Update year range in copyright notice of all files owned by the GDB project.
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observer.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29
30 #include <stdint.h>
31 #include <sys/types.h>
32 #include <signal.h>
33 #include <sys/user.h>
34 #include <sys/ioctl.h>
35 #include "gdb_wait.h"
36 #include <fcntl.h>
37 #include <sys/procfs.h>
38 #include <sys/ptrace.h>
39
40 /* Prototypes for supply_gregset etc. */
41 #include "gregset.h"
42 #include "ppc-tdep.h"
43 #include "ppc-linux-tdep.h"
44
45 /* Required when using the AUXV. */
46 #include "elf/common.h"
47 #include "auxv.h"
48
49 /* This sometimes isn't defined. */
50 #ifndef PT_ORIG_R3
51 #define PT_ORIG_R3 34
52 #endif
53 #ifndef PT_TRAP
54 #define PT_TRAP 40
55 #endif
56
57 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
58 If they aren't, we can provide them ourselves (their values are fixed
59 because they are part of the kernel ABI). They are used in the AT_HWCAP
60 entry of the AUXV. */
61 #ifndef PPC_FEATURE_CELL
62 #define PPC_FEATURE_CELL 0x00010000
63 #endif
64 #ifndef PPC_FEATURE_BOOKE
65 #define PPC_FEATURE_BOOKE 0x00008000
66 #endif
67 #ifndef PPC_FEATURE_HAS_DFP
68 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69 #endif
70
71 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
72 configure time check. Some older glibc's (for instance 2.2.1)
73 don't have a specific powerpc version of ptrace.h, and fall back on
74 a generic one. In such cases, sys/ptrace.h defines
75 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
76 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
77 PTRACE_SETVRREGS to be. This also makes a configury check pretty
78 much useless. */
79
80 /* These definitions should really come from the glibc header files,
81 but Glibc doesn't know about the vrregs yet. */
82 #ifndef PTRACE_GETVRREGS
83 #define PTRACE_GETVRREGS 18
84 #define PTRACE_SETVRREGS 19
85 #endif
86
87 /* PTRACE requests for POWER7 VSX registers. */
88 #ifndef PTRACE_GETVSXREGS
89 #define PTRACE_GETVSXREGS 27
90 #define PTRACE_SETVSXREGS 28
91 #endif
92
93 /* Similarly for the ptrace requests for getting / setting the SPE
94 registers (ev0 -- ev31, acc, and spefscr). See the description of
95 gdb_evrregset_t for details. */
96 #ifndef PTRACE_GETEVRREGS
97 #define PTRACE_GETEVRREGS 20
98 #define PTRACE_SETEVRREGS 21
99 #endif
100
101 /* Similarly for the hardware watchpoint support. These requests are used
102 when the PowerPC HWDEBUG ptrace interface is not available. */
103 #ifndef PTRACE_GET_DEBUGREG
104 #define PTRACE_GET_DEBUGREG 25
105 #endif
106 #ifndef PTRACE_SET_DEBUGREG
107 #define PTRACE_SET_DEBUGREG 26
108 #endif
109 #ifndef PTRACE_GETSIGINFO
110 #define PTRACE_GETSIGINFO 0x4202
111 #endif
112
113 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
114 available. It exposes the debug facilities of PowerPC processors, as well
115 as additional features of BookE processors, such as ranged breakpoints and
116 watchpoints and hardware-accelerated condition evaluation. */
117 #ifndef PPC_PTRACE_GETHWDBGINFO
118
119 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
120 ptrace interface is not present in ptrace.h, so we'll have to pretty much
121 include it all here so that the code at least compiles on older systems. */
122 #define PPC_PTRACE_GETHWDBGINFO 0x89
123 #define PPC_PTRACE_SETHWDEBUG 0x88
124 #define PPC_PTRACE_DELHWDEBUG 0x87
125
126 struct ppc_debug_info
127 {
128 uint32_t version; /* Only version 1 exists to date. */
129 uint32_t num_instruction_bps;
130 uint32_t num_data_bps;
131 uint32_t num_condition_regs;
132 uint32_t data_bp_alignment;
133 uint32_t sizeof_condition; /* size of the DVC register. */
134 uint64_t features;
135 };
136
137 /* Features will have bits indicating whether there is support for: */
138 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
139 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
140 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
141 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
142
143 struct ppc_hw_breakpoint
144 {
145 uint32_t version; /* currently, version must be 1 */
146 uint32_t trigger_type; /* only some combinations allowed */
147 uint32_t addr_mode; /* address match mode */
148 uint32_t condition_mode; /* break/watchpoint condition flags */
149 uint64_t addr; /* break/watchpoint address */
150 uint64_t addr2; /* range end or mask */
151 uint64_t condition_value; /* contents of the DVC register */
152 };
153
154 /* Trigger type. */
155 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
156 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
157 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
158 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
159
160 /* Address mode. */
161 #define PPC_BREAKPOINT_MODE_EXACT 0x0
162 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
163 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
164 #define PPC_BREAKPOINT_MODE_MASK 0x3
165
166 /* Condition mode. */
167 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
168 #define PPC_BREAKPOINT_CONDITION_AND 0x1
169 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
170 #define PPC_BREAKPOINT_CONDITION_OR 0x2
171 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
172 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
173 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
174 #define PPC_BREAKPOINT_CONDITION_BE(n) \
175 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
176 #endif /* PPC_PTRACE_GETHWDBGINFO */
177
178 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
179 watchpoint (up to 512 bytes). */
180 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
181 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
182 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
183
184 /* Similarly for the general-purpose (gp0 -- gp31)
185 and floating-point registers (fp0 -- fp31). */
186 #ifndef PTRACE_GETREGS
187 #define PTRACE_GETREGS 12
188 #endif
189 #ifndef PTRACE_SETREGS
190 #define PTRACE_SETREGS 13
191 #endif
192 #ifndef PTRACE_GETFPREGS
193 #define PTRACE_GETFPREGS 14
194 #endif
195 #ifndef PTRACE_SETFPREGS
196 #define PTRACE_SETFPREGS 15
197 #endif
198
199 /* This oddity is because the Linux kernel defines elf_vrregset_t as
200 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
201 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
202 the vrsave as an extra 4 bytes at the end. I opted for creating a
203 flat array of chars, so that it is easier to manipulate for gdb.
204
205 There are 32 vector registers 16 bytes longs, plus a VSCR register
206 which is only 4 bytes long, but is fetched as a 16 bytes
207 quantity. Up to here we have the elf_vrregset_t structure.
208 Appended to this there is space for the VRSAVE register: 4 bytes.
209 Even though this vrsave register is not included in the regset
210 typedef, it is handled by the ptrace requests.
211
212 Note that GNU/Linux doesn't support little endian PPC hardware,
213 therefore the offset at which the real value of the VSCR register
214 is located will be always 12 bytes.
215
216 The layout is like this (where x is the actual value of the vscr reg): */
217
218 /* *INDENT-OFF* */
219 /*
220 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
221 <-------> <-------><-------><->
222 VR0 VR31 VSCR VRSAVE
223 */
224 /* *INDENT-ON* */
225
226 #define SIZEOF_VRREGS 33*16+4
227
228 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
229
230 /* This is the layout of the POWER7 VSX registers and the way they overlap
231 with the existing FPR and VMX registers.
232
233 VSR doubleword 0 VSR doubleword 1
234 ----------------------------------------------------------------
235 VSR[0] | FPR[0] | |
236 ----------------------------------------------------------------
237 VSR[1] | FPR[1] | |
238 ----------------------------------------------------------------
239 | ... | |
240 | ... | |
241 ----------------------------------------------------------------
242 VSR[30] | FPR[30] | |
243 ----------------------------------------------------------------
244 VSR[31] | FPR[31] | |
245 ----------------------------------------------------------------
246 VSR[32] | VR[0] |
247 ----------------------------------------------------------------
248 VSR[33] | VR[1] |
249 ----------------------------------------------------------------
250 | ... |
251 | ... |
252 ----------------------------------------------------------------
253 VSR[62] | VR[30] |
254 ----------------------------------------------------------------
255 VSR[63] | VR[31] |
256 ----------------------------------------------------------------
257
258 VSX has 64 128bit registers. The first 32 registers overlap with
259 the FP registers (doubleword 0) and hence extend them with additional
260 64 bits (doubleword 1). The other 32 regs overlap with the VMX
261 registers. */
262 #define SIZEOF_VSXREGS 32*8
263
264 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
265
266 /* On PPC processors that support the Signal Processing Extension
267 (SPE) APU, the general-purpose registers are 64 bits long.
268 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
269 ptrace calls only access the lower half of each register, to allow
270 them to behave the same way they do on non-SPE systems. There's a
271 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
272 read and write the top halves of all the general-purpose registers
273 at once, along with some SPE-specific registers.
274
275 GDB itself continues to claim the general-purpose registers are 32
276 bits long. It has unnamed raw registers that hold the upper halves
277 of the gprs, and the full 64-bit SIMD views of the registers,
278 'ev0' -- 'ev31', are pseudo-registers that splice the top and
279 bottom halves together.
280
281 This is the structure filled in by PTRACE_GETEVRREGS and written to
282 the inferior's registers by PTRACE_SETEVRREGS. */
283 struct gdb_evrregset_t
284 {
285 unsigned long evr[32];
286 unsigned long long acc;
287 unsigned long spefscr;
288 };
289
290 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
291 PTRACE_SETVSXREGS requests, for reading and writing the VSX
292 POWER7 registers 0 through 31. Zero if we've tried one of them and
293 gotten an error. Note that VSX registers 32 through 63 overlap
294 with VR registers 0 through 31. */
295 int have_ptrace_getsetvsxregs = 1;
296
297 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
298 PTRACE_SETVRREGS requests, for reading and writing the Altivec
299 registers. Zero if we've tried one of them and gotten an
300 error. */
301 int have_ptrace_getvrregs = 1;
302
303 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
304 PTRACE_SETEVRREGS requests, for reading and writing the SPE
305 registers. Zero if we've tried one of them and gotten an
306 error. */
307 int have_ptrace_getsetevrregs = 1;
308
309 /* Non-zero if our kernel may support the PTRACE_GETREGS and
310 PTRACE_SETREGS requests, for reading and writing the
311 general-purpose registers. Zero if we've tried one of
312 them and gotten an error. */
313 int have_ptrace_getsetregs = 1;
314
315 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
316 PTRACE_SETFPREGS requests, for reading and writing the
317 floating-pointers registers. Zero if we've tried one of
318 them and gotten an error. */
319 int have_ptrace_getsetfpregs = 1;
320
321 /* *INDENT-OFF* */
322 /* registers layout, as presented by the ptrace interface:
323 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
327 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
335 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336 /* *INDENT_ON * */
337
338 static int
339 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
340 {
341 int u_addr = -1;
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
345 int wordsize = sizeof (long);
346
347 /* General purpose registers occupy 1 slot each in the buffer. */
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
351
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
359
360 /* UISA special purpose registers: 1 slot each. */
361 if (regno == gdbarch_pc_regnum (gdbarch))
362 u_addr = PT_NIP * wordsize;
363 if (regno == tdep->ppc_lr_regnum)
364 u_addr = PT_LNK * wordsize;
365 if (regno == tdep->ppc_cr_regnum)
366 u_addr = PT_CCR * wordsize;
367 if (regno == tdep->ppc_xer_regnum)
368 u_addr = PT_XER * wordsize;
369 if (regno == tdep->ppc_ctr_regnum)
370 u_addr = PT_CTR * wordsize;
371 #ifdef PT_MQ
372 if (regno == tdep->ppc_mq_regnum)
373 u_addr = PT_MQ * wordsize;
374 #endif
375 if (regno == tdep->ppc_ps_regnum)
376 u_addr = PT_MSR * wordsize;
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
388 the second half of such a slot-pair (hence +1). For 64-bit,
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
402 return u_addr;
403 }
404
405 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408 static void
409 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410 {
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = get_regcache_arch (regcache);
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431 }
432
433 /* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436 static void
437 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
438 {
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
442 struct gdbarch *gdbarch = get_regcache_arch (regcache);
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
454 perror_with_name (_("Unable to fetch AltiVec register"));
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
463
464 regcache_raw_supply (regcache, regno,
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
467 }
468
469 /* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477 static void
478 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479 {
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
492 perror_with_name (_("Unable to fetch SPE registers"));
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497 }
498
499 /* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
503 static void
504 fetch_spe_register (struct regcache *regcache, int tid, int regno)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 struct gdb_evrregset_t evrregs;
509
510 gdb_assert (sizeof (evrregs.evr[0])
511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
512 gdb_assert (sizeof (evrregs.acc)
513 == register_size (gdbarch, tdep->ppc_acc_regnum));
514 gdb_assert (sizeof (evrregs.spefscr)
515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
516
517 get_spe_registers (tid, &evrregs);
518
519 if (regno == -1)
520 {
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
525 &evrregs.evr[i]);
526 }
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
529 regcache_raw_supply (regcache, regno,
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
539 &evrregs.spefscr);
540 }
541
542 static void
543 fetch_register (struct regcache *regcache, int tid, int regno)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547 /* This isn't really an address. But ptrace thinks of it as one. */
548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
549 int bytes_transferred;
550 unsigned int offset; /* Offset of registers within the u area. */
551 gdb_byte buf[MAX_REGISTER_SIZE];
552
553 if (altivec_register_p (gdbarch, regno))
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
561 fetch_altivec_register (regcache, tid, regno);
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
576 else if (spe_register_p (gdbarch, regno))
577 {
578 fetch_spe_register (regcache, tid, regno);
579 return;
580 }
581
582 if (regaddr == -1)
583 {
584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
585 regcache_raw_supply (regcache, regno, buf);
586 return;
587 }
588
589 /* Read the raw register using sizeof(long) sized chunks. On a
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
592 for (bytes_transferred = 0;
593 bytes_transferred < register_size (gdbarch, regno);
594 bytes_transferred += sizeof (long))
595 {
596 long l;
597
598 errno = 0;
599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
600 regaddr += sizeof (long);
601 if (errno != 0)
602 {
603 char message[128];
604 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
606 perror_with_name (message);
607 }
608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
609 }
610
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
613 (long). */
614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
618 regcache_raw_supply (regcache, regno, buf);
619 }
620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
625 regcache_raw_supply (regcache, regno, buf + padding);
626 }
627 else
628 internal_error (__FILE__, __LINE__,
629 _("fetch_register: unexpected byte order: %d"),
630 gdbarch_byte_order (gdbarch));
631 }
632
633 static void
634 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635 {
636 int i;
637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646 }
647
648 static void
649 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
650 {
651 int i;
652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
666 *vrregsetp + i * vrregsize + offset);
667 else
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize);
670 }
671 }
672
673 static void
674 fetch_vsx_registers (struct regcache *regcache, int tid)
675 {
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690 }
691
692 static void
693 fetch_altivec_registers (struct regcache *regcache, int tid)
694 {
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
706 perror_with_name (_("Unable to fetch AltiVec registers"));
707 }
708 supply_vrregset (regcache, &regs);
709 }
710
711 /* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719 static int
720 fetch_all_gp_regs (struct regcache *regcache, int tid)
721 {
722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_gp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763 }
764
765 /* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773 static int
774 fetch_all_fp_regs (struct regcache *regcache, int tid)
775 {
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791 }
792
793 /* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799 static void
800 fetch_fp_regs (struct regcache *regcache, int tid)
801 {
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815 }
816
817 static void
818 fetch_ppc_registers (struct regcache *regcache, int tid)
819 {
820 int i;
821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
823
824 fetch_gp_regs (regcache, tid);
825 if (tdep->ppc_fp0_regnum >= 0)
826 fetch_fp_regs (regcache, tid);
827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
828 if (tdep->ppc_ps_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
830 if (tdep->ppc_cr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
832 if (tdep->ppc_lr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
834 if (tdep->ppc_ctr_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
836 if (tdep->ppc_xer_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
838 if (tdep->ppc_mq_regnum != -1)
839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
845 if (tdep->ppc_fpscr_regnum != -1)
846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
849 fetch_altivec_registers (regcache, tid);
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
853 if (tdep->ppc_ev0_upper_regnum >= 0)
854 fetch_spe_register (regcache, tid, -1);
855 }
856
857 /* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
860 static void
861 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
862 struct regcache *regcache, int regno)
863 {
864 /* Overload thread id onto process id. */
865 int tid = ptid_get_lwp (inferior_ptid);
866
867 /* No thread id, just use process id. */
868 if (tid == 0)
869 tid = ptid_get_pid (inferior_ptid);
870
871 if (regno == -1)
872 fetch_ppc_registers (regcache, tid);
873 else
874 fetch_register (regcache, tid, regno);
875 }
876
877 /* Store one VSX register. */
878 static void
879 store_vsx_register (const struct regcache *regcache, int tid, int regno)
880 {
881 int ret;
882 gdb_vsxregset_t regs;
883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
886
887 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
888 if (ret < 0)
889 {
890 if (errno == EIO)
891 {
892 have_ptrace_getsetvsxregs = 0;
893 return;
894 }
895 perror_with_name (_("Unable to fetch VSX register"));
896 }
897
898 regcache_raw_collect (regcache, regno, regs +
899 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
900
901 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
902 if (ret < 0)
903 perror_with_name (_("Unable to store VSX register"));
904 }
905
906 /* Store one register. */
907 static void
908 store_altivec_register (const struct regcache *regcache, int tid, int regno)
909 {
910 int ret;
911 int offset = 0;
912 gdb_vrregset_t regs;
913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
916
917 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
918 if (ret < 0)
919 {
920 if (errno == EIO)
921 {
922 have_ptrace_getvrregs = 0;
923 return;
924 }
925 perror_with_name (_("Unable to fetch AltiVec register"));
926 }
927
928 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
929 long on the hardware. */
930 if (regno == (tdep->ppc_vrsave_regnum - 1))
931 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
932
933 regcache_raw_collect (regcache, regno,
934 regs + (regno
935 - tdep->ppc_vr0_regnum) * vrregsize + offset);
936
937 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
938 if (ret < 0)
939 perror_with_name (_("Unable to store AltiVec register"));
940 }
941
942 /* Assuming TID referrs to an SPE process, set the top halves of TID's
943 general-purpose registers and its SPE-specific registers to the
944 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
945 nothing.
946
947 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
948 PTRACE_SETEVRREGS requests are supported is isolated here, and in
949 get_spe_registers. */
950 static void
951 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
952 {
953 if (have_ptrace_getsetevrregs)
954 {
955 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 return;
957 else
958 {
959 /* EIO means that the PTRACE_SETEVRREGS request isn't
960 supported; we fail silently, and don't try the call
961 again. */
962 if (errno == EIO)
963 have_ptrace_getsetevrregs = 0;
964 else
965 /* Anything else needs to be reported. */
966 perror_with_name (_("Unable to set SPE registers"));
967 }
968 }
969 }
970
971 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
972 If REGNO is -1, write the values of all the SPE-specific
973 registers. */
974 static void
975 store_spe_register (const struct regcache *regcache, int tid, int regno)
976 {
977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
979 struct gdb_evrregset_t evrregs;
980
981 gdb_assert (sizeof (evrregs.evr[0])
982 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
983 gdb_assert (sizeof (evrregs.acc)
984 == register_size (gdbarch, tdep->ppc_acc_regnum));
985 gdb_assert (sizeof (evrregs.spefscr)
986 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
987
988 if (regno == -1)
989 /* Since we're going to write out every register, the code below
990 should store to every field of evrregs; if that doesn't happen,
991 make it obvious by initializing it with suspicious values. */
992 memset (&evrregs, 42, sizeof (evrregs));
993 else
994 /* We can only read and write the entire EVR register set at a
995 time, so to write just a single register, we do a
996 read-modify-write maneuver. */
997 get_spe_registers (tid, &evrregs);
998
999 if (regno == -1)
1000 {
1001 int i;
1002
1003 for (i = 0; i < ppc_num_gprs; i++)
1004 regcache_raw_collect (regcache,
1005 tdep->ppc_ev0_upper_regnum + i,
1006 &evrregs.evr[i]);
1007 }
1008 else if (tdep->ppc_ev0_upper_regnum <= regno
1009 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1010 regcache_raw_collect (regcache, regno,
1011 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_acc_regnum)
1015 regcache_raw_collect (regcache,
1016 tdep->ppc_acc_regnum,
1017 &evrregs.acc);
1018
1019 if (regno == -1
1020 || regno == tdep->ppc_spefscr_regnum)
1021 regcache_raw_collect (regcache,
1022 tdep->ppc_spefscr_regnum,
1023 &evrregs.spefscr);
1024
1025 /* Write back the modified register set. */
1026 set_spe_registers (tid, &evrregs);
1027 }
1028
1029 static void
1030 store_register (const struct regcache *regcache, int tid, int regno)
1031 {
1032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1034 /* This isn't really an address. But ptrace thinks of it as one. */
1035 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1036 int i;
1037 size_t bytes_to_transfer;
1038 gdb_byte buf[MAX_REGISTER_SIZE];
1039
1040 if (altivec_register_p (gdbarch, regno))
1041 {
1042 store_altivec_register (regcache, tid, regno);
1043 return;
1044 }
1045 if (vsx_register_p (gdbarch, regno))
1046 {
1047 store_vsx_register (regcache, tid, regno);
1048 return;
1049 }
1050 else if (spe_register_p (gdbarch, regno))
1051 {
1052 store_spe_register (regcache, tid, regno);
1053 return;
1054 }
1055
1056 if (regaddr == -1)
1057 return;
1058
1059 /* First collect the register. Keep in mind that the regcache's
1060 idea of the register's size may not be a multiple of sizeof
1061 (long). */
1062 memset (buf, 0, sizeof buf);
1063 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1064 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1065 {
1066 /* Little-endian values always sit at the left end of the buffer. */
1067 regcache_raw_collect (regcache, regno, buf);
1068 }
1069 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1070 {
1071 /* Big-endian values sit at the right end of the buffer. */
1072 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1073 regcache_raw_collect (regcache, regno, buf + padding);
1074 }
1075
1076 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1077 {
1078 long l;
1079
1080 memcpy (&l, &buf[i], sizeof (l));
1081 errno = 0;
1082 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1083 regaddr += sizeof (long);
1084
1085 if (errno == EIO
1086 && (regno == tdep->ppc_fpscr_regnum
1087 || regno == PPC_ORIG_R3_REGNUM
1088 || regno == PPC_TRAP_REGNUM))
1089 {
1090 /* Some older kernel versions don't allow fpscr, orig_r3
1091 or trap to be written. */
1092 continue;
1093 }
1094
1095 if (errno != 0)
1096 {
1097 char message[128];
1098 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1099 gdbarch_register_name (gdbarch, regno), regno);
1100 perror_with_name (message);
1101 }
1102 }
1103 }
1104
1105 static void
1106 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1107 {
1108 int i;
1109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1112
1113 for (i = 0; i < ppc_num_vshrs; i++)
1114 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1115 *vsxregsetp + i * vsxregsize);
1116 }
1117
1118 static void
1119 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1120 {
1121 int i;
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1124 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1125 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1126 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1127
1128 for (i = 0; i < num_of_vrregs; i++)
1129 {
1130 /* The last 2 registers of this set are only 32 bit long, not
1131 128, but only VSCR is fetched as a 16 bytes quantity. */
1132 if (i == (num_of_vrregs - 2))
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize + offset);
1135 else
1136 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1137 *vrregsetp + i * vrregsize);
1138 }
1139 }
1140
1141 static void
1142 store_vsx_registers (const struct regcache *regcache, int tid)
1143 {
1144 int ret;
1145 gdb_vsxregset_t regs;
1146
1147 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1148 if (ret < 0)
1149 {
1150 if (errno == EIO)
1151 {
1152 have_ptrace_getsetvsxregs = 0;
1153 return;
1154 }
1155 perror_with_name (_("Couldn't get VSX registers"));
1156 }
1157
1158 fill_vsxregset (regcache, &regs);
1159
1160 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1161 perror_with_name (_("Couldn't write VSX registers"));
1162 }
1163
1164 static void
1165 store_altivec_registers (const struct regcache *regcache, int tid)
1166 {
1167 int ret;
1168 gdb_vrregset_t regs;
1169
1170 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1171 if (ret < 0)
1172 {
1173 if (errno == EIO)
1174 {
1175 have_ptrace_getvrregs = 0;
1176 return;
1177 }
1178 perror_with_name (_("Couldn't get AltiVec registers"));
1179 }
1180
1181 fill_vrregset (regcache, &regs);
1182
1183 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1184 perror_with_name (_("Couldn't write AltiVec registers"));
1185 }
1186
1187 /* This function actually issues the request to ptrace, telling
1188 it to store all general-purpose registers present in the specified
1189 regset.
1190
1191 If the ptrace request does not exist, this function returns 0
1192 and properly sets the have_ptrace_* flag. If the request fails,
1193 this function calls perror_with_name. Otherwise, if the request
1194 succeeds, then the regcache is stored and 1 is returned. */
1195 static int
1196 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1197 {
1198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1200 gdb_gregset_t gregset;
1201
1202 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 {
1204 if (errno == EIO)
1205 {
1206 have_ptrace_getsetregs = 0;
1207 return 0;
1208 }
1209 perror_with_name (_("Couldn't get general-purpose registers."));
1210 }
1211
1212 fill_gregset (regcache, &gregset, regno);
1213
1214 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 have_ptrace_getsetregs = 0;
1219 return 0;
1220 }
1221 perror_with_name (_("Couldn't set general-purpose registers."));
1222 }
1223
1224 return 1;
1225 }
1226
1227 /* This is a wrapper for the store_all_gp_regs function. It is
1228 responsible for verifying if this target has the ptrace request
1229 that can be used to store all general-purpose registers at one
1230 shot. If it doesn't, then we should store them using the
1231 old-fashioned way, which is to iterate over the registers and
1232 store them one by one. */
1233 static void
1234 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1235 {
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1238 int i;
1239
1240 if (have_ptrace_getsetregs)
1241 if (store_all_gp_regs (regcache, tid, regno))
1242 return;
1243
1244 /* If we hit this point, it doesn't really matter which
1245 architecture we are using. We just need to store the
1246 registers in the "old-fashioned way". */
1247 for (i = 0; i < ppc_num_gprs; i++)
1248 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1249 }
1250
1251 /* This function actually issues the request to ptrace, telling
1252 it to store all floating-point registers present in the specified
1253 regset.
1254
1255 If the ptrace request does not exist, this function returns 0
1256 and properly sets the have_ptrace_* flag. If the request fails,
1257 this function calls perror_with_name. Otherwise, if the request
1258 succeeds, then the regcache is stored and 1 is returned. */
1259 static int
1260 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1261 {
1262 gdb_fpregset_t fpregs;
1263
1264 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 {
1266 if (errno == EIO)
1267 {
1268 have_ptrace_getsetfpregs = 0;
1269 return 0;
1270 }
1271 perror_with_name (_("Couldn't get floating-point registers."));
1272 }
1273
1274 fill_fpregset (regcache, &fpregs, regno);
1275
1276 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 {
1278 if (errno == EIO)
1279 {
1280 have_ptrace_getsetfpregs = 0;
1281 return 0;
1282 }
1283 perror_with_name (_("Couldn't set floating-point registers."));
1284 }
1285
1286 return 1;
1287 }
1288
1289 /* This is a wrapper for the store_all_fp_regs function. It is
1290 responsible for verifying if this target has the ptrace request
1291 that can be used to store all floating-point registers at one
1292 shot. If it doesn't, then we should store them using the
1293 old-fashioned way, which is to iterate over the registers and
1294 store them one by one. */
1295 static void
1296 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1297 {
1298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int i;
1301
1302 if (have_ptrace_getsetfpregs)
1303 if (store_all_fp_regs (regcache, tid, regno))
1304 return;
1305
1306 /* If we hit this point, it doesn't really matter which
1307 architecture we are using. We just need to store the
1308 registers in the "old-fashioned way". */
1309 for (i = 0; i < ppc_num_fprs; i++)
1310 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311 }
1312
1313 static void
1314 store_ppc_registers (const struct regcache *regcache, int tid)
1315 {
1316 int i;
1317 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 store_gp_regs (regcache, tid, -1);
1321 if (tdep->ppc_fp0_regnum >= 0)
1322 store_fp_regs (regcache, tid, -1);
1323 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1324 if (tdep->ppc_ps_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_ps_regnum);
1326 if (tdep->ppc_cr_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_cr_regnum);
1328 if (tdep->ppc_lr_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_lr_regnum);
1330 if (tdep->ppc_ctr_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1332 if (tdep->ppc_xer_regnum != -1)
1333 store_register (regcache, tid, tdep->ppc_xer_regnum);
1334 if (tdep->ppc_mq_regnum != -1)
1335 store_register (regcache, tid, tdep->ppc_mq_regnum);
1336 if (tdep->ppc_fpscr_regnum != -1)
1337 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1338 if (ppc_linux_trap_reg_p (gdbarch))
1339 {
1340 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1341 store_register (regcache, tid, PPC_TRAP_REGNUM);
1342 }
1343 if (have_ptrace_getvrregs)
1344 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1345 store_altivec_registers (regcache, tid);
1346 if (have_ptrace_getsetvsxregs)
1347 if (tdep->ppc_vsr0_upper_regnum != -1)
1348 store_vsx_registers (regcache, tid);
1349 if (tdep->ppc_ev0_upper_regnum >= 0)
1350 store_spe_register (regcache, tid, -1);
1351 }
1352
1353 /* Fetch the AT_HWCAP entry from the aux vector. */
1354 static unsigned long
1355 ppc_linux_get_hwcap (void)
1356 {
1357 CORE_ADDR field;
1358
1359 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1360 return (unsigned long) field;
1361
1362 return 0;
1363 }
1364
1365 /* The cached DABR value, to install in new threads.
1366 This variable is used when the PowerPC HWDEBUG ptrace
1367 interface is not available. */
1368 static long saved_dabr_value;
1369
1370 /* Global structure that will store information about the available
1371 features provided by the PowerPC HWDEBUG ptrace interface. */
1372 static struct ppc_debug_info hwdebug_info;
1373
1374 /* Global variable that holds the maximum number of slots that the
1375 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1376 is available. */
1377 static size_t max_slots_number = 0;
1378
1379 struct hw_break_tuple
1380 {
1381 long slot;
1382 struct ppc_hw_breakpoint *hw_break;
1383 };
1384
1385 /* This is an internal VEC created to store information about *points inserted
1386 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1387 available. */
1388 typedef struct thread_points
1389 {
1390 /* The TID to which this *point relates. */
1391 int tid;
1392 /* Information about the *point, such as its address, type, etc.
1393
1394 Each element inside this vector corresponds to a hardware
1395 breakpoint or watchpoint in the thread represented by TID. The maximum
1396 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1397 the tuple is NULL, then the position in the vector is free. */
1398 struct hw_break_tuple *hw_breaks;
1399 } *thread_points_p;
1400 DEF_VEC_P (thread_points_p);
1401
1402 VEC(thread_points_p) *ppc_threads = NULL;
1403
1404 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1405 available. */
1406 #define PPC_DEBUG_CURRENT_VERSION 1
1407
1408 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1409 static int
1410 have_ptrace_hwdebug_interface (void)
1411 {
1412 static int have_ptrace_hwdebug_interface = -1;
1413
1414 if (have_ptrace_hwdebug_interface == -1)
1415 {
1416 int tid;
1417
1418 tid = ptid_get_lwp (inferior_ptid);
1419 if (tid == 0)
1420 tid = ptid_get_pid (inferior_ptid);
1421
1422 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1423 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1424 {
1425 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1426 provides any supported feature. */
1427 if (hwdebug_info.features != 0)
1428 {
1429 have_ptrace_hwdebug_interface = 1;
1430 max_slots_number = hwdebug_info.num_instruction_bps
1431 + hwdebug_info.num_data_bps
1432 + hwdebug_info.num_condition_regs;
1433 return have_ptrace_hwdebug_interface;
1434 }
1435 }
1436 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1437 have_ptrace_hwdebug_interface = 0;
1438 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1439 }
1440
1441 return have_ptrace_hwdebug_interface;
1442 }
1443
1444 static int
1445 ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1446 int type, int cnt, int ot)
1447 {
1448 int total_hw_wp, total_hw_bp;
1449
1450 if (have_ptrace_hwdebug_interface ())
1451 {
1452 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1453 available hardware watchpoints and breakpoints is stored at the
1454 hwdebug_info struct. */
1455 total_hw_bp = hwdebug_info.num_instruction_bps;
1456 total_hw_wp = hwdebug_info.num_data_bps;
1457 }
1458 else
1459 {
1460 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1461 consider having 1 hardware watchpoint and no hardware breakpoints. */
1462 total_hw_bp = 0;
1463 total_hw_wp = 1;
1464 }
1465
1466 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1467 || type == bp_access_watchpoint || type == bp_watchpoint)
1468 {
1469 if (cnt + ot > total_hw_wp)
1470 return -1;
1471 }
1472 else if (type == bp_hardware_breakpoint)
1473 {
1474 if (total_hw_bp == 0)
1475 {
1476 /* No hardware breakpoint support. */
1477 return 0;
1478 }
1479 if (cnt > total_hw_bp)
1480 return -1;
1481 }
1482
1483 if (!have_ptrace_hwdebug_interface ())
1484 {
1485 int tid;
1486 ptid_t ptid = inferior_ptid;
1487
1488 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1489 and whether the target has DABR. If either answer is no, the
1490 ptrace call will return -1. Fail in that case. */
1491 tid = ptid_get_lwp (ptid);
1492 if (tid == 0)
1493 tid = ptid_get_pid (ptid);
1494
1495 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1496 return 0;
1497 }
1498
1499 return 1;
1500 }
1501
1502 static int
1503 ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1504 CORE_ADDR addr, int len)
1505 {
1506 /* Handle sub-8-byte quantities. */
1507 if (len <= 0)
1508 return 0;
1509
1510 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1511 restrictions for watchpoints in the processors. In that case, we use that
1512 information to determine the hardcoded watchable region for
1513 watchpoints. */
1514 if (have_ptrace_hwdebug_interface ())
1515 {
1516 int region_size;
1517 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1518 watchpoints and can watch any access within an arbitrary memory
1519 region. This is useful to watch arrays and structs, for instance. It
1520 takes two hardware watchpoints though. */
1521 if (len > 1
1522 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1523 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1524 return 2;
1525 /* Check if the processor provides DAWR interface. */
1526 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1527 /* DAWR interface allows to watch up to 512 byte wide ranges which
1528 can't cross a 512 byte boundary. */
1529 region_size = 512;
1530 else
1531 region_size = hwdebug_info.data_bp_alignment;
1532 /* Server processors provide one hardware watchpoint and addr+len should
1533 fall in the watchable region provided by the ptrace interface. */
1534 if (region_size
1535 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1536 return 0;
1537 }
1538 /* addr+len must fall in the 8 byte watchable region for DABR-based
1539 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1540 ptrace interface, DAC-based processors (i.e., embedded processors) will
1541 use addresses aligned to 4-bytes due to the way the read/write flags are
1542 passed in the old ptrace interface. */
1543 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1544 && (addr + len) > (addr & ~3) + 4)
1545 || (addr + len) > (addr & ~7) + 8)
1546 return 0;
1547
1548 return 1;
1549 }
1550
1551 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1552 static int
1553 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1554 {
1555 return (a->trigger_type == b->trigger_type
1556 && a->addr_mode == b->addr_mode
1557 && a->condition_mode == b->condition_mode
1558 && a->addr == b->addr
1559 && a->addr2 == b->addr2
1560 && a->condition_value == b->condition_value);
1561 }
1562
1563 /* This function can be used to retrieve a thread_points by the TID of the
1564 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1565 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1566 provided TID will be created and returned. */
1567 static struct thread_points *
1568 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1569 {
1570 int i;
1571 struct thread_points *t;
1572
1573 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1574 if (t->tid == tid)
1575 return t;
1576
1577 t = NULL;
1578
1579 /* Do we need to allocate a new point_item
1580 if the wanted one does not exist? */
1581 if (alloc_new)
1582 {
1583 t = xmalloc (sizeof (struct thread_points));
1584 t->hw_breaks
1585 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1586 t->tid = tid;
1587 VEC_safe_push (thread_points_p, ppc_threads, t);
1588 }
1589
1590 return t;
1591 }
1592
1593 /* This function is a generic wrapper that is responsible for inserting a
1594 *point (i.e., calling `ptrace' in order to issue the request to the
1595 kernel) and registering it internally in GDB. */
1596 static void
1597 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1598 {
1599 int i;
1600 long slot;
1601 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1602 struct hw_break_tuple *hw_breaks;
1603 struct cleanup *c = make_cleanup (xfree, p);
1604 struct thread_points *t;
1605 struct hw_break_tuple *tuple;
1606
1607 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1608
1609 errno = 0;
1610 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1611 if (slot < 0)
1612 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1613
1614 /* Everything went fine, so we have to register this *point. */
1615 t = hwdebug_find_thread_points_by_tid (tid, 1);
1616 gdb_assert (t != NULL);
1617 hw_breaks = t->hw_breaks;
1618
1619 /* Find a free element in the hw_breaks vector. */
1620 for (i = 0; i < max_slots_number; i++)
1621 if (hw_breaks[i].hw_break == NULL)
1622 {
1623 hw_breaks[i].slot = slot;
1624 hw_breaks[i].hw_break = p;
1625 break;
1626 }
1627
1628 gdb_assert (i != max_slots_number);
1629
1630 discard_cleanups (c);
1631 }
1632
1633 /* This function is a generic wrapper that is responsible for removing a
1634 *point (i.e., calling `ptrace' in order to issue the request to the
1635 kernel), and unregistering it internally at GDB. */
1636 static void
1637 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1638 {
1639 int i;
1640 struct hw_break_tuple *hw_breaks;
1641 struct thread_points *t;
1642
1643 t = hwdebug_find_thread_points_by_tid (tid, 0);
1644 gdb_assert (t != NULL);
1645 hw_breaks = t->hw_breaks;
1646
1647 for (i = 0; i < max_slots_number; i++)
1648 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1649 break;
1650
1651 gdb_assert (i != max_slots_number);
1652
1653 /* We have to ignore ENOENT errors because the kernel implements hardware
1654 breakpoints/watchpoints as "one-shot", that is, they are automatically
1655 deleted when hit. */
1656 errno = 0;
1657 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1658 if (errno != ENOENT)
1659 perror_with_name (_("Unexpected error deleting "
1660 "breakpoint or watchpoint"));
1661
1662 xfree (hw_breaks[i].hw_break);
1663 hw_breaks[i].hw_break = NULL;
1664 }
1665
1666 /* Return the number of registers needed for a ranged breakpoint. */
1667
1668 static int
1669 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1670 {
1671 return ((have_ptrace_hwdebug_interface ()
1672 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1673 2 : -1);
1674 }
1675
1676 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1677 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1678
1679 static int
1680 ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1681 struct gdbarch *gdbarch,
1682 struct bp_target_info *bp_tgt)
1683 {
1684 struct lwp_info *lp;
1685 struct ppc_hw_breakpoint p;
1686
1687 if (!have_ptrace_hwdebug_interface ())
1688 return -1;
1689
1690 p.version = PPC_DEBUG_CURRENT_VERSION;
1691 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1692 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1693 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1694 p.condition_value = 0;
1695
1696 if (bp_tgt->length)
1697 {
1698 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1699
1700 /* The breakpoint will trigger if the address of the instruction is
1701 within the defined range, as follows: p.addr <= address < p.addr2. */
1702 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1703 }
1704 else
1705 {
1706 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1707 p.addr2 = 0;
1708 }
1709
1710 ALL_LWPS (lp)
1711 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1712
1713 return 0;
1714 }
1715
1716 static int
1717 ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1718 struct gdbarch *gdbarch,
1719 struct bp_target_info *bp_tgt)
1720 {
1721 struct lwp_info *lp;
1722 struct ppc_hw_breakpoint p;
1723
1724 if (!have_ptrace_hwdebug_interface ())
1725 return -1;
1726
1727 p.version = PPC_DEBUG_CURRENT_VERSION;
1728 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1729 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1730 p.addr = (uint64_t) bp_tgt->placed_address;
1731 p.condition_value = 0;
1732
1733 if (bp_tgt->length)
1734 {
1735 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1736
1737 /* The breakpoint will trigger if the address of the instruction is within
1738 the defined range, as follows: p.addr <= address < p.addr2. */
1739 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1740 }
1741 else
1742 {
1743 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1744 p.addr2 = 0;
1745 }
1746
1747 ALL_LWPS (lp)
1748 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1749
1750 return 0;
1751 }
1752
1753 static int
1754 get_trigger_type (int rw)
1755 {
1756 int t;
1757
1758 if (rw == hw_read)
1759 t = PPC_BREAKPOINT_TRIGGER_READ;
1760 else if (rw == hw_write)
1761 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1762 else
1763 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1764
1765 return t;
1766 }
1767
1768 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1769 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1770 or hw_access for an access watchpoint. Returns 0 on success and throws
1771 an error on failure. */
1772
1773 static int
1774 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1775 CORE_ADDR mask, int rw)
1776 {
1777 struct lwp_info *lp;
1778 struct ppc_hw_breakpoint p;
1779
1780 gdb_assert (have_ptrace_hwdebug_interface ());
1781
1782 p.version = PPC_DEBUG_CURRENT_VERSION;
1783 p.trigger_type = get_trigger_type (rw);
1784 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1785 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1786 p.addr = addr;
1787 p.addr2 = mask;
1788 p.condition_value = 0;
1789
1790 ALL_LWPS (lp)
1791 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1792
1793 return 0;
1794 }
1795
1796 /* Remove a masked watchpoint at ADDR with the mask MASK.
1797 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1798 or hw_access for an access watchpoint. Returns 0 on success and throws
1799 an error on failure. */
1800
1801 static int
1802 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1803 CORE_ADDR mask, int rw)
1804 {
1805 struct lwp_info *lp;
1806 struct ppc_hw_breakpoint p;
1807
1808 gdb_assert (have_ptrace_hwdebug_interface ());
1809
1810 p.version = PPC_DEBUG_CURRENT_VERSION;
1811 p.trigger_type = get_trigger_type (rw);
1812 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1813 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1814 p.addr = addr;
1815 p.addr2 = mask;
1816 p.condition_value = 0;
1817
1818 ALL_LWPS (lp)
1819 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1820
1821 return 0;
1822 }
1823
1824 /* Check whether we have at least one free DVC register. */
1825 static int
1826 can_use_watchpoint_cond_accel (void)
1827 {
1828 struct thread_points *p;
1829 int tid = ptid_get_lwp (inferior_ptid);
1830 int cnt = hwdebug_info.num_condition_regs, i;
1831 CORE_ADDR tmp_value;
1832
1833 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1834 return 0;
1835
1836 p = hwdebug_find_thread_points_by_tid (tid, 0);
1837
1838 if (p)
1839 {
1840 for (i = 0; i < max_slots_number; i++)
1841 if (p->hw_breaks[i].hw_break != NULL
1842 && (p->hw_breaks[i].hw_break->condition_mode
1843 != PPC_BREAKPOINT_CONDITION_NONE))
1844 cnt--;
1845
1846 /* There are no available slots now. */
1847 if (cnt <= 0)
1848 return 0;
1849 }
1850
1851 return 1;
1852 }
1853
1854 /* Calculate the enable bits and the contents of the Data Value Compare
1855 debug register present in BookE processors.
1856
1857 ADDR is the address to be watched, LEN is the length of watched data
1858 and DATA_VALUE is the value which will trigger the watchpoint.
1859 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1860 CONDITION_VALUE will hold the value which should be put in the
1861 DVC register. */
1862 static void
1863 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1864 uint32_t *condition_mode, uint64_t *condition_value)
1865 {
1866 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1867 rightmost_enabled_byte;
1868 CORE_ADDR addr_end_data, addr_end_dvc;
1869
1870 /* The DVC register compares bytes within fixed-length windows which
1871 are word-aligned, with length equal to that of the DVC register.
1872 We need to calculate where our watch region is relative to that
1873 window and enable comparison of the bytes which fall within it. */
1874
1875 align_offset = addr % hwdebug_info.sizeof_condition;
1876 addr_end_data = addr + len;
1877 addr_end_dvc = (addr - align_offset
1878 + hwdebug_info.sizeof_condition);
1879 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1880 addr_end_data - addr_end_dvc : 0;
1881 num_byte_enable = len - num_bytes_off_dvc;
1882 /* Here, bytes are numbered from right to left. */
1883 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1884 addr_end_dvc - addr_end_data : 0;
1885
1886 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1887 for (i = 0; i < num_byte_enable; i++)
1888 *condition_mode
1889 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1890
1891 /* Now we need to match the position within the DVC of the comparison
1892 value with where the watch region is relative to the window
1893 (i.e., the ALIGN_OFFSET). */
1894
1895 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1896 << rightmost_enabled_byte * 8);
1897 }
1898
1899 /* Return the number of memory locations that need to be accessed to
1900 evaluate the expression which generated the given value chain.
1901 Returns -1 if there's any register access involved, or if there are
1902 other kinds of values which are not acceptable in a condition
1903 expression (e.g., lval_computed or lval_internalvar). */
1904 static int
1905 num_memory_accesses (struct value *v)
1906 {
1907 int found_memory_cnt = 0;
1908 struct value *head = v;
1909
1910 /* The idea here is that evaluating an expression generates a series
1911 of values, one holding the value of every subexpression. (The
1912 expression a*b+c has five subexpressions: a, b, a*b, c, and
1913 a*b+c.) GDB's values hold almost enough information to establish
1914 the criteria given above --- they identify memory lvalues,
1915 register lvalues, computed values, etcetera. So we can evaluate
1916 the expression, and then scan the chain of values that leaves
1917 behind to determine the memory locations involved in the evaluation
1918 of an expression.
1919
1920 However, I don't think that the values returned by inferior
1921 function calls are special in any way. So this function may not
1922 notice that an expression contains an inferior function call.
1923 FIXME. */
1924
1925 for (; v; v = value_next (v))
1926 {
1927 /* Constants and values from the history are fine. */
1928 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1929 continue;
1930 else if (VALUE_LVAL (v) == lval_memory)
1931 {
1932 /* A lazy memory lvalue is one that GDB never needed to fetch;
1933 we either just used its address (e.g., `a' in `a.b') or
1934 we never needed it at all (e.g., `a' in `a,b'). */
1935 if (!value_lazy (v))
1936 found_memory_cnt++;
1937 }
1938 /* Other kinds of values are not fine. */
1939 else
1940 return -1;
1941 }
1942
1943 return found_memory_cnt;
1944 }
1945
1946 /* Verifies whether the expression COND can be implemented using the
1947 DVC (Data Value Compare) register in BookE processors. The expression
1948 must test the watch value for equality with a constant expression.
1949 If the function returns 1, DATA_VALUE will contain the constant against
1950 which the watch value should be compared and LEN will contain the size
1951 of the constant. */
1952 static int
1953 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1954 CORE_ADDR *data_value, int *len)
1955 {
1956 int pc = 1, num_accesses_left, num_accesses_right;
1957 struct value *left_val, *right_val, *left_chain, *right_chain;
1958
1959 if (cond->elts[0].opcode != BINOP_EQUAL)
1960 return 0;
1961
1962 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1963 num_accesses_left = num_memory_accesses (left_chain);
1964
1965 if (left_val == NULL || num_accesses_left < 0)
1966 {
1967 free_value_chain (left_chain);
1968
1969 return 0;
1970 }
1971
1972 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1973 num_accesses_right = num_memory_accesses (right_chain);
1974
1975 if (right_val == NULL || num_accesses_right < 0)
1976 {
1977 free_value_chain (left_chain);
1978 free_value_chain (right_chain);
1979
1980 return 0;
1981 }
1982
1983 if (num_accesses_left == 1 && num_accesses_right == 0
1984 && VALUE_LVAL (left_val) == lval_memory
1985 && value_address (left_val) == watch_addr)
1986 {
1987 *data_value = value_as_long (right_val);
1988
1989 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1990 the same type as the memory region referenced by LEFT_VAL. */
1991 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1992 }
1993 else if (num_accesses_left == 0 && num_accesses_right == 1
1994 && VALUE_LVAL (right_val) == lval_memory
1995 && value_address (right_val) == watch_addr)
1996 {
1997 *data_value = value_as_long (left_val);
1998
1999 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2000 the same type as the memory region referenced by RIGHT_VAL. */
2001 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
2002 }
2003 else
2004 {
2005 free_value_chain (left_chain);
2006 free_value_chain (right_chain);
2007
2008 return 0;
2009 }
2010
2011 free_value_chain (left_chain);
2012 free_value_chain (right_chain);
2013
2014 return 1;
2015 }
2016
2017 /* Return non-zero if the target is capable of using hardware to evaluate
2018 the condition expression, thus only triggering the watchpoint when it is
2019 true. */
2020 static int
2021 ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
2022 CORE_ADDR addr, int len, int rw,
2023 struct expression *cond)
2024 {
2025 CORE_ADDR data_value;
2026
2027 return (have_ptrace_hwdebug_interface ()
2028 && hwdebug_info.num_condition_regs > 0
2029 && check_condition (addr, cond, &data_value, &len));
2030 }
2031
2032 /* Set up P with the parameters necessary to request a watchpoint covering
2033 LEN bytes starting at ADDR and if possible with condition expression COND
2034 evaluated by hardware. INSERT tells if we are creating a request for
2035 inserting or removing the watchpoint. */
2036
2037 static void
2038 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2039 int len, int rw, struct expression *cond,
2040 int insert)
2041 {
2042 if (len == 1
2043 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2044 {
2045 int use_condition;
2046 CORE_ADDR data_value;
2047
2048 use_condition = (insert? can_use_watchpoint_cond_accel ()
2049 : hwdebug_info.num_condition_regs > 0);
2050 if (cond && use_condition && check_condition (addr, cond,
2051 &data_value, &len))
2052 calculate_dvc (addr, len, data_value, &p->condition_mode,
2053 &p->condition_value);
2054 else
2055 {
2056 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2057 p->condition_value = 0;
2058 }
2059
2060 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2061 p->addr2 = 0;
2062 }
2063 else
2064 {
2065 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2066 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2067 p->condition_value = 0;
2068
2069 /* The watchpoint will trigger if the address of the memory access is
2070 within the defined range, as follows: p->addr <= address < p->addr2.
2071
2072 Note that the above sentence just documents how ptrace interprets
2073 its arguments; the watchpoint is set to watch the range defined by
2074 the user _inclusively_, as specified by the user interface. */
2075 p->addr2 = (uint64_t) addr + len;
2076 }
2077
2078 p->version = PPC_DEBUG_CURRENT_VERSION;
2079 p->trigger_type = get_trigger_type (rw);
2080 p->addr = (uint64_t) addr;
2081 }
2082
2083 static int
2084 ppc_linux_insert_watchpoint (struct target_ops *self,
2085 CORE_ADDR addr, int len, int rw,
2086 struct expression *cond)
2087 {
2088 struct lwp_info *lp;
2089 int ret = -1;
2090
2091 if (have_ptrace_hwdebug_interface ())
2092 {
2093 struct ppc_hw_breakpoint p;
2094
2095 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2096
2097 ALL_LWPS (lp)
2098 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2099
2100 ret = 0;
2101 }
2102 else
2103 {
2104 long dabr_value;
2105 long read_mode, write_mode;
2106
2107 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2108 {
2109 /* PowerPC 440 requires only the read/write flags to be passed
2110 to the kernel. */
2111 read_mode = 1;
2112 write_mode = 2;
2113 }
2114 else
2115 {
2116 /* PowerPC 970 and other DABR-based processors are required to pass
2117 the Breakpoint Translation bit together with the flags. */
2118 read_mode = 5;
2119 write_mode = 6;
2120 }
2121
2122 dabr_value = addr & ~(read_mode | write_mode);
2123 switch (rw)
2124 {
2125 case hw_read:
2126 /* Set read and translate bits. */
2127 dabr_value |= read_mode;
2128 break;
2129 case hw_write:
2130 /* Set write and translate bits. */
2131 dabr_value |= write_mode;
2132 break;
2133 case hw_access:
2134 /* Set read, write and translate bits. */
2135 dabr_value |= read_mode | write_mode;
2136 break;
2137 }
2138
2139 saved_dabr_value = dabr_value;
2140
2141 ALL_LWPS (lp)
2142 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2143 saved_dabr_value) < 0)
2144 return -1;
2145
2146 ret = 0;
2147 }
2148
2149 return ret;
2150 }
2151
2152 static int
2153 ppc_linux_remove_watchpoint (struct target_ops *self,
2154 CORE_ADDR addr, int len, int rw,
2155 struct expression *cond)
2156 {
2157 struct lwp_info *lp;
2158 int ret = -1;
2159
2160 if (have_ptrace_hwdebug_interface ())
2161 {
2162 struct ppc_hw_breakpoint p;
2163
2164 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2165
2166 ALL_LWPS (lp)
2167 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2168
2169 ret = 0;
2170 }
2171 else
2172 {
2173 saved_dabr_value = 0;
2174 ALL_LWPS (lp)
2175 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2176 saved_dabr_value) < 0)
2177 return -1;
2178
2179 ret = 0;
2180 }
2181
2182 return ret;
2183 }
2184
2185 static void
2186 ppc_linux_new_thread (struct lwp_info *lp)
2187 {
2188 int tid = ptid_get_lwp (lp->ptid);
2189
2190 if (have_ptrace_hwdebug_interface ())
2191 {
2192 int i;
2193 struct thread_points *p;
2194 struct hw_break_tuple *hw_breaks;
2195
2196 if (VEC_empty (thread_points_p, ppc_threads))
2197 return;
2198
2199 /* Get a list of breakpoints from any thread. */
2200 p = VEC_last (thread_points_p, ppc_threads);
2201 hw_breaks = p->hw_breaks;
2202
2203 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2204 for (i = 0; i < max_slots_number; i++)
2205 if (hw_breaks[i].hw_break)
2206 {
2207 /* Older kernels did not make new threads inherit their parent
2208 thread's debug state, so we always clear the slot and replicate
2209 the debug state ourselves, ensuring compatibility with all
2210 kernels. */
2211
2212 /* The ppc debug resource accounting is done through "slots".
2213 Ask the kernel the deallocate this specific *point's slot. */
2214 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2215
2216 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2217 }
2218 }
2219 else
2220 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2221 }
2222
2223 static void
2224 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2225 {
2226 int i;
2227 int tid = ptid_get_lwp (tp->ptid);
2228 struct hw_break_tuple *hw_breaks;
2229 struct thread_points *t = NULL, *p;
2230
2231 if (!have_ptrace_hwdebug_interface ())
2232 return;
2233
2234 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2235 if (p->tid == tid)
2236 {
2237 t = p;
2238 break;
2239 }
2240
2241 if (t == NULL)
2242 return;
2243
2244 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2245
2246 hw_breaks = t->hw_breaks;
2247
2248 for (i = 0; i < max_slots_number; i++)
2249 if (hw_breaks[i].hw_break)
2250 xfree (hw_breaks[i].hw_break);
2251
2252 xfree (t->hw_breaks);
2253 xfree (t);
2254 }
2255
2256 static int
2257 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2258 {
2259 siginfo_t siginfo;
2260
2261 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2262 return 0;
2263
2264 if (siginfo.si_signo != SIGTRAP
2265 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2266 return 0;
2267
2268 if (have_ptrace_hwdebug_interface ())
2269 {
2270 int i;
2271 struct thread_points *t;
2272 struct hw_break_tuple *hw_breaks;
2273 /* The index (or slot) of the *point is passed in the si_errno field. */
2274 int slot = siginfo.si_errno;
2275
2276 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2277
2278 /* Find out if this *point is a hardware breakpoint.
2279 If so, we should return 0. */
2280 if (t)
2281 {
2282 hw_breaks = t->hw_breaks;
2283 for (i = 0; i < max_slots_number; i++)
2284 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2285 && hw_breaks[i].hw_break->trigger_type
2286 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2287 return 0;
2288 }
2289 }
2290
2291 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2292 return 1;
2293 }
2294
2295 static int
2296 ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
2297 {
2298 CORE_ADDR addr;
2299 return ppc_linux_stopped_data_address (ops, &addr);
2300 }
2301
2302 static int
2303 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2304 CORE_ADDR addr,
2305 CORE_ADDR start, int length)
2306 {
2307 int mask;
2308
2309 if (have_ptrace_hwdebug_interface ()
2310 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2311 return start <= addr && start + length >= addr;
2312 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2313 mask = 3;
2314 else
2315 mask = 7;
2316
2317 addr &= ~mask;
2318
2319 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2320 return start <= addr + mask && start + length - 1 >= addr;
2321 }
2322
2323 /* Return the number of registers needed for a masked hardware watchpoint. */
2324
2325 static int
2326 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2327 CORE_ADDR addr, CORE_ADDR mask)
2328 {
2329 if (!have_ptrace_hwdebug_interface ()
2330 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2331 return -1;
2332 else if ((mask & 0xC0000000) != 0xC0000000)
2333 {
2334 warning (_("The given mask covers kernel address space "
2335 "and cannot be used.\n"));
2336
2337 return -2;
2338 }
2339 else
2340 return 2;
2341 }
2342
2343 static void
2344 ppc_linux_store_inferior_registers (struct target_ops *ops,
2345 struct regcache *regcache, int regno)
2346 {
2347 /* Overload thread id onto process id. */
2348 int tid = ptid_get_lwp (inferior_ptid);
2349
2350 /* No thread id, just use process id. */
2351 if (tid == 0)
2352 tid = ptid_get_pid (inferior_ptid);
2353
2354 if (regno >= 0)
2355 store_register (regcache, tid, regno);
2356 else
2357 store_ppc_registers (regcache, tid);
2358 }
2359
2360 /* Functions for transferring registers between a gregset_t or fpregset_t
2361 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2362 by the ptrace interface, not the current program's ABI. Eg. if a
2363 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2364 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2365
2366 void
2367 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2368 {
2369 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2370
2371 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2372 }
2373
2374 void
2375 fill_gregset (const struct regcache *regcache,
2376 gdb_gregset_t *gregsetp, int regno)
2377 {
2378 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2379
2380 if (regno == -1)
2381 memset (gregsetp, 0, sizeof (*gregsetp));
2382 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2383 }
2384
2385 void
2386 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2387 {
2388 const struct regset *regset = ppc_linux_fpregset ();
2389
2390 ppc_supply_fpregset (regset, regcache, -1,
2391 fpregsetp, sizeof (*fpregsetp));
2392 }
2393
2394 void
2395 fill_fpregset (const struct regcache *regcache,
2396 gdb_fpregset_t *fpregsetp, int regno)
2397 {
2398 const struct regset *regset = ppc_linux_fpregset ();
2399
2400 ppc_collect_fpregset (regset, regcache, regno,
2401 fpregsetp, sizeof (*fpregsetp));
2402 }
2403
2404 static int
2405 ppc_linux_target_wordsize (void)
2406 {
2407 int wordsize = 4;
2408
2409 /* Check for 64-bit inferior process. This is the case when the host is
2410 64-bit, and in addition the top bit of the MSR register is set. */
2411 #ifdef __powerpc64__
2412 long msr;
2413
2414 int tid = ptid_get_lwp (inferior_ptid);
2415 if (tid == 0)
2416 tid = ptid_get_pid (inferior_ptid);
2417
2418 errno = 0;
2419 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2420 if (errno == 0 && msr < 0)
2421 wordsize = 8;
2422 #endif
2423
2424 return wordsize;
2425 }
2426
2427 static int
2428 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2429 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2430 {
2431 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2432 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2433 gdb_byte *ptr = *readptr;
2434
2435 if (endptr == ptr)
2436 return 0;
2437
2438 if (endptr - ptr < sizeof_auxv_field * 2)
2439 return -1;
2440
2441 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2442 ptr += sizeof_auxv_field;
2443 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2444 ptr += sizeof_auxv_field;
2445
2446 *readptr = ptr;
2447 return 1;
2448 }
2449
2450 static const struct target_desc *
2451 ppc_linux_read_description (struct target_ops *ops)
2452 {
2453 int altivec = 0;
2454 int vsx = 0;
2455 int isa205 = 0;
2456 int cell = 0;
2457
2458 int tid = ptid_get_lwp (inferior_ptid);
2459 if (tid == 0)
2460 tid = ptid_get_pid (inferior_ptid);
2461
2462 if (have_ptrace_getsetevrregs)
2463 {
2464 struct gdb_evrregset_t evrregset;
2465
2466 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2467 return tdesc_powerpc_e500l;
2468
2469 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2470 Anything else needs to be reported. */
2471 else if (errno != EIO)
2472 perror_with_name (_("Unable to fetch SPE registers"));
2473 }
2474
2475 if (have_ptrace_getsetvsxregs)
2476 {
2477 gdb_vsxregset_t vsxregset;
2478
2479 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2480 vsx = 1;
2481
2482 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2483 Anything else needs to be reported. */
2484 else if (errno != EIO)
2485 perror_with_name (_("Unable to fetch VSX registers"));
2486 }
2487
2488 if (have_ptrace_getvrregs)
2489 {
2490 gdb_vrregset_t vrregset;
2491
2492 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2493 altivec = 1;
2494
2495 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2496 Anything else needs to be reported. */
2497 else if (errno != EIO)
2498 perror_with_name (_("Unable to fetch AltiVec registers"));
2499 }
2500
2501 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2502 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2503 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2504 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2505 half of the register are for Decimal Floating Point, we check if that
2506 feature is available to decide the size of the FPSCR. */
2507 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2508 isa205 = 1;
2509
2510 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2511 cell = 1;
2512
2513 if (ppc_linux_target_wordsize () == 8)
2514 {
2515 if (cell)
2516 return tdesc_powerpc_cell64l;
2517 else if (vsx)
2518 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2519 else if (altivec)
2520 return isa205
2521 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2522
2523 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2524 }
2525
2526 if (cell)
2527 return tdesc_powerpc_cell32l;
2528 else if (vsx)
2529 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2530 else if (altivec)
2531 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2532
2533 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2534 }
2535
2536 void _initialize_ppc_linux_nat (void);
2537
2538 void
2539 _initialize_ppc_linux_nat (void)
2540 {
2541 struct target_ops *t;
2542
2543 /* Fill in the generic GNU/Linux methods. */
2544 t = linux_target ();
2545
2546 /* Add our register access methods. */
2547 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2548 t->to_store_registers = ppc_linux_store_inferior_registers;
2549
2550 /* Add our breakpoint/watchpoint methods. */
2551 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2552 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2553 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2554 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2555 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2556 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2557 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2558 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2559 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2560 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2561 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2562 t->to_can_accel_watchpoint_condition
2563 = ppc_linux_can_accel_watchpoint_condition;
2564 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2565 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2566
2567 t->to_read_description = ppc_linux_read_description;
2568 t->to_auxv_parse = ppc_linux_auxv_parse;
2569
2570 observer_attach_thread_exit (ppc_linux_thread_exit);
2571
2572 /* Register the target. */
2573 linux_nat_add_target (t);
2574 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2575 }
This page took 0.1003 seconds and 5 git commands to generate.