linux_nat_target: More low methods
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observable.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include "gdb_wait.h"
34 #include <fcntl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
37 #include "inf-ptrace.h"
38
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41 #include "ppc-tdep.h"
42 #include "ppc-linux-tdep.h"
43
44 /* Required when using the AUXV. */
45 #include "elf/common.h"
46 #include "auxv.h"
47
48 #include "nat/ppc-linux.h"
49
50 /* Similarly for the hardware watchpoint support. These requests are used
51 when the PowerPC HWDEBUG ptrace interface is not available. */
52 #ifndef PTRACE_GET_DEBUGREG
53 #define PTRACE_GET_DEBUGREG 25
54 #endif
55 #ifndef PTRACE_SET_DEBUGREG
56 #define PTRACE_SET_DEBUGREG 26
57 #endif
58 #ifndef PTRACE_GETSIGINFO
59 #define PTRACE_GETSIGINFO 0x4202
60 #endif
61
62 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
63 available. It exposes the debug facilities of PowerPC processors, as well
64 as additional features of BookE processors, such as ranged breakpoints and
65 watchpoints and hardware-accelerated condition evaluation. */
66 #ifndef PPC_PTRACE_GETHWDBGINFO
67
68 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
69 ptrace interface is not present in ptrace.h, so we'll have to pretty much
70 include it all here so that the code at least compiles on older systems. */
71 #define PPC_PTRACE_GETHWDBGINFO 0x89
72 #define PPC_PTRACE_SETHWDEBUG 0x88
73 #define PPC_PTRACE_DELHWDEBUG 0x87
74
75 struct ppc_debug_info
76 {
77 uint32_t version; /* Only version 1 exists to date. */
78 uint32_t num_instruction_bps;
79 uint32_t num_data_bps;
80 uint32_t num_condition_regs;
81 uint32_t data_bp_alignment;
82 uint32_t sizeof_condition; /* size of the DVC register. */
83 uint64_t features;
84 };
85
86 /* Features will have bits indicating whether there is support for: */
87 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
88 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
89 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
90 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
91
92 struct ppc_hw_breakpoint
93 {
94 uint32_t version; /* currently, version must be 1 */
95 uint32_t trigger_type; /* only some combinations allowed */
96 uint32_t addr_mode; /* address match mode */
97 uint32_t condition_mode; /* break/watchpoint condition flags */
98 uint64_t addr; /* break/watchpoint address */
99 uint64_t addr2; /* range end or mask */
100 uint64_t condition_value; /* contents of the DVC register */
101 };
102
103 /* Trigger type. */
104 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
105 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
106 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
107 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
108
109 /* Address mode. */
110 #define PPC_BREAKPOINT_MODE_EXACT 0x0
111 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
112 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
113 #define PPC_BREAKPOINT_MODE_MASK 0x3
114
115 /* Condition mode. */
116 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
117 #define PPC_BREAKPOINT_CONDITION_AND 0x1
118 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
119 #define PPC_BREAKPOINT_CONDITION_OR 0x2
120 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
121 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
122 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
123 #define PPC_BREAKPOINT_CONDITION_BE(n) \
124 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
125 #endif /* PPC_PTRACE_GETHWDBGINFO */
126
127 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
128 watchpoint (up to 512 bytes). */
129 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
130 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
131 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
132
133 /* Similarly for the general-purpose (gp0 -- gp31)
134 and floating-point registers (fp0 -- fp31). */
135 #ifndef PTRACE_GETREGS
136 #define PTRACE_GETREGS 12
137 #endif
138 #ifndef PTRACE_SETREGS
139 #define PTRACE_SETREGS 13
140 #endif
141 #ifndef PTRACE_GETFPREGS
142 #define PTRACE_GETFPREGS 14
143 #endif
144 #ifndef PTRACE_SETFPREGS
145 #define PTRACE_SETFPREGS 15
146 #endif
147
148 /* This oddity is because the Linux kernel defines elf_vrregset_t as
149 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
150 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
151 the vrsave as an extra 4 bytes at the end. I opted for creating a
152 flat array of chars, so that it is easier to manipulate for gdb.
153
154 There are 32 vector registers 16 bytes longs, plus a VSCR register
155 which is only 4 bytes long, but is fetched as a 16 bytes
156 quantity. Up to here we have the elf_vrregset_t structure.
157 Appended to this there is space for the VRSAVE register: 4 bytes.
158 Even though this vrsave register is not included in the regset
159 typedef, it is handled by the ptrace requests.
160
161 Note that GNU/Linux doesn't support little endian PPC hardware,
162 therefore the offset at which the real value of the VSCR register
163 is located will be always 12 bytes.
164
165 The layout is like this (where x is the actual value of the vscr reg): */
166
167 /* *INDENT-OFF* */
168 /*
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
171 VR0 VR31 VSCR VRSAVE
172 */
173 /* *INDENT-ON* */
174
175 #define SIZEOF_VRREGS 33*16+4
176
177 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
178
179 /* This is the layout of the POWER7 VSX registers and the way they overlap
180 with the existing FPR and VMX registers.
181
182 VSR doubleword 0 VSR doubleword 1
183 ----------------------------------------------------------------
184 VSR[0] | FPR[0] | |
185 ----------------------------------------------------------------
186 VSR[1] | FPR[1] | |
187 ----------------------------------------------------------------
188 | ... | |
189 | ... | |
190 ----------------------------------------------------------------
191 VSR[30] | FPR[30] | |
192 ----------------------------------------------------------------
193 VSR[31] | FPR[31] | |
194 ----------------------------------------------------------------
195 VSR[32] | VR[0] |
196 ----------------------------------------------------------------
197 VSR[33] | VR[1] |
198 ----------------------------------------------------------------
199 | ... |
200 | ... |
201 ----------------------------------------------------------------
202 VSR[62] | VR[30] |
203 ----------------------------------------------------------------
204 VSR[63] | VR[31] |
205 ----------------------------------------------------------------
206
207 VSX has 64 128bit registers. The first 32 registers overlap with
208 the FP registers (doubleword 0) and hence extend them with additional
209 64 bits (doubleword 1). The other 32 regs overlap with the VMX
210 registers. */
211 #define SIZEOF_VSXREGS 32*8
212
213 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
214
215 /* On PPC processors that support the Signal Processing Extension
216 (SPE) APU, the general-purpose registers are 64 bits long.
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
223
224 GDB itself continues to claim the general-purpose registers are 32
225 bits long. It has unnamed raw registers that hold the upper halves
226 of the gprs, and the full 64-bit SIMD views of the registers,
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
229
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232 struct gdb_evrregset_t
233 {
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
237 };
238
239 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244 int have_ptrace_getsetvsxregs = 1;
245
246 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
249 error. */
250 int have_ptrace_getvrregs = 1;
251
252 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
255 error. */
256 int have_ptrace_getsetevrregs = 1;
257
258 /* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262 int have_ptrace_getsetregs = 1;
263
264 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268 int have_ptrace_getsetfpregs = 1;
269
270 struct ppc_linux_nat_target final : public linux_nat_target
271 {
272 /* Add our register access methods. */
273 void fetch_registers (struct regcache *, int) override;
274 void store_registers (struct regcache *, int) override;
275
276 /* Add our breakpoint/watchpoint methods. */
277 int can_use_hw_breakpoint (enum bptype, int, int) override;
278
279 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
280 override;
281
282 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
283 override;
284
285 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
286
287 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
288 struct expression *) override;
289
290 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
291 struct expression *) override;
292
293 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
294 override;
295
296 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
297 override;
298
299 bool stopped_by_watchpoint () override;
300
301 bool stopped_data_address (CORE_ADDR *) override;
302
303 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
304
305 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
306 override;
307
308 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
309
310 int ranged_break_num_registers () override;
311
312 const struct target_desc *read_description () override;
313
314 int auxv_parse (gdb_byte **readptr,
315 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
316 override;
317
318 /* Override linux_nat_target low methods. */
319 void low_new_thread (struct lwp_info *lp) override;
320 };
321
322 static ppc_linux_nat_target the_ppc_linux_nat_target;
323
324 /* *INDENT-OFF* */
325 /* registers layout, as presented by the ptrace interface:
326 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
327 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
328 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
329 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
330 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
331 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
332 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
333 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
334 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
335 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
336 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
337 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
338 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
339 /* *INDENT_ON * */
340
341 static int
342 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
343 {
344 int u_addr = -1;
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
347 interface, and not the wordsize of the program's ABI. */
348 int wordsize = sizeof (long);
349
350 /* General purpose registers occupy 1 slot each in the buffer. */
351 if (regno >= tdep->ppc_gp0_regnum
352 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
353 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
354
355 /* Floating point regs: eight bytes each in both 32- and 64-bit
356 ptrace interfaces. Thus, two slots each in 32-bit interface, one
357 slot each in 64-bit interface. */
358 if (tdep->ppc_fp0_regnum >= 0
359 && regno >= tdep->ppc_fp0_regnum
360 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
361 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
362
363 /* UISA special purpose registers: 1 slot each. */
364 if (regno == gdbarch_pc_regnum (gdbarch))
365 u_addr = PT_NIP * wordsize;
366 if (regno == tdep->ppc_lr_regnum)
367 u_addr = PT_LNK * wordsize;
368 if (regno == tdep->ppc_cr_regnum)
369 u_addr = PT_CCR * wordsize;
370 if (regno == tdep->ppc_xer_regnum)
371 u_addr = PT_XER * wordsize;
372 if (regno == tdep->ppc_ctr_regnum)
373 u_addr = PT_CTR * wordsize;
374 #ifdef PT_MQ
375 if (regno == tdep->ppc_mq_regnum)
376 u_addr = PT_MQ * wordsize;
377 #endif
378 if (regno == tdep->ppc_ps_regnum)
379 u_addr = PT_MSR * wordsize;
380 if (regno == PPC_ORIG_R3_REGNUM)
381 u_addr = PT_ORIG_R3 * wordsize;
382 if (regno == PPC_TRAP_REGNUM)
383 u_addr = PT_TRAP * wordsize;
384 if (tdep->ppc_fpscr_regnum >= 0
385 && regno == tdep->ppc_fpscr_regnum)
386 {
387 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
388 kernel headers incorrectly contained the 32-bit definition of
389 PT_FPSCR. For the 32-bit definition, floating-point
390 registers occupy two 32-bit "slots", and the FPSCR lives in
391 the second half of such a slot-pair (hence +1). For 64-bit,
392 the FPSCR instead occupies the full 64-bit 2-word-slot and
393 hence no adjustment is necessary. Hack around this. */
394 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
395 u_addr = (48 + 32) * wordsize;
396 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
397 slot and not just its second word. The PT_FPSCR supplied when
398 GDB is compiled as a 32-bit app doesn't reflect this. */
399 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
400 && PT_FPSCR == (48 + 2*32 + 1))
401 u_addr = (48 + 2*32) * wordsize;
402 else
403 u_addr = PT_FPSCR * wordsize;
404 }
405 return u_addr;
406 }
407
408 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
409 registers set mechanism, as opposed to the interface for all the
410 other registers, that stores/fetches each register individually. */
411 static void
412 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
413 {
414 int ret;
415 gdb_vsxregset_t regs;
416 struct gdbarch *gdbarch = regcache->arch ();
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
419
420 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
421 if (ret < 0)
422 {
423 if (errno == EIO)
424 {
425 have_ptrace_getsetvsxregs = 0;
426 return;
427 }
428 perror_with_name (_("Unable to fetch VSX register"));
429 }
430
431 regcache_raw_supply (regcache, regno,
432 regs + (regno - tdep->ppc_vsr0_upper_regnum)
433 * vsxregsize);
434 }
435
436 /* The Linux kernel ptrace interface for AltiVec registers uses the
437 registers set mechanism, as opposed to the interface for all the
438 other registers, that stores/fetches each register individually. */
439 static void
440 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
441 {
442 int ret;
443 int offset = 0;
444 gdb_vrregset_t regs;
445 struct gdbarch *gdbarch = regcache->arch ();
446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
447 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
448
449 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
450 if (ret < 0)
451 {
452 if (errno == EIO)
453 {
454 have_ptrace_getvrregs = 0;
455 return;
456 }
457 perror_with_name (_("Unable to fetch AltiVec register"));
458 }
459
460 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
461 long on the hardware. We deal only with the lower 4 bytes of the
462 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
463 there is no need to define an offset for it. */
464 if (regno == (tdep->ppc_vrsave_regnum - 1))
465 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
466
467 regcache_raw_supply (regcache, regno,
468 regs + (regno
469 - tdep->ppc_vr0_regnum) * vrregsize + offset);
470 }
471
472 /* Fetch the top 32 bits of TID's general-purpose registers and the
473 SPE-specific registers, and place the results in EVRREGSET. If we
474 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
475 zeros.
476
477 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
478 PTRACE_SETEVRREGS requests are supported is isolated here, and in
479 set_spe_registers. */
480 static void
481 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
482 {
483 if (have_ptrace_getsetevrregs)
484 {
485 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
486 return;
487 else
488 {
489 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
490 we just return zeros. */
491 if (errno == EIO)
492 have_ptrace_getsetevrregs = 0;
493 else
494 /* Anything else needs to be reported. */
495 perror_with_name (_("Unable to fetch SPE registers"));
496 }
497 }
498
499 memset (evrregset, 0, sizeof (*evrregset));
500 }
501
502 /* Supply values from TID for SPE-specific raw registers: the upper
503 halves of the GPRs, the accumulator, and the spefscr. REGNO must
504 be the number of an upper half register, acc, spefscr, or -1 to
505 supply the values of all registers. */
506 static void
507 fetch_spe_register (struct regcache *regcache, int tid, int regno)
508 {
509 struct gdbarch *gdbarch = regcache->arch ();
510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
511 struct gdb_evrregset_t evrregs;
512
513 gdb_assert (sizeof (evrregs.evr[0])
514 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
515 gdb_assert (sizeof (evrregs.acc)
516 == register_size (gdbarch, tdep->ppc_acc_regnum));
517 gdb_assert (sizeof (evrregs.spefscr)
518 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
519
520 get_spe_registers (tid, &evrregs);
521
522 if (regno == -1)
523 {
524 int i;
525
526 for (i = 0; i < ppc_num_gprs; i++)
527 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
528 &evrregs.evr[i]);
529 }
530 else if (tdep->ppc_ev0_upper_regnum <= regno
531 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
532 regcache_raw_supply (regcache, regno,
533 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
534
535 if (regno == -1
536 || regno == tdep->ppc_acc_regnum)
537 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
538
539 if (regno == -1
540 || regno == tdep->ppc_spefscr_regnum)
541 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
542 &evrregs.spefscr);
543 }
544
545 static void
546 fetch_register (struct regcache *regcache, int tid, int regno)
547 {
548 struct gdbarch *gdbarch = regcache->arch ();
549 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
550 /* This isn't really an address. But ptrace thinks of it as one. */
551 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
552 int bytes_transferred;
553 unsigned int offset; /* Offset of registers within the u area. */
554 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
555
556 if (altivec_register_p (gdbarch, regno))
557 {
558 /* If this is the first time through, or if it is not the first
559 time through, and we have comfirmed that there is kernel
560 support for such a ptrace request, then go and fetch the
561 register. */
562 if (have_ptrace_getvrregs)
563 {
564 fetch_altivec_register (regcache, tid, regno);
565 return;
566 }
567 /* If we have discovered that there is no ptrace support for
568 AltiVec registers, fall through and return zeroes, because
569 regaddr will be -1 in this case. */
570 }
571 if (vsx_register_p (gdbarch, regno))
572 {
573 if (have_ptrace_getsetvsxregs)
574 {
575 fetch_vsx_register (regcache, tid, regno);
576 return;
577 }
578 }
579 else if (spe_register_p (gdbarch, regno))
580 {
581 fetch_spe_register (regcache, tid, regno);
582 return;
583 }
584
585 if (regaddr == -1)
586 {
587 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
588 regcache_raw_supply (regcache, regno, buf);
589 return;
590 }
591
592 /* Read the raw register using sizeof(long) sized chunks. On a
593 32-bit platform, 64-bit floating-point registers will require two
594 transfers. */
595 for (bytes_transferred = 0;
596 bytes_transferred < register_size (gdbarch, regno);
597 bytes_transferred += sizeof (long))
598 {
599 long l;
600
601 errno = 0;
602 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
603 regaddr += sizeof (long);
604 if (errno != 0)
605 {
606 char message[128];
607 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
608 gdbarch_register_name (gdbarch, regno), regno);
609 perror_with_name (message);
610 }
611 memcpy (&buf[bytes_transferred], &l, sizeof (l));
612 }
613
614 /* Now supply the register. Keep in mind that the regcache's idea
615 of the register's size may not be a multiple of sizeof
616 (long). */
617 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
618 {
619 /* Little-endian values are always found at the left end of the
620 bytes transferred. */
621 regcache_raw_supply (regcache, regno, buf);
622 }
623 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
624 {
625 /* Big-endian values are found at the right end of the bytes
626 transferred. */
627 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
628 regcache_raw_supply (regcache, regno, buf + padding);
629 }
630 else
631 internal_error (__FILE__, __LINE__,
632 _("fetch_register: unexpected byte order: %d"),
633 gdbarch_byte_order (gdbarch));
634 }
635
636 static void
637 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
638 {
639 int i;
640 struct gdbarch *gdbarch = regcache->arch ();
641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
642 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
643
644 for (i = 0; i < ppc_num_vshrs; i++)
645 {
646 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
647 *vsxregsetp + i * vsxregsize);
648 }
649 }
650
651 static void
652 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
653 {
654 int i;
655 struct gdbarch *gdbarch = regcache->arch ();
656 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
657 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
658 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
659 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
660
661 for (i = 0; i < num_of_vrregs; i++)
662 {
663 /* The last 2 registers of this set are only 32 bit long, not
664 128. However an offset is necessary only for VSCR because it
665 occupies a whole vector, while VRSAVE occupies a full 4 bytes
666 slot. */
667 if (i == (num_of_vrregs - 2))
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize + offset);
670 else
671 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
672 *vrregsetp + i * vrregsize);
673 }
674 }
675
676 static void
677 fetch_vsx_registers (struct regcache *regcache, int tid)
678 {
679 int ret;
680 gdb_vsxregset_t regs;
681
682 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
683 if (ret < 0)
684 {
685 if (errno == EIO)
686 {
687 have_ptrace_getsetvsxregs = 0;
688 return;
689 }
690 perror_with_name (_("Unable to fetch VSX registers"));
691 }
692 supply_vsxregset (regcache, &regs);
693 }
694
695 static void
696 fetch_altivec_registers (struct regcache *regcache, int tid)
697 {
698 int ret;
699 gdb_vrregset_t regs;
700
701 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
702 if (ret < 0)
703 {
704 if (errno == EIO)
705 {
706 have_ptrace_getvrregs = 0;
707 return;
708 }
709 perror_with_name (_("Unable to fetch AltiVec registers"));
710 }
711 supply_vrregset (regcache, &regs);
712 }
713
714 /* This function actually issues the request to ptrace, telling
715 it to get all general-purpose registers and put them into the
716 specified regset.
717
718 If the ptrace request does not exist, this function returns 0
719 and properly sets the have_ptrace_* flag. If the request fails,
720 this function calls perror_with_name. Otherwise, if the request
721 succeeds, then the regcache gets filled and 1 is returned. */
722 static int
723 fetch_all_gp_regs (struct regcache *regcache, int tid)
724 {
725 struct gdbarch *gdbarch = regcache->arch ();
726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
727 gdb_gregset_t gregset;
728
729 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
730 {
731 if (errno == EIO)
732 {
733 have_ptrace_getsetregs = 0;
734 return 0;
735 }
736 perror_with_name (_("Couldn't get general-purpose registers."));
737 }
738
739 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
740
741 return 1;
742 }
743
744 /* This is a wrapper for the fetch_all_gp_regs function. It is
745 responsible for verifying if this target has the ptrace request
746 that can be used to fetch all general-purpose registers at one
747 shot. If it doesn't, then we should fetch them using the
748 old-fashioned way, which is to iterate over the registers and
749 request them one by one. */
750 static void
751 fetch_gp_regs (struct regcache *regcache, int tid)
752 {
753 struct gdbarch *gdbarch = regcache->arch ();
754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
755 int i;
756
757 if (have_ptrace_getsetregs)
758 if (fetch_all_gp_regs (regcache, tid))
759 return;
760
761 /* If we've hit this point, it doesn't really matter which
762 architecture we are using. We just need to read the
763 registers in the "old-fashioned way". */
764 for (i = 0; i < ppc_num_gprs; i++)
765 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
766 }
767
768 /* This function actually issues the request to ptrace, telling
769 it to get all floating-point registers and put them into the
770 specified regset.
771
772 If the ptrace request does not exist, this function returns 0
773 and properly sets the have_ptrace_* flag. If the request fails,
774 this function calls perror_with_name. Otherwise, if the request
775 succeeds, then the regcache gets filled and 1 is returned. */
776 static int
777 fetch_all_fp_regs (struct regcache *regcache, int tid)
778 {
779 gdb_fpregset_t fpregs;
780
781 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
782 {
783 if (errno == EIO)
784 {
785 have_ptrace_getsetfpregs = 0;
786 return 0;
787 }
788 perror_with_name (_("Couldn't get floating-point registers."));
789 }
790
791 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
792
793 return 1;
794 }
795
796 /* This is a wrapper for the fetch_all_fp_regs function. It is
797 responsible for verifying if this target has the ptrace request
798 that can be used to fetch all floating-point registers at one
799 shot. If it doesn't, then we should fetch them using the
800 old-fashioned way, which is to iterate over the registers and
801 request them one by one. */
802 static void
803 fetch_fp_regs (struct regcache *regcache, int tid)
804 {
805 struct gdbarch *gdbarch = regcache->arch ();
806 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
807 int i;
808
809 if (have_ptrace_getsetfpregs)
810 if (fetch_all_fp_regs (regcache, tid))
811 return;
812
813 /* If we've hit this point, it doesn't really matter which
814 architecture we are using. We just need to read the
815 registers in the "old-fashioned way". */
816 for (i = 0; i < ppc_num_fprs; i++)
817 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
818 }
819
820 static void
821 fetch_ppc_registers (struct regcache *regcache, int tid)
822 {
823 int i;
824 struct gdbarch *gdbarch = regcache->arch ();
825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
826
827 fetch_gp_regs (regcache, tid);
828 if (tdep->ppc_fp0_regnum >= 0)
829 fetch_fp_regs (regcache, tid);
830 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
831 if (tdep->ppc_ps_regnum != -1)
832 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
833 if (tdep->ppc_cr_regnum != -1)
834 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
835 if (tdep->ppc_lr_regnum != -1)
836 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
837 if (tdep->ppc_ctr_regnum != -1)
838 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
839 if (tdep->ppc_xer_regnum != -1)
840 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
841 if (tdep->ppc_mq_regnum != -1)
842 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
843 if (ppc_linux_trap_reg_p (gdbarch))
844 {
845 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
846 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
847 }
848 if (tdep->ppc_fpscr_regnum != -1)
849 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
850 if (have_ptrace_getvrregs)
851 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
852 fetch_altivec_registers (regcache, tid);
853 if (have_ptrace_getsetvsxregs)
854 if (tdep->ppc_vsr0_upper_regnum != -1)
855 fetch_vsx_registers (regcache, tid);
856 if (tdep->ppc_ev0_upper_regnum >= 0)
857 fetch_spe_register (regcache, tid, -1);
858 }
859
860 /* Fetch registers from the child process. Fetch all registers if
861 regno == -1, otherwise fetch all general registers or all floating
862 point registers depending upon the value of regno. */
863 void
864 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
865 {
866 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
867
868 if (regno == -1)
869 fetch_ppc_registers (regcache, tid);
870 else
871 fetch_register (regcache, tid, regno);
872 }
873
874 /* Store one VSX register. */
875 static void
876 store_vsx_register (const struct regcache *regcache, int tid, int regno)
877 {
878 int ret;
879 gdb_vsxregset_t regs;
880 struct gdbarch *gdbarch = regcache->arch ();
881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
882 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
883
884 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
885 if (ret < 0)
886 {
887 if (errno == EIO)
888 {
889 have_ptrace_getsetvsxregs = 0;
890 return;
891 }
892 perror_with_name (_("Unable to fetch VSX register"));
893 }
894
895 regcache_raw_collect (regcache, regno, regs +
896 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
897
898 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
899 if (ret < 0)
900 perror_with_name (_("Unable to store VSX register"));
901 }
902
903 /* Store one register. */
904 static void
905 store_altivec_register (const struct regcache *regcache, int tid, int regno)
906 {
907 int ret;
908 int offset = 0;
909 gdb_vrregset_t regs;
910 struct gdbarch *gdbarch = regcache->arch ();
911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
912 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
913
914 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
915 if (ret < 0)
916 {
917 if (errno == EIO)
918 {
919 have_ptrace_getvrregs = 0;
920 return;
921 }
922 perror_with_name (_("Unable to fetch AltiVec register"));
923 }
924
925 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
926 long on the hardware. */
927 if (regno == (tdep->ppc_vrsave_regnum - 1))
928 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
929
930 regcache_raw_collect (regcache, regno,
931 regs + (regno
932 - tdep->ppc_vr0_regnum) * vrregsize + offset);
933
934 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
935 if (ret < 0)
936 perror_with_name (_("Unable to store AltiVec register"));
937 }
938
939 /* Assuming TID referrs to an SPE process, set the top halves of TID's
940 general-purpose registers and its SPE-specific registers to the
941 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
942 nothing.
943
944 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
945 PTRACE_SETEVRREGS requests are supported is isolated here, and in
946 get_spe_registers. */
947 static void
948 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
949 {
950 if (have_ptrace_getsetevrregs)
951 {
952 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
953 return;
954 else
955 {
956 /* EIO means that the PTRACE_SETEVRREGS request isn't
957 supported; we fail silently, and don't try the call
958 again. */
959 if (errno == EIO)
960 have_ptrace_getsetevrregs = 0;
961 else
962 /* Anything else needs to be reported. */
963 perror_with_name (_("Unable to set SPE registers"));
964 }
965 }
966 }
967
968 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
969 If REGNO is -1, write the values of all the SPE-specific
970 registers. */
971 static void
972 store_spe_register (const struct regcache *regcache, int tid, int regno)
973 {
974 struct gdbarch *gdbarch = regcache->arch ();
975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
976 struct gdb_evrregset_t evrregs;
977
978 gdb_assert (sizeof (evrregs.evr[0])
979 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
980 gdb_assert (sizeof (evrregs.acc)
981 == register_size (gdbarch, tdep->ppc_acc_regnum));
982 gdb_assert (sizeof (evrregs.spefscr)
983 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
984
985 if (regno == -1)
986 /* Since we're going to write out every register, the code below
987 should store to every field of evrregs; if that doesn't happen,
988 make it obvious by initializing it with suspicious values. */
989 memset (&evrregs, 42, sizeof (evrregs));
990 else
991 /* We can only read and write the entire EVR register set at a
992 time, so to write just a single register, we do a
993 read-modify-write maneuver. */
994 get_spe_registers (tid, &evrregs);
995
996 if (regno == -1)
997 {
998 int i;
999
1000 for (i = 0; i < ppc_num_gprs; i++)
1001 regcache_raw_collect (regcache,
1002 tdep->ppc_ev0_upper_regnum + i,
1003 &evrregs.evr[i]);
1004 }
1005 else if (tdep->ppc_ev0_upper_regnum <= regno
1006 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1007 regcache_raw_collect (regcache, regno,
1008 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1009
1010 if (regno == -1
1011 || regno == tdep->ppc_acc_regnum)
1012 regcache_raw_collect (regcache,
1013 tdep->ppc_acc_regnum,
1014 &evrregs.acc);
1015
1016 if (regno == -1
1017 || regno == tdep->ppc_spefscr_regnum)
1018 regcache_raw_collect (regcache,
1019 tdep->ppc_spefscr_regnum,
1020 &evrregs.spefscr);
1021
1022 /* Write back the modified register set. */
1023 set_spe_registers (tid, &evrregs);
1024 }
1025
1026 static void
1027 store_register (const struct regcache *regcache, int tid, int regno)
1028 {
1029 struct gdbarch *gdbarch = regcache->arch ();
1030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1031 /* This isn't really an address. But ptrace thinks of it as one. */
1032 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1033 int i;
1034 size_t bytes_to_transfer;
1035 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1036
1037 if (altivec_register_p (gdbarch, regno))
1038 {
1039 store_altivec_register (regcache, tid, regno);
1040 return;
1041 }
1042 if (vsx_register_p (gdbarch, regno))
1043 {
1044 store_vsx_register (regcache, tid, regno);
1045 return;
1046 }
1047 else if (spe_register_p (gdbarch, regno))
1048 {
1049 store_spe_register (regcache, tid, regno);
1050 return;
1051 }
1052
1053 if (regaddr == -1)
1054 return;
1055
1056 /* First collect the register. Keep in mind that the regcache's
1057 idea of the register's size may not be a multiple of sizeof
1058 (long). */
1059 memset (buf, 0, sizeof buf);
1060 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1061 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1062 {
1063 /* Little-endian values always sit at the left end of the buffer. */
1064 regcache_raw_collect (regcache, regno, buf);
1065 }
1066 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1067 {
1068 /* Big-endian values sit at the right end of the buffer. */
1069 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1070 regcache_raw_collect (regcache, regno, buf + padding);
1071 }
1072
1073 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1074 {
1075 long l;
1076
1077 memcpy (&l, &buf[i], sizeof (l));
1078 errno = 0;
1079 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1080 regaddr += sizeof (long);
1081
1082 if (errno == EIO
1083 && (regno == tdep->ppc_fpscr_regnum
1084 || regno == PPC_ORIG_R3_REGNUM
1085 || regno == PPC_TRAP_REGNUM))
1086 {
1087 /* Some older kernel versions don't allow fpscr, orig_r3
1088 or trap to be written. */
1089 continue;
1090 }
1091
1092 if (errno != 0)
1093 {
1094 char message[128];
1095 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1096 gdbarch_register_name (gdbarch, regno), regno);
1097 perror_with_name (message);
1098 }
1099 }
1100 }
1101
1102 static void
1103 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1104 {
1105 int i;
1106 struct gdbarch *gdbarch = regcache->arch ();
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1108 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1109
1110 for (i = 0; i < ppc_num_vshrs; i++)
1111 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1112 *vsxregsetp + i * vsxregsize);
1113 }
1114
1115 static void
1116 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1117 {
1118 int i;
1119 struct gdbarch *gdbarch = regcache->arch ();
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1122 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1123 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1124
1125 for (i = 0; i < num_of_vrregs; i++)
1126 {
1127 /* The last 2 registers of this set are only 32 bit long, not
1128 128, but only VSCR is fetched as a 16 bytes quantity. */
1129 if (i == (num_of_vrregs - 2))
1130 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1131 *vrregsetp + i * vrregsize + offset);
1132 else
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize);
1135 }
1136 }
1137
1138 static void
1139 store_vsx_registers (const struct regcache *regcache, int tid)
1140 {
1141 int ret;
1142 gdb_vsxregset_t regs;
1143
1144 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1145 if (ret < 0)
1146 {
1147 if (errno == EIO)
1148 {
1149 have_ptrace_getsetvsxregs = 0;
1150 return;
1151 }
1152 perror_with_name (_("Couldn't get VSX registers"));
1153 }
1154
1155 fill_vsxregset (regcache, &regs);
1156
1157 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1158 perror_with_name (_("Couldn't write VSX registers"));
1159 }
1160
1161 static void
1162 store_altivec_registers (const struct regcache *regcache, int tid)
1163 {
1164 int ret;
1165 gdb_vrregset_t regs;
1166
1167 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1168 if (ret < 0)
1169 {
1170 if (errno == EIO)
1171 {
1172 have_ptrace_getvrregs = 0;
1173 return;
1174 }
1175 perror_with_name (_("Couldn't get AltiVec registers"));
1176 }
1177
1178 fill_vrregset (regcache, &regs);
1179
1180 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1181 perror_with_name (_("Couldn't write AltiVec registers"));
1182 }
1183
1184 /* This function actually issues the request to ptrace, telling
1185 it to store all general-purpose registers present in the specified
1186 regset.
1187
1188 If the ptrace request does not exist, this function returns 0
1189 and properly sets the have_ptrace_* flag. If the request fails,
1190 this function calls perror_with_name. Otherwise, if the request
1191 succeeds, then the regcache is stored and 1 is returned. */
1192 static int
1193 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1194 {
1195 struct gdbarch *gdbarch = regcache->arch ();
1196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1197 gdb_gregset_t gregset;
1198
1199 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1200 {
1201 if (errno == EIO)
1202 {
1203 have_ptrace_getsetregs = 0;
1204 return 0;
1205 }
1206 perror_with_name (_("Couldn't get general-purpose registers."));
1207 }
1208
1209 fill_gregset (regcache, &gregset, regno);
1210
1211 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1212 {
1213 if (errno == EIO)
1214 {
1215 have_ptrace_getsetregs = 0;
1216 return 0;
1217 }
1218 perror_with_name (_("Couldn't set general-purpose registers."));
1219 }
1220
1221 return 1;
1222 }
1223
1224 /* This is a wrapper for the store_all_gp_regs function. It is
1225 responsible for verifying if this target has the ptrace request
1226 that can be used to store all general-purpose registers at one
1227 shot. If it doesn't, then we should store them using the
1228 old-fashioned way, which is to iterate over the registers and
1229 store them one by one. */
1230 static void
1231 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1232 {
1233 struct gdbarch *gdbarch = regcache->arch ();
1234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1235 int i;
1236
1237 if (have_ptrace_getsetregs)
1238 if (store_all_gp_regs (regcache, tid, regno))
1239 return;
1240
1241 /* If we hit this point, it doesn't really matter which
1242 architecture we are using. We just need to store the
1243 registers in the "old-fashioned way". */
1244 for (i = 0; i < ppc_num_gprs; i++)
1245 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1246 }
1247
1248 /* This function actually issues the request to ptrace, telling
1249 it to store all floating-point registers present in the specified
1250 regset.
1251
1252 If the ptrace request does not exist, this function returns 0
1253 and properly sets the have_ptrace_* flag. If the request fails,
1254 this function calls perror_with_name. Otherwise, if the request
1255 succeeds, then the regcache is stored and 1 is returned. */
1256 static int
1257 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1258 {
1259 gdb_fpregset_t fpregs;
1260
1261 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1262 {
1263 if (errno == EIO)
1264 {
1265 have_ptrace_getsetfpregs = 0;
1266 return 0;
1267 }
1268 perror_with_name (_("Couldn't get floating-point registers."));
1269 }
1270
1271 fill_fpregset (regcache, &fpregs, regno);
1272
1273 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1274 {
1275 if (errno == EIO)
1276 {
1277 have_ptrace_getsetfpregs = 0;
1278 return 0;
1279 }
1280 perror_with_name (_("Couldn't set floating-point registers."));
1281 }
1282
1283 return 1;
1284 }
1285
1286 /* This is a wrapper for the store_all_fp_regs function. It is
1287 responsible for verifying if this target has the ptrace request
1288 that can be used to store all floating-point registers at one
1289 shot. If it doesn't, then we should store them using the
1290 old-fashioned way, which is to iterate over the registers and
1291 store them one by one. */
1292 static void
1293 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1294 {
1295 struct gdbarch *gdbarch = regcache->arch ();
1296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1297 int i;
1298
1299 if (have_ptrace_getsetfpregs)
1300 if (store_all_fp_regs (regcache, tid, regno))
1301 return;
1302
1303 /* If we hit this point, it doesn't really matter which
1304 architecture we are using. We just need to store the
1305 registers in the "old-fashioned way". */
1306 for (i = 0; i < ppc_num_fprs; i++)
1307 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1308 }
1309
1310 static void
1311 store_ppc_registers (const struct regcache *regcache, int tid)
1312 {
1313 int i;
1314 struct gdbarch *gdbarch = regcache->arch ();
1315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1316
1317 store_gp_regs (regcache, tid, -1);
1318 if (tdep->ppc_fp0_regnum >= 0)
1319 store_fp_regs (regcache, tid, -1);
1320 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1321 if (tdep->ppc_ps_regnum != -1)
1322 store_register (regcache, tid, tdep->ppc_ps_regnum);
1323 if (tdep->ppc_cr_regnum != -1)
1324 store_register (regcache, tid, tdep->ppc_cr_regnum);
1325 if (tdep->ppc_lr_regnum != -1)
1326 store_register (regcache, tid, tdep->ppc_lr_regnum);
1327 if (tdep->ppc_ctr_regnum != -1)
1328 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1329 if (tdep->ppc_xer_regnum != -1)
1330 store_register (regcache, tid, tdep->ppc_xer_regnum);
1331 if (tdep->ppc_mq_regnum != -1)
1332 store_register (regcache, tid, tdep->ppc_mq_regnum);
1333 if (tdep->ppc_fpscr_regnum != -1)
1334 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1335 if (ppc_linux_trap_reg_p (gdbarch))
1336 {
1337 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1338 store_register (regcache, tid, PPC_TRAP_REGNUM);
1339 }
1340 if (have_ptrace_getvrregs)
1341 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1342 store_altivec_registers (regcache, tid);
1343 if (have_ptrace_getsetvsxregs)
1344 if (tdep->ppc_vsr0_upper_regnum != -1)
1345 store_vsx_registers (regcache, tid);
1346 if (tdep->ppc_ev0_upper_regnum >= 0)
1347 store_spe_register (regcache, tid, -1);
1348 }
1349
1350 /* Fetch the AT_HWCAP entry from the aux vector. */
1351 static unsigned long
1352 ppc_linux_get_hwcap (void)
1353 {
1354 CORE_ADDR field;
1355
1356 if (target_auxv_search (target_stack, AT_HWCAP, &field))
1357 return (unsigned long) field;
1358
1359 return 0;
1360 }
1361
1362 /* The cached DABR value, to install in new threads.
1363 This variable is used when the PowerPC HWDEBUG ptrace
1364 interface is not available. */
1365 static long saved_dabr_value;
1366
1367 /* Global structure that will store information about the available
1368 features provided by the PowerPC HWDEBUG ptrace interface. */
1369 static struct ppc_debug_info hwdebug_info;
1370
1371 /* Global variable that holds the maximum number of slots that the
1372 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1373 is available. */
1374 static size_t max_slots_number = 0;
1375
1376 struct hw_break_tuple
1377 {
1378 long slot;
1379 struct ppc_hw_breakpoint *hw_break;
1380 };
1381
1382 /* This is an internal VEC created to store information about *points inserted
1383 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1384 available. */
1385 typedef struct thread_points
1386 {
1387 /* The TID to which this *point relates. */
1388 int tid;
1389 /* Information about the *point, such as its address, type, etc.
1390
1391 Each element inside this vector corresponds to a hardware
1392 breakpoint or watchpoint in the thread represented by TID. The maximum
1393 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1394 the tuple is NULL, then the position in the vector is free. */
1395 struct hw_break_tuple *hw_breaks;
1396 } *thread_points_p;
1397 DEF_VEC_P (thread_points_p);
1398
1399 VEC(thread_points_p) *ppc_threads = NULL;
1400
1401 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1402 available. */
1403 #define PPC_DEBUG_CURRENT_VERSION 1
1404
1405 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1406 static int
1407 have_ptrace_hwdebug_interface (void)
1408 {
1409 static int have_ptrace_hwdebug_interface = -1;
1410
1411 if (have_ptrace_hwdebug_interface == -1)
1412 {
1413 int tid;
1414
1415 tid = ptid_get_lwp (inferior_ptid);
1416 if (tid == 0)
1417 tid = ptid_get_pid (inferior_ptid);
1418
1419 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1420 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1421 {
1422 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1423 provides any supported feature. */
1424 if (hwdebug_info.features != 0)
1425 {
1426 have_ptrace_hwdebug_interface = 1;
1427 max_slots_number = hwdebug_info.num_instruction_bps
1428 + hwdebug_info.num_data_bps
1429 + hwdebug_info.num_condition_regs;
1430 return have_ptrace_hwdebug_interface;
1431 }
1432 }
1433 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1434 have_ptrace_hwdebug_interface = 0;
1435 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1436 }
1437
1438 return have_ptrace_hwdebug_interface;
1439 }
1440
1441 int
1442 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
1443 {
1444 int total_hw_wp, total_hw_bp;
1445
1446 if (have_ptrace_hwdebug_interface ())
1447 {
1448 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1449 available hardware watchpoints and breakpoints is stored at the
1450 hwdebug_info struct. */
1451 total_hw_bp = hwdebug_info.num_instruction_bps;
1452 total_hw_wp = hwdebug_info.num_data_bps;
1453 }
1454 else
1455 {
1456 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1457 consider having 1 hardware watchpoint and no hardware breakpoints. */
1458 total_hw_bp = 0;
1459 total_hw_wp = 1;
1460 }
1461
1462 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1463 || type == bp_access_watchpoint || type == bp_watchpoint)
1464 {
1465 if (cnt + ot > total_hw_wp)
1466 return -1;
1467 }
1468 else if (type == bp_hardware_breakpoint)
1469 {
1470 if (total_hw_bp == 0)
1471 {
1472 /* No hardware breakpoint support. */
1473 return 0;
1474 }
1475 if (cnt > total_hw_bp)
1476 return -1;
1477 }
1478
1479 if (!have_ptrace_hwdebug_interface ())
1480 {
1481 int tid;
1482 ptid_t ptid = inferior_ptid;
1483
1484 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1485 and whether the target has DABR. If either answer is no, the
1486 ptrace call will return -1. Fail in that case. */
1487 tid = ptid_get_lwp (ptid);
1488 if (tid == 0)
1489 tid = ptid_get_pid (ptid);
1490
1491 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1492 return 0;
1493 }
1494
1495 return 1;
1496 }
1497
1498 int
1499 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1500 {
1501 /* Handle sub-8-byte quantities. */
1502 if (len <= 0)
1503 return 0;
1504
1505 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1506 restrictions for watchpoints in the processors. In that case, we use that
1507 information to determine the hardcoded watchable region for
1508 watchpoints. */
1509 if (have_ptrace_hwdebug_interface ())
1510 {
1511 int region_size;
1512 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1513 watchpoints and can watch any access within an arbitrary memory
1514 region. This is useful to watch arrays and structs, for instance. It
1515 takes two hardware watchpoints though. */
1516 if (len > 1
1517 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1518 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1519 return 2;
1520 /* Check if the processor provides DAWR interface. */
1521 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1522 /* DAWR interface allows to watch up to 512 byte wide ranges which
1523 can't cross a 512 byte boundary. */
1524 region_size = 512;
1525 else
1526 region_size = hwdebug_info.data_bp_alignment;
1527 /* Server processors provide one hardware watchpoint and addr+len should
1528 fall in the watchable region provided by the ptrace interface. */
1529 if (region_size
1530 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1531 return 0;
1532 }
1533 /* addr+len must fall in the 8 byte watchable region for DABR-based
1534 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1535 ptrace interface, DAC-based processors (i.e., embedded processors) will
1536 use addresses aligned to 4-bytes due to the way the read/write flags are
1537 passed in the old ptrace interface. */
1538 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1539 && (addr + len) > (addr & ~3) + 4)
1540 || (addr + len) > (addr & ~7) + 8)
1541 return 0;
1542
1543 return 1;
1544 }
1545
1546 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1547 static int
1548 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1549 {
1550 return (a->trigger_type == b->trigger_type
1551 && a->addr_mode == b->addr_mode
1552 && a->condition_mode == b->condition_mode
1553 && a->addr == b->addr
1554 && a->addr2 == b->addr2
1555 && a->condition_value == b->condition_value);
1556 }
1557
1558 /* This function can be used to retrieve a thread_points by the TID of the
1559 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1560 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1561 provided TID will be created and returned. */
1562 static struct thread_points *
1563 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1564 {
1565 int i;
1566 struct thread_points *t;
1567
1568 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1569 if (t->tid == tid)
1570 return t;
1571
1572 t = NULL;
1573
1574 /* Do we need to allocate a new point_item
1575 if the wanted one does not exist? */
1576 if (alloc_new)
1577 {
1578 t = XNEW (struct thread_points);
1579 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1580 t->tid = tid;
1581 VEC_safe_push (thread_points_p, ppc_threads, t);
1582 }
1583
1584 return t;
1585 }
1586
1587 /* This function is a generic wrapper that is responsible for inserting a
1588 *point (i.e., calling `ptrace' in order to issue the request to the
1589 kernel) and registering it internally in GDB. */
1590 static void
1591 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1592 {
1593 int i;
1594 long slot;
1595 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
1596 struct hw_break_tuple *hw_breaks;
1597 struct thread_points *t;
1598 struct hw_break_tuple *tuple;
1599
1600 errno = 0;
1601 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
1602 if (slot < 0)
1603 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1604
1605 /* Everything went fine, so we have to register this *point. */
1606 t = hwdebug_find_thread_points_by_tid (tid, 1);
1607 gdb_assert (t != NULL);
1608 hw_breaks = t->hw_breaks;
1609
1610 /* Find a free element in the hw_breaks vector. */
1611 for (i = 0; i < max_slots_number; i++)
1612 if (hw_breaks[i].hw_break == NULL)
1613 {
1614 hw_breaks[i].slot = slot;
1615 hw_breaks[i].hw_break = p.release ();
1616 break;
1617 }
1618
1619 gdb_assert (i != max_slots_number);
1620 }
1621
1622 /* This function is a generic wrapper that is responsible for removing a
1623 *point (i.e., calling `ptrace' in order to issue the request to the
1624 kernel), and unregistering it internally at GDB. */
1625 static void
1626 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1627 {
1628 int i;
1629 struct hw_break_tuple *hw_breaks;
1630 struct thread_points *t;
1631
1632 t = hwdebug_find_thread_points_by_tid (tid, 0);
1633 gdb_assert (t != NULL);
1634 hw_breaks = t->hw_breaks;
1635
1636 for (i = 0; i < max_slots_number; i++)
1637 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1638 break;
1639
1640 gdb_assert (i != max_slots_number);
1641
1642 /* We have to ignore ENOENT errors because the kernel implements hardware
1643 breakpoints/watchpoints as "one-shot", that is, they are automatically
1644 deleted when hit. */
1645 errno = 0;
1646 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1647 if (errno != ENOENT)
1648 perror_with_name (_("Unexpected error deleting "
1649 "breakpoint or watchpoint"));
1650
1651 xfree (hw_breaks[i].hw_break);
1652 hw_breaks[i].hw_break = NULL;
1653 }
1654
1655 /* Return the number of registers needed for a ranged breakpoint. */
1656
1657 int
1658 ppc_linux_nat_target::ranged_break_num_registers ()
1659 {
1660 return ((have_ptrace_hwdebug_interface ()
1661 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1662 2 : -1);
1663 }
1664
1665 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1666 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1667
1668 int
1669 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1670 struct bp_target_info *bp_tgt)
1671 {
1672 struct lwp_info *lp;
1673 struct ppc_hw_breakpoint p;
1674
1675 if (!have_ptrace_hwdebug_interface ())
1676 return -1;
1677
1678 p.version = PPC_DEBUG_CURRENT_VERSION;
1679 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1680 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1681 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1682 p.condition_value = 0;
1683
1684 if (bp_tgt->length)
1685 {
1686 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1687
1688 /* The breakpoint will trigger if the address of the instruction is
1689 within the defined range, as follows: p.addr <= address < p.addr2. */
1690 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1691 }
1692 else
1693 {
1694 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1695 p.addr2 = 0;
1696 }
1697
1698 ALL_LWPS (lp)
1699 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1700
1701 return 0;
1702 }
1703
1704 int
1705 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1706 struct bp_target_info *bp_tgt)
1707 {
1708 struct lwp_info *lp;
1709 struct ppc_hw_breakpoint p;
1710
1711 if (!have_ptrace_hwdebug_interface ())
1712 return -1;
1713
1714 p.version = PPC_DEBUG_CURRENT_VERSION;
1715 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1716 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1717 p.addr = (uint64_t) bp_tgt->placed_address;
1718 p.condition_value = 0;
1719
1720 if (bp_tgt->length)
1721 {
1722 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1723
1724 /* The breakpoint will trigger if the address of the instruction is within
1725 the defined range, as follows: p.addr <= address < p.addr2. */
1726 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1727 }
1728 else
1729 {
1730 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1731 p.addr2 = 0;
1732 }
1733
1734 ALL_LWPS (lp)
1735 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1736
1737 return 0;
1738 }
1739
1740 static int
1741 get_trigger_type (enum target_hw_bp_type type)
1742 {
1743 int t;
1744
1745 if (type == hw_read)
1746 t = PPC_BREAKPOINT_TRIGGER_READ;
1747 else if (type == hw_write)
1748 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1749 else
1750 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1751
1752 return t;
1753 }
1754
1755 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1756 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1757 or hw_access for an access watchpoint. Returns 0 on success and throws
1758 an error on failure. */
1759
1760 int
1761 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1762 target_hw_bp_type rw)
1763 {
1764 struct lwp_info *lp;
1765 struct ppc_hw_breakpoint p;
1766
1767 gdb_assert (have_ptrace_hwdebug_interface ());
1768
1769 p.version = PPC_DEBUG_CURRENT_VERSION;
1770 p.trigger_type = get_trigger_type (rw);
1771 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1772 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1773 p.addr = addr;
1774 p.addr2 = mask;
1775 p.condition_value = 0;
1776
1777 ALL_LWPS (lp)
1778 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1779
1780 return 0;
1781 }
1782
1783 /* Remove a masked watchpoint at ADDR with the mask MASK.
1784 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1785 or hw_access for an access watchpoint. Returns 0 on success and throws
1786 an error on failure. */
1787
1788 int
1789 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1790 target_hw_bp_type rw)
1791 {
1792 struct lwp_info *lp;
1793 struct ppc_hw_breakpoint p;
1794
1795 gdb_assert (have_ptrace_hwdebug_interface ());
1796
1797 p.version = PPC_DEBUG_CURRENT_VERSION;
1798 p.trigger_type = get_trigger_type (rw);
1799 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1800 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1801 p.addr = addr;
1802 p.addr2 = mask;
1803 p.condition_value = 0;
1804
1805 ALL_LWPS (lp)
1806 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1807
1808 return 0;
1809 }
1810
1811 /* Check whether we have at least one free DVC register. */
1812 static int
1813 can_use_watchpoint_cond_accel (void)
1814 {
1815 struct thread_points *p;
1816 int tid = ptid_get_lwp (inferior_ptid);
1817 int cnt = hwdebug_info.num_condition_regs, i;
1818 CORE_ADDR tmp_value;
1819
1820 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1821 return 0;
1822
1823 p = hwdebug_find_thread_points_by_tid (tid, 0);
1824
1825 if (p)
1826 {
1827 for (i = 0; i < max_slots_number; i++)
1828 if (p->hw_breaks[i].hw_break != NULL
1829 && (p->hw_breaks[i].hw_break->condition_mode
1830 != PPC_BREAKPOINT_CONDITION_NONE))
1831 cnt--;
1832
1833 /* There are no available slots now. */
1834 if (cnt <= 0)
1835 return 0;
1836 }
1837
1838 return 1;
1839 }
1840
1841 /* Calculate the enable bits and the contents of the Data Value Compare
1842 debug register present in BookE processors.
1843
1844 ADDR is the address to be watched, LEN is the length of watched data
1845 and DATA_VALUE is the value which will trigger the watchpoint.
1846 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1847 CONDITION_VALUE will hold the value which should be put in the
1848 DVC register. */
1849 static void
1850 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1851 uint32_t *condition_mode, uint64_t *condition_value)
1852 {
1853 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1854 rightmost_enabled_byte;
1855 CORE_ADDR addr_end_data, addr_end_dvc;
1856
1857 /* The DVC register compares bytes within fixed-length windows which
1858 are word-aligned, with length equal to that of the DVC register.
1859 We need to calculate where our watch region is relative to that
1860 window and enable comparison of the bytes which fall within it. */
1861
1862 align_offset = addr % hwdebug_info.sizeof_condition;
1863 addr_end_data = addr + len;
1864 addr_end_dvc = (addr - align_offset
1865 + hwdebug_info.sizeof_condition);
1866 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1867 addr_end_data - addr_end_dvc : 0;
1868 num_byte_enable = len - num_bytes_off_dvc;
1869 /* Here, bytes are numbered from right to left. */
1870 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1871 addr_end_dvc - addr_end_data : 0;
1872
1873 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1874 for (i = 0; i < num_byte_enable; i++)
1875 *condition_mode
1876 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1877
1878 /* Now we need to match the position within the DVC of the comparison
1879 value with where the watch region is relative to the window
1880 (i.e., the ALIGN_OFFSET). */
1881
1882 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1883 << rightmost_enabled_byte * 8);
1884 }
1885
1886 /* Return the number of memory locations that need to be accessed to
1887 evaluate the expression which generated the given value chain.
1888 Returns -1 if there's any register access involved, or if there are
1889 other kinds of values which are not acceptable in a condition
1890 expression (e.g., lval_computed or lval_internalvar). */
1891 static int
1892 num_memory_accesses (const std::vector<value_ref_ptr> &chain)
1893 {
1894 int found_memory_cnt = 0;
1895
1896 /* The idea here is that evaluating an expression generates a series
1897 of values, one holding the value of every subexpression. (The
1898 expression a*b+c has five subexpressions: a, b, a*b, c, and
1899 a*b+c.) GDB's values hold almost enough information to establish
1900 the criteria given above --- they identify memory lvalues,
1901 register lvalues, computed values, etcetera. So we can evaluate
1902 the expression, and then scan the chain of values that leaves
1903 behind to determine the memory locations involved in the evaluation
1904 of an expression.
1905
1906 However, I don't think that the values returned by inferior
1907 function calls are special in any way. So this function may not
1908 notice that an expression contains an inferior function call.
1909 FIXME. */
1910
1911 for (const value_ref_ptr &iter : chain)
1912 {
1913 struct value *v = iter.get ();
1914
1915 /* Constants and values from the history are fine. */
1916 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1917 continue;
1918 else if (VALUE_LVAL (v) == lval_memory)
1919 {
1920 /* A lazy memory lvalue is one that GDB never needed to fetch;
1921 we either just used its address (e.g., `a' in `a.b') or
1922 we never needed it at all (e.g., `a' in `a,b'). */
1923 if (!value_lazy (v))
1924 found_memory_cnt++;
1925 }
1926 /* Other kinds of values are not fine. */
1927 else
1928 return -1;
1929 }
1930
1931 return found_memory_cnt;
1932 }
1933
1934 /* Verifies whether the expression COND can be implemented using the
1935 DVC (Data Value Compare) register in BookE processors. The expression
1936 must test the watch value for equality with a constant expression.
1937 If the function returns 1, DATA_VALUE will contain the constant against
1938 which the watch value should be compared and LEN will contain the size
1939 of the constant. */
1940 static int
1941 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1942 CORE_ADDR *data_value, int *len)
1943 {
1944 int pc = 1, num_accesses_left, num_accesses_right;
1945 struct value *left_val, *right_val;
1946 std::vector<value_ref_ptr> left_chain, right_chain;
1947
1948 if (cond->elts[0].opcode != BINOP_EQUAL)
1949 return 0;
1950
1951 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1952 num_accesses_left = num_memory_accesses (left_chain);
1953
1954 if (left_val == NULL || num_accesses_left < 0)
1955 return 0;
1956
1957 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1958 num_accesses_right = num_memory_accesses (right_chain);
1959
1960 if (right_val == NULL || num_accesses_right < 0)
1961 return 0;
1962
1963 if (num_accesses_left == 1 && num_accesses_right == 0
1964 && VALUE_LVAL (left_val) == lval_memory
1965 && value_address (left_val) == watch_addr)
1966 {
1967 *data_value = value_as_long (right_val);
1968
1969 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1970 the same type as the memory region referenced by LEFT_VAL. */
1971 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1972 }
1973 else if (num_accesses_left == 0 && num_accesses_right == 1
1974 && VALUE_LVAL (right_val) == lval_memory
1975 && value_address (right_val) == watch_addr)
1976 {
1977 *data_value = value_as_long (left_val);
1978
1979 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1980 the same type as the memory region referenced by RIGHT_VAL. */
1981 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1982 }
1983 else
1984 return 0;
1985
1986 return 1;
1987 }
1988
1989 /* Return non-zero if the target is capable of using hardware to evaluate
1990 the condition expression, thus only triggering the watchpoint when it is
1991 true. */
1992 bool
1993 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1994 int rw,
1995 struct expression *cond)
1996 {
1997 CORE_ADDR data_value;
1998
1999 return (have_ptrace_hwdebug_interface ()
2000 && hwdebug_info.num_condition_regs > 0
2001 && check_condition (addr, cond, &data_value, &len));
2002 }
2003
2004 /* Set up P with the parameters necessary to request a watchpoint covering
2005 LEN bytes starting at ADDR and if possible with condition expression COND
2006 evaluated by hardware. INSERT tells if we are creating a request for
2007 inserting or removing the watchpoint. */
2008
2009 static void
2010 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2011 int len, enum target_hw_bp_type type,
2012 struct expression *cond, int insert)
2013 {
2014 if (len == 1
2015 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2016 {
2017 int use_condition;
2018 CORE_ADDR data_value;
2019
2020 use_condition = (insert? can_use_watchpoint_cond_accel ()
2021 : hwdebug_info.num_condition_regs > 0);
2022 if (cond && use_condition && check_condition (addr, cond,
2023 &data_value, &len))
2024 calculate_dvc (addr, len, data_value, &p->condition_mode,
2025 &p->condition_value);
2026 else
2027 {
2028 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2029 p->condition_value = 0;
2030 }
2031
2032 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2033 p->addr2 = 0;
2034 }
2035 else
2036 {
2037 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2038 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2039 p->condition_value = 0;
2040
2041 /* The watchpoint will trigger if the address of the memory access is
2042 within the defined range, as follows: p->addr <= address < p->addr2.
2043
2044 Note that the above sentence just documents how ptrace interprets
2045 its arguments; the watchpoint is set to watch the range defined by
2046 the user _inclusively_, as specified by the user interface. */
2047 p->addr2 = (uint64_t) addr + len;
2048 }
2049
2050 p->version = PPC_DEBUG_CURRENT_VERSION;
2051 p->trigger_type = get_trigger_type (type);
2052 p->addr = (uint64_t) addr;
2053 }
2054
2055 int
2056 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2057 enum target_hw_bp_type type,
2058 struct expression *cond)
2059 {
2060 struct lwp_info *lp;
2061 int ret = -1;
2062
2063 if (have_ptrace_hwdebug_interface ())
2064 {
2065 struct ppc_hw_breakpoint p;
2066
2067 create_watchpoint_request (&p, addr, len, type, cond, 1);
2068
2069 ALL_LWPS (lp)
2070 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2071
2072 ret = 0;
2073 }
2074 else
2075 {
2076 long dabr_value;
2077 long read_mode, write_mode;
2078
2079 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2080 {
2081 /* PowerPC 440 requires only the read/write flags to be passed
2082 to the kernel. */
2083 read_mode = 1;
2084 write_mode = 2;
2085 }
2086 else
2087 {
2088 /* PowerPC 970 and other DABR-based processors are required to pass
2089 the Breakpoint Translation bit together with the flags. */
2090 read_mode = 5;
2091 write_mode = 6;
2092 }
2093
2094 dabr_value = addr & ~(read_mode | write_mode);
2095 switch (type)
2096 {
2097 case hw_read:
2098 /* Set read and translate bits. */
2099 dabr_value |= read_mode;
2100 break;
2101 case hw_write:
2102 /* Set write and translate bits. */
2103 dabr_value |= write_mode;
2104 break;
2105 case hw_access:
2106 /* Set read, write and translate bits. */
2107 dabr_value |= read_mode | write_mode;
2108 break;
2109 }
2110
2111 saved_dabr_value = dabr_value;
2112
2113 ALL_LWPS (lp)
2114 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2115 saved_dabr_value) < 0)
2116 return -1;
2117
2118 ret = 0;
2119 }
2120
2121 return ret;
2122 }
2123
2124 int
2125 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2126 enum target_hw_bp_type type,
2127 struct expression *cond)
2128 {
2129 struct lwp_info *lp;
2130 int ret = -1;
2131
2132 if (have_ptrace_hwdebug_interface ())
2133 {
2134 struct ppc_hw_breakpoint p;
2135
2136 create_watchpoint_request (&p, addr, len, type, cond, 0);
2137
2138 ALL_LWPS (lp)
2139 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2140
2141 ret = 0;
2142 }
2143 else
2144 {
2145 saved_dabr_value = 0;
2146 ALL_LWPS (lp)
2147 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2148 saved_dabr_value) < 0)
2149 return -1;
2150
2151 ret = 0;
2152 }
2153
2154 return ret;
2155 }
2156
2157 void
2158 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2159 {
2160 int tid = ptid_get_lwp (lp->ptid);
2161
2162 if (have_ptrace_hwdebug_interface ())
2163 {
2164 int i;
2165 struct thread_points *p;
2166 struct hw_break_tuple *hw_breaks;
2167
2168 if (VEC_empty (thread_points_p, ppc_threads))
2169 return;
2170
2171 /* Get a list of breakpoints from any thread. */
2172 p = VEC_last (thread_points_p, ppc_threads);
2173 hw_breaks = p->hw_breaks;
2174
2175 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2176 for (i = 0; i < max_slots_number; i++)
2177 if (hw_breaks[i].hw_break)
2178 {
2179 /* Older kernels did not make new threads inherit their parent
2180 thread's debug state, so we always clear the slot and replicate
2181 the debug state ourselves, ensuring compatibility with all
2182 kernels. */
2183
2184 /* The ppc debug resource accounting is done through "slots".
2185 Ask the kernel the deallocate this specific *point's slot. */
2186 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2187
2188 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2189 }
2190 }
2191 else
2192 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2193 }
2194
2195 static void
2196 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2197 {
2198 int i;
2199 int tid = ptid_get_lwp (tp->ptid);
2200 struct hw_break_tuple *hw_breaks;
2201 struct thread_points *t = NULL, *p;
2202
2203 if (!have_ptrace_hwdebug_interface ())
2204 return;
2205
2206 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2207 if (p->tid == tid)
2208 {
2209 t = p;
2210 break;
2211 }
2212
2213 if (t == NULL)
2214 return;
2215
2216 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2217
2218 hw_breaks = t->hw_breaks;
2219
2220 for (i = 0; i < max_slots_number; i++)
2221 if (hw_breaks[i].hw_break)
2222 xfree (hw_breaks[i].hw_break);
2223
2224 xfree (t->hw_breaks);
2225 xfree (t);
2226 }
2227
2228 bool
2229 ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2230 {
2231 siginfo_t siginfo;
2232
2233 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2234 return false;
2235
2236 if (siginfo.si_signo != SIGTRAP
2237 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2238 return false;
2239
2240 if (have_ptrace_hwdebug_interface ())
2241 {
2242 int i;
2243 struct thread_points *t;
2244 struct hw_break_tuple *hw_breaks;
2245 /* The index (or slot) of the *point is passed in the si_errno field. */
2246 int slot = siginfo.si_errno;
2247
2248 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2249
2250 /* Find out if this *point is a hardware breakpoint.
2251 If so, we should return 0. */
2252 if (t)
2253 {
2254 hw_breaks = t->hw_breaks;
2255 for (i = 0; i < max_slots_number; i++)
2256 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2257 && hw_breaks[i].hw_break->trigger_type
2258 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2259 return false;
2260 }
2261 }
2262
2263 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2264 return true;
2265 }
2266
2267 bool
2268 ppc_linux_nat_target::stopped_by_watchpoint ()
2269 {
2270 CORE_ADDR addr;
2271 return stopped_data_address (&addr);
2272 }
2273
2274 bool
2275 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2276 CORE_ADDR start,
2277 int length)
2278 {
2279 int mask;
2280
2281 if (have_ptrace_hwdebug_interface ()
2282 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2283 return start <= addr && start + length >= addr;
2284 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2285 mask = 3;
2286 else
2287 mask = 7;
2288
2289 addr &= ~mask;
2290
2291 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2292 return start <= addr + mask && start + length - 1 >= addr;
2293 }
2294
2295 /* Return the number of registers needed for a masked hardware watchpoint. */
2296
2297 int
2298 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
2299 {
2300 if (!have_ptrace_hwdebug_interface ()
2301 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2302 return -1;
2303 else if ((mask & 0xC0000000) != 0xC0000000)
2304 {
2305 warning (_("The given mask covers kernel address space "
2306 "and cannot be used.\n"));
2307
2308 return -2;
2309 }
2310 else
2311 return 2;
2312 }
2313
2314 void
2315 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
2316 {
2317 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
2318
2319 if (regno >= 0)
2320 store_register (regcache, tid, regno);
2321 else
2322 store_ppc_registers (regcache, tid);
2323 }
2324
2325 /* Functions for transferring registers between a gregset_t or fpregset_t
2326 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2327 by the ptrace interface, not the current program's ABI. Eg. if a
2328 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2329 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2330
2331 void
2332 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2333 {
2334 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2335
2336 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2337 }
2338
2339 void
2340 fill_gregset (const struct regcache *regcache,
2341 gdb_gregset_t *gregsetp, int regno)
2342 {
2343 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2344
2345 if (regno == -1)
2346 memset (gregsetp, 0, sizeof (*gregsetp));
2347 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2348 }
2349
2350 void
2351 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2352 {
2353 const struct regset *regset = ppc_linux_fpregset ();
2354
2355 ppc_supply_fpregset (regset, regcache, -1,
2356 fpregsetp, sizeof (*fpregsetp));
2357 }
2358
2359 void
2360 fill_fpregset (const struct regcache *regcache,
2361 gdb_fpregset_t *fpregsetp, int regno)
2362 {
2363 const struct regset *regset = ppc_linux_fpregset ();
2364
2365 ppc_collect_fpregset (regset, regcache, regno,
2366 fpregsetp, sizeof (*fpregsetp));
2367 }
2368
2369 static int
2370 ppc_linux_target_wordsize (void)
2371 {
2372 int wordsize = 4;
2373
2374 /* Check for 64-bit inferior process. This is the case when the host is
2375 64-bit, and in addition the top bit of the MSR register is set. */
2376 #ifdef __powerpc64__
2377 long msr;
2378
2379 int tid = ptid_get_lwp (inferior_ptid);
2380 if (tid == 0)
2381 tid = ptid_get_pid (inferior_ptid);
2382
2383 errno = 0;
2384 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2385 if (errno == 0 && ppc64_64bit_inferior_p (msr))
2386 wordsize = 8;
2387 #endif
2388
2389 return wordsize;
2390 }
2391
2392 int
2393 ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2394 gdb_byte *endptr, CORE_ADDR *typep,
2395 CORE_ADDR *valp)
2396 {
2397 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2398 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2399 gdb_byte *ptr = *readptr;
2400
2401 if (endptr == ptr)
2402 return 0;
2403
2404 if (endptr - ptr < sizeof_auxv_field * 2)
2405 return -1;
2406
2407 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2408 ptr += sizeof_auxv_field;
2409 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2410 ptr += sizeof_auxv_field;
2411
2412 *readptr = ptr;
2413 return 1;
2414 }
2415
2416 const struct target_desc *
2417 ppc_linux_nat_target::read_description ()
2418 {
2419 int altivec = 0;
2420 int vsx = 0;
2421 int isa205 = 0;
2422 int cell = 0;
2423
2424 int tid = ptid_get_lwp (inferior_ptid);
2425 if (tid == 0)
2426 tid = ptid_get_pid (inferior_ptid);
2427
2428 if (have_ptrace_getsetevrregs)
2429 {
2430 struct gdb_evrregset_t evrregset;
2431
2432 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2433 return tdesc_powerpc_e500l;
2434
2435 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2436 Anything else needs to be reported. */
2437 else if (errno != EIO)
2438 perror_with_name (_("Unable to fetch SPE registers"));
2439 }
2440
2441 if (have_ptrace_getsetvsxregs
2442 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX))
2443 {
2444 gdb_vsxregset_t vsxregset;
2445
2446 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2447 vsx = 1;
2448
2449 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2450 Anything else needs to be reported. */
2451 else if (errno != EIO)
2452 perror_with_name (_("Unable to fetch VSX registers"));
2453 }
2454
2455 if (have_ptrace_getvrregs
2456 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC))
2457 {
2458 gdb_vrregset_t vrregset;
2459
2460 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2461 altivec = 1;
2462
2463 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2464 Anything else needs to be reported. */
2465 else if (errno != EIO)
2466 perror_with_name (_("Unable to fetch AltiVec registers"));
2467 }
2468
2469 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2470 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2471 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2472 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2473 half of the register are for Decimal Floating Point, we check if that
2474 feature is available to decide the size of the FPSCR. */
2475 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2476 isa205 = 1;
2477
2478 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2479 cell = 1;
2480
2481 if (ppc_linux_target_wordsize () == 8)
2482 {
2483 if (cell)
2484 return tdesc_powerpc_cell64l;
2485 else if (vsx)
2486 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2487 else if (altivec)
2488 return isa205
2489 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2490
2491 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2492 }
2493
2494 if (cell)
2495 return tdesc_powerpc_cell32l;
2496 else if (vsx)
2497 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2498 else if (altivec)
2499 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2500
2501 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2502 }
2503
2504 void
2505 _initialize_ppc_linux_nat (void)
2506 {
2507 linux_target = &the_ppc_linux_nat_target;
2508
2509 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
2510
2511 /* Register the target. */
2512 add_target (linux_target);
2513 }
This page took 0.132857 seconds and 5 git commands to generate.