ... |
252 ----------------------------------------------------------------
253 VSR[62] | VR[30] |
254 ----------------------------------------------------------------
255 VSR[63] | VR[31] |
256 ----------------------------------------------------------------
257
258 VSX has 64 128bit registers. The first 32 registers overlap with
259 the FP registers (doubleword 0) and hence extend them with additional
260 64 bits (doubleword 1). The other 32 regs overlap with the VMX
261 registers. */
262 #define SIZEOF_VSXREGS 32*8
263
264 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
265
266 /* On PPC processors that support the Signal Processing Extension
267 (SPE) APU, the general-purpose registers are 64 bits long.
268 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
269 ptrace calls only access the lower half of each register, to allow
270 them to behave the same way they do on non-SPE systems. There's a
271 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
272 read and write the top halves of all the general-purpose registers
273 at once, along with some SPE-specific registers.
274
275 GDB itself continues to claim the general-purpose registers are 32
276 bits long. It has unnamed raw registers that hold the upper halves
277 of the gprs, and the full 64-bit SIMD views of the registers,
278 'ev0' -- 'ev31', are pseudo-registers that splice the top and
279 bottom halves together.
280
281 This is the structure filled in by PTRACE_GETEVRREGS and written to
282 the inferior's registers by PTRACE_SETEVRREGS. */
283 struct gdb_evrregset_t
284 {
285 unsigned long evr[32];
286 unsigned long long acc;
287 unsigned long spefscr;
288 };
289
290 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
291 PTRACE_SETVSXREGS requests, for reading and writing the VSX
292 POWER7 registers 0 through 31. Zero if we've tried one of them and
293 gotten an error. Note that VSX registers 32 through 63 overlap
294 with VR registers 0 through 31. */
295 int have_ptrace_getsetvsxregs = 1;
296
297 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
298 PTRACE_SETVRREGS requests, for reading and writing the Altivec
299 registers. Zero if we've tried one of them and gotten an
300 error. */
301 int have_ptrace_getvrregs = 1;
302
303 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
304 PTRACE_SETEVRREGS requests, for reading and writing the SPE
305 registers. Zero if we've tried one of them and gotten an
306 error. */
307 int have_ptrace_getsetevrregs = 1;
308
309 /* Non-zero if our kernel may support the PTRACE_GETREGS and
310 PTRACE_SETREGS requests, for reading and writing the
311 general-purpose registers. Zero if we've tried one of
312 them and gotten an error. */
313 int have_ptrace_getsetregs = 1;
314
315 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
316 PTRACE_SETFPREGS requests, for reading and writing the
317 floating-pointers registers. Zero if we've tried one of
318 them and gotten an error. */
319 int have_ptrace_getsetfpregs = 1;
320
321 /* *INDENT-OFF* */
322 /* registers layout, as presented by the ptrace interface:
323 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
327 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
335 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336 /* *INDENT_ON * */
337
338 static int
339 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
340 {
341 int u_addr = -1;
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
345 int wordsize = sizeof (long);
346
347 /* General purpose registers occupy 1 slot each in the buffer. */
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
351
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
359
360 /* UISA special purpose registers: 1 slot each. */
361 if (regno == gdbarch_pc_regnum (gdbarch))
362 u_addr = PT_NIP * wordsize;
363 if (regno == tdep->ppc_lr_regnum)
364 u_addr = PT_LNK * wordsize;
365 if (regno == tdep->ppc_cr_regnum)
366 u_addr = PT_CCR * wordsize;
367 if (regno == tdep->ppc_xer_regnum)
368 u_addr = PT_XER * wordsize;
369 if (regno == tdep->ppc_ctr_regnum)
370 u_addr = PT_CTR * wordsize;
371 #ifdef PT_MQ
372 if (regno == tdep->ppc_mq_regnum)
373 u_addr = PT_MQ * wordsize;
374 #endif
375 if (regno == tdep->ppc_ps_regnum)
376 u_addr = PT_MSR * wordsize;
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
388 the second half of such a slot-pair (hence +1). For 64-bit,
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
402 return u_addr;
403 }
404
405 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408 static void
409 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410 {
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = get_regcache_arch (regcache);
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431 }
432
433 /* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436 static void
437 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
438 {
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
442 struct gdbarch *gdbarch = get_regcache_arch (regcache);
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
454 perror_with_name (_("Unable to fetch AltiVec register"));
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
463
464 regcache_raw_supply (regcache, regno,
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
467 }
468
469 /* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477 static void
478 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479 {
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
492 perror_with_name (_("Unable to fetch SPE registers"));
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497 }
498
499 /* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
503 static void
504 fetch_spe_register (struct regcache *regcache, int tid, int regno)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 struct gdb_evrregset_t evrregs;
509
510 gdb_assert (sizeof (evrregs.evr[0])
511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
512 gdb_assert (sizeof (evrregs.acc)
513 == register_size (gdbarch, tdep->ppc_acc_regnum));
514 gdb_assert (sizeof (evrregs.spefscr)
515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
516
517 get_spe_registers (tid, &evrregs);
518
519 if (regno == -1)
520 {
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
525 &evrregs.evr[i]);
526 }
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
529 regcache_raw_supply (regcache, regno,
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
539 &evrregs.spefscr);
540 }
541
542 static void
543 fetch_register (struct regcache *regcache, int tid, int regno)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547 /* This isn't really an address. But ptrace thinks of it as one. */
548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
549 int bytes_transferred;
550 unsigned int offset; /* Offset of registers within the u area. */
551 char buf[MAX_REGISTER_SIZE];
552
553 if (altivec_register_p (gdbarch, regno))
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
561 fetch_altivec_register (regcache, tid, regno);
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
576 else if (spe_register_p (gdbarch, regno))
577 {
578 fetch_spe_register (regcache, tid, regno);
579 return;
580 }
581
582 if (regaddr == -1)
583 {
584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
585 regcache_raw_supply (regcache, regno, buf);
586 return;
587 }
588
589 /* Read the raw register using sizeof(long) sized chunks. On a
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
592 for (bytes_transferred = 0;
593 bytes_transferred < register_size (gdbarch, regno);
594 bytes_transferred += sizeof (long))
595 {
596 long l;
597
598 errno = 0;
599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
600 regaddr += sizeof (long);
601 if (errno != 0)
602 {
603 char message[128];
604 sprintf (message, "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
606 perror_with_name (message);
607 }
608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
609 }
610
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
613 (long). */
614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
618 regcache_raw_supply (regcache, regno, buf);
619 }
620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
625 regcache_raw_supply (regcache, regno, buf + padding);
626 }
627 else
628 internal_error (__FILE__, __LINE__,
629 _("fetch_register: unexpected byte order: %d"),
630 gdbarch_byte_order (gdbarch));
631 }
632
633 static void
634 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635 {
636 int i;
637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646 }
647
648 static void
649 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
650 {
651 int i;
652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
666 *vrregsetp + i * vrregsize + offset);
667 else
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize);
670 }
671 }
672
673 static void
674 fetch_vsx_registers (struct regcache *regcache, int tid)
675 {
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690 }
691
692 static void
693 fetch_altivec_registers (struct regcache *regcache, int tid)
694 {
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
706 perror_with_name (_("Unable to fetch AltiVec registers"));
707 }
708 supply_vrregset (regcache, &regs);
709 }
710
711 /* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719 static int
720 fetch_all_gp_regs (struct regcache *regcache, int tid)
721 {
722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_gp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763 }
764
765 /* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773 static int
774 fetch_all_fp_regs (struct regcache *regcache, int tid)
775 {
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791 }
792
793 /* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799 static void
800 fetch_fp_regs (struct regcache *regcache, int tid)
801 {
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815 }
816
817 static void
818 fetch_ppc_registers (struct regcache *regcache, int tid)
819 {
820 int i;
821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
823
824 fetch_gp_regs (regcache, tid);
825 if (tdep->ppc_fp0_regnum >= 0)
826 fetch_fp_regs (regcache, tid);
827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
828 if (tdep->ppc_ps_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
830 if (tdep->ppc_cr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
832 if (tdep->ppc_lr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
834 if (tdep->ppc_ctr_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
836 if (tdep->ppc_xer_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
838 if (tdep->ppc_mq_regnum != -1)
839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
845 if (tdep->ppc_fpscr_regnum != -1)
846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
849 fetch_altivec_registers (regcache, tid);
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
853 if (tdep->ppc_ev0_upper_regnum >= 0)
854 fetch_spe_register (regcache, tid, -1);
855 }
856
857 /* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
860 static void
861 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
862 struct regcache *regcache, int regno)
863 {
864 /* Overload thread id onto process id. */
865 int tid = TIDGET (inferior_ptid);
866
867 /* No thread id, just use process id. */
868 if (tid == 0)
869 tid = PIDGET (inferior_ptid);
870
871 if (regno == -1)
872 fetch_ppc_registers (regcache, tid);
873 else
874 fetch_register (regcache, tid, regno);
875 }
876
877 /* Store one VSX register. */
878 static void
879 store_vsx_register (const struct regcache *regcache, int tid, int regno)
880 {
881 int ret;
882 gdb_vsxregset_t regs;
883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
886
887 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
888 if (ret < 0)
889 {
890 if (errno == EIO)
891 {
892 have_ptrace_getsetvsxregs = 0;
893 return;
894 }
895 perror_with_name (_("Unable to fetch VSX register"));
896 }
897
898 regcache_raw_collect (regcache, regno, regs +
899 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
900
901 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
902 if (ret < 0)
903 perror_with_name (_("Unable to store VSX register"));
904 }
905
906 /* Store one register. */
907 static void
908 store_altivec_register (const struct regcache *regcache, int tid, int regno)
909 {
910 int ret;
911 int offset = 0;
912 gdb_vrregset_t regs;
913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
916
917 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
918 if (ret < 0)
919 {
920 if (errno == EIO)
921 {
922 have_ptrace_getvrregs = 0;
923 return;
924 }
925 perror_with_name (_("Unable to fetch AltiVec register"));
926 }
927
928 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
929 long on the hardware. */
930 if (regno == (tdep->ppc_vrsave_regnum - 1))
931 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
932
933 regcache_raw_collect (regcache, regno,
934 regs + (regno
935 - tdep->ppc_vr0_regnum) * vrregsize + offset);
936
937 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
938 if (ret < 0)
939 perror_with_name (_("Unable to store AltiVec register"));
940 }
941
942 /* Assuming TID referrs to an SPE process, set the top halves of TID's
943 general-purpose registers and its SPE-specific registers to the
944 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
945 nothing.
946
947 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
948 PTRACE_SETEVRREGS requests are supported is isolated here, and in
949 get_spe_registers. */
950 static void
951 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
952 {
953 if (have_ptrace_getsetevrregs)
954 {
955 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 return;
957 else
958 {
959 /* EIO means that the PTRACE_SETEVRREGS request isn't
960 supported; we fail silently, and don't try the call
961 again. */
962 if (errno == EIO)
963 have_ptrace_getsetevrregs = 0;
964 else
965 /* Anything else needs to be reported. */
966 perror_with_name (_("Unable to set SPE registers"));
967 }
968 }
969 }
970
971 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
972 If REGNO is -1, write the values of all the SPE-specific
973 registers. */
974 static void
975 store_spe_register (const struct regcache *regcache, int tid, int regno)
976 {
977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
979 struct gdb_evrregset_t evrregs;
980
981 gdb_assert (sizeof (evrregs.evr[0])
982 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
983 gdb_assert (sizeof (evrregs.acc)
984 == register_size (gdbarch, tdep->ppc_acc_regnum));
985 gdb_assert (sizeof (evrregs.spefscr)
986 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
987
988 if (regno == -1)
989 /* Since we're going to write out every register, the code below
990 should store to every field of evrregs; if that doesn't happen,
991 make it obvious by initializing it with suspicious values. */
992 memset (&evrregs, 42, sizeof (evrregs));
993 else
994 /* We can only read and write the entire EVR register set at a
995 time, so to write just a single register, we do a
996 read-modify-write maneuver. */
997 get_spe_registers (tid, &evrregs);
998
999 if (regno == -1)
1000 {
1001 int i;
1002
1003 for (i = 0; i < ppc_num_gprs; i++)
1004 regcache_raw_collect (regcache,
1005 tdep->ppc_ev0_upper_regnum + i,
1006 &evrregs.evr[i]);
1007 }
1008 else if (tdep->ppc_ev0_upper_regnum <= regno
1009 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1010 regcache_raw_collect (regcache, regno,
1011 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_acc_regnum)
1015 regcache_raw_collect (regcache,
1016 tdep->ppc_acc_regnum,
1017 &evrregs.acc);
1018
1019 if (regno == -1
1020 || regno == tdep->ppc_spefscr_regnum)
1021 regcache_raw_collect (regcache,
1022 tdep->ppc_spefscr_regnum,
1023 &evrregs.spefscr);
1024
1025 /* Write back the modified register set. */
1026 set_spe_registers (tid, &evrregs);
1027 }
1028
1029 static void
1030 store_register (const struct regcache *regcache, int tid, int regno)
1031 {
1032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1034 /* This isn't really an address. But ptrace thinks of it as one. */
1035 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1036 int i;
1037 size_t bytes_to_transfer;
1038 char buf[MAX_REGISTER_SIZE];
1039
1040 if (altivec_register_p (gdbarch, regno))
1041 {
1042 store_altivec_register (regcache, tid, regno);
1043 return;
1044 }
1045 if (vsx_register_p (gdbarch, regno))
1046 {
1047 store_vsx_register (regcache, tid, regno);
1048 return;
1049 }
1050 else if (spe_register_p (gdbarch, regno))
1051 {
1052 store_spe_register (regcache, tid, regno);
1053 return;
1054 }
1055
1056 if (regaddr == -1)
1057 return;
1058
1059 /* First collect the register. Keep in mind that the regcache's
1060 idea of the register's size may not be a multiple of sizeof
1061 (long). */
1062 memset (buf, 0, sizeof buf);
1063 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1064 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1065 {
1066 /* Little-endian values always sit at the left end of the buffer. */
1067 regcache_raw_collect (regcache, regno, buf);
1068 }
1069 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1070 {
1071 /* Big-endian values sit at the right end of the buffer. */
1072 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1073 regcache_raw_collect (regcache, regno, buf + padding);
1074 }
1075
1076 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1077 {
1078 long l;
1079
1080 memcpy (&l, &buf[i], sizeof (l));
1081 errno = 0;
1082 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1083 regaddr += sizeof (long);
1084
1085 if (errno == EIO
1086 && (regno == tdep->ppc_fpscr_regnum
1087 || regno == PPC_ORIG_R3_REGNUM
1088 || regno == PPC_TRAP_REGNUM))
1089 {
1090 /* Some older kernel versions don't allow fpscr, orig_r3
1091 or trap to be written. */
1092 continue;
1093 }
1094
1095 if (errno != 0)
1096 {
1097 char message[128];
1098 sprintf (message, "writing register %s (#%d)",
1099 gdbarch_register_name (gdbarch, regno), regno);
1100 perror_with_name (message);
1101 }
1102 }
1103 }
1104
1105 static void
1106 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1107 {
1108 int i;
1109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1112
1113 for (i = 0; i < ppc_num_vshrs; i++)
1114 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1115 *vsxregsetp + i * vsxregsize);
1116 }
1117
1118 static void
1119 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1120 {
1121 int i;
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1124 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1125 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1126 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1127
1128 for (i = 0; i < num_of_vrregs; i++)
1129 {
1130 /* The last 2 registers of this set are only 32 bit long, not
1131 128, but only VSCR is fetched as a 16 bytes quantity. */
1132 if (i == (num_of_vrregs - 2))
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize + offset);
1135 else
1136 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1137 *vrregsetp + i * vrregsize);
1138 }
1139 }
1140
1141 static void
1142 store_vsx_registers (const struct regcache *regcache, int tid)
1143 {
1144 int ret;
1145 gdb_vsxregset_t regs;
1146
1147 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1148 if (ret < 0)
1149 {
1150 if (errno == EIO)
1151 {
1152 have_ptrace_getsetvsxregs = 0;
1153 return;
1154 }
1155 perror_with_name (_("Couldn't get VSX registers"));
1156 }
1157
1158 fill_vsxregset (regcache, &regs);
1159
1160 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1161 perror_with_name (_("Couldn't write VSX registers"));
1162 }
1163
1164 static void
1165 store_altivec_registers (const struct regcache *regcache, int tid)
1166 {
1167 int ret;
1168 gdb_vrregset_t regs;
1169
1170 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1171 if (ret < 0)
1172 {
1173 if (errno == EIO)
1174 {
1175 have_ptrace_getvrregs = 0;
1176 return;
1177 }
1178 perror_with_name (_("Couldn't get AltiVec registers"));
1179 }
1180
1181 fill_vrregset (regcache, &regs);
1182
1183 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1184 perror_with_name (_("Couldn't write AltiVec registers"));
1185 }
1186
1187 /* This function actually issues the request to ptrace, telling
1188 it to store all general-purpose registers present in the specified
1189 regset.
1190
1191 If the ptrace request does not exist, this function returns 0
1192 and properly sets the have_ptrace_* flag. If the request fails,
1193 this function calls perror_with_name. Otherwise, if the request
1194 succeeds, then the regcache is stored and 1 is returned. */
1195 static int
1196 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1197 {
1198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1200 gdb_gregset_t gregset;
1201
1202 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 {
1204 if (errno == EIO)
1205 {
1206 have_ptrace_getsetregs = 0;
1207 return 0;
1208 }
1209 perror_with_name (_("Couldn't get general-purpose registers."));
1210 }
1211
1212 fill_gregset (regcache, &gregset, regno);
1213
1214 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 have_ptrace_getsetregs = 0;
1219 return 0;
1220 }
1221 perror_with_name (_("Couldn't set general-purpose registers."));
1222 }
1223
1224 return 1;
1225 }
1226
1227 /* This is a wrapper for the store_all_gp_regs function. It is
1228 responsible for verifying if this target has the ptrace request
1229 that can be used to store all general-purpose registers at one
1230 shot. If it doesn't, then we should store them using the
1231 old-fashioned way, which is to iterate over the registers and
1232 store them one by one. */
1233 static void
1234 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1235 {
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1238 int i;
1239
1240 if (have_ptrace_getsetregs)
1241 if (store_all_gp_regs (regcache, tid, regno))
1242 return;
1243
1244 /* If we hit this point, it doesn't really matter which
1245 architecture we are using. We just need to store the
1246 registers in the "old-fashioned way". */
1247 for (i = 0; i < ppc_num_gprs; i++)
1248 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1249 }
1250
1251 /* This function actually issues the request to ptrace, telling
1252 it to store all floating-point registers present in the specified
1253 regset.
1254
1255 If the ptrace request does not exist, this function returns 0
1256 and properly sets the have_ptrace_* flag. If the request fails,
1257 this function calls perror_with_name. Otherwise, if the request
1258 succeeds, then the regcache is stored and 1 is returned. */
1259 static int
1260 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1261 {
1262 gdb_fpregset_t fpregs;
1263
1264 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 {
1266 if (errno == EIO)
1267 {
1268 have_ptrace_getsetfpregs = 0;
1269 return 0;
1270 }
1271 perror_with_name (_("Couldn't get floating-point registers."));
1272 }
1273
1274 fill_fpregset (regcache, &fpregs, regno);
1275
1276 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 {
1278 if (errno == EIO)
1279 {
1280 have_ptrace_getsetfpregs = 0;
1281 return 0;
1282 }
1283 perror_with_name (_("Couldn't set floating-point registers."));
1284 }
1285
1286 return 1;
1287 }
1288
1289 /* This is a wrapper for the store_all_fp_regs function. It is
1290 responsible for verifying if this target has the ptrace request
1291 that can be used to store all floating-point registers at one
1292 shot. If it doesn't, then we should store them using the
1293 old-fashioned way, which is to iterate over the registers and
1294 store them one by one. */
1295 static void
1296 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1297 {
1298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int i;
1301
1302 if (have_ptrace_getsetfpregs)
1303 if (store_all_fp_regs (regcache, tid, regno))
1304 return;
1305
1306 /* If we hit this point, it doesn't really matter which
1307 architecture we are using. We just need to store the
1308 registers in the "old-fashioned way". */
1309 for (i = 0; i < ppc_num_fprs; i++)
1310 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311 }
1312
1313 static void
1314 store_ppc_registers (const struct regcache *regcache, int tid)
1315 {
1316 int i;
1317 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 store_gp_regs (regcache, tid, -1);
1321 if (tdep->ppc_fp0_regnum >= 0)
1322 store_fp_regs (regcache, tid, -1);
1323 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1324 if (tdep->ppc_ps_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_ps_regnum);
1326 if (tdep->ppc_cr_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_cr_regnum);
1328 if (tdep->ppc_lr_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_lr_regnum);
1330 if (tdep->ppc_ctr_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1332 if (tdep->ppc_xer_regnum != -1)
1333 store_register (regcache, tid, tdep->ppc_xer_regnum);
1334 if (tdep->ppc_mq_regnum != -1)
1335 store_register (regcache, tid, tdep->ppc_mq_regnum);
1336 if (tdep->ppc_fpscr_regnum != -1)
1337 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1338 if (ppc_linux_trap_reg_p (gdbarch))
1339 {
1340 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1341 store_register (regcache, tid, PPC_TRAP_REGNUM);
1342 }
1343 if (have_ptrace_getvrregs)
1344 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1345 store_altivec_registers (regcache, tid);
1346 if (have_ptrace_getsetvsxregs)
1347 if (tdep->ppc_vsr0_upper_regnum != -1)
1348 store_vsx_registers (regcache, tid);
1349 if (tdep->ppc_ev0_upper_regnum >= 0)
1350 store_spe_register (regcache, tid, -1);
1351 }
1352
1353 /* Fetch the AT_HWCAP entry from the aux vector. */
1354 unsigned long ppc_linux_get_hwcap (void)
1355 {
1356 CORE_ADDR field;
1357
1358 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1359 return (unsigned long) field;
1360
1361 return 0;
1362 }
1363
1364 /* The cached DABR value, to install in new threads.
1365 This variable is used when we are dealing with non-BookE
1366 processors. */
1367 static long saved_dabr_value;
1368
1369 /* Global structure that will store information about the available
1370 features on this BookE processor. */
1371 static struct ppc_debug_info booke_debug_info;
1372
1373 /* Global variable that holds the maximum number of slots that the
1374 kernel will use. This is only used when the processor is BookE. */
1375 static size_t max_slots_number = 0;
1376
1377 struct hw_break_tuple
1378 {
1379 long slot;
1380 struct ppc_hw_breakpoint *hw_break;
1381 };
1382
1383 /* This is an internal VEC created to store information about *points inserted
1384 for each thread. This is used for BookE processors. */
1385 typedef struct thread_points
1386 {
1387 /* The TID to which this *point relates. */
1388 int tid;
1389 /* Information about the *point, such as its address, type, etc.
1390
1391 Each element inside this vector corresponds to a hardware
1392 breakpoint or watchpoint in the thread represented by TID. The maximum
1393 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1394 the tuple is NULL, then the position in the vector is free. */
1395 struct hw_break_tuple *hw_breaks;
1396 } *thread_points_p;
1397 DEF_VEC_P (thread_points_p);
1398
1399 VEC(thread_points_p) *ppc_threads = NULL;
1400
1401 /* The version of the kernel interface that we will use if the processor is
1402 BookE. */
1403 #define PPC_DEBUG_CURRENT_VERSION 1
1404
1405 /* Returns non-zero if we support the ptrace interface which enables
1406 booke debugging resources. */
1407 static int
1408 have_ptrace_booke_interface (void)
1409 {
1410 static int have_ptrace_booke_interface = -1;
1411
1412 if (have_ptrace_booke_interface == -1)
1413 {
1414 int tid;
1415
1416 tid = TIDGET (inferior_ptid);
1417 if (tid == 0)
1418 tid = PIDGET (inferior_ptid);
1419
1420 /* Check for kernel support for BOOKE debug registers. */
1421 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1422 {
1423 have_ptrace_booke_interface = 1;
1424 max_slots_number = booke_debug_info.num_instruction_bps
1425 + booke_debug_info.num_data_bps
1426 + booke_debug_info.num_condition_regs;
1427 }
1428 else
1429 {
1430 /* Old school interface and no BOOKE debug registers support. */
1431 have_ptrace_booke_interface = 0;
1432 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
1433 }
1434 }
1435
1436 return have_ptrace_booke_interface;
1437 }
1438
1439 static int
1440 ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
1441 {
1442 int total_hw_wp, total_hw_bp;
1443
1444 if (have_ptrace_booke_interface ())
1445 {
1446 /* For PPC BookE processors, the number of available hardware
1447 watchpoints and breakpoints is stored at the booke_debug_info
1448 struct. */
1449 total_hw_bp = booke_debug_info.num_instruction_bps;
1450 total_hw_wp = booke_debug_info.num_data_bps;
1451 }
1452 else
1453 {
1454 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1455 hardware breakpoints. */
1456 total_hw_bp = 0;
1457 total_hw_wp = 1;
1458 }
1459
1460 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1461 || type == bp_access_watchpoint || type == bp_watchpoint)
1462 {
1463 if (cnt > total_hw_wp)
1464 return -1;
1465 }
1466 else if (type == bp_hardware_breakpoint)
1467 {
1468 if (cnt > total_hw_bp)
1469 return -1;
1470 }
1471
1472 if (!have_ptrace_booke_interface ())
1473 {
1474 int tid;
1475 ptid_t ptid = inferior_ptid;
1476
1477 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1478 and whether the target has DABR. If either answer is no, the
1479 ptrace call will return -1. Fail in that case. */
1480 tid = TIDGET (ptid);
1481 if (tid == 0)
1482 tid = PIDGET (ptid);
1483
1484 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1485 return 0;
1486 }
1487
1488 return 1;
1489 }
1490
1491 static int
1492 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1493 {
1494 /* Handle sub-8-byte quantities. */
1495 if (len <= 0)
1496 return 0;
1497
1498 /* The new BookE ptrace interface tells if there are alignment restrictions
1499 for watchpoints in the processors. In that case, we use that information
1500 to determine the hardcoded watchable region for watchpoints. */
1501 if (have_ptrace_booke_interface ())
1502 {
1503 /* DAC-based processors (i.e., embedded processors), like the PowerPC 440
1504 have ranged watchpoints and can watch any access within an arbitrary
1505 memory region. This is useful to watch arrays and structs, for
1506 instance. It takes two hardware watchpoints though. */
1507 if (len > 1
1508 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)
1509 return 2;
1510 else if (booke_debug_info.data_bp_alignment
1511 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1512 + booke_debug_info.data_bp_alignment))
1513 return 0;
1514 }
1515 /* addr+len must fall in the 8 byte watchable region for DABR-based
1516 processors (i.e., server processors). Without the new BookE ptrace
1517 interface, DAC-based processors (i.e., embedded processors) will use
1518 addresses aligned to 4-bytes due to the way the read/write flags are
1519 passed in the old ptrace interface. */
1520 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1521 && (addr + len) > (addr & ~3) + 4)
1522 || (addr + len) > (addr & ~7) + 8)
1523 return 0;
1524
1525 return 1;
1526 }
1527
1528 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1529 static int
1530 booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1531 {
1532 return (a->trigger_type == b->trigger_type
1533 && a->addr_mode == b->addr_mode
1534 && a->condition_mode == b->condition_mode
1535 && a->addr == b->addr
1536 && a->addr2 == b->addr2
1537 && a->condition_value == b->condition_value);
1538 }
1539
1540 /* This function can be used to retrieve a thread_points by the TID of the
1541 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1542 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1543 provided TID will be created and returned. */
1544 static struct thread_points *
1545 booke_find_thread_points_by_tid (int tid, int alloc_new)
1546 {
1547 int i;
1548 struct thread_points *t;
1549
1550 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1551 if (t->tid == tid)
1552 return t;
1553
1554 t = NULL;
1555
1556 /* Do we need to allocate a new point_item
1557 if the wanted one does not exist? */
1558 if (alloc_new)
1559 {
1560 t = xmalloc (sizeof (struct thread_points));
1561 t->hw_breaks
1562 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1563 t->tid = tid;
1564 VEC_safe_push (thread_points_p, ppc_threads, t);
1565 }
1566
1567 return t;
1568 }
1569
1570 /* This function is a generic wrapper that is responsible for inserting a
1571 *point (i.e., calling `ptrace' in order to issue the request to the
1572 kernel) and registering it internally in GDB. */
1573 static void
1574 booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1575 {
1576 int i;
1577 long slot;
1578 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1579 struct hw_break_tuple *hw_breaks;
1580 struct cleanup *c = make_cleanup (xfree, p);
1581 struct thread_points *t;
1582 struct hw_break_tuple *tuple;
1583
1584 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1585
1586 errno = 0;
1587 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1588 if (slot < 0)
1589 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1590
1591 /* Everything went fine, so we have to register this *point. */
1592 t = booke_find_thread_points_by_tid (tid, 1);
1593 gdb_assert (t != NULL);
1594 hw_breaks = t->hw_breaks;
1595
1596 /* Find a free element in the hw_breaks vector. */
1597 for (i = 0; i < max_slots_number; i++)
1598 if (hw_breaks[i].hw_break == NULL)
1599 {
1600 hw_breaks[i].slot = slot;
1601 hw_breaks[i].hw_break = p;
1602 break;
1603 }
1604
1605 gdb_assert (i != max_slots_number);
1606
1607 discard_cleanups (c);
1608 }
1609
1610 /* This function is a generic wrapper that is responsible for removing a
1611 *point (i.e., calling `ptrace' in order to issue the request to the
1612 kernel), and unregistering it internally at GDB. */
1613 static void
1614 booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1615 {
1616 int i;
1617 struct hw_break_tuple *hw_breaks;
1618 struct thread_points *t;
1619
1620 t = booke_find_thread_points_by_tid (tid, 0);
1621 gdb_assert (t != NULL);
1622 hw_breaks = t->hw_breaks;
1623
1624 for (i = 0; i < max_slots_number; i++)
1625 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1626 break;
1627
1628 gdb_assert (i != max_slots_number);
1629
1630 /* We have to ignore ENOENT errors because the kernel implements hardware
1631 breakpoints/watchpoints as "one-shot", that is, they are automatically
1632 deleted when hit. */
1633 errno = 0;
1634 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1635 if (errno != ENOENT)
1636 perror_with_name (_("Unexpected error deleting "
1637 "breakpoint or watchpoint"));
1638
1639 xfree (hw_breaks[i].hw_break);
1640 hw_breaks[i].hw_break = NULL;
1641 }
1642
1643 /* Return the number of registers needed for a ranged breakpoint. */
1644
1645 static int
1646 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1647 {
1648 return ((have_ptrace_booke_interface ()
1649 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1650 2 : -1);
1651 }
1652
1653 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1654 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1655
1656 static int
1657 ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1658 struct bp_target_info *bp_tgt)
1659 {
1660 struct lwp_info *lp;
1661 struct ppc_hw_breakpoint p;
1662
1663 if (!have_ptrace_booke_interface ())
1664 return -1;
1665
1666 p.version = PPC_DEBUG_CURRENT_VERSION;
1667 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1668 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1669 p.addr = (uint64_t) bp_tgt->placed_address;
1670 p.condition_value = 0;
1671
1672 if (bp_tgt->length)
1673 {
1674 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1675
1676 /* The breakpoint will trigger if the address of the instruction is
1677 within the defined range, as follows: p.addr <= address < p.addr2. */
1678 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1679 }
1680 else
1681 {
1682 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1683 p.addr2 = 0;
1684 }
1685
1686 ALL_LWPS (lp)
1687 booke_insert_point (&p, TIDGET (lp->ptid));
1688
1689 return 0;
1690 }
1691
1692 static int
1693 ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1694 struct bp_target_info *bp_tgt)
1695 {
1696 struct lwp_info *lp;
1697 struct ppc_hw_breakpoint p;
1698
1699 if (!have_ptrace_booke_interface ())
1700 return -1;
1701
1702 p.version = PPC_DEBUG_CURRENT_VERSION;
1703 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1704 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1705 p.addr = (uint64_t) bp_tgt->placed_address;
1706 p.condition_value = 0;
1707
1708 if (bp_tgt->length)
1709 {
1710 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1711
1712 /* The breakpoint will trigger if the address of the instruction is within
1713 the defined range, as follows: p.addr <= address < p.addr2. */
1714 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1715 }
1716 else
1717 {
1718 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1719 p.addr2 = 0;
1720 }
1721
1722 ALL_LWPS (lp)
1723 booke_remove_point (&p, TIDGET (lp->ptid));
1724
1725 return 0;
1726 }
1727
1728 static int
1729 get_trigger_type (int rw)
1730 {
1731 int t;
1732
1733 if (rw == hw_read)
1734 t = PPC_BREAKPOINT_TRIGGER_READ;
1735 else if (rw == hw_write)
1736 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1737 else
1738 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1739
1740 return t;
1741 }
1742
1743 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1744 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1745 or hw_access for an access watchpoint. Returns 0 on success and throws
1746 an error on failure. */
1747
1748 static int
1749 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1750 CORE_ADDR mask, int rw)
1751 {
1752 struct lwp_info *lp;
1753 struct ppc_hw_breakpoint p;
1754
1755 gdb_assert (have_ptrace_booke_interface ());
1756
1757 p.version = PPC_DEBUG_CURRENT_VERSION;
1758 p.trigger_type = get_trigger_type (rw);
1759 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1760 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1761 p.addr = addr;
1762 p.addr2 = mask;
1763 p.condition_value = 0;
1764
1765 ALL_LWPS (lp)
1766 booke_insert_point (&p, TIDGET (lp->ptid));
1767
1768 return 0;
1769 }
1770
1771 /* Remove a masked watchpoint at ADDR with the mask MASK.
1772 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1773 or hw_access for an access watchpoint. Returns 0 on success and throws
1774 an error on failure. */
1775
1776 static int
1777 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1778 CORE_ADDR mask, int rw)
1779 {
1780 struct lwp_info *lp;
1781 struct ppc_hw_breakpoint p;
1782
1783 gdb_assert (have_ptrace_booke_interface ());
1784
1785 p.version = PPC_DEBUG_CURRENT_VERSION;
1786 p.trigger_type = get_trigger_type (rw);
1787 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1788 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1789 p.addr = addr;
1790 p.addr2 = mask;
1791 p.condition_value = 0;
1792
1793 ALL_LWPS (lp)
1794 booke_remove_point (&p, TIDGET (lp->ptid));
1795
1796 return 0;
1797 }
1798
1799 /* Check whether we have at least one free DVC register. */
1800 static int
1801 can_use_watchpoint_cond_accel (void)
1802 {
1803 struct thread_points *p;
1804 int tid = TIDGET (inferior_ptid);
1805 int cnt = booke_debug_info.num_condition_regs, i;
1806 CORE_ADDR tmp_value;
1807
1808 if (!have_ptrace_booke_interface () || cnt == 0)
1809 return 0;
1810
1811 p = booke_find_thread_points_by_tid (tid, 0);
1812
1813 if (p)
1814 {
1815 for (i = 0; i < max_slots_number; i++)
1816 if (p->hw_breaks[i].hw_break != NULL
1817 && (p->hw_breaks[i].hw_break->condition_mode
1818 != PPC_BREAKPOINT_CONDITION_NONE))
1819 cnt--;
1820
1821 /* There are no available slots now. */
1822 if (cnt <= 0)
1823 return 0;
1824 }
1825
1826 return 1;
1827 }
1828
1829 /* Calculate the enable bits and the contents of the Data Value Compare
1830 debug register present in BookE processors.
1831
1832 ADDR is the address to be watched, LEN is the length of watched data
1833 and DATA_VALUE is the value which will trigger the watchpoint.
1834 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1835 CONDITION_VALUE will hold the value which should be put in the
1836 DVC register. */
1837 static void
1838 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1839 uint32_t *condition_mode, uint64_t *condition_value)
1840 {
1841 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1842 rightmost_enabled_byte;
1843 CORE_ADDR addr_end_data, addr_end_dvc;
1844
1845 /* The DVC register compares bytes within fixed-length windows which
1846 are word-aligned, with length equal to that of the DVC register.
1847 We need to calculate where our watch region is relative to that
1848 window and enable comparison of the bytes which fall within it. */
1849
1850 align_offset = addr % booke_debug_info.sizeof_condition;
1851 addr_end_data = addr + len;
1852 addr_end_dvc = (addr - align_offset
1853 + booke_debug_info.sizeof_condition);
1854 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1855 addr_end_data - addr_end_dvc : 0;
1856 num_byte_enable = len - num_bytes_off_dvc;
1857 /* Here, bytes are numbered from right to left. */
1858 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1859 addr_end_dvc - addr_end_data : 0;
1860
1861 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1862 for (i = 0; i < num_byte_enable; i++)
1863 *condition_mode
1864 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1865
1866 /* Now we need to match the position within the DVC of the comparison
1867 value with where the watch region is relative to the window
1868 (i.e., the ALIGN_OFFSET). */
1869
1870 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1871 << rightmost_enabled_byte * 8);
1872 }
1873
1874 /* Return the number of memory locations that need to be accessed to
1875 evaluate the expression which generated the given value chain.
1876 Returns -1 if there's any register access involved, or if there are
1877 other kinds of values which are not acceptable in a condition
1878 expression (e.g., lval_computed or lval_internalvar). */
1879 static int
1880 num_memory_accesses (struct value *v)
1881 {
1882 int found_memory_cnt = 0;
1883 struct value *head = v;
1884
1885 /* The idea here is that evaluating an expression generates a series
1886 of values, one holding the value of every subexpression. (The
1887 expression a*b+c has five subexpressions: a, b, a*b, c, and
1888 a*b+c.) GDB's values hold almost enough information to establish
1889 the criteria given above --- they identify memory lvalues,
1890 register lvalues, computed values, etcetera. So we can evaluate
1891 the expression, and then scan the chain of values that leaves
1892 behind to determine the memory locations involved in the evaluation
1893 of an expression.
1894
1895 However, I don't think that the values returned by inferior
1896 function calls are special in any way. So this function may not
1897 notice that an expression contains an inferior function call.
1898 FIXME. */
1899
1900 for (; v; v = value_next (v))
1901 {
1902 /* Constants and values from the history are fine. */
1903 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1904 continue;
1905 else if (VALUE_LVAL (v) == lval_memory)
1906 {
1907 /* A lazy memory lvalue is one that GDB never needed to fetch;
1908 we either just used its address (e.g., `a' in `a.b') or
1909 we never needed it at all (e.g., `a' in `a,b'). */
1910 if (!value_lazy (v))
1911 found_memory_cnt++;
1912 }
1913 /* Other kinds of values are not fine. */
1914 else
1915 return -1;
1916 }
1917
1918 return found_memory_cnt;
1919 }
1920
1921 /* Verifies whether the expression COND can be implemented using the
1922 DVC (Data Value Compare) register in BookE processors. The expression
1923 must test the watch value for equality with a constant expression.
1924 If the function returns 1, DATA_VALUE will contain the constant against
1925 which the watch value should be compared and LEN will contain the size
1926 of the constant. */
1927 static int
1928 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1929 CORE_ADDR *data_value, int *len)
1930 {
1931 int pc = 1, num_accesses_left, num_accesses_right;
1932 struct value *left_val, *right_val, *left_chain, *right_chain;
1933
1934 if (cond->elts[0].opcode != BINOP_EQUAL)
1935 return 0;
1936
1937 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1938 num_accesses_left = num_memory_accesses (left_chain);
1939
1940 if (left_val == NULL || num_accesses_left < 0)
1941 {
1942 free_value_chain (left_chain);
1943
1944 return 0;
1945 }
1946
1947 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1948 num_accesses_right = num_memory_accesses (right_chain);
1949
1950 if (right_val == NULL || num_accesses_right < 0)
1951 {
1952 free_value_chain (left_chain);
1953 free_value_chain (right_chain);
1954
1955 return 0;
1956 }
1957
1958 if (num_accesses_left == 1 && num_accesses_right == 0
1959 && VALUE_LVAL (left_val) == lval_memory
1960 && value_address (left_val) == watch_addr)
1961 {
1962 *data_value = value_as_long (right_val);
1963
1964 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1965 the same type as the memory region referenced by LEFT_VAL. */
1966 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1967 }
1968 else if (num_accesses_left == 0 && num_accesses_right == 1
1969 && VALUE_LVAL (right_val) == lval_memory
1970 && value_address (right_val) == watch_addr)
1971 {
1972 *data_value = value_as_long (left_val);
1973
1974 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1975 the same type as the memory region referenced by RIGHT_VAL. */
1976 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1977 }
1978 else
1979 {
1980 free_value_chain (left_chain);
1981 free_value_chain (right_chain);
1982
1983 return 0;
1984 }
1985
1986 free_value_chain (left_chain);
1987 free_value_chain (right_chain);
1988
1989 return 1;
1990 }
1991
1992 /* Return non-zero if the target is capable of using hardware to evaluate
1993 the condition expression, thus only triggering the watchpoint when it is
1994 true. */
1995 static int
1996 ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
1997 struct expression *cond)
1998 {
1999 CORE_ADDR data_value;
2000
2001 return (have_ptrace_booke_interface ()
2002 && booke_debug_info.num_condition_regs > 0
2003 && check_condition (addr, cond, &data_value, &len));
2004 }
2005
2006 /* Set up P with the parameters necessary to request a watchpoint covering
2007 LEN bytes starting at ADDR and if possible with condition expression COND
2008 evaluated by hardware. INSERT tells if we are creating a request for
2009 inserting or removing the watchpoint. */
2010
2011 static void
2012 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2013 int len, int rw, struct expression *cond,
2014 int insert)
2015 {
2016 if (len == 1
2017 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2018 {
2019 int use_condition;
2020 CORE_ADDR data_value;
2021
2022 use_condition = (insert? can_use_watchpoint_cond_accel ()
2023 : booke_debug_info.num_condition_regs > 0);
2024 if (cond && use_condition && check_condition (addr, cond,
2025 &data_value, &len))
2026 calculate_dvc (addr, len, data_value, &p->condition_mode,
2027 &p->condition_value);
2028 else
2029 {
2030 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2031 p->condition_value = 0;
2032 }
2033
2034 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2035 p->addr2 = 0;
2036 }
2037 else
2038 {
2039 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2040 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2041 p->condition_value = 0;
2042
2043 /* The watchpoint will trigger if the address of the memory access is
2044 within the defined range, as follows: p->addr <= address < p->addr2.
2045
2046 Note that the above sentence just documents how ptrace interprets
2047 its arguments; the watchpoint is set to watch the range defined by
2048 the user _inclusively_, as specified by the user interface. */
2049 p->addr2 = (uint64_t) addr + len;
2050 }
2051
2052 p->version = PPC_DEBUG_CURRENT_VERSION;
2053 p->trigger_type = get_trigger_type (rw);
2054 p->addr = (uint64_t) addr;
2055 }
2056
2057 static int
2058 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2059 struct expression *cond)
2060 {
2061 struct lwp_info *lp;
2062 int ret = -1;
2063
2064 if (have_ptrace_booke_interface ())
2065 {
2066 struct ppc_hw_breakpoint p;
2067
2068 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2069
2070 ALL_LWPS (lp)
2071 booke_insert_point (&p, TIDGET (lp->ptid));
2072
2073 ret = 0;
2074 }
2075 else
2076 {
2077 long dabr_value;
2078 long read_mode, write_mode;
2079
2080 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2081 {
2082 /* PowerPC 440 requires only the read/write flags to be passed
2083 to the kernel. */
2084 read_mode = 1;
2085 write_mode = 2;
2086 }
2087 else
2088 {
2089 /* PowerPC 970 and other DABR-based processors are required to pass
2090 the Breakpoint Translation bit together with the flags. */
2091 read_mode = 5;
2092 write_mode = 6;
2093 }
2094
2095 dabr_value = addr & ~(read_mode | write_mode);
2096 switch (rw)
2097 {
2098 case hw_read:
2099 /* Set read and translate bits. */
2100 dabr_value |= read_mode;
2101 break;
2102 case hw_write:
2103 /* Set write and translate bits. */
2104 dabr_value |= write_mode;
2105 break;
2106 case hw_access:
2107 /* Set read, write and translate bits. */
2108 dabr_value |= read_mode | write_mode;
2109 break;
2110 }
2111
2112 saved_dabr_value = dabr_value;
2113
2114 ALL_LWPS (lp)
2115 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2116 saved_dabr_value) < 0)
2117 return -1;
2118
2119 ret = 0;
2120 }
2121
2122 return ret;
2123 }
2124
2125 static int
2126 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2127 struct expression *cond)
2128 {
2129 struct lwp_info *lp;
2130 int ret = -1;
2131
2132 if (have_ptrace_booke_interface ())
2133 {
2134 struct ppc_hw_breakpoint p;
2135
2136 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2137
2138 ALL_LWPS (lp)
2139 booke_remove_point (&p, TIDGET (lp->ptid));
2140
2141 ret = 0;
2142 }
2143 else
2144 {
2145 saved_dabr_value = 0;
2146 ALL_LWPS (lp)
2147 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2148 saved_dabr_value) < 0)
2149 return -1;
2150
2151 ret = 0;
2152 }
2153
2154 return ret;
2155 }
2156
2157 static void
2158 ppc_linux_new_thread (struct lwp_info *lp)
2159 {
2160 int tid = TIDGET (lp->ptid);
2161
2162 if (have_ptrace_booke_interface ())
2163 {
2164 int i;
2165 struct thread_points *p;
2166 struct hw_break_tuple *hw_breaks;
2167
2168 if (VEC_empty (thread_points_p, ppc_threads))
2169 return;
2170
2171 /* Get a list of breakpoints from any thread. */
2172 p = VEC_last (thread_points_p, ppc_threads);
2173 hw_breaks = p->hw_breaks;
2174
2175 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2176 for (i = 0; i < max_slots_number; i++)
2177 if (hw_breaks[i].hw_break)
2178 booke_insert_point (hw_breaks[i].hw_break, tid);
2179 }
2180 else
2181 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2182 }
2183
2184 static void
2185 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2186 {
2187 int i;
2188 int tid = TIDGET (tp->ptid);
2189 struct hw_break_tuple *hw_breaks;
2190 struct thread_points *t = NULL, *p;
2191
2192 if (!have_ptrace_booke_interface ())
2193 return;
2194
2195 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2196 if (p->tid == tid)
2197 {
2198 t = p;
2199 break;
2200 }
2201
2202 if (t == NULL)
2203 return;
2204
2205 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2206
2207 hw_breaks = t->hw_breaks;
2208
2209 for (i = 0; i < max_slots_number; i++)
2210 if (hw_breaks[i].hw_break)
2211 xfree (hw_breaks[i].hw_break);
2212
2213 xfree (t->hw_breaks);
2214 xfree (t);
2215 }
2216
2217 static int
2218 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2219 {
2220 struct siginfo *siginfo_p;
2221
2222 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
2223
2224 if (siginfo_p->si_signo != SIGTRAP
2225 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2226 return 0;
2227
2228 if (have_ptrace_booke_interface ())
2229 {
2230 int i;
2231 struct thread_points *t;
2232 struct hw_break_tuple *hw_breaks;
2233 /* The index (or slot) of the *point is passed in the si_errno field. */
2234 int slot = siginfo_p->si_errno;
2235
2236 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2237
2238 /* Find out if this *point is a hardware breakpoint.
2239 If so, we should return 0. */
2240 if (t)
2241 {
2242 hw_breaks = t->hw_breaks;
2243 for (i = 0; i < max_slots_number; i++)
2244 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2245 && hw_breaks[i].hw_break->trigger_type
2246 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2247 return 0;
2248 }
2249 }
2250
2251 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
2252 return 1;
2253 }
2254
2255 static int
2256 ppc_linux_stopped_by_watchpoint (void)
2257 {
2258 CORE_ADDR addr;
2259 return ppc_linux_stopped_data_address (&current_target, &addr);
2260 }
2261
2262 static int
2263 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2264 CORE_ADDR addr,
2265 CORE_ADDR start, int length)
2266 {
2267 int mask;
2268
2269 if (have_ptrace_booke_interface ()
2270 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2271 return start <= addr && start + length >= addr;
2272 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2273 mask = 3;
2274 else
2275 mask = 7;
2276
2277 addr &= ~mask;
2278
2279 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2280 return start <= addr + mask && start + length - 1 >= addr;
2281 }
2282
2283 /* Return the number of registers needed for a masked hardware watchpoint. */
2284
2285 static int
2286 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2287 CORE_ADDR addr, CORE_ADDR mask)
2288 {
2289 if (!have_ptrace_booke_interface ()
2290 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2291 return -1;
2292 else if ((mask & 0xC0000000) != 0xC0000000)
2293 {
2294 warning (_("The given mask covers kernel address space "
2295 "and cannot be used.\n"));
2296
2297 return -2;
2298 }
2299 else
2300 return 2;
2301 }
2302
2303 static void
2304 ppc_linux_store_inferior_registers (struct target_ops *ops,
2305 struct regcache *regcache, int regno)
2306 {
2307 /* Overload thread id onto process id. */
2308 int tid = TIDGET (inferior_ptid);
2309
2310 /* No thread id, just use process id. */
2311 if (tid == 0)
2312 tid = PIDGET (inferior_ptid);
2313
2314 if (regno >= 0)
2315 store_register (regcache, tid, regno);
2316 else
2317 store_ppc_registers (regcache, tid);
2318 }
2319
2320 /* Functions for transferring registers between a gregset_t or fpregset_t
2321 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2322 by the ptrace interface, not the current program's ABI. Eg. if a
2323 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2324 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2325
2326 void
2327 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2328 {
2329 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2330
2331 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2332 }
2333
2334 void
2335 fill_gregset (const struct regcache *regcache,
2336 gdb_gregset_t *gregsetp, int regno)
2337 {
2338 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2339
2340 if (regno == -1)
2341 memset (gregsetp, 0, sizeof (*gregsetp));
2342 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2343 }
2344
2345 void
2346 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2347 {
2348 const struct regset *regset = ppc_linux_fpregset ();
2349
2350 ppc_supply_fpregset (regset, regcache, -1,
2351 fpregsetp, sizeof (*fpregsetp));
2352 }
2353
2354 void
2355 fill_fpregset (const struct regcache *regcache,
2356 gdb_fpregset_t *fpregsetp, int regno)
2357 {
2358 const struct regset *regset = ppc_linux_fpregset ();
2359
2360 ppc_collect_fpregset (regset, regcache, regno,
2361 fpregsetp, sizeof (*fpregsetp));
2362 }
2363
2364 static int
2365 ppc_linux_target_wordsize (void)
2366 {
2367 int wordsize = 4;
2368
2369 /* Check for 64-bit inferior process. This is the case when the host is
2370 64-bit, and in addition the top bit of the MSR register is set. */
2371 #ifdef __powerpc64__
2372 long msr;
2373
2374 int tid = TIDGET (inferior_ptid);
2375 if (tid == 0)
2376 tid = PIDGET (inferior_ptid);
2377
2378 errno = 0;
2379 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2380 if (errno == 0 && msr < 0)
2381 wordsize = 8;
2382 #endif
2383
2384 return wordsize;
2385 }
2386
2387 static int
2388 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2389 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2390 {
2391 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2392 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
2393 gdb_byte *ptr = *readptr;
2394
2395 if (endptr == ptr)
2396 return 0;
2397
2398 if (endptr - ptr < sizeof_auxv_field * 2)
2399 return -1;
2400
2401 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2402 ptr += sizeof_auxv_field;
2403 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2404 ptr += sizeof_auxv_field;
2405
2406 *readptr = ptr;
2407 return 1;
2408 }
2409
2410 static const struct target_desc *
2411 ppc_linux_read_description (struct target_ops *ops)
2412 {
2413 int altivec = 0;
2414 int vsx = 0;
2415 int isa205 = 0;
2416 int cell = 0;
2417
2418 int tid = TIDGET (inferior_ptid);
2419 if (tid == 0)
2420 tid = PIDGET (inferior_ptid);
2421
2422 if (have_ptrace_getsetevrregs)
2423 {
2424 struct gdb_evrregset_t evrregset;
2425
2426 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2427 return tdesc_powerpc_e500l;
2428
2429 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2430 Anything else needs to be reported. */
2431 else if (errno != EIO)
2432 perror_with_name (_("Unable to fetch SPE registers"));
2433 }
2434
2435 if (have_ptrace_getsetvsxregs)
2436 {
2437 gdb_vsxregset_t vsxregset;
2438
2439 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2440 vsx = 1;
2441
2442 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2443 Anything else needs to be reported. */
2444 else if (errno != EIO)
2445 perror_with_name (_("Unable to fetch VSX registers"));
2446 }
2447
2448 if (have_ptrace_getvrregs)
2449 {
2450 gdb_vrregset_t vrregset;
2451
2452 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2453 altivec = 1;
2454
2455 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2456 Anything else needs to be reported. */
2457 else if (errno != EIO)
2458 perror_with_name (_("Unable to fetch AltiVec registers"));
2459 }
2460
2461 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2462 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2463 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2464 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2465 half of the register are for Decimal Floating Point, we check if that
2466 feature is available to decide the size of the FPSCR. */
2467 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2468 isa205 = 1;
2469
2470 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2471 cell = 1;
2472
2473 if (ppc_linux_target_wordsize () == 8)
2474 {
2475 if (cell)
2476 return tdesc_powerpc_cell64l;
2477 else if (vsx)
2478 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2479 else if (altivec)
2480 return isa205
2481 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2482
2483 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2484 }
2485
2486 if (cell)
2487 return tdesc_powerpc_cell32l;
2488 else if (vsx)
2489 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2490 else if (altivec)
2491 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2492
2493 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2494 }
2495
2496 void _initialize_ppc_linux_nat (void);
2497
2498 void
2499 _initialize_ppc_linux_nat (void)
2500 {
2501 struct target_ops *t;
2502
2503 /* Fill in the generic GNU/Linux methods. */
2504 t = linux_target ();
2505
2506 /* Add our register access methods. */
2507 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2508 t->to_store_registers = ppc_linux_store_inferior_registers;
2509
2510 /* Add our breakpoint/watchpoint methods. */
2511 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2512 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2513 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2514 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2515 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2516 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2517 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2518 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2519 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2520 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2521 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2522 t->to_can_accel_watchpoint_condition
2523 = ppc_linux_can_accel_watchpoint_condition;
2524 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2525 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2526
2527 t->to_read_description = ppc_linux_read_description;
2528 t->to_auxv_parse = ppc_linux_auxv_parse;
2529
2530 observer_attach_thread_exit (ppc_linux_thread_exit);
2531
2532 /* Register the target. */
2533 linux_nat_add_target (t);
2534 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2535 }
This page took 0.107961 seconds and 5 git commands to generate.