[PowerPC] Consolidate wordsize getter between native and gdbserver
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observable.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include "gdb_wait.h"
34 #include <fcntl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
37 #include "inf-ptrace.h"
38
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41 #include "ppc-tdep.h"
42 #include "ppc-linux-tdep.h"
43
44 /* Required when using the AUXV. */
45 #include "elf/common.h"
46 #include "auxv.h"
47
48 #include "arch/ppc-linux-common.h"
49 #include "arch/ppc-linux-tdesc.h"
50 #include "nat/ppc-linux.h"
51
52 /* Similarly for the hardware watchpoint support. These requests are used
53 when the PowerPC HWDEBUG ptrace interface is not available. */
54 #ifndef PTRACE_GET_DEBUGREG
55 #define PTRACE_GET_DEBUGREG 25
56 #endif
57 #ifndef PTRACE_SET_DEBUGREG
58 #define PTRACE_SET_DEBUGREG 26
59 #endif
60 #ifndef PTRACE_GETSIGINFO
61 #define PTRACE_GETSIGINFO 0x4202
62 #endif
63
64 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
65 available. It exposes the debug facilities of PowerPC processors, as well
66 as additional features of BookE processors, such as ranged breakpoints and
67 watchpoints and hardware-accelerated condition evaluation. */
68 #ifndef PPC_PTRACE_GETHWDBGINFO
69
70 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
71 ptrace interface is not present in ptrace.h, so we'll have to pretty much
72 include it all here so that the code at least compiles on older systems. */
73 #define PPC_PTRACE_GETHWDBGINFO 0x89
74 #define PPC_PTRACE_SETHWDEBUG 0x88
75 #define PPC_PTRACE_DELHWDEBUG 0x87
76
77 struct ppc_debug_info
78 {
79 uint32_t version; /* Only version 1 exists to date. */
80 uint32_t num_instruction_bps;
81 uint32_t num_data_bps;
82 uint32_t num_condition_regs;
83 uint32_t data_bp_alignment;
84 uint32_t sizeof_condition; /* size of the DVC register. */
85 uint64_t features;
86 };
87
88 /* Features will have bits indicating whether there is support for: */
89 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
90 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
91 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
92 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
93
94 struct ppc_hw_breakpoint
95 {
96 uint32_t version; /* currently, version must be 1 */
97 uint32_t trigger_type; /* only some combinations allowed */
98 uint32_t addr_mode; /* address match mode */
99 uint32_t condition_mode; /* break/watchpoint condition flags */
100 uint64_t addr; /* break/watchpoint address */
101 uint64_t addr2; /* range end or mask */
102 uint64_t condition_value; /* contents of the DVC register */
103 };
104
105 /* Trigger type. */
106 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
107 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
108 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
109 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
110
111 /* Address mode. */
112 #define PPC_BREAKPOINT_MODE_EXACT 0x0
113 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
114 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
115 #define PPC_BREAKPOINT_MODE_MASK 0x3
116
117 /* Condition mode. */
118 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
119 #define PPC_BREAKPOINT_CONDITION_AND 0x1
120 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
121 #define PPC_BREAKPOINT_CONDITION_OR 0x2
122 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
123 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
124 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
125 #define PPC_BREAKPOINT_CONDITION_BE(n) \
126 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
127 #endif /* PPC_PTRACE_GETHWDBGINFO */
128
129 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
130 watchpoint (up to 512 bytes). */
131 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
132 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
133 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
134
135 /* Similarly for the general-purpose (gp0 -- gp31)
136 and floating-point registers (fp0 -- fp31). */
137 #ifndef PTRACE_GETREGS
138 #define PTRACE_GETREGS 12
139 #endif
140 #ifndef PTRACE_SETREGS
141 #define PTRACE_SETREGS 13
142 #endif
143 #ifndef PTRACE_GETFPREGS
144 #define PTRACE_GETFPREGS 14
145 #endif
146 #ifndef PTRACE_SETFPREGS
147 #define PTRACE_SETFPREGS 15
148 #endif
149
150 /* This oddity is because the Linux kernel defines elf_vrregset_t as
151 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
152 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
153 the vrsave as an extra 4 bytes at the end. I opted for creating a
154 flat array of chars, so that it is easier to manipulate for gdb.
155
156 There are 32 vector registers 16 bytes longs, plus a VSCR register
157 which is only 4 bytes long, but is fetched as a 16 bytes
158 quantity. Up to here we have the elf_vrregset_t structure.
159 Appended to this there is space for the VRSAVE register: 4 bytes.
160 Even though this vrsave register is not included in the regset
161 typedef, it is handled by the ptrace requests.
162
163 Note that GNU/Linux doesn't support little endian PPC hardware,
164 therefore the offset at which the real value of the VSCR register
165 is located will be always 12 bytes.
166
167 The layout is like this (where x is the actual value of the vscr reg): */
168
169 /* *INDENT-OFF* */
170 /*
171 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
172 <-------> <-------><-------><->
173 VR0 VR31 VSCR VRSAVE
174 */
175 /* *INDENT-ON* */
176
177 #define SIZEOF_VRREGS 33*16+4
178
179 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
180
181 /* This is the layout of the POWER7 VSX registers and the way they overlap
182 with the existing FPR and VMX registers.
183
184 VSR doubleword 0 VSR doubleword 1
185 ----------------------------------------------------------------
186 VSR[0] | FPR[0] | |
187 ----------------------------------------------------------------
188 VSR[1] | FPR[1] | |
189 ----------------------------------------------------------------
190 | ... | |
191 | ... | |
192 ----------------------------------------------------------------
193 VSR[30] | FPR[30] | |
194 ----------------------------------------------------------------
195 VSR[31] | FPR[31] | |
196 ----------------------------------------------------------------
197 VSR[32] | VR[0] |
198 ----------------------------------------------------------------
199 VSR[33] | VR[1] |
200 ----------------------------------------------------------------
201 | ... |
202 | ... |
203 ----------------------------------------------------------------
204 VSR[62] | VR[30] |
205 ----------------------------------------------------------------
206 VSR[63] | VR[31] |
207 ----------------------------------------------------------------
208
209 VSX has 64 128bit registers. The first 32 registers overlap with
210 the FP registers (doubleword 0) and hence extend them with additional
211 64 bits (doubleword 1). The other 32 regs overlap with the VMX
212 registers. */
213 #define SIZEOF_VSXREGS 32*8
214
215 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
216
217 /* On PPC processors that support the Signal Processing Extension
218 (SPE) APU, the general-purpose registers are 64 bits long.
219 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
220 ptrace calls only access the lower half of each register, to allow
221 them to behave the same way they do on non-SPE systems. There's a
222 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
223 read and write the top halves of all the general-purpose registers
224 at once, along with some SPE-specific registers.
225
226 GDB itself continues to claim the general-purpose registers are 32
227 bits long. It has unnamed raw registers that hold the upper halves
228 of the gprs, and the full 64-bit SIMD views of the registers,
229 'ev0' -- 'ev31', are pseudo-registers that splice the top and
230 bottom halves together.
231
232 This is the structure filled in by PTRACE_GETEVRREGS and written to
233 the inferior's registers by PTRACE_SETEVRREGS. */
234 struct gdb_evrregset_t
235 {
236 unsigned long evr[32];
237 unsigned long long acc;
238 unsigned long spefscr;
239 };
240
241 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
242 PTRACE_SETVSXREGS requests, for reading and writing the VSX
243 POWER7 registers 0 through 31. Zero if we've tried one of them and
244 gotten an error. Note that VSX registers 32 through 63 overlap
245 with VR registers 0 through 31. */
246 int have_ptrace_getsetvsxregs = 1;
247
248 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
249 PTRACE_SETVRREGS requests, for reading and writing the Altivec
250 registers. Zero if we've tried one of them and gotten an
251 error. */
252 int have_ptrace_getvrregs = 1;
253
254 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
255 PTRACE_SETEVRREGS requests, for reading and writing the SPE
256 registers. Zero if we've tried one of them and gotten an
257 error. */
258 int have_ptrace_getsetevrregs = 1;
259
260 /* Non-zero if our kernel may support the PTRACE_GETREGS and
261 PTRACE_SETREGS requests, for reading and writing the
262 general-purpose registers. Zero if we've tried one of
263 them and gotten an error. */
264 int have_ptrace_getsetregs = 1;
265
266 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
267 PTRACE_SETFPREGS requests, for reading and writing the
268 floating-pointers registers. Zero if we've tried one of
269 them and gotten an error. */
270 int have_ptrace_getsetfpregs = 1;
271
272 struct ppc_linux_nat_target final : public linux_nat_target
273 {
274 /* Add our register access methods. */
275 void fetch_registers (struct regcache *, int) override;
276 void store_registers (struct regcache *, int) override;
277
278 /* Add our breakpoint/watchpoint methods. */
279 int can_use_hw_breakpoint (enum bptype, int, int) override;
280
281 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
282 override;
283
284 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
285 override;
286
287 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
288
289 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
290 struct expression *) override;
291
292 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
293 struct expression *) override;
294
295 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
296 override;
297
298 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
299 override;
300
301 bool stopped_by_watchpoint () override;
302
303 bool stopped_data_address (CORE_ADDR *) override;
304
305 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
306
307 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
308 override;
309
310 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
311
312 int ranged_break_num_registers () override;
313
314 const struct target_desc *read_description () override;
315
316 int auxv_parse (gdb_byte **readptr,
317 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
318 override;
319
320 /* Override linux_nat_target low methods. */
321 void low_new_thread (struct lwp_info *lp) override;
322 };
323
324 static ppc_linux_nat_target the_ppc_linux_nat_target;
325
326 /* *INDENT-OFF* */
327 /* registers layout, as presented by the ptrace interface:
328 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
329 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
330 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
331 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
332 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
333 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
334 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
335 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
336 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
337 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
338 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
339 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
340 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
341 /* *INDENT_ON * */
342
343 static int
344 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
345 {
346 int u_addr = -1;
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
349 interface, and not the wordsize of the program's ABI. */
350 int wordsize = sizeof (long);
351
352 /* General purpose registers occupy 1 slot each in the buffer. */
353 if (regno >= tdep->ppc_gp0_regnum
354 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
355 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
356
357 /* Floating point regs: eight bytes each in both 32- and 64-bit
358 ptrace interfaces. Thus, two slots each in 32-bit interface, one
359 slot each in 64-bit interface. */
360 if (tdep->ppc_fp0_regnum >= 0
361 && regno >= tdep->ppc_fp0_regnum
362 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
363 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
364
365 /* UISA special purpose registers: 1 slot each. */
366 if (regno == gdbarch_pc_regnum (gdbarch))
367 u_addr = PT_NIP * wordsize;
368 if (regno == tdep->ppc_lr_regnum)
369 u_addr = PT_LNK * wordsize;
370 if (regno == tdep->ppc_cr_regnum)
371 u_addr = PT_CCR * wordsize;
372 if (regno == tdep->ppc_xer_regnum)
373 u_addr = PT_XER * wordsize;
374 if (regno == tdep->ppc_ctr_regnum)
375 u_addr = PT_CTR * wordsize;
376 #ifdef PT_MQ
377 if (regno == tdep->ppc_mq_regnum)
378 u_addr = PT_MQ * wordsize;
379 #endif
380 if (regno == tdep->ppc_ps_regnum)
381 u_addr = PT_MSR * wordsize;
382 if (regno == PPC_ORIG_R3_REGNUM)
383 u_addr = PT_ORIG_R3 * wordsize;
384 if (regno == PPC_TRAP_REGNUM)
385 u_addr = PT_TRAP * wordsize;
386 if (tdep->ppc_fpscr_regnum >= 0
387 && regno == tdep->ppc_fpscr_regnum)
388 {
389 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
390 kernel headers incorrectly contained the 32-bit definition of
391 PT_FPSCR. For the 32-bit definition, floating-point
392 registers occupy two 32-bit "slots", and the FPSCR lives in
393 the second half of such a slot-pair (hence +1). For 64-bit,
394 the FPSCR instead occupies the full 64-bit 2-word-slot and
395 hence no adjustment is necessary. Hack around this. */
396 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
397 u_addr = (48 + 32) * wordsize;
398 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
399 slot and not just its second word. The PT_FPSCR supplied when
400 GDB is compiled as a 32-bit app doesn't reflect this. */
401 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
402 && PT_FPSCR == (48 + 2*32 + 1))
403 u_addr = (48 + 2*32) * wordsize;
404 else
405 u_addr = PT_FPSCR * wordsize;
406 }
407 return u_addr;
408 }
409
410 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
411 registers set mechanism, as opposed to the interface for all the
412 other registers, that stores/fetches each register individually. */
413 static void
414 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
415 {
416 int ret;
417 gdb_vsxregset_t regs;
418 struct gdbarch *gdbarch = regcache->arch ();
419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
420 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
421
422 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
423 if (ret < 0)
424 {
425 if (errno == EIO)
426 {
427 have_ptrace_getsetvsxregs = 0;
428 return;
429 }
430 perror_with_name (_("Unable to fetch VSX register"));
431 }
432
433 regcache_raw_supply (regcache, regno,
434 regs + (regno - tdep->ppc_vsr0_upper_regnum)
435 * vsxregsize);
436 }
437
438 /* The Linux kernel ptrace interface for AltiVec registers uses the
439 registers set mechanism, as opposed to the interface for all the
440 other registers, that stores/fetches each register individually. */
441 static void
442 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
443 {
444 int ret;
445 int offset = 0;
446 gdb_vrregset_t regs;
447 struct gdbarch *gdbarch = regcache->arch ();
448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
449 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
450
451 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
452 if (ret < 0)
453 {
454 if (errno == EIO)
455 {
456 have_ptrace_getvrregs = 0;
457 return;
458 }
459 perror_with_name (_("Unable to fetch AltiVec register"));
460 }
461
462 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
463 long on the hardware. We deal only with the lower 4 bytes of the
464 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
465 there is no need to define an offset for it. */
466 if (regno == (tdep->ppc_vrsave_regnum - 1))
467 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
468
469 regcache_raw_supply (regcache, regno,
470 regs + (regno
471 - tdep->ppc_vr0_regnum) * vrregsize + offset);
472 }
473
474 /* Fetch the top 32 bits of TID's general-purpose registers and the
475 SPE-specific registers, and place the results in EVRREGSET. If we
476 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
477 zeros.
478
479 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
480 PTRACE_SETEVRREGS requests are supported is isolated here, and in
481 set_spe_registers. */
482 static void
483 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
484 {
485 if (have_ptrace_getsetevrregs)
486 {
487 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
488 return;
489 else
490 {
491 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
492 we just return zeros. */
493 if (errno == EIO)
494 have_ptrace_getsetevrregs = 0;
495 else
496 /* Anything else needs to be reported. */
497 perror_with_name (_("Unable to fetch SPE registers"));
498 }
499 }
500
501 memset (evrregset, 0, sizeof (*evrregset));
502 }
503
504 /* Supply values from TID for SPE-specific raw registers: the upper
505 halves of the GPRs, the accumulator, and the spefscr. REGNO must
506 be the number of an upper half register, acc, spefscr, or -1 to
507 supply the values of all registers. */
508 static void
509 fetch_spe_register (struct regcache *regcache, int tid, int regno)
510 {
511 struct gdbarch *gdbarch = regcache->arch ();
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 struct gdb_evrregset_t evrregs;
514
515 gdb_assert (sizeof (evrregs.evr[0])
516 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
517 gdb_assert (sizeof (evrregs.acc)
518 == register_size (gdbarch, tdep->ppc_acc_regnum));
519 gdb_assert (sizeof (evrregs.spefscr)
520 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
521
522 get_spe_registers (tid, &evrregs);
523
524 if (regno == -1)
525 {
526 int i;
527
528 for (i = 0; i < ppc_num_gprs; i++)
529 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
530 &evrregs.evr[i]);
531 }
532 else if (tdep->ppc_ev0_upper_regnum <= regno
533 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
534 regcache_raw_supply (regcache, regno,
535 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
536
537 if (regno == -1
538 || regno == tdep->ppc_acc_regnum)
539 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
540
541 if (regno == -1
542 || regno == tdep->ppc_spefscr_regnum)
543 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
544 &evrregs.spefscr);
545 }
546
547 static void
548 fetch_register (struct regcache *regcache, int tid, int regno)
549 {
550 struct gdbarch *gdbarch = regcache->arch ();
551 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
552 /* This isn't really an address. But ptrace thinks of it as one. */
553 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
554 int bytes_transferred;
555 unsigned int offset; /* Offset of registers within the u area. */
556 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
557
558 if (altivec_register_p (gdbarch, regno))
559 {
560 /* If this is the first time through, or if it is not the first
561 time through, and we have comfirmed that there is kernel
562 support for such a ptrace request, then go and fetch the
563 register. */
564 if (have_ptrace_getvrregs)
565 {
566 fetch_altivec_register (regcache, tid, regno);
567 return;
568 }
569 /* If we have discovered that there is no ptrace support for
570 AltiVec registers, fall through and return zeroes, because
571 regaddr will be -1 in this case. */
572 }
573 if (vsx_register_p (gdbarch, regno))
574 {
575 if (have_ptrace_getsetvsxregs)
576 {
577 fetch_vsx_register (regcache, tid, regno);
578 return;
579 }
580 }
581 else if (spe_register_p (gdbarch, regno))
582 {
583 fetch_spe_register (regcache, tid, regno);
584 return;
585 }
586
587 if (regaddr == -1)
588 {
589 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
590 regcache_raw_supply (regcache, regno, buf);
591 return;
592 }
593
594 /* Read the raw register using sizeof(long) sized chunks. On a
595 32-bit platform, 64-bit floating-point registers will require two
596 transfers. */
597 for (bytes_transferred = 0;
598 bytes_transferred < register_size (gdbarch, regno);
599 bytes_transferred += sizeof (long))
600 {
601 long l;
602
603 errno = 0;
604 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
605 regaddr += sizeof (long);
606 if (errno != 0)
607 {
608 char message[128];
609 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
610 gdbarch_register_name (gdbarch, regno), regno);
611 perror_with_name (message);
612 }
613 memcpy (&buf[bytes_transferred], &l, sizeof (l));
614 }
615
616 /* Now supply the register. Keep in mind that the regcache's idea
617 of the register's size may not be a multiple of sizeof
618 (long). */
619 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
620 {
621 /* Little-endian values are always found at the left end of the
622 bytes transferred. */
623 regcache_raw_supply (regcache, regno, buf);
624 }
625 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
626 {
627 /* Big-endian values are found at the right end of the bytes
628 transferred. */
629 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
630 regcache_raw_supply (regcache, regno, buf + padding);
631 }
632 else
633 internal_error (__FILE__, __LINE__,
634 _("fetch_register: unexpected byte order: %d"),
635 gdbarch_byte_order (gdbarch));
636 }
637
638 static void
639 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
640 {
641 int i;
642 struct gdbarch *gdbarch = regcache->arch ();
643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
644 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
645
646 for (i = 0; i < ppc_num_vshrs; i++)
647 {
648 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
649 *vsxregsetp + i * vsxregsize);
650 }
651 }
652
653 static void
654 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
655 {
656 int i;
657 struct gdbarch *gdbarch = regcache->arch ();
658 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
659 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
660 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
661 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
662
663 for (i = 0; i < num_of_vrregs; i++)
664 {
665 /* The last 2 registers of this set are only 32 bit long, not
666 128. However an offset is necessary only for VSCR because it
667 occupies a whole vector, while VRSAVE occupies a full 4 bytes
668 slot. */
669 if (i == (num_of_vrregs - 2))
670 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
671 *vrregsetp + i * vrregsize + offset);
672 else
673 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
674 *vrregsetp + i * vrregsize);
675 }
676 }
677
678 static void
679 fetch_vsx_registers (struct regcache *regcache, int tid)
680 {
681 int ret;
682 gdb_vsxregset_t regs;
683
684 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
685 if (ret < 0)
686 {
687 if (errno == EIO)
688 {
689 have_ptrace_getsetvsxregs = 0;
690 return;
691 }
692 perror_with_name (_("Unable to fetch VSX registers"));
693 }
694 supply_vsxregset (regcache, &regs);
695 }
696
697 static void
698 fetch_altivec_registers (struct regcache *regcache, int tid)
699 {
700 int ret;
701 gdb_vrregset_t regs;
702
703 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
704 if (ret < 0)
705 {
706 if (errno == EIO)
707 {
708 have_ptrace_getvrregs = 0;
709 return;
710 }
711 perror_with_name (_("Unable to fetch AltiVec registers"));
712 }
713 supply_vrregset (regcache, &regs);
714 }
715
716 /* This function actually issues the request to ptrace, telling
717 it to get all general-purpose registers and put them into the
718 specified regset.
719
720 If the ptrace request does not exist, this function returns 0
721 and properly sets the have_ptrace_* flag. If the request fails,
722 this function calls perror_with_name. Otherwise, if the request
723 succeeds, then the regcache gets filled and 1 is returned. */
724 static int
725 fetch_all_gp_regs (struct regcache *regcache, int tid)
726 {
727 struct gdbarch *gdbarch = regcache->arch ();
728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
729 gdb_gregset_t gregset;
730
731 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
732 {
733 if (errno == EIO)
734 {
735 have_ptrace_getsetregs = 0;
736 return 0;
737 }
738 perror_with_name (_("Couldn't get general-purpose registers."));
739 }
740
741 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
742
743 return 1;
744 }
745
746 /* This is a wrapper for the fetch_all_gp_regs function. It is
747 responsible for verifying if this target has the ptrace request
748 that can be used to fetch all general-purpose registers at one
749 shot. If it doesn't, then we should fetch them using the
750 old-fashioned way, which is to iterate over the registers and
751 request them one by one. */
752 static void
753 fetch_gp_regs (struct regcache *regcache, int tid)
754 {
755 struct gdbarch *gdbarch = regcache->arch ();
756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
757 int i;
758
759 if (have_ptrace_getsetregs)
760 if (fetch_all_gp_regs (regcache, tid))
761 return;
762
763 /* If we've hit this point, it doesn't really matter which
764 architecture we are using. We just need to read the
765 registers in the "old-fashioned way". */
766 for (i = 0; i < ppc_num_gprs; i++)
767 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
768 }
769
770 /* This function actually issues the request to ptrace, telling
771 it to get all floating-point registers and put them into the
772 specified regset.
773
774 If the ptrace request does not exist, this function returns 0
775 and properly sets the have_ptrace_* flag. If the request fails,
776 this function calls perror_with_name. Otherwise, if the request
777 succeeds, then the regcache gets filled and 1 is returned. */
778 static int
779 fetch_all_fp_regs (struct regcache *regcache, int tid)
780 {
781 gdb_fpregset_t fpregs;
782
783 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
784 {
785 if (errno == EIO)
786 {
787 have_ptrace_getsetfpregs = 0;
788 return 0;
789 }
790 perror_with_name (_("Couldn't get floating-point registers."));
791 }
792
793 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
794
795 return 1;
796 }
797
798 /* This is a wrapper for the fetch_all_fp_regs function. It is
799 responsible for verifying if this target has the ptrace request
800 that can be used to fetch all floating-point registers at one
801 shot. If it doesn't, then we should fetch them using the
802 old-fashioned way, which is to iterate over the registers and
803 request them one by one. */
804 static void
805 fetch_fp_regs (struct regcache *regcache, int tid)
806 {
807 struct gdbarch *gdbarch = regcache->arch ();
808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
809 int i;
810
811 if (have_ptrace_getsetfpregs)
812 if (fetch_all_fp_regs (regcache, tid))
813 return;
814
815 /* If we've hit this point, it doesn't really matter which
816 architecture we are using. We just need to read the
817 registers in the "old-fashioned way". */
818 for (i = 0; i < ppc_num_fprs; i++)
819 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
820 }
821
822 static void
823 fetch_ppc_registers (struct regcache *regcache, int tid)
824 {
825 int i;
826 struct gdbarch *gdbarch = regcache->arch ();
827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
828
829 fetch_gp_regs (regcache, tid);
830 if (tdep->ppc_fp0_regnum >= 0)
831 fetch_fp_regs (regcache, tid);
832 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
833 if (tdep->ppc_ps_regnum != -1)
834 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
835 if (tdep->ppc_cr_regnum != -1)
836 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
837 if (tdep->ppc_lr_regnum != -1)
838 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
839 if (tdep->ppc_ctr_regnum != -1)
840 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
841 if (tdep->ppc_xer_regnum != -1)
842 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
843 if (tdep->ppc_mq_regnum != -1)
844 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
845 if (ppc_linux_trap_reg_p (gdbarch))
846 {
847 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
848 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
849 }
850 if (tdep->ppc_fpscr_regnum != -1)
851 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
852 if (have_ptrace_getvrregs)
853 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
854 fetch_altivec_registers (regcache, tid);
855 if (have_ptrace_getsetvsxregs)
856 if (tdep->ppc_vsr0_upper_regnum != -1)
857 fetch_vsx_registers (regcache, tid);
858 if (tdep->ppc_ev0_upper_regnum >= 0)
859 fetch_spe_register (regcache, tid, -1);
860 }
861
862 /* Fetch registers from the child process. Fetch all registers if
863 regno == -1, otherwise fetch all general registers or all floating
864 point registers depending upon the value of regno. */
865 void
866 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
867 {
868 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
869
870 if (regno == -1)
871 fetch_ppc_registers (regcache, tid);
872 else
873 fetch_register (regcache, tid, regno);
874 }
875
876 /* Store one VSX register. */
877 static void
878 store_vsx_register (const struct regcache *regcache, int tid, int regno)
879 {
880 int ret;
881 gdb_vsxregset_t regs;
882 struct gdbarch *gdbarch = regcache->arch ();
883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
884 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
885
886 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
887 if (ret < 0)
888 {
889 if (errno == EIO)
890 {
891 have_ptrace_getsetvsxregs = 0;
892 return;
893 }
894 perror_with_name (_("Unable to fetch VSX register"));
895 }
896
897 regcache_raw_collect (regcache, regno, regs +
898 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
899
900 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
901 if (ret < 0)
902 perror_with_name (_("Unable to store VSX register"));
903 }
904
905 /* Store one register. */
906 static void
907 store_altivec_register (const struct regcache *regcache, int tid, int regno)
908 {
909 int ret;
910 int offset = 0;
911 gdb_vrregset_t regs;
912 struct gdbarch *gdbarch = regcache->arch ();
913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
914 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
915
916 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
917 if (ret < 0)
918 {
919 if (errno == EIO)
920 {
921 have_ptrace_getvrregs = 0;
922 return;
923 }
924 perror_with_name (_("Unable to fetch AltiVec register"));
925 }
926
927 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
928 long on the hardware. */
929 if (regno == (tdep->ppc_vrsave_regnum - 1))
930 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
931
932 regcache_raw_collect (regcache, regno,
933 regs + (regno
934 - tdep->ppc_vr0_regnum) * vrregsize + offset);
935
936 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
937 if (ret < 0)
938 perror_with_name (_("Unable to store AltiVec register"));
939 }
940
941 /* Assuming TID referrs to an SPE process, set the top halves of TID's
942 general-purpose registers and its SPE-specific registers to the
943 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
944 nothing.
945
946 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
947 PTRACE_SETEVRREGS requests are supported is isolated here, and in
948 get_spe_registers. */
949 static void
950 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
951 {
952 if (have_ptrace_getsetevrregs)
953 {
954 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
955 return;
956 else
957 {
958 /* EIO means that the PTRACE_SETEVRREGS request isn't
959 supported; we fail silently, and don't try the call
960 again. */
961 if (errno == EIO)
962 have_ptrace_getsetevrregs = 0;
963 else
964 /* Anything else needs to be reported. */
965 perror_with_name (_("Unable to set SPE registers"));
966 }
967 }
968 }
969
970 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
971 If REGNO is -1, write the values of all the SPE-specific
972 registers. */
973 static void
974 store_spe_register (const struct regcache *regcache, int tid, int regno)
975 {
976 struct gdbarch *gdbarch = regcache->arch ();
977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
978 struct gdb_evrregset_t evrregs;
979
980 gdb_assert (sizeof (evrregs.evr[0])
981 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
982 gdb_assert (sizeof (evrregs.acc)
983 == register_size (gdbarch, tdep->ppc_acc_regnum));
984 gdb_assert (sizeof (evrregs.spefscr)
985 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
986
987 if (regno == -1)
988 /* Since we're going to write out every register, the code below
989 should store to every field of evrregs; if that doesn't happen,
990 make it obvious by initializing it with suspicious values. */
991 memset (&evrregs, 42, sizeof (evrregs));
992 else
993 /* We can only read and write the entire EVR register set at a
994 time, so to write just a single register, we do a
995 read-modify-write maneuver. */
996 get_spe_registers (tid, &evrregs);
997
998 if (regno == -1)
999 {
1000 int i;
1001
1002 for (i = 0; i < ppc_num_gprs; i++)
1003 regcache_raw_collect (regcache,
1004 tdep->ppc_ev0_upper_regnum + i,
1005 &evrregs.evr[i]);
1006 }
1007 else if (tdep->ppc_ev0_upper_regnum <= regno
1008 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1009 regcache_raw_collect (regcache, regno,
1010 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1011
1012 if (regno == -1
1013 || regno == tdep->ppc_acc_regnum)
1014 regcache_raw_collect (regcache,
1015 tdep->ppc_acc_regnum,
1016 &evrregs.acc);
1017
1018 if (regno == -1
1019 || regno == tdep->ppc_spefscr_regnum)
1020 regcache_raw_collect (regcache,
1021 tdep->ppc_spefscr_regnum,
1022 &evrregs.spefscr);
1023
1024 /* Write back the modified register set. */
1025 set_spe_registers (tid, &evrregs);
1026 }
1027
1028 static void
1029 store_register (const struct regcache *regcache, int tid, int regno)
1030 {
1031 struct gdbarch *gdbarch = regcache->arch ();
1032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1033 /* This isn't really an address. But ptrace thinks of it as one. */
1034 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1035 int i;
1036 size_t bytes_to_transfer;
1037 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1038
1039 if (altivec_register_p (gdbarch, regno))
1040 {
1041 store_altivec_register (regcache, tid, regno);
1042 return;
1043 }
1044 if (vsx_register_p (gdbarch, regno))
1045 {
1046 store_vsx_register (regcache, tid, regno);
1047 return;
1048 }
1049 else if (spe_register_p (gdbarch, regno))
1050 {
1051 store_spe_register (regcache, tid, regno);
1052 return;
1053 }
1054
1055 if (regaddr == -1)
1056 return;
1057
1058 /* First collect the register. Keep in mind that the regcache's
1059 idea of the register's size may not be a multiple of sizeof
1060 (long). */
1061 memset (buf, 0, sizeof buf);
1062 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1063 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1064 {
1065 /* Little-endian values always sit at the left end of the buffer. */
1066 regcache_raw_collect (regcache, regno, buf);
1067 }
1068 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1069 {
1070 /* Big-endian values sit at the right end of the buffer. */
1071 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1072 regcache_raw_collect (regcache, regno, buf + padding);
1073 }
1074
1075 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1076 {
1077 long l;
1078
1079 memcpy (&l, &buf[i], sizeof (l));
1080 errno = 0;
1081 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1082 regaddr += sizeof (long);
1083
1084 if (errno == EIO
1085 && (regno == tdep->ppc_fpscr_regnum
1086 || regno == PPC_ORIG_R3_REGNUM
1087 || regno == PPC_TRAP_REGNUM))
1088 {
1089 /* Some older kernel versions don't allow fpscr, orig_r3
1090 or trap to be written. */
1091 continue;
1092 }
1093
1094 if (errno != 0)
1095 {
1096 char message[128];
1097 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1098 gdbarch_register_name (gdbarch, regno), regno);
1099 perror_with_name (message);
1100 }
1101 }
1102 }
1103
1104 static void
1105 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1106 {
1107 int i;
1108 struct gdbarch *gdbarch = regcache->arch ();
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1110 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1111
1112 for (i = 0; i < ppc_num_vshrs; i++)
1113 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1114 *vsxregsetp + i * vsxregsize);
1115 }
1116
1117 static void
1118 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1119 {
1120 int i;
1121 struct gdbarch *gdbarch = regcache->arch ();
1122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1123 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1124 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1125 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1126
1127 for (i = 0; i < num_of_vrregs; i++)
1128 {
1129 /* The last 2 registers of this set are only 32 bit long, not
1130 128, but only VSCR is fetched as a 16 bytes quantity. */
1131 if (i == (num_of_vrregs - 2))
1132 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1133 *vrregsetp + i * vrregsize + offset);
1134 else
1135 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1136 *vrregsetp + i * vrregsize);
1137 }
1138 }
1139
1140 static void
1141 store_vsx_registers (const struct regcache *regcache, int tid)
1142 {
1143 int ret;
1144 gdb_vsxregset_t regs;
1145
1146 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1147 if (ret < 0)
1148 {
1149 if (errno == EIO)
1150 {
1151 have_ptrace_getsetvsxregs = 0;
1152 return;
1153 }
1154 perror_with_name (_("Couldn't get VSX registers"));
1155 }
1156
1157 fill_vsxregset (regcache, &regs);
1158
1159 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1160 perror_with_name (_("Couldn't write VSX registers"));
1161 }
1162
1163 static void
1164 store_altivec_registers (const struct regcache *regcache, int tid)
1165 {
1166 int ret;
1167 gdb_vrregset_t regs;
1168
1169 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1170 if (ret < 0)
1171 {
1172 if (errno == EIO)
1173 {
1174 have_ptrace_getvrregs = 0;
1175 return;
1176 }
1177 perror_with_name (_("Couldn't get AltiVec registers"));
1178 }
1179
1180 fill_vrregset (regcache, &regs);
1181
1182 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1183 perror_with_name (_("Couldn't write AltiVec registers"));
1184 }
1185
1186 /* This function actually issues the request to ptrace, telling
1187 it to store all general-purpose registers present in the specified
1188 regset.
1189
1190 If the ptrace request does not exist, this function returns 0
1191 and properly sets the have_ptrace_* flag. If the request fails,
1192 this function calls perror_with_name. Otherwise, if the request
1193 succeeds, then the regcache is stored and 1 is returned. */
1194 static int
1195 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1196 {
1197 struct gdbarch *gdbarch = regcache->arch ();
1198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1199 gdb_gregset_t gregset;
1200
1201 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1202 {
1203 if (errno == EIO)
1204 {
1205 have_ptrace_getsetregs = 0;
1206 return 0;
1207 }
1208 perror_with_name (_("Couldn't get general-purpose registers."));
1209 }
1210
1211 fill_gregset (regcache, &gregset, regno);
1212
1213 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1214 {
1215 if (errno == EIO)
1216 {
1217 have_ptrace_getsetregs = 0;
1218 return 0;
1219 }
1220 perror_with_name (_("Couldn't set general-purpose registers."));
1221 }
1222
1223 return 1;
1224 }
1225
1226 /* This is a wrapper for the store_all_gp_regs function. It is
1227 responsible for verifying if this target has the ptrace request
1228 that can be used to store all general-purpose registers at one
1229 shot. If it doesn't, then we should store them using the
1230 old-fashioned way, which is to iterate over the registers and
1231 store them one by one. */
1232 static void
1233 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1234 {
1235 struct gdbarch *gdbarch = regcache->arch ();
1236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1237 int i;
1238
1239 if (have_ptrace_getsetregs)
1240 if (store_all_gp_regs (regcache, tid, regno))
1241 return;
1242
1243 /* If we hit this point, it doesn't really matter which
1244 architecture we are using. We just need to store the
1245 registers in the "old-fashioned way". */
1246 for (i = 0; i < ppc_num_gprs; i++)
1247 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1248 }
1249
1250 /* This function actually issues the request to ptrace, telling
1251 it to store all floating-point registers present in the specified
1252 regset.
1253
1254 If the ptrace request does not exist, this function returns 0
1255 and properly sets the have_ptrace_* flag. If the request fails,
1256 this function calls perror_with_name. Otherwise, if the request
1257 succeeds, then the regcache is stored and 1 is returned. */
1258 static int
1259 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1260 {
1261 gdb_fpregset_t fpregs;
1262
1263 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1264 {
1265 if (errno == EIO)
1266 {
1267 have_ptrace_getsetfpregs = 0;
1268 return 0;
1269 }
1270 perror_with_name (_("Couldn't get floating-point registers."));
1271 }
1272
1273 fill_fpregset (regcache, &fpregs, regno);
1274
1275 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1276 {
1277 if (errno == EIO)
1278 {
1279 have_ptrace_getsetfpregs = 0;
1280 return 0;
1281 }
1282 perror_with_name (_("Couldn't set floating-point registers."));
1283 }
1284
1285 return 1;
1286 }
1287
1288 /* This is a wrapper for the store_all_fp_regs function. It is
1289 responsible for verifying if this target has the ptrace request
1290 that can be used to store all floating-point registers at one
1291 shot. If it doesn't, then we should store them using the
1292 old-fashioned way, which is to iterate over the registers and
1293 store them one by one. */
1294 static void
1295 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1296 {
1297 struct gdbarch *gdbarch = regcache->arch ();
1298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1299 int i;
1300
1301 if (have_ptrace_getsetfpregs)
1302 if (store_all_fp_regs (regcache, tid, regno))
1303 return;
1304
1305 /* If we hit this point, it doesn't really matter which
1306 architecture we are using. We just need to store the
1307 registers in the "old-fashioned way". */
1308 for (i = 0; i < ppc_num_fprs; i++)
1309 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1310 }
1311
1312 static void
1313 store_ppc_registers (const struct regcache *regcache, int tid)
1314 {
1315 int i;
1316 struct gdbarch *gdbarch = regcache->arch ();
1317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1318
1319 store_gp_regs (regcache, tid, -1);
1320 if (tdep->ppc_fp0_regnum >= 0)
1321 store_fp_regs (regcache, tid, -1);
1322 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1323 if (tdep->ppc_ps_regnum != -1)
1324 store_register (regcache, tid, tdep->ppc_ps_regnum);
1325 if (tdep->ppc_cr_regnum != -1)
1326 store_register (regcache, tid, tdep->ppc_cr_regnum);
1327 if (tdep->ppc_lr_regnum != -1)
1328 store_register (regcache, tid, tdep->ppc_lr_regnum);
1329 if (tdep->ppc_ctr_regnum != -1)
1330 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1331 if (tdep->ppc_xer_regnum != -1)
1332 store_register (regcache, tid, tdep->ppc_xer_regnum);
1333 if (tdep->ppc_mq_regnum != -1)
1334 store_register (regcache, tid, tdep->ppc_mq_regnum);
1335 if (tdep->ppc_fpscr_regnum != -1)
1336 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1337 if (ppc_linux_trap_reg_p (gdbarch))
1338 {
1339 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1340 store_register (regcache, tid, PPC_TRAP_REGNUM);
1341 }
1342 if (have_ptrace_getvrregs)
1343 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1344 store_altivec_registers (regcache, tid);
1345 if (have_ptrace_getsetvsxregs)
1346 if (tdep->ppc_vsr0_upper_regnum != -1)
1347 store_vsx_registers (regcache, tid);
1348 if (tdep->ppc_ev0_upper_regnum >= 0)
1349 store_spe_register (regcache, tid, -1);
1350 }
1351
1352 /* Fetch the AT_HWCAP entry from the aux vector. */
1353 static unsigned long
1354 ppc_linux_get_hwcap (void)
1355 {
1356 CORE_ADDR field;
1357
1358 if (target_auxv_search (target_stack, AT_HWCAP, &field))
1359 return (unsigned long) field;
1360
1361 return 0;
1362 }
1363
1364 /* The cached DABR value, to install in new threads.
1365 This variable is used when the PowerPC HWDEBUG ptrace
1366 interface is not available. */
1367 static long saved_dabr_value;
1368
1369 /* Global structure that will store information about the available
1370 features provided by the PowerPC HWDEBUG ptrace interface. */
1371 static struct ppc_debug_info hwdebug_info;
1372
1373 /* Global variable that holds the maximum number of slots that the
1374 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1375 is available. */
1376 static size_t max_slots_number = 0;
1377
1378 struct hw_break_tuple
1379 {
1380 long slot;
1381 struct ppc_hw_breakpoint *hw_break;
1382 };
1383
1384 /* This is an internal VEC created to store information about *points inserted
1385 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1386 available. */
1387 typedef struct thread_points
1388 {
1389 /* The TID to which this *point relates. */
1390 int tid;
1391 /* Information about the *point, such as its address, type, etc.
1392
1393 Each element inside this vector corresponds to a hardware
1394 breakpoint or watchpoint in the thread represented by TID. The maximum
1395 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1396 the tuple is NULL, then the position in the vector is free. */
1397 struct hw_break_tuple *hw_breaks;
1398 } *thread_points_p;
1399 DEF_VEC_P (thread_points_p);
1400
1401 VEC(thread_points_p) *ppc_threads = NULL;
1402
1403 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1404 available. */
1405 #define PPC_DEBUG_CURRENT_VERSION 1
1406
1407 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1408 static int
1409 have_ptrace_hwdebug_interface (void)
1410 {
1411 static int have_ptrace_hwdebug_interface = -1;
1412
1413 if (have_ptrace_hwdebug_interface == -1)
1414 {
1415 int tid;
1416
1417 tid = ptid_get_lwp (inferior_ptid);
1418 if (tid == 0)
1419 tid = ptid_get_pid (inferior_ptid);
1420
1421 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1422 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1423 {
1424 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1425 provides any supported feature. */
1426 if (hwdebug_info.features != 0)
1427 {
1428 have_ptrace_hwdebug_interface = 1;
1429 max_slots_number = hwdebug_info.num_instruction_bps
1430 + hwdebug_info.num_data_bps
1431 + hwdebug_info.num_condition_regs;
1432 return have_ptrace_hwdebug_interface;
1433 }
1434 }
1435 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1436 have_ptrace_hwdebug_interface = 0;
1437 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1438 }
1439
1440 return have_ptrace_hwdebug_interface;
1441 }
1442
1443 int
1444 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
1445 {
1446 int total_hw_wp, total_hw_bp;
1447
1448 if (have_ptrace_hwdebug_interface ())
1449 {
1450 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1451 available hardware watchpoints and breakpoints is stored at the
1452 hwdebug_info struct. */
1453 total_hw_bp = hwdebug_info.num_instruction_bps;
1454 total_hw_wp = hwdebug_info.num_data_bps;
1455 }
1456 else
1457 {
1458 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1459 consider having 1 hardware watchpoint and no hardware breakpoints. */
1460 total_hw_bp = 0;
1461 total_hw_wp = 1;
1462 }
1463
1464 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1465 || type == bp_access_watchpoint || type == bp_watchpoint)
1466 {
1467 if (cnt + ot > total_hw_wp)
1468 return -1;
1469 }
1470 else if (type == bp_hardware_breakpoint)
1471 {
1472 if (total_hw_bp == 0)
1473 {
1474 /* No hardware breakpoint support. */
1475 return 0;
1476 }
1477 if (cnt > total_hw_bp)
1478 return -1;
1479 }
1480
1481 if (!have_ptrace_hwdebug_interface ())
1482 {
1483 int tid;
1484 ptid_t ptid = inferior_ptid;
1485
1486 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1487 and whether the target has DABR. If either answer is no, the
1488 ptrace call will return -1. Fail in that case. */
1489 tid = ptid_get_lwp (ptid);
1490 if (tid == 0)
1491 tid = ptid_get_pid (ptid);
1492
1493 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1494 return 0;
1495 }
1496
1497 return 1;
1498 }
1499
1500 int
1501 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1502 {
1503 /* Handle sub-8-byte quantities. */
1504 if (len <= 0)
1505 return 0;
1506
1507 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1508 restrictions for watchpoints in the processors. In that case, we use that
1509 information to determine the hardcoded watchable region for
1510 watchpoints. */
1511 if (have_ptrace_hwdebug_interface ())
1512 {
1513 int region_size;
1514 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1515 watchpoints and can watch any access within an arbitrary memory
1516 region. This is useful to watch arrays and structs, for instance. It
1517 takes two hardware watchpoints though. */
1518 if (len > 1
1519 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1520 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1521 return 2;
1522 /* Check if the processor provides DAWR interface. */
1523 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1524 /* DAWR interface allows to watch up to 512 byte wide ranges which
1525 can't cross a 512 byte boundary. */
1526 region_size = 512;
1527 else
1528 region_size = hwdebug_info.data_bp_alignment;
1529 /* Server processors provide one hardware watchpoint and addr+len should
1530 fall in the watchable region provided by the ptrace interface. */
1531 if (region_size
1532 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1533 return 0;
1534 }
1535 /* addr+len must fall in the 8 byte watchable region for DABR-based
1536 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1537 ptrace interface, DAC-based processors (i.e., embedded processors) will
1538 use addresses aligned to 4-bytes due to the way the read/write flags are
1539 passed in the old ptrace interface. */
1540 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1541 && (addr + len) > (addr & ~3) + 4)
1542 || (addr + len) > (addr & ~7) + 8)
1543 return 0;
1544
1545 return 1;
1546 }
1547
1548 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1549 static int
1550 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1551 {
1552 return (a->trigger_type == b->trigger_type
1553 && a->addr_mode == b->addr_mode
1554 && a->condition_mode == b->condition_mode
1555 && a->addr == b->addr
1556 && a->addr2 == b->addr2
1557 && a->condition_value == b->condition_value);
1558 }
1559
1560 /* This function can be used to retrieve a thread_points by the TID of the
1561 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1562 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1563 provided TID will be created and returned. */
1564 static struct thread_points *
1565 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1566 {
1567 int i;
1568 struct thread_points *t;
1569
1570 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1571 if (t->tid == tid)
1572 return t;
1573
1574 t = NULL;
1575
1576 /* Do we need to allocate a new point_item
1577 if the wanted one does not exist? */
1578 if (alloc_new)
1579 {
1580 t = XNEW (struct thread_points);
1581 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1582 t->tid = tid;
1583 VEC_safe_push (thread_points_p, ppc_threads, t);
1584 }
1585
1586 return t;
1587 }
1588
1589 /* This function is a generic wrapper that is responsible for inserting a
1590 *point (i.e., calling `ptrace' in order to issue the request to the
1591 kernel) and registering it internally in GDB. */
1592 static void
1593 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1594 {
1595 int i;
1596 long slot;
1597 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
1598 struct hw_break_tuple *hw_breaks;
1599 struct thread_points *t;
1600 struct hw_break_tuple *tuple;
1601
1602 errno = 0;
1603 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
1604 if (slot < 0)
1605 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1606
1607 /* Everything went fine, so we have to register this *point. */
1608 t = hwdebug_find_thread_points_by_tid (tid, 1);
1609 gdb_assert (t != NULL);
1610 hw_breaks = t->hw_breaks;
1611
1612 /* Find a free element in the hw_breaks vector. */
1613 for (i = 0; i < max_slots_number; i++)
1614 if (hw_breaks[i].hw_break == NULL)
1615 {
1616 hw_breaks[i].slot = slot;
1617 hw_breaks[i].hw_break = p.release ();
1618 break;
1619 }
1620
1621 gdb_assert (i != max_slots_number);
1622 }
1623
1624 /* This function is a generic wrapper that is responsible for removing a
1625 *point (i.e., calling `ptrace' in order to issue the request to the
1626 kernel), and unregistering it internally at GDB. */
1627 static void
1628 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1629 {
1630 int i;
1631 struct hw_break_tuple *hw_breaks;
1632 struct thread_points *t;
1633
1634 t = hwdebug_find_thread_points_by_tid (tid, 0);
1635 gdb_assert (t != NULL);
1636 hw_breaks = t->hw_breaks;
1637
1638 for (i = 0; i < max_slots_number; i++)
1639 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1640 break;
1641
1642 gdb_assert (i != max_slots_number);
1643
1644 /* We have to ignore ENOENT errors because the kernel implements hardware
1645 breakpoints/watchpoints as "one-shot", that is, they are automatically
1646 deleted when hit. */
1647 errno = 0;
1648 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1649 if (errno != ENOENT)
1650 perror_with_name (_("Unexpected error deleting "
1651 "breakpoint or watchpoint"));
1652
1653 xfree (hw_breaks[i].hw_break);
1654 hw_breaks[i].hw_break = NULL;
1655 }
1656
1657 /* Return the number of registers needed for a ranged breakpoint. */
1658
1659 int
1660 ppc_linux_nat_target::ranged_break_num_registers ()
1661 {
1662 return ((have_ptrace_hwdebug_interface ()
1663 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1664 2 : -1);
1665 }
1666
1667 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1668 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1669
1670 int
1671 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1672 struct bp_target_info *bp_tgt)
1673 {
1674 struct lwp_info *lp;
1675 struct ppc_hw_breakpoint p;
1676
1677 if (!have_ptrace_hwdebug_interface ())
1678 return -1;
1679
1680 p.version = PPC_DEBUG_CURRENT_VERSION;
1681 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1682 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1683 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1684 p.condition_value = 0;
1685
1686 if (bp_tgt->length)
1687 {
1688 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1689
1690 /* The breakpoint will trigger if the address of the instruction is
1691 within the defined range, as follows: p.addr <= address < p.addr2. */
1692 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1693 }
1694 else
1695 {
1696 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1697 p.addr2 = 0;
1698 }
1699
1700 ALL_LWPS (lp)
1701 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1702
1703 return 0;
1704 }
1705
1706 int
1707 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1708 struct bp_target_info *bp_tgt)
1709 {
1710 struct lwp_info *lp;
1711 struct ppc_hw_breakpoint p;
1712
1713 if (!have_ptrace_hwdebug_interface ())
1714 return -1;
1715
1716 p.version = PPC_DEBUG_CURRENT_VERSION;
1717 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1718 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1719 p.addr = (uint64_t) bp_tgt->placed_address;
1720 p.condition_value = 0;
1721
1722 if (bp_tgt->length)
1723 {
1724 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1725
1726 /* The breakpoint will trigger if the address of the instruction is within
1727 the defined range, as follows: p.addr <= address < p.addr2. */
1728 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1729 }
1730 else
1731 {
1732 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1733 p.addr2 = 0;
1734 }
1735
1736 ALL_LWPS (lp)
1737 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1738
1739 return 0;
1740 }
1741
1742 static int
1743 get_trigger_type (enum target_hw_bp_type type)
1744 {
1745 int t;
1746
1747 if (type == hw_read)
1748 t = PPC_BREAKPOINT_TRIGGER_READ;
1749 else if (type == hw_write)
1750 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1751 else
1752 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1753
1754 return t;
1755 }
1756
1757 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1758 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1759 or hw_access for an access watchpoint. Returns 0 on success and throws
1760 an error on failure. */
1761
1762 int
1763 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1764 target_hw_bp_type rw)
1765 {
1766 struct lwp_info *lp;
1767 struct ppc_hw_breakpoint p;
1768
1769 gdb_assert (have_ptrace_hwdebug_interface ());
1770
1771 p.version = PPC_DEBUG_CURRENT_VERSION;
1772 p.trigger_type = get_trigger_type (rw);
1773 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1774 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1775 p.addr = addr;
1776 p.addr2 = mask;
1777 p.condition_value = 0;
1778
1779 ALL_LWPS (lp)
1780 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1781
1782 return 0;
1783 }
1784
1785 /* Remove a masked watchpoint at ADDR with the mask MASK.
1786 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1787 or hw_access for an access watchpoint. Returns 0 on success and throws
1788 an error on failure. */
1789
1790 int
1791 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1792 target_hw_bp_type rw)
1793 {
1794 struct lwp_info *lp;
1795 struct ppc_hw_breakpoint p;
1796
1797 gdb_assert (have_ptrace_hwdebug_interface ());
1798
1799 p.version = PPC_DEBUG_CURRENT_VERSION;
1800 p.trigger_type = get_trigger_type (rw);
1801 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1802 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1803 p.addr = addr;
1804 p.addr2 = mask;
1805 p.condition_value = 0;
1806
1807 ALL_LWPS (lp)
1808 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1809
1810 return 0;
1811 }
1812
1813 /* Check whether we have at least one free DVC register. */
1814 static int
1815 can_use_watchpoint_cond_accel (void)
1816 {
1817 struct thread_points *p;
1818 int tid = ptid_get_lwp (inferior_ptid);
1819 int cnt = hwdebug_info.num_condition_regs, i;
1820 CORE_ADDR tmp_value;
1821
1822 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1823 return 0;
1824
1825 p = hwdebug_find_thread_points_by_tid (tid, 0);
1826
1827 if (p)
1828 {
1829 for (i = 0; i < max_slots_number; i++)
1830 if (p->hw_breaks[i].hw_break != NULL
1831 && (p->hw_breaks[i].hw_break->condition_mode
1832 != PPC_BREAKPOINT_CONDITION_NONE))
1833 cnt--;
1834
1835 /* There are no available slots now. */
1836 if (cnt <= 0)
1837 return 0;
1838 }
1839
1840 return 1;
1841 }
1842
1843 /* Calculate the enable bits and the contents of the Data Value Compare
1844 debug register present in BookE processors.
1845
1846 ADDR is the address to be watched, LEN is the length of watched data
1847 and DATA_VALUE is the value which will trigger the watchpoint.
1848 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1849 CONDITION_VALUE will hold the value which should be put in the
1850 DVC register. */
1851 static void
1852 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1853 uint32_t *condition_mode, uint64_t *condition_value)
1854 {
1855 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1856 rightmost_enabled_byte;
1857 CORE_ADDR addr_end_data, addr_end_dvc;
1858
1859 /* The DVC register compares bytes within fixed-length windows which
1860 are word-aligned, with length equal to that of the DVC register.
1861 We need to calculate where our watch region is relative to that
1862 window and enable comparison of the bytes which fall within it. */
1863
1864 align_offset = addr % hwdebug_info.sizeof_condition;
1865 addr_end_data = addr + len;
1866 addr_end_dvc = (addr - align_offset
1867 + hwdebug_info.sizeof_condition);
1868 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1869 addr_end_data - addr_end_dvc : 0;
1870 num_byte_enable = len - num_bytes_off_dvc;
1871 /* Here, bytes are numbered from right to left. */
1872 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1873 addr_end_dvc - addr_end_data : 0;
1874
1875 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1876 for (i = 0; i < num_byte_enable; i++)
1877 *condition_mode
1878 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1879
1880 /* Now we need to match the position within the DVC of the comparison
1881 value with where the watch region is relative to the window
1882 (i.e., the ALIGN_OFFSET). */
1883
1884 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1885 << rightmost_enabled_byte * 8);
1886 }
1887
1888 /* Return the number of memory locations that need to be accessed to
1889 evaluate the expression which generated the given value chain.
1890 Returns -1 if there's any register access involved, or if there are
1891 other kinds of values which are not acceptable in a condition
1892 expression (e.g., lval_computed or lval_internalvar). */
1893 static int
1894 num_memory_accesses (const std::vector<value_ref_ptr> &chain)
1895 {
1896 int found_memory_cnt = 0;
1897
1898 /* The idea here is that evaluating an expression generates a series
1899 of values, one holding the value of every subexpression. (The
1900 expression a*b+c has five subexpressions: a, b, a*b, c, and
1901 a*b+c.) GDB's values hold almost enough information to establish
1902 the criteria given above --- they identify memory lvalues,
1903 register lvalues, computed values, etcetera. So we can evaluate
1904 the expression, and then scan the chain of values that leaves
1905 behind to determine the memory locations involved in the evaluation
1906 of an expression.
1907
1908 However, I don't think that the values returned by inferior
1909 function calls are special in any way. So this function may not
1910 notice that an expression contains an inferior function call.
1911 FIXME. */
1912
1913 for (const value_ref_ptr &iter : chain)
1914 {
1915 struct value *v = iter.get ();
1916
1917 /* Constants and values from the history are fine. */
1918 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1919 continue;
1920 else if (VALUE_LVAL (v) == lval_memory)
1921 {
1922 /* A lazy memory lvalue is one that GDB never needed to fetch;
1923 we either just used its address (e.g., `a' in `a.b') or
1924 we never needed it at all (e.g., `a' in `a,b'). */
1925 if (!value_lazy (v))
1926 found_memory_cnt++;
1927 }
1928 /* Other kinds of values are not fine. */
1929 else
1930 return -1;
1931 }
1932
1933 return found_memory_cnt;
1934 }
1935
1936 /* Verifies whether the expression COND can be implemented using the
1937 DVC (Data Value Compare) register in BookE processors. The expression
1938 must test the watch value for equality with a constant expression.
1939 If the function returns 1, DATA_VALUE will contain the constant against
1940 which the watch value should be compared and LEN will contain the size
1941 of the constant. */
1942 static int
1943 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1944 CORE_ADDR *data_value, int *len)
1945 {
1946 int pc = 1, num_accesses_left, num_accesses_right;
1947 struct value *left_val, *right_val;
1948 std::vector<value_ref_ptr> left_chain, right_chain;
1949
1950 if (cond->elts[0].opcode != BINOP_EQUAL)
1951 return 0;
1952
1953 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1954 num_accesses_left = num_memory_accesses (left_chain);
1955
1956 if (left_val == NULL || num_accesses_left < 0)
1957 return 0;
1958
1959 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1960 num_accesses_right = num_memory_accesses (right_chain);
1961
1962 if (right_val == NULL || num_accesses_right < 0)
1963 return 0;
1964
1965 if (num_accesses_left == 1 && num_accesses_right == 0
1966 && VALUE_LVAL (left_val) == lval_memory
1967 && value_address (left_val) == watch_addr)
1968 {
1969 *data_value = value_as_long (right_val);
1970
1971 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1972 the same type as the memory region referenced by LEFT_VAL. */
1973 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1974 }
1975 else if (num_accesses_left == 0 && num_accesses_right == 1
1976 && VALUE_LVAL (right_val) == lval_memory
1977 && value_address (right_val) == watch_addr)
1978 {
1979 *data_value = value_as_long (left_val);
1980
1981 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1982 the same type as the memory region referenced by RIGHT_VAL. */
1983 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1984 }
1985 else
1986 return 0;
1987
1988 return 1;
1989 }
1990
1991 /* Return non-zero if the target is capable of using hardware to evaluate
1992 the condition expression, thus only triggering the watchpoint when it is
1993 true. */
1994 bool
1995 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1996 int rw,
1997 struct expression *cond)
1998 {
1999 CORE_ADDR data_value;
2000
2001 return (have_ptrace_hwdebug_interface ()
2002 && hwdebug_info.num_condition_regs > 0
2003 && check_condition (addr, cond, &data_value, &len));
2004 }
2005
2006 /* Set up P with the parameters necessary to request a watchpoint covering
2007 LEN bytes starting at ADDR and if possible with condition expression COND
2008 evaluated by hardware. INSERT tells if we are creating a request for
2009 inserting or removing the watchpoint. */
2010
2011 static void
2012 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2013 int len, enum target_hw_bp_type type,
2014 struct expression *cond, int insert)
2015 {
2016 if (len == 1
2017 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2018 {
2019 int use_condition;
2020 CORE_ADDR data_value;
2021
2022 use_condition = (insert? can_use_watchpoint_cond_accel ()
2023 : hwdebug_info.num_condition_regs > 0);
2024 if (cond && use_condition && check_condition (addr, cond,
2025 &data_value, &len))
2026 calculate_dvc (addr, len, data_value, &p->condition_mode,
2027 &p->condition_value);
2028 else
2029 {
2030 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2031 p->condition_value = 0;
2032 }
2033
2034 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2035 p->addr2 = 0;
2036 }
2037 else
2038 {
2039 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2040 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2041 p->condition_value = 0;
2042
2043 /* The watchpoint will trigger if the address of the memory access is
2044 within the defined range, as follows: p->addr <= address < p->addr2.
2045
2046 Note that the above sentence just documents how ptrace interprets
2047 its arguments; the watchpoint is set to watch the range defined by
2048 the user _inclusively_, as specified by the user interface. */
2049 p->addr2 = (uint64_t) addr + len;
2050 }
2051
2052 p->version = PPC_DEBUG_CURRENT_VERSION;
2053 p->trigger_type = get_trigger_type (type);
2054 p->addr = (uint64_t) addr;
2055 }
2056
2057 int
2058 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2059 enum target_hw_bp_type type,
2060 struct expression *cond)
2061 {
2062 struct lwp_info *lp;
2063 int ret = -1;
2064
2065 if (have_ptrace_hwdebug_interface ())
2066 {
2067 struct ppc_hw_breakpoint p;
2068
2069 create_watchpoint_request (&p, addr, len, type, cond, 1);
2070
2071 ALL_LWPS (lp)
2072 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2073
2074 ret = 0;
2075 }
2076 else
2077 {
2078 long dabr_value;
2079 long read_mode, write_mode;
2080
2081 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2082 {
2083 /* PowerPC 440 requires only the read/write flags to be passed
2084 to the kernel. */
2085 read_mode = 1;
2086 write_mode = 2;
2087 }
2088 else
2089 {
2090 /* PowerPC 970 and other DABR-based processors are required to pass
2091 the Breakpoint Translation bit together with the flags. */
2092 read_mode = 5;
2093 write_mode = 6;
2094 }
2095
2096 dabr_value = addr & ~(read_mode | write_mode);
2097 switch (type)
2098 {
2099 case hw_read:
2100 /* Set read and translate bits. */
2101 dabr_value |= read_mode;
2102 break;
2103 case hw_write:
2104 /* Set write and translate bits. */
2105 dabr_value |= write_mode;
2106 break;
2107 case hw_access:
2108 /* Set read, write and translate bits. */
2109 dabr_value |= read_mode | write_mode;
2110 break;
2111 }
2112
2113 saved_dabr_value = dabr_value;
2114
2115 ALL_LWPS (lp)
2116 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2117 saved_dabr_value) < 0)
2118 return -1;
2119
2120 ret = 0;
2121 }
2122
2123 return ret;
2124 }
2125
2126 int
2127 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2128 enum target_hw_bp_type type,
2129 struct expression *cond)
2130 {
2131 struct lwp_info *lp;
2132 int ret = -1;
2133
2134 if (have_ptrace_hwdebug_interface ())
2135 {
2136 struct ppc_hw_breakpoint p;
2137
2138 create_watchpoint_request (&p, addr, len, type, cond, 0);
2139
2140 ALL_LWPS (lp)
2141 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2142
2143 ret = 0;
2144 }
2145 else
2146 {
2147 saved_dabr_value = 0;
2148 ALL_LWPS (lp)
2149 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2150 saved_dabr_value) < 0)
2151 return -1;
2152
2153 ret = 0;
2154 }
2155
2156 return ret;
2157 }
2158
2159 void
2160 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2161 {
2162 int tid = ptid_get_lwp (lp->ptid);
2163
2164 if (have_ptrace_hwdebug_interface ())
2165 {
2166 int i;
2167 struct thread_points *p;
2168 struct hw_break_tuple *hw_breaks;
2169
2170 if (VEC_empty (thread_points_p, ppc_threads))
2171 return;
2172
2173 /* Get a list of breakpoints from any thread. */
2174 p = VEC_last (thread_points_p, ppc_threads);
2175 hw_breaks = p->hw_breaks;
2176
2177 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2178 for (i = 0; i < max_slots_number; i++)
2179 if (hw_breaks[i].hw_break)
2180 {
2181 /* Older kernels did not make new threads inherit their parent
2182 thread's debug state, so we always clear the slot and replicate
2183 the debug state ourselves, ensuring compatibility with all
2184 kernels. */
2185
2186 /* The ppc debug resource accounting is done through "slots".
2187 Ask the kernel the deallocate this specific *point's slot. */
2188 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2189
2190 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2191 }
2192 }
2193 else
2194 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2195 }
2196
2197 static void
2198 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2199 {
2200 int i;
2201 int tid = ptid_get_lwp (tp->ptid);
2202 struct hw_break_tuple *hw_breaks;
2203 struct thread_points *t = NULL, *p;
2204
2205 if (!have_ptrace_hwdebug_interface ())
2206 return;
2207
2208 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2209 if (p->tid == tid)
2210 {
2211 t = p;
2212 break;
2213 }
2214
2215 if (t == NULL)
2216 return;
2217
2218 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2219
2220 hw_breaks = t->hw_breaks;
2221
2222 for (i = 0; i < max_slots_number; i++)
2223 if (hw_breaks[i].hw_break)
2224 xfree (hw_breaks[i].hw_break);
2225
2226 xfree (t->hw_breaks);
2227 xfree (t);
2228 }
2229
2230 bool
2231 ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2232 {
2233 siginfo_t siginfo;
2234
2235 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2236 return false;
2237
2238 if (siginfo.si_signo != SIGTRAP
2239 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2240 return false;
2241
2242 if (have_ptrace_hwdebug_interface ())
2243 {
2244 int i;
2245 struct thread_points *t;
2246 struct hw_break_tuple *hw_breaks;
2247 /* The index (or slot) of the *point is passed in the si_errno field. */
2248 int slot = siginfo.si_errno;
2249
2250 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2251
2252 /* Find out if this *point is a hardware breakpoint.
2253 If so, we should return 0. */
2254 if (t)
2255 {
2256 hw_breaks = t->hw_breaks;
2257 for (i = 0; i < max_slots_number; i++)
2258 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2259 && hw_breaks[i].hw_break->trigger_type
2260 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2261 return false;
2262 }
2263 }
2264
2265 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2266 return true;
2267 }
2268
2269 bool
2270 ppc_linux_nat_target::stopped_by_watchpoint ()
2271 {
2272 CORE_ADDR addr;
2273 return stopped_data_address (&addr);
2274 }
2275
2276 bool
2277 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2278 CORE_ADDR start,
2279 int length)
2280 {
2281 int mask;
2282
2283 if (have_ptrace_hwdebug_interface ()
2284 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2285 return start <= addr && start + length >= addr;
2286 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2287 mask = 3;
2288 else
2289 mask = 7;
2290
2291 addr &= ~mask;
2292
2293 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2294 return start <= addr + mask && start + length - 1 >= addr;
2295 }
2296
2297 /* Return the number of registers needed for a masked hardware watchpoint. */
2298
2299 int
2300 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
2301 {
2302 if (!have_ptrace_hwdebug_interface ()
2303 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2304 return -1;
2305 else if ((mask & 0xC0000000) != 0xC0000000)
2306 {
2307 warning (_("The given mask covers kernel address space "
2308 "and cannot be used.\n"));
2309
2310 return -2;
2311 }
2312 else
2313 return 2;
2314 }
2315
2316 void
2317 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
2318 {
2319 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
2320
2321 if (regno >= 0)
2322 store_register (regcache, tid, regno);
2323 else
2324 store_ppc_registers (regcache, tid);
2325 }
2326
2327 /* Functions for transferring registers between a gregset_t or fpregset_t
2328 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2329 by the ptrace interface, not the current program's ABI. Eg. if a
2330 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2331 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2332
2333 void
2334 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2335 {
2336 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2337
2338 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2339 }
2340
2341 void
2342 fill_gregset (const struct regcache *regcache,
2343 gdb_gregset_t *gregsetp, int regno)
2344 {
2345 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2346
2347 if (regno == -1)
2348 memset (gregsetp, 0, sizeof (*gregsetp));
2349 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2350 }
2351
2352 void
2353 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2354 {
2355 const struct regset *regset = ppc_linux_fpregset ();
2356
2357 ppc_supply_fpregset (regset, regcache, -1,
2358 fpregsetp, sizeof (*fpregsetp));
2359 }
2360
2361 void
2362 fill_fpregset (const struct regcache *regcache,
2363 gdb_fpregset_t *fpregsetp, int regno)
2364 {
2365 const struct regset *regset = ppc_linux_fpregset ();
2366
2367 ppc_collect_fpregset (regset, regcache, regno,
2368 fpregsetp, sizeof (*fpregsetp));
2369 }
2370
2371 int
2372 ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2373 gdb_byte *endptr, CORE_ADDR *typep,
2374 CORE_ADDR *valp)
2375 {
2376 int tid = ptid_get_lwp (inferior_ptid);
2377 if (tid == 0)
2378 tid = ptid_get_pid (inferior_ptid);
2379
2380 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
2381
2382 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2383 gdb_byte *ptr = *readptr;
2384
2385 if (endptr == ptr)
2386 return 0;
2387
2388 if (endptr - ptr < sizeof_auxv_field * 2)
2389 return -1;
2390
2391 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2392 ptr += sizeof_auxv_field;
2393 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2394 ptr += sizeof_auxv_field;
2395
2396 *readptr = ptr;
2397 return 1;
2398 }
2399
2400 const struct target_desc *
2401 ppc_linux_nat_target::read_description ()
2402 {
2403 int tid = ptid_get_lwp (inferior_ptid);
2404 if (tid == 0)
2405 tid = ptid_get_pid (inferior_ptid);
2406
2407 if (have_ptrace_getsetevrregs)
2408 {
2409 struct gdb_evrregset_t evrregset;
2410
2411 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2412 return tdesc_powerpc_e500l;
2413
2414 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2415 Anything else needs to be reported. */
2416 else if (errno != EIO)
2417 perror_with_name (_("Unable to fetch SPE registers"));
2418 }
2419
2420 struct ppc_linux_features features = ppc_linux_no_features;
2421
2422 features.wordsize = ppc_linux_target_wordsize (tid);
2423
2424 unsigned long hwcap = ppc_linux_get_hwcap ();
2425
2426 if (have_ptrace_getsetvsxregs
2427 && (hwcap & PPC_FEATURE_HAS_VSX))
2428 {
2429 gdb_vsxregset_t vsxregset;
2430
2431 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2432 features.vsx = true;
2433
2434 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2435 Anything else needs to be reported. */
2436 else if (errno != EIO)
2437 perror_with_name (_("Unable to fetch VSX registers"));
2438 }
2439
2440 if (have_ptrace_getvrregs
2441 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
2442 {
2443 gdb_vrregset_t vrregset;
2444
2445 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2446 features.altivec = true;
2447
2448 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2449 Anything else needs to be reported. */
2450 else if (errno != EIO)
2451 perror_with_name (_("Unable to fetch AltiVec registers"));
2452 }
2453
2454 if (hwcap & PPC_FEATURE_CELL)
2455 features.cell = true;
2456
2457 features.isa205 = ppc_linux_has_isa205 (hwcap);
2458
2459 return ppc_linux_match_description (features);
2460 }
2461
2462 void
2463 _initialize_ppc_linux_nat (void)
2464 {
2465 linux_target = &the_ppc_linux_nat_target;
2466
2467 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
2468
2469 /* Register the target. */
2470 add_inf_child_target (linux_target);
2471 }
This page took 0.112651 seconds and 5 git commands to generate.