Linux: sys/ptrace.h -> nat/gdb_ptrace.h everywhere
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observer.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include "gdb_wait.h"
34 #include <fcntl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
37
38 /* Prototypes for supply_gregset etc. */
39 #include "gregset.h"
40 #include "ppc-tdep.h"
41 #include "ppc-linux-tdep.h"
42
43 /* Required when using the AUXV. */
44 #include "elf/common.h"
45 #include "auxv.h"
46
47 #include "nat/ppc-linux.h"
48
49 /* Similarly for the hardware watchpoint support. These requests are used
50 when the PowerPC HWDEBUG ptrace interface is not available. */
51 #ifndef PTRACE_GET_DEBUGREG
52 #define PTRACE_GET_DEBUGREG 25
53 #endif
54 #ifndef PTRACE_SET_DEBUGREG
55 #define PTRACE_SET_DEBUGREG 26
56 #endif
57 #ifndef PTRACE_GETSIGINFO
58 #define PTRACE_GETSIGINFO 0x4202
59 #endif
60
61 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
62 available. It exposes the debug facilities of PowerPC processors, as well
63 as additional features of BookE processors, such as ranged breakpoints and
64 watchpoints and hardware-accelerated condition evaluation. */
65 #ifndef PPC_PTRACE_GETHWDBGINFO
66
67 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
68 ptrace interface is not present in ptrace.h, so we'll have to pretty much
69 include it all here so that the code at least compiles on older systems. */
70 #define PPC_PTRACE_GETHWDBGINFO 0x89
71 #define PPC_PTRACE_SETHWDEBUG 0x88
72 #define PPC_PTRACE_DELHWDEBUG 0x87
73
74 struct ppc_debug_info
75 {
76 uint32_t version; /* Only version 1 exists to date. */
77 uint32_t num_instruction_bps;
78 uint32_t num_data_bps;
79 uint32_t num_condition_regs;
80 uint32_t data_bp_alignment;
81 uint32_t sizeof_condition; /* size of the DVC register. */
82 uint64_t features;
83 };
84
85 /* Features will have bits indicating whether there is support for: */
86 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
87 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
88 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
89 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
90
91 struct ppc_hw_breakpoint
92 {
93 uint32_t version; /* currently, version must be 1 */
94 uint32_t trigger_type; /* only some combinations allowed */
95 uint32_t addr_mode; /* address match mode */
96 uint32_t condition_mode; /* break/watchpoint condition flags */
97 uint64_t addr; /* break/watchpoint address */
98 uint64_t addr2; /* range end or mask */
99 uint64_t condition_value; /* contents of the DVC register */
100 };
101
102 /* Trigger type. */
103 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
104 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
105 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
106 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
107
108 /* Address mode. */
109 #define PPC_BREAKPOINT_MODE_EXACT 0x0
110 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
111 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
112 #define PPC_BREAKPOINT_MODE_MASK 0x3
113
114 /* Condition mode. */
115 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
116 #define PPC_BREAKPOINT_CONDITION_AND 0x1
117 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
118 #define PPC_BREAKPOINT_CONDITION_OR 0x2
119 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
120 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
121 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
122 #define PPC_BREAKPOINT_CONDITION_BE(n) \
123 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
124 #endif /* PPC_PTRACE_GETHWDBGINFO */
125
126 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
127 watchpoint (up to 512 bytes). */
128 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
129 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
130 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
131
132 /* Similarly for the general-purpose (gp0 -- gp31)
133 and floating-point registers (fp0 -- fp31). */
134 #ifndef PTRACE_GETREGS
135 #define PTRACE_GETREGS 12
136 #endif
137 #ifndef PTRACE_SETREGS
138 #define PTRACE_SETREGS 13
139 #endif
140 #ifndef PTRACE_GETFPREGS
141 #define PTRACE_GETFPREGS 14
142 #endif
143 #ifndef PTRACE_SETFPREGS
144 #define PTRACE_SETFPREGS 15
145 #endif
146
147 /* This oddity is because the Linux kernel defines elf_vrregset_t as
148 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
149 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
150 the vrsave as an extra 4 bytes at the end. I opted for creating a
151 flat array of chars, so that it is easier to manipulate for gdb.
152
153 There are 32 vector registers 16 bytes longs, plus a VSCR register
154 which is only 4 bytes long, but is fetched as a 16 bytes
155 quantity. Up to here we have the elf_vrregset_t structure.
156 Appended to this there is space for the VRSAVE register: 4 bytes.
157 Even though this vrsave register is not included in the regset
158 typedef, it is handled by the ptrace requests.
159
160 Note that GNU/Linux doesn't support little endian PPC hardware,
161 therefore the offset at which the real value of the VSCR register
162 is located will be always 12 bytes.
163
164 The layout is like this (where x is the actual value of the vscr reg): */
165
166 /* *INDENT-OFF* */
167 /*
168 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
169 <-------> <-------><-------><->
170 VR0 VR31 VSCR VRSAVE
171 */
172 /* *INDENT-ON* */
173
174 #define SIZEOF_VRREGS 33*16+4
175
176 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
177
178 /* This is the layout of the POWER7 VSX registers and the way they overlap
179 with the existing FPR and VMX registers.
180
181 VSR doubleword 0 VSR doubleword 1
182 ----------------------------------------------------------------
183 VSR[0] | FPR[0] | |
184 ----------------------------------------------------------------
185 VSR[1] | FPR[1] | |
186 ----------------------------------------------------------------
187 | ... | |
188 | ... | |
189 ----------------------------------------------------------------
190 VSR[30] | FPR[30] | |
191 ----------------------------------------------------------------
192 VSR[31] | FPR[31] | |
193 ----------------------------------------------------------------
194 VSR[32] | VR[0] |
195 ----------------------------------------------------------------
196 VSR[33] | VR[1] |
197 ----------------------------------------------------------------
198 | ... |
199 | ... |
200 ----------------------------------------------------------------
201 VSR[62] | VR[30] |
202 ----------------------------------------------------------------
203 VSR[63] | VR[31] |
204 ----------------------------------------------------------------
205
206 VSX has 64 128bit registers. The first 32 registers overlap with
207 the FP registers (doubleword 0) and hence extend them with additional
208 64 bits (doubleword 1). The other 32 regs overlap with the VMX
209 registers. */
210 #define SIZEOF_VSXREGS 32*8
211
212 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
213
214 /* On PPC processors that support the Signal Processing Extension
215 (SPE) APU, the general-purpose registers are 64 bits long.
216 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
217 ptrace calls only access the lower half of each register, to allow
218 them to behave the same way they do on non-SPE systems. There's a
219 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
220 read and write the top halves of all the general-purpose registers
221 at once, along with some SPE-specific registers.
222
223 GDB itself continues to claim the general-purpose registers are 32
224 bits long. It has unnamed raw registers that hold the upper halves
225 of the gprs, and the full 64-bit SIMD views of the registers,
226 'ev0' -- 'ev31', are pseudo-registers that splice the top and
227 bottom halves together.
228
229 This is the structure filled in by PTRACE_GETEVRREGS and written to
230 the inferior's registers by PTRACE_SETEVRREGS. */
231 struct gdb_evrregset_t
232 {
233 unsigned long evr[32];
234 unsigned long long acc;
235 unsigned long spefscr;
236 };
237
238 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
239 PTRACE_SETVSXREGS requests, for reading and writing the VSX
240 POWER7 registers 0 through 31. Zero if we've tried one of them and
241 gotten an error. Note that VSX registers 32 through 63 overlap
242 with VR registers 0 through 31. */
243 int have_ptrace_getsetvsxregs = 1;
244
245 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
246 PTRACE_SETVRREGS requests, for reading and writing the Altivec
247 registers. Zero if we've tried one of them and gotten an
248 error. */
249 int have_ptrace_getvrregs = 1;
250
251 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
252 PTRACE_SETEVRREGS requests, for reading and writing the SPE
253 registers. Zero if we've tried one of them and gotten an
254 error. */
255 int have_ptrace_getsetevrregs = 1;
256
257 /* Non-zero if our kernel may support the PTRACE_GETREGS and
258 PTRACE_SETREGS requests, for reading and writing the
259 general-purpose registers. Zero if we've tried one of
260 them and gotten an error. */
261 int have_ptrace_getsetregs = 1;
262
263 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
264 PTRACE_SETFPREGS requests, for reading and writing the
265 floating-pointers registers. Zero if we've tried one of
266 them and gotten an error. */
267 int have_ptrace_getsetfpregs = 1;
268
269 /* *INDENT-OFF* */
270 /* registers layout, as presented by the ptrace interface:
271 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
272 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
273 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
274 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
275 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
276 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
277 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
278 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
279 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
280 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
281 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
282 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
283 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
284 /* *INDENT_ON * */
285
286 static int
287 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
288 {
289 int u_addr = -1;
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
292 interface, and not the wordsize of the program's ABI. */
293 int wordsize = sizeof (long);
294
295 /* General purpose registers occupy 1 slot each in the buffer. */
296 if (regno >= tdep->ppc_gp0_regnum
297 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
298 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
299
300 /* Floating point regs: eight bytes each in both 32- and 64-bit
301 ptrace interfaces. Thus, two slots each in 32-bit interface, one
302 slot each in 64-bit interface. */
303 if (tdep->ppc_fp0_regnum >= 0
304 && regno >= tdep->ppc_fp0_regnum
305 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
306 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
307
308 /* UISA special purpose registers: 1 slot each. */
309 if (regno == gdbarch_pc_regnum (gdbarch))
310 u_addr = PT_NIP * wordsize;
311 if (regno == tdep->ppc_lr_regnum)
312 u_addr = PT_LNK * wordsize;
313 if (regno == tdep->ppc_cr_regnum)
314 u_addr = PT_CCR * wordsize;
315 if (regno == tdep->ppc_xer_regnum)
316 u_addr = PT_XER * wordsize;
317 if (regno == tdep->ppc_ctr_regnum)
318 u_addr = PT_CTR * wordsize;
319 #ifdef PT_MQ
320 if (regno == tdep->ppc_mq_regnum)
321 u_addr = PT_MQ * wordsize;
322 #endif
323 if (regno == tdep->ppc_ps_regnum)
324 u_addr = PT_MSR * wordsize;
325 if (regno == PPC_ORIG_R3_REGNUM)
326 u_addr = PT_ORIG_R3 * wordsize;
327 if (regno == PPC_TRAP_REGNUM)
328 u_addr = PT_TRAP * wordsize;
329 if (tdep->ppc_fpscr_regnum >= 0
330 && regno == tdep->ppc_fpscr_regnum)
331 {
332 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
333 kernel headers incorrectly contained the 32-bit definition of
334 PT_FPSCR. For the 32-bit definition, floating-point
335 registers occupy two 32-bit "slots", and the FPSCR lives in
336 the second half of such a slot-pair (hence +1). For 64-bit,
337 the FPSCR instead occupies the full 64-bit 2-word-slot and
338 hence no adjustment is necessary. Hack around this. */
339 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
340 u_addr = (48 + 32) * wordsize;
341 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
342 slot and not just its second word. The PT_FPSCR supplied when
343 GDB is compiled as a 32-bit app doesn't reflect this. */
344 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
345 && PT_FPSCR == (48 + 2*32 + 1))
346 u_addr = (48 + 2*32) * wordsize;
347 else
348 u_addr = PT_FPSCR * wordsize;
349 }
350 return u_addr;
351 }
352
353 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
354 registers set mechanism, as opposed to the interface for all the
355 other registers, that stores/fetches each register individually. */
356 static void
357 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
358 {
359 int ret;
360 gdb_vsxregset_t regs;
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
364
365 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
366 if (ret < 0)
367 {
368 if (errno == EIO)
369 {
370 have_ptrace_getsetvsxregs = 0;
371 return;
372 }
373 perror_with_name (_("Unable to fetch VSX register"));
374 }
375
376 regcache_raw_supply (regcache, regno,
377 regs + (regno - tdep->ppc_vsr0_upper_regnum)
378 * vsxregsize);
379 }
380
381 /* The Linux kernel ptrace interface for AltiVec registers uses the
382 registers set mechanism, as opposed to the interface for all the
383 other registers, that stores/fetches each register individually. */
384 static void
385 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
386 {
387 int ret;
388 int offset = 0;
389 gdb_vrregset_t regs;
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
392 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
393
394 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
395 if (ret < 0)
396 {
397 if (errno == EIO)
398 {
399 have_ptrace_getvrregs = 0;
400 return;
401 }
402 perror_with_name (_("Unable to fetch AltiVec register"));
403 }
404
405 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
406 long on the hardware. We deal only with the lower 4 bytes of the
407 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
408 there is no need to define an offset for it. */
409 if (regno == (tdep->ppc_vrsave_regnum - 1))
410 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
411
412 regcache_raw_supply (regcache, regno,
413 regs + (regno
414 - tdep->ppc_vr0_regnum) * vrregsize + offset);
415 }
416
417 /* Fetch the top 32 bits of TID's general-purpose registers and the
418 SPE-specific registers, and place the results in EVRREGSET. If we
419 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
420 zeros.
421
422 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
423 PTRACE_SETEVRREGS requests are supported is isolated here, and in
424 set_spe_registers. */
425 static void
426 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
427 {
428 if (have_ptrace_getsetevrregs)
429 {
430 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
431 return;
432 else
433 {
434 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
435 we just return zeros. */
436 if (errno == EIO)
437 have_ptrace_getsetevrregs = 0;
438 else
439 /* Anything else needs to be reported. */
440 perror_with_name (_("Unable to fetch SPE registers"));
441 }
442 }
443
444 memset (evrregset, 0, sizeof (*evrregset));
445 }
446
447 /* Supply values from TID for SPE-specific raw registers: the upper
448 halves of the GPRs, the accumulator, and the spefscr. REGNO must
449 be the number of an upper half register, acc, spefscr, or -1 to
450 supply the values of all registers. */
451 static void
452 fetch_spe_register (struct regcache *regcache, int tid, int regno)
453 {
454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456 struct gdb_evrregset_t evrregs;
457
458 gdb_assert (sizeof (evrregs.evr[0])
459 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
460 gdb_assert (sizeof (evrregs.acc)
461 == register_size (gdbarch, tdep->ppc_acc_regnum));
462 gdb_assert (sizeof (evrregs.spefscr)
463 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
464
465 get_spe_registers (tid, &evrregs);
466
467 if (regno == -1)
468 {
469 int i;
470
471 for (i = 0; i < ppc_num_gprs; i++)
472 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
473 &evrregs.evr[i]);
474 }
475 else if (tdep->ppc_ev0_upper_regnum <= regno
476 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
477 regcache_raw_supply (regcache, regno,
478 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
479
480 if (regno == -1
481 || regno == tdep->ppc_acc_regnum)
482 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
483
484 if (regno == -1
485 || regno == tdep->ppc_spefscr_regnum)
486 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
487 &evrregs.spefscr);
488 }
489
490 static void
491 fetch_register (struct regcache *regcache, int tid, int regno)
492 {
493 struct gdbarch *gdbarch = get_regcache_arch (regcache);
494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
495 /* This isn't really an address. But ptrace thinks of it as one. */
496 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
497 int bytes_transferred;
498 unsigned int offset; /* Offset of registers within the u area. */
499 gdb_byte buf[MAX_REGISTER_SIZE];
500
501 if (altivec_register_p (gdbarch, regno))
502 {
503 /* If this is the first time through, or if it is not the first
504 time through, and we have comfirmed that there is kernel
505 support for such a ptrace request, then go and fetch the
506 register. */
507 if (have_ptrace_getvrregs)
508 {
509 fetch_altivec_register (regcache, tid, regno);
510 return;
511 }
512 /* If we have discovered that there is no ptrace support for
513 AltiVec registers, fall through and return zeroes, because
514 regaddr will be -1 in this case. */
515 }
516 if (vsx_register_p (gdbarch, regno))
517 {
518 if (have_ptrace_getsetvsxregs)
519 {
520 fetch_vsx_register (regcache, tid, regno);
521 return;
522 }
523 }
524 else if (spe_register_p (gdbarch, regno))
525 {
526 fetch_spe_register (regcache, tid, regno);
527 return;
528 }
529
530 if (regaddr == -1)
531 {
532 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
533 regcache_raw_supply (regcache, regno, buf);
534 return;
535 }
536
537 /* Read the raw register using sizeof(long) sized chunks. On a
538 32-bit platform, 64-bit floating-point registers will require two
539 transfers. */
540 for (bytes_transferred = 0;
541 bytes_transferred < register_size (gdbarch, regno);
542 bytes_transferred += sizeof (long))
543 {
544 long l;
545
546 errno = 0;
547 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
548 regaddr += sizeof (long);
549 if (errno != 0)
550 {
551 char message[128];
552 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
553 gdbarch_register_name (gdbarch, regno), regno);
554 perror_with_name (message);
555 }
556 memcpy (&buf[bytes_transferred], &l, sizeof (l));
557 }
558
559 /* Now supply the register. Keep in mind that the regcache's idea
560 of the register's size may not be a multiple of sizeof
561 (long). */
562 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
563 {
564 /* Little-endian values are always found at the left end of the
565 bytes transferred. */
566 regcache_raw_supply (regcache, regno, buf);
567 }
568 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
569 {
570 /* Big-endian values are found at the right end of the bytes
571 transferred. */
572 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
573 regcache_raw_supply (regcache, regno, buf + padding);
574 }
575 else
576 internal_error (__FILE__, __LINE__,
577 _("fetch_register: unexpected byte order: %d"),
578 gdbarch_byte_order (gdbarch));
579 }
580
581 static void
582 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
583 {
584 int i;
585 struct gdbarch *gdbarch = get_regcache_arch (regcache);
586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
587 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
588
589 for (i = 0; i < ppc_num_vshrs; i++)
590 {
591 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
592 *vsxregsetp + i * vsxregsize);
593 }
594 }
595
596 static void
597 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
598 {
599 int i;
600 struct gdbarch *gdbarch = get_regcache_arch (regcache);
601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
602 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
603 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
604 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
605
606 for (i = 0; i < num_of_vrregs; i++)
607 {
608 /* The last 2 registers of this set are only 32 bit long, not
609 128. However an offset is necessary only for VSCR because it
610 occupies a whole vector, while VRSAVE occupies a full 4 bytes
611 slot. */
612 if (i == (num_of_vrregs - 2))
613 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
614 *vrregsetp + i * vrregsize + offset);
615 else
616 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
617 *vrregsetp + i * vrregsize);
618 }
619 }
620
621 static void
622 fetch_vsx_registers (struct regcache *regcache, int tid)
623 {
624 int ret;
625 gdb_vsxregset_t regs;
626
627 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
628 if (ret < 0)
629 {
630 if (errno == EIO)
631 {
632 have_ptrace_getsetvsxregs = 0;
633 return;
634 }
635 perror_with_name (_("Unable to fetch VSX registers"));
636 }
637 supply_vsxregset (regcache, &regs);
638 }
639
640 static void
641 fetch_altivec_registers (struct regcache *regcache, int tid)
642 {
643 int ret;
644 gdb_vrregset_t regs;
645
646 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
647 if (ret < 0)
648 {
649 if (errno == EIO)
650 {
651 have_ptrace_getvrregs = 0;
652 return;
653 }
654 perror_with_name (_("Unable to fetch AltiVec registers"));
655 }
656 supply_vrregset (regcache, &regs);
657 }
658
659 /* This function actually issues the request to ptrace, telling
660 it to get all general-purpose registers and put them into the
661 specified regset.
662
663 If the ptrace request does not exist, this function returns 0
664 and properly sets the have_ptrace_* flag. If the request fails,
665 this function calls perror_with_name. Otherwise, if the request
666 succeeds, then the regcache gets filled and 1 is returned. */
667 static int
668 fetch_all_gp_regs (struct regcache *regcache, int tid)
669 {
670 struct gdbarch *gdbarch = get_regcache_arch (regcache);
671 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
672 gdb_gregset_t gregset;
673
674 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
675 {
676 if (errno == EIO)
677 {
678 have_ptrace_getsetregs = 0;
679 return 0;
680 }
681 perror_with_name (_("Couldn't get general-purpose registers."));
682 }
683
684 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
685
686 return 1;
687 }
688
689 /* This is a wrapper for the fetch_all_gp_regs function. It is
690 responsible for verifying if this target has the ptrace request
691 that can be used to fetch all general-purpose registers at one
692 shot. If it doesn't, then we should fetch them using the
693 old-fashioned way, which is to iterate over the registers and
694 request them one by one. */
695 static void
696 fetch_gp_regs (struct regcache *regcache, int tid)
697 {
698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
700 int i;
701
702 if (have_ptrace_getsetregs)
703 if (fetch_all_gp_regs (regcache, tid))
704 return;
705
706 /* If we've hit this point, it doesn't really matter which
707 architecture we are using. We just need to read the
708 registers in the "old-fashioned way". */
709 for (i = 0; i < ppc_num_gprs; i++)
710 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
711 }
712
713 /* This function actually issues the request to ptrace, telling
714 it to get all floating-point registers and put them into the
715 specified regset.
716
717 If the ptrace request does not exist, this function returns 0
718 and properly sets the have_ptrace_* flag. If the request fails,
719 this function calls perror_with_name. Otherwise, if the request
720 succeeds, then the regcache gets filled and 1 is returned. */
721 static int
722 fetch_all_fp_regs (struct regcache *regcache, int tid)
723 {
724 gdb_fpregset_t fpregs;
725
726 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetfpregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get floating-point registers."));
734 }
735
736 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_fp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all floating-point registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_fp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetfpregs)
755 if (fetch_all_fp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_fprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
763 }
764
765 static void
766 fetch_ppc_registers (struct regcache *regcache, int tid)
767 {
768 int i;
769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
771
772 fetch_gp_regs (regcache, tid);
773 if (tdep->ppc_fp0_regnum >= 0)
774 fetch_fp_regs (regcache, tid);
775 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
776 if (tdep->ppc_ps_regnum != -1)
777 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
778 if (tdep->ppc_cr_regnum != -1)
779 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
780 if (tdep->ppc_lr_regnum != -1)
781 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
782 if (tdep->ppc_ctr_regnum != -1)
783 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
784 if (tdep->ppc_xer_regnum != -1)
785 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
786 if (tdep->ppc_mq_regnum != -1)
787 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
788 if (ppc_linux_trap_reg_p (gdbarch))
789 {
790 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
791 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
792 }
793 if (tdep->ppc_fpscr_regnum != -1)
794 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
795 if (have_ptrace_getvrregs)
796 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
797 fetch_altivec_registers (regcache, tid);
798 if (have_ptrace_getsetvsxregs)
799 if (tdep->ppc_vsr0_upper_regnum != -1)
800 fetch_vsx_registers (regcache, tid);
801 if (tdep->ppc_ev0_upper_regnum >= 0)
802 fetch_spe_register (regcache, tid, -1);
803 }
804
805 /* Fetch registers from the child process. Fetch all registers if
806 regno == -1, otherwise fetch all general registers or all floating
807 point registers depending upon the value of regno. */
808 static void
809 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
810 struct regcache *regcache, int regno)
811 {
812 /* Overload thread id onto process id. */
813 int tid = ptid_get_lwp (inferior_ptid);
814
815 /* No thread id, just use process id. */
816 if (tid == 0)
817 tid = ptid_get_pid (inferior_ptid);
818
819 if (regno == -1)
820 fetch_ppc_registers (regcache, tid);
821 else
822 fetch_register (regcache, tid, regno);
823 }
824
825 /* Store one VSX register. */
826 static void
827 store_vsx_register (const struct regcache *regcache, int tid, int regno)
828 {
829 int ret;
830 gdb_vsxregset_t regs;
831 struct gdbarch *gdbarch = get_regcache_arch (regcache);
832 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
833 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
834
835 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
836 if (ret < 0)
837 {
838 if (errno == EIO)
839 {
840 have_ptrace_getsetvsxregs = 0;
841 return;
842 }
843 perror_with_name (_("Unable to fetch VSX register"));
844 }
845
846 regcache_raw_collect (regcache, regno, regs +
847 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
848
849 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
850 if (ret < 0)
851 perror_with_name (_("Unable to store VSX register"));
852 }
853
854 /* Store one register. */
855 static void
856 store_altivec_register (const struct regcache *regcache, int tid, int regno)
857 {
858 int ret;
859 int offset = 0;
860 gdb_vrregset_t regs;
861 struct gdbarch *gdbarch = get_regcache_arch (regcache);
862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
863 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
864
865 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
866 if (ret < 0)
867 {
868 if (errno == EIO)
869 {
870 have_ptrace_getvrregs = 0;
871 return;
872 }
873 perror_with_name (_("Unable to fetch AltiVec register"));
874 }
875
876 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
877 long on the hardware. */
878 if (regno == (tdep->ppc_vrsave_regnum - 1))
879 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
880
881 regcache_raw_collect (regcache, regno,
882 regs + (regno
883 - tdep->ppc_vr0_regnum) * vrregsize + offset);
884
885 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
886 if (ret < 0)
887 perror_with_name (_("Unable to store AltiVec register"));
888 }
889
890 /* Assuming TID referrs to an SPE process, set the top halves of TID's
891 general-purpose registers and its SPE-specific registers to the
892 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
893 nothing.
894
895 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
896 PTRACE_SETEVRREGS requests are supported is isolated here, and in
897 get_spe_registers. */
898 static void
899 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
900 {
901 if (have_ptrace_getsetevrregs)
902 {
903 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
904 return;
905 else
906 {
907 /* EIO means that the PTRACE_SETEVRREGS request isn't
908 supported; we fail silently, and don't try the call
909 again. */
910 if (errno == EIO)
911 have_ptrace_getsetevrregs = 0;
912 else
913 /* Anything else needs to be reported. */
914 perror_with_name (_("Unable to set SPE registers"));
915 }
916 }
917 }
918
919 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
920 If REGNO is -1, write the values of all the SPE-specific
921 registers. */
922 static void
923 store_spe_register (const struct regcache *regcache, int tid, int regno)
924 {
925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
927 struct gdb_evrregset_t evrregs;
928
929 gdb_assert (sizeof (evrregs.evr[0])
930 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
931 gdb_assert (sizeof (evrregs.acc)
932 == register_size (gdbarch, tdep->ppc_acc_regnum));
933 gdb_assert (sizeof (evrregs.spefscr)
934 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
935
936 if (regno == -1)
937 /* Since we're going to write out every register, the code below
938 should store to every field of evrregs; if that doesn't happen,
939 make it obvious by initializing it with suspicious values. */
940 memset (&evrregs, 42, sizeof (evrregs));
941 else
942 /* We can only read and write the entire EVR register set at a
943 time, so to write just a single register, we do a
944 read-modify-write maneuver. */
945 get_spe_registers (tid, &evrregs);
946
947 if (regno == -1)
948 {
949 int i;
950
951 for (i = 0; i < ppc_num_gprs; i++)
952 regcache_raw_collect (regcache,
953 tdep->ppc_ev0_upper_regnum + i,
954 &evrregs.evr[i]);
955 }
956 else if (tdep->ppc_ev0_upper_regnum <= regno
957 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
958 regcache_raw_collect (regcache, regno,
959 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
960
961 if (regno == -1
962 || regno == tdep->ppc_acc_regnum)
963 regcache_raw_collect (regcache,
964 tdep->ppc_acc_regnum,
965 &evrregs.acc);
966
967 if (regno == -1
968 || regno == tdep->ppc_spefscr_regnum)
969 regcache_raw_collect (regcache,
970 tdep->ppc_spefscr_regnum,
971 &evrregs.spefscr);
972
973 /* Write back the modified register set. */
974 set_spe_registers (tid, &evrregs);
975 }
976
977 static void
978 store_register (const struct regcache *regcache, int tid, int regno)
979 {
980 struct gdbarch *gdbarch = get_regcache_arch (regcache);
981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
982 /* This isn't really an address. But ptrace thinks of it as one. */
983 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
984 int i;
985 size_t bytes_to_transfer;
986 gdb_byte buf[MAX_REGISTER_SIZE];
987
988 if (altivec_register_p (gdbarch, regno))
989 {
990 store_altivec_register (regcache, tid, regno);
991 return;
992 }
993 if (vsx_register_p (gdbarch, regno))
994 {
995 store_vsx_register (regcache, tid, regno);
996 return;
997 }
998 else if (spe_register_p (gdbarch, regno))
999 {
1000 store_spe_register (regcache, tid, regno);
1001 return;
1002 }
1003
1004 if (regaddr == -1)
1005 return;
1006
1007 /* First collect the register. Keep in mind that the regcache's
1008 idea of the register's size may not be a multiple of sizeof
1009 (long). */
1010 memset (buf, 0, sizeof buf);
1011 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1012 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1013 {
1014 /* Little-endian values always sit at the left end of the buffer. */
1015 regcache_raw_collect (regcache, regno, buf);
1016 }
1017 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1018 {
1019 /* Big-endian values sit at the right end of the buffer. */
1020 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1021 regcache_raw_collect (regcache, regno, buf + padding);
1022 }
1023
1024 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1025 {
1026 long l;
1027
1028 memcpy (&l, &buf[i], sizeof (l));
1029 errno = 0;
1030 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1031 regaddr += sizeof (long);
1032
1033 if (errno == EIO
1034 && (regno == tdep->ppc_fpscr_regnum
1035 || regno == PPC_ORIG_R3_REGNUM
1036 || regno == PPC_TRAP_REGNUM))
1037 {
1038 /* Some older kernel versions don't allow fpscr, orig_r3
1039 or trap to be written. */
1040 continue;
1041 }
1042
1043 if (errno != 0)
1044 {
1045 char message[128];
1046 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1047 gdbarch_register_name (gdbarch, regno), regno);
1048 perror_with_name (message);
1049 }
1050 }
1051 }
1052
1053 static void
1054 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1055 {
1056 int i;
1057 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1059 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1060
1061 for (i = 0; i < ppc_num_vshrs; i++)
1062 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1063 *vsxregsetp + i * vsxregsize);
1064 }
1065
1066 static void
1067 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1068 {
1069 int i;
1070 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1072 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1073 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1074 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1075
1076 for (i = 0; i < num_of_vrregs; i++)
1077 {
1078 /* The last 2 registers of this set are only 32 bit long, not
1079 128, but only VSCR is fetched as a 16 bytes quantity. */
1080 if (i == (num_of_vrregs - 2))
1081 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1082 *vrregsetp + i * vrregsize + offset);
1083 else
1084 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1085 *vrregsetp + i * vrregsize);
1086 }
1087 }
1088
1089 static void
1090 store_vsx_registers (const struct regcache *regcache, int tid)
1091 {
1092 int ret;
1093 gdb_vsxregset_t regs;
1094
1095 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1096 if (ret < 0)
1097 {
1098 if (errno == EIO)
1099 {
1100 have_ptrace_getsetvsxregs = 0;
1101 return;
1102 }
1103 perror_with_name (_("Couldn't get VSX registers"));
1104 }
1105
1106 fill_vsxregset (regcache, &regs);
1107
1108 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1109 perror_with_name (_("Couldn't write VSX registers"));
1110 }
1111
1112 static void
1113 store_altivec_registers (const struct regcache *regcache, int tid)
1114 {
1115 int ret;
1116 gdb_vrregset_t regs;
1117
1118 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1119 if (ret < 0)
1120 {
1121 if (errno == EIO)
1122 {
1123 have_ptrace_getvrregs = 0;
1124 return;
1125 }
1126 perror_with_name (_("Couldn't get AltiVec registers"));
1127 }
1128
1129 fill_vrregset (regcache, &regs);
1130
1131 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1132 perror_with_name (_("Couldn't write AltiVec registers"));
1133 }
1134
1135 /* This function actually issues the request to ptrace, telling
1136 it to store all general-purpose registers present in the specified
1137 regset.
1138
1139 If the ptrace request does not exist, this function returns 0
1140 and properly sets the have_ptrace_* flag. If the request fails,
1141 this function calls perror_with_name. Otherwise, if the request
1142 succeeds, then the regcache is stored and 1 is returned. */
1143 static int
1144 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1145 {
1146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1148 gdb_gregset_t gregset;
1149
1150 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1151 {
1152 if (errno == EIO)
1153 {
1154 have_ptrace_getsetregs = 0;
1155 return 0;
1156 }
1157 perror_with_name (_("Couldn't get general-purpose registers."));
1158 }
1159
1160 fill_gregset (regcache, &gregset, regno);
1161
1162 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1163 {
1164 if (errno == EIO)
1165 {
1166 have_ptrace_getsetregs = 0;
1167 return 0;
1168 }
1169 perror_with_name (_("Couldn't set general-purpose registers."));
1170 }
1171
1172 return 1;
1173 }
1174
1175 /* This is a wrapper for the store_all_gp_regs function. It is
1176 responsible for verifying if this target has the ptrace request
1177 that can be used to store all general-purpose registers at one
1178 shot. If it doesn't, then we should store them using the
1179 old-fashioned way, which is to iterate over the registers and
1180 store them one by one. */
1181 static void
1182 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1183 {
1184 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1186 int i;
1187
1188 if (have_ptrace_getsetregs)
1189 if (store_all_gp_regs (regcache, tid, regno))
1190 return;
1191
1192 /* If we hit this point, it doesn't really matter which
1193 architecture we are using. We just need to store the
1194 registers in the "old-fashioned way". */
1195 for (i = 0; i < ppc_num_gprs; i++)
1196 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1197 }
1198
1199 /* This function actually issues the request to ptrace, telling
1200 it to store all floating-point registers present in the specified
1201 regset.
1202
1203 If the ptrace request does not exist, this function returns 0
1204 and properly sets the have_ptrace_* flag. If the request fails,
1205 this function calls perror_with_name. Otherwise, if the request
1206 succeeds, then the regcache is stored and 1 is returned. */
1207 static int
1208 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1209 {
1210 gdb_fpregset_t fpregs;
1211
1212 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1213 {
1214 if (errno == EIO)
1215 {
1216 have_ptrace_getsetfpregs = 0;
1217 return 0;
1218 }
1219 perror_with_name (_("Couldn't get floating-point registers."));
1220 }
1221
1222 fill_fpregset (regcache, &fpregs, regno);
1223
1224 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1225 {
1226 if (errno == EIO)
1227 {
1228 have_ptrace_getsetfpregs = 0;
1229 return 0;
1230 }
1231 perror_with_name (_("Couldn't set floating-point registers."));
1232 }
1233
1234 return 1;
1235 }
1236
1237 /* This is a wrapper for the store_all_fp_regs function. It is
1238 responsible for verifying if this target has the ptrace request
1239 that can be used to store all floating-point registers at one
1240 shot. If it doesn't, then we should store them using the
1241 old-fashioned way, which is to iterate over the registers and
1242 store them one by one. */
1243 static void
1244 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1245 {
1246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1248 int i;
1249
1250 if (have_ptrace_getsetfpregs)
1251 if (store_all_fp_regs (regcache, tid, regno))
1252 return;
1253
1254 /* If we hit this point, it doesn't really matter which
1255 architecture we are using. We just need to store the
1256 registers in the "old-fashioned way". */
1257 for (i = 0; i < ppc_num_fprs; i++)
1258 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1259 }
1260
1261 static void
1262 store_ppc_registers (const struct regcache *regcache, int tid)
1263 {
1264 int i;
1265 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1267
1268 store_gp_regs (regcache, tid, -1);
1269 if (tdep->ppc_fp0_regnum >= 0)
1270 store_fp_regs (regcache, tid, -1);
1271 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1272 if (tdep->ppc_ps_regnum != -1)
1273 store_register (regcache, tid, tdep->ppc_ps_regnum);
1274 if (tdep->ppc_cr_regnum != -1)
1275 store_register (regcache, tid, tdep->ppc_cr_regnum);
1276 if (tdep->ppc_lr_regnum != -1)
1277 store_register (regcache, tid, tdep->ppc_lr_regnum);
1278 if (tdep->ppc_ctr_regnum != -1)
1279 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1280 if (tdep->ppc_xer_regnum != -1)
1281 store_register (regcache, tid, tdep->ppc_xer_regnum);
1282 if (tdep->ppc_mq_regnum != -1)
1283 store_register (regcache, tid, tdep->ppc_mq_regnum);
1284 if (tdep->ppc_fpscr_regnum != -1)
1285 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1286 if (ppc_linux_trap_reg_p (gdbarch))
1287 {
1288 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1289 store_register (regcache, tid, PPC_TRAP_REGNUM);
1290 }
1291 if (have_ptrace_getvrregs)
1292 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1293 store_altivec_registers (regcache, tid);
1294 if (have_ptrace_getsetvsxregs)
1295 if (tdep->ppc_vsr0_upper_regnum != -1)
1296 store_vsx_registers (regcache, tid);
1297 if (tdep->ppc_ev0_upper_regnum >= 0)
1298 store_spe_register (regcache, tid, -1);
1299 }
1300
1301 /* Fetch the AT_HWCAP entry from the aux vector. */
1302 static unsigned long
1303 ppc_linux_get_hwcap (void)
1304 {
1305 CORE_ADDR field;
1306
1307 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1308 return (unsigned long) field;
1309
1310 return 0;
1311 }
1312
1313 /* The cached DABR value, to install in new threads.
1314 This variable is used when the PowerPC HWDEBUG ptrace
1315 interface is not available. */
1316 static long saved_dabr_value;
1317
1318 /* Global structure that will store information about the available
1319 features provided by the PowerPC HWDEBUG ptrace interface. */
1320 static struct ppc_debug_info hwdebug_info;
1321
1322 /* Global variable that holds the maximum number of slots that the
1323 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1324 is available. */
1325 static size_t max_slots_number = 0;
1326
1327 struct hw_break_tuple
1328 {
1329 long slot;
1330 struct ppc_hw_breakpoint *hw_break;
1331 };
1332
1333 /* This is an internal VEC created to store information about *points inserted
1334 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1335 available. */
1336 typedef struct thread_points
1337 {
1338 /* The TID to which this *point relates. */
1339 int tid;
1340 /* Information about the *point, such as its address, type, etc.
1341
1342 Each element inside this vector corresponds to a hardware
1343 breakpoint or watchpoint in the thread represented by TID. The maximum
1344 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1345 the tuple is NULL, then the position in the vector is free. */
1346 struct hw_break_tuple *hw_breaks;
1347 } *thread_points_p;
1348 DEF_VEC_P (thread_points_p);
1349
1350 VEC(thread_points_p) *ppc_threads = NULL;
1351
1352 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1353 available. */
1354 #define PPC_DEBUG_CURRENT_VERSION 1
1355
1356 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1357 static int
1358 have_ptrace_hwdebug_interface (void)
1359 {
1360 static int have_ptrace_hwdebug_interface = -1;
1361
1362 if (have_ptrace_hwdebug_interface == -1)
1363 {
1364 int tid;
1365
1366 tid = ptid_get_lwp (inferior_ptid);
1367 if (tid == 0)
1368 tid = ptid_get_pid (inferior_ptid);
1369
1370 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1371 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1372 {
1373 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1374 provides any supported feature. */
1375 if (hwdebug_info.features != 0)
1376 {
1377 have_ptrace_hwdebug_interface = 1;
1378 max_slots_number = hwdebug_info.num_instruction_bps
1379 + hwdebug_info.num_data_bps
1380 + hwdebug_info.num_condition_regs;
1381 return have_ptrace_hwdebug_interface;
1382 }
1383 }
1384 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1385 have_ptrace_hwdebug_interface = 0;
1386 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1387 }
1388
1389 return have_ptrace_hwdebug_interface;
1390 }
1391
1392 static int
1393 ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1394 int type, int cnt, int ot)
1395 {
1396 int total_hw_wp, total_hw_bp;
1397
1398 if (have_ptrace_hwdebug_interface ())
1399 {
1400 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1401 available hardware watchpoints and breakpoints is stored at the
1402 hwdebug_info struct. */
1403 total_hw_bp = hwdebug_info.num_instruction_bps;
1404 total_hw_wp = hwdebug_info.num_data_bps;
1405 }
1406 else
1407 {
1408 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1409 consider having 1 hardware watchpoint and no hardware breakpoints. */
1410 total_hw_bp = 0;
1411 total_hw_wp = 1;
1412 }
1413
1414 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1415 || type == bp_access_watchpoint || type == bp_watchpoint)
1416 {
1417 if (cnt + ot > total_hw_wp)
1418 return -1;
1419 }
1420 else if (type == bp_hardware_breakpoint)
1421 {
1422 if (total_hw_bp == 0)
1423 {
1424 /* No hardware breakpoint support. */
1425 return 0;
1426 }
1427 if (cnt > total_hw_bp)
1428 return -1;
1429 }
1430
1431 if (!have_ptrace_hwdebug_interface ())
1432 {
1433 int tid;
1434 ptid_t ptid = inferior_ptid;
1435
1436 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1437 and whether the target has DABR. If either answer is no, the
1438 ptrace call will return -1. Fail in that case. */
1439 tid = ptid_get_lwp (ptid);
1440 if (tid == 0)
1441 tid = ptid_get_pid (ptid);
1442
1443 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1444 return 0;
1445 }
1446
1447 return 1;
1448 }
1449
1450 static int
1451 ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1452 CORE_ADDR addr, int len)
1453 {
1454 /* Handle sub-8-byte quantities. */
1455 if (len <= 0)
1456 return 0;
1457
1458 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1459 restrictions for watchpoints in the processors. In that case, we use that
1460 information to determine the hardcoded watchable region for
1461 watchpoints. */
1462 if (have_ptrace_hwdebug_interface ())
1463 {
1464 int region_size;
1465 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1466 watchpoints and can watch any access within an arbitrary memory
1467 region. This is useful to watch arrays and structs, for instance. It
1468 takes two hardware watchpoints though. */
1469 if (len > 1
1470 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1471 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1472 return 2;
1473 /* Check if the processor provides DAWR interface. */
1474 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1475 /* DAWR interface allows to watch up to 512 byte wide ranges which
1476 can't cross a 512 byte boundary. */
1477 region_size = 512;
1478 else
1479 region_size = hwdebug_info.data_bp_alignment;
1480 /* Server processors provide one hardware watchpoint and addr+len should
1481 fall in the watchable region provided by the ptrace interface. */
1482 if (region_size
1483 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1484 return 0;
1485 }
1486 /* addr+len must fall in the 8 byte watchable region for DABR-based
1487 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1488 ptrace interface, DAC-based processors (i.e., embedded processors) will
1489 use addresses aligned to 4-bytes due to the way the read/write flags are
1490 passed in the old ptrace interface. */
1491 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1492 && (addr + len) > (addr & ~3) + 4)
1493 || (addr + len) > (addr & ~7) + 8)
1494 return 0;
1495
1496 return 1;
1497 }
1498
1499 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1500 static int
1501 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1502 {
1503 return (a->trigger_type == b->trigger_type
1504 && a->addr_mode == b->addr_mode
1505 && a->condition_mode == b->condition_mode
1506 && a->addr == b->addr
1507 && a->addr2 == b->addr2
1508 && a->condition_value == b->condition_value);
1509 }
1510
1511 /* This function can be used to retrieve a thread_points by the TID of the
1512 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1513 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1514 provided TID will be created and returned. */
1515 static struct thread_points *
1516 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1517 {
1518 int i;
1519 struct thread_points *t;
1520
1521 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1522 if (t->tid == tid)
1523 return t;
1524
1525 t = NULL;
1526
1527 /* Do we need to allocate a new point_item
1528 if the wanted one does not exist? */
1529 if (alloc_new)
1530 {
1531 t = xmalloc (sizeof (struct thread_points));
1532 t->hw_breaks
1533 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1534 t->tid = tid;
1535 VEC_safe_push (thread_points_p, ppc_threads, t);
1536 }
1537
1538 return t;
1539 }
1540
1541 /* This function is a generic wrapper that is responsible for inserting a
1542 *point (i.e., calling `ptrace' in order to issue the request to the
1543 kernel) and registering it internally in GDB. */
1544 static void
1545 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1546 {
1547 int i;
1548 long slot;
1549 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1550 struct hw_break_tuple *hw_breaks;
1551 struct cleanup *c = make_cleanup (xfree, p);
1552 struct thread_points *t;
1553 struct hw_break_tuple *tuple;
1554
1555 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1556
1557 errno = 0;
1558 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1559 if (slot < 0)
1560 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1561
1562 /* Everything went fine, so we have to register this *point. */
1563 t = hwdebug_find_thread_points_by_tid (tid, 1);
1564 gdb_assert (t != NULL);
1565 hw_breaks = t->hw_breaks;
1566
1567 /* Find a free element in the hw_breaks vector. */
1568 for (i = 0; i < max_slots_number; i++)
1569 if (hw_breaks[i].hw_break == NULL)
1570 {
1571 hw_breaks[i].slot = slot;
1572 hw_breaks[i].hw_break = p;
1573 break;
1574 }
1575
1576 gdb_assert (i != max_slots_number);
1577
1578 discard_cleanups (c);
1579 }
1580
1581 /* This function is a generic wrapper that is responsible for removing a
1582 *point (i.e., calling `ptrace' in order to issue the request to the
1583 kernel), and unregistering it internally at GDB. */
1584 static void
1585 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1586 {
1587 int i;
1588 struct hw_break_tuple *hw_breaks;
1589 struct thread_points *t;
1590
1591 t = hwdebug_find_thread_points_by_tid (tid, 0);
1592 gdb_assert (t != NULL);
1593 hw_breaks = t->hw_breaks;
1594
1595 for (i = 0; i < max_slots_number; i++)
1596 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1597 break;
1598
1599 gdb_assert (i != max_slots_number);
1600
1601 /* We have to ignore ENOENT errors because the kernel implements hardware
1602 breakpoints/watchpoints as "one-shot", that is, they are automatically
1603 deleted when hit. */
1604 errno = 0;
1605 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1606 if (errno != ENOENT)
1607 perror_with_name (_("Unexpected error deleting "
1608 "breakpoint or watchpoint"));
1609
1610 xfree (hw_breaks[i].hw_break);
1611 hw_breaks[i].hw_break = NULL;
1612 }
1613
1614 /* Return the number of registers needed for a ranged breakpoint. */
1615
1616 static int
1617 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1618 {
1619 return ((have_ptrace_hwdebug_interface ()
1620 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1621 2 : -1);
1622 }
1623
1624 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1625 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1626
1627 static int
1628 ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1629 struct gdbarch *gdbarch,
1630 struct bp_target_info *bp_tgt)
1631 {
1632 struct lwp_info *lp;
1633 struct ppc_hw_breakpoint p;
1634
1635 if (!have_ptrace_hwdebug_interface ())
1636 return -1;
1637
1638 p.version = PPC_DEBUG_CURRENT_VERSION;
1639 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1640 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1641 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1642 p.condition_value = 0;
1643
1644 if (bp_tgt->length)
1645 {
1646 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1647
1648 /* The breakpoint will trigger if the address of the instruction is
1649 within the defined range, as follows: p.addr <= address < p.addr2. */
1650 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1651 }
1652 else
1653 {
1654 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1655 p.addr2 = 0;
1656 }
1657
1658 ALL_LWPS (lp)
1659 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1660
1661 return 0;
1662 }
1663
1664 static int
1665 ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1666 struct gdbarch *gdbarch,
1667 struct bp_target_info *bp_tgt)
1668 {
1669 struct lwp_info *lp;
1670 struct ppc_hw_breakpoint p;
1671
1672 if (!have_ptrace_hwdebug_interface ())
1673 return -1;
1674
1675 p.version = PPC_DEBUG_CURRENT_VERSION;
1676 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1677 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1678 p.addr = (uint64_t) bp_tgt->placed_address;
1679 p.condition_value = 0;
1680
1681 if (bp_tgt->length)
1682 {
1683 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1684
1685 /* The breakpoint will trigger if the address of the instruction is within
1686 the defined range, as follows: p.addr <= address < p.addr2. */
1687 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1688 }
1689 else
1690 {
1691 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1692 p.addr2 = 0;
1693 }
1694
1695 ALL_LWPS (lp)
1696 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1697
1698 return 0;
1699 }
1700
1701 static int
1702 get_trigger_type (int rw)
1703 {
1704 int t;
1705
1706 if (rw == hw_read)
1707 t = PPC_BREAKPOINT_TRIGGER_READ;
1708 else if (rw == hw_write)
1709 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1710 else
1711 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1712
1713 return t;
1714 }
1715
1716 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1717 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1718 or hw_access for an access watchpoint. Returns 0 on success and throws
1719 an error on failure. */
1720
1721 static int
1722 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1723 CORE_ADDR mask, int rw)
1724 {
1725 struct lwp_info *lp;
1726 struct ppc_hw_breakpoint p;
1727
1728 gdb_assert (have_ptrace_hwdebug_interface ());
1729
1730 p.version = PPC_DEBUG_CURRENT_VERSION;
1731 p.trigger_type = get_trigger_type (rw);
1732 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1733 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1734 p.addr = addr;
1735 p.addr2 = mask;
1736 p.condition_value = 0;
1737
1738 ALL_LWPS (lp)
1739 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1740
1741 return 0;
1742 }
1743
1744 /* Remove a masked watchpoint at ADDR with the mask MASK.
1745 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1746 or hw_access for an access watchpoint. Returns 0 on success and throws
1747 an error on failure. */
1748
1749 static int
1750 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1751 CORE_ADDR mask, int rw)
1752 {
1753 struct lwp_info *lp;
1754 struct ppc_hw_breakpoint p;
1755
1756 gdb_assert (have_ptrace_hwdebug_interface ());
1757
1758 p.version = PPC_DEBUG_CURRENT_VERSION;
1759 p.trigger_type = get_trigger_type (rw);
1760 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1761 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1762 p.addr = addr;
1763 p.addr2 = mask;
1764 p.condition_value = 0;
1765
1766 ALL_LWPS (lp)
1767 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1768
1769 return 0;
1770 }
1771
1772 /* Check whether we have at least one free DVC register. */
1773 static int
1774 can_use_watchpoint_cond_accel (void)
1775 {
1776 struct thread_points *p;
1777 int tid = ptid_get_lwp (inferior_ptid);
1778 int cnt = hwdebug_info.num_condition_regs, i;
1779 CORE_ADDR tmp_value;
1780
1781 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1782 return 0;
1783
1784 p = hwdebug_find_thread_points_by_tid (tid, 0);
1785
1786 if (p)
1787 {
1788 for (i = 0; i < max_slots_number; i++)
1789 if (p->hw_breaks[i].hw_break != NULL
1790 && (p->hw_breaks[i].hw_break->condition_mode
1791 != PPC_BREAKPOINT_CONDITION_NONE))
1792 cnt--;
1793
1794 /* There are no available slots now. */
1795 if (cnt <= 0)
1796 return 0;
1797 }
1798
1799 return 1;
1800 }
1801
1802 /* Calculate the enable bits and the contents of the Data Value Compare
1803 debug register present in BookE processors.
1804
1805 ADDR is the address to be watched, LEN is the length of watched data
1806 and DATA_VALUE is the value which will trigger the watchpoint.
1807 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1808 CONDITION_VALUE will hold the value which should be put in the
1809 DVC register. */
1810 static void
1811 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1812 uint32_t *condition_mode, uint64_t *condition_value)
1813 {
1814 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1815 rightmost_enabled_byte;
1816 CORE_ADDR addr_end_data, addr_end_dvc;
1817
1818 /* The DVC register compares bytes within fixed-length windows which
1819 are word-aligned, with length equal to that of the DVC register.
1820 We need to calculate where our watch region is relative to that
1821 window and enable comparison of the bytes which fall within it. */
1822
1823 align_offset = addr % hwdebug_info.sizeof_condition;
1824 addr_end_data = addr + len;
1825 addr_end_dvc = (addr - align_offset
1826 + hwdebug_info.sizeof_condition);
1827 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1828 addr_end_data - addr_end_dvc : 0;
1829 num_byte_enable = len - num_bytes_off_dvc;
1830 /* Here, bytes are numbered from right to left. */
1831 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1832 addr_end_dvc - addr_end_data : 0;
1833
1834 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1835 for (i = 0; i < num_byte_enable; i++)
1836 *condition_mode
1837 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1838
1839 /* Now we need to match the position within the DVC of the comparison
1840 value with where the watch region is relative to the window
1841 (i.e., the ALIGN_OFFSET). */
1842
1843 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1844 << rightmost_enabled_byte * 8);
1845 }
1846
1847 /* Return the number of memory locations that need to be accessed to
1848 evaluate the expression which generated the given value chain.
1849 Returns -1 if there's any register access involved, or if there are
1850 other kinds of values which are not acceptable in a condition
1851 expression (e.g., lval_computed or lval_internalvar). */
1852 static int
1853 num_memory_accesses (struct value *v)
1854 {
1855 int found_memory_cnt = 0;
1856 struct value *head = v;
1857
1858 /* The idea here is that evaluating an expression generates a series
1859 of values, one holding the value of every subexpression. (The
1860 expression a*b+c has five subexpressions: a, b, a*b, c, and
1861 a*b+c.) GDB's values hold almost enough information to establish
1862 the criteria given above --- they identify memory lvalues,
1863 register lvalues, computed values, etcetera. So we can evaluate
1864 the expression, and then scan the chain of values that leaves
1865 behind to determine the memory locations involved in the evaluation
1866 of an expression.
1867
1868 However, I don't think that the values returned by inferior
1869 function calls are special in any way. So this function may not
1870 notice that an expression contains an inferior function call.
1871 FIXME. */
1872
1873 for (; v; v = value_next (v))
1874 {
1875 /* Constants and values from the history are fine. */
1876 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1877 continue;
1878 else if (VALUE_LVAL (v) == lval_memory)
1879 {
1880 /* A lazy memory lvalue is one that GDB never needed to fetch;
1881 we either just used its address (e.g., `a' in `a.b') or
1882 we never needed it at all (e.g., `a' in `a,b'). */
1883 if (!value_lazy (v))
1884 found_memory_cnt++;
1885 }
1886 /* Other kinds of values are not fine. */
1887 else
1888 return -1;
1889 }
1890
1891 return found_memory_cnt;
1892 }
1893
1894 /* Verifies whether the expression COND can be implemented using the
1895 DVC (Data Value Compare) register in BookE processors. The expression
1896 must test the watch value for equality with a constant expression.
1897 If the function returns 1, DATA_VALUE will contain the constant against
1898 which the watch value should be compared and LEN will contain the size
1899 of the constant. */
1900 static int
1901 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1902 CORE_ADDR *data_value, int *len)
1903 {
1904 int pc = 1, num_accesses_left, num_accesses_right;
1905 struct value *left_val, *right_val, *left_chain, *right_chain;
1906
1907 if (cond->elts[0].opcode != BINOP_EQUAL)
1908 return 0;
1909
1910 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1911 num_accesses_left = num_memory_accesses (left_chain);
1912
1913 if (left_val == NULL || num_accesses_left < 0)
1914 {
1915 free_value_chain (left_chain);
1916
1917 return 0;
1918 }
1919
1920 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1921 num_accesses_right = num_memory_accesses (right_chain);
1922
1923 if (right_val == NULL || num_accesses_right < 0)
1924 {
1925 free_value_chain (left_chain);
1926 free_value_chain (right_chain);
1927
1928 return 0;
1929 }
1930
1931 if (num_accesses_left == 1 && num_accesses_right == 0
1932 && VALUE_LVAL (left_val) == lval_memory
1933 && value_address (left_val) == watch_addr)
1934 {
1935 *data_value = value_as_long (right_val);
1936
1937 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1938 the same type as the memory region referenced by LEFT_VAL. */
1939 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1940 }
1941 else if (num_accesses_left == 0 && num_accesses_right == 1
1942 && VALUE_LVAL (right_val) == lval_memory
1943 && value_address (right_val) == watch_addr)
1944 {
1945 *data_value = value_as_long (left_val);
1946
1947 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1948 the same type as the memory region referenced by RIGHT_VAL. */
1949 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1950 }
1951 else
1952 {
1953 free_value_chain (left_chain);
1954 free_value_chain (right_chain);
1955
1956 return 0;
1957 }
1958
1959 free_value_chain (left_chain);
1960 free_value_chain (right_chain);
1961
1962 return 1;
1963 }
1964
1965 /* Return non-zero if the target is capable of using hardware to evaluate
1966 the condition expression, thus only triggering the watchpoint when it is
1967 true. */
1968 static int
1969 ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
1970 CORE_ADDR addr, int len, int rw,
1971 struct expression *cond)
1972 {
1973 CORE_ADDR data_value;
1974
1975 return (have_ptrace_hwdebug_interface ()
1976 && hwdebug_info.num_condition_regs > 0
1977 && check_condition (addr, cond, &data_value, &len));
1978 }
1979
1980 /* Set up P with the parameters necessary to request a watchpoint covering
1981 LEN bytes starting at ADDR and if possible with condition expression COND
1982 evaluated by hardware. INSERT tells if we are creating a request for
1983 inserting or removing the watchpoint. */
1984
1985 static void
1986 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
1987 int len, int rw, struct expression *cond,
1988 int insert)
1989 {
1990 if (len == 1
1991 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
1992 {
1993 int use_condition;
1994 CORE_ADDR data_value;
1995
1996 use_condition = (insert? can_use_watchpoint_cond_accel ()
1997 : hwdebug_info.num_condition_regs > 0);
1998 if (cond && use_condition && check_condition (addr, cond,
1999 &data_value, &len))
2000 calculate_dvc (addr, len, data_value, &p->condition_mode,
2001 &p->condition_value);
2002 else
2003 {
2004 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2005 p->condition_value = 0;
2006 }
2007
2008 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2009 p->addr2 = 0;
2010 }
2011 else
2012 {
2013 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2014 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2015 p->condition_value = 0;
2016
2017 /* The watchpoint will trigger if the address of the memory access is
2018 within the defined range, as follows: p->addr <= address < p->addr2.
2019
2020 Note that the above sentence just documents how ptrace interprets
2021 its arguments; the watchpoint is set to watch the range defined by
2022 the user _inclusively_, as specified by the user interface. */
2023 p->addr2 = (uint64_t) addr + len;
2024 }
2025
2026 p->version = PPC_DEBUG_CURRENT_VERSION;
2027 p->trigger_type = get_trigger_type (rw);
2028 p->addr = (uint64_t) addr;
2029 }
2030
2031 static int
2032 ppc_linux_insert_watchpoint (struct target_ops *self,
2033 CORE_ADDR addr, int len, int rw,
2034 struct expression *cond)
2035 {
2036 struct lwp_info *lp;
2037 int ret = -1;
2038
2039 if (have_ptrace_hwdebug_interface ())
2040 {
2041 struct ppc_hw_breakpoint p;
2042
2043 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2044
2045 ALL_LWPS (lp)
2046 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2047
2048 ret = 0;
2049 }
2050 else
2051 {
2052 long dabr_value;
2053 long read_mode, write_mode;
2054
2055 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2056 {
2057 /* PowerPC 440 requires only the read/write flags to be passed
2058 to the kernel. */
2059 read_mode = 1;
2060 write_mode = 2;
2061 }
2062 else
2063 {
2064 /* PowerPC 970 and other DABR-based processors are required to pass
2065 the Breakpoint Translation bit together with the flags. */
2066 read_mode = 5;
2067 write_mode = 6;
2068 }
2069
2070 dabr_value = addr & ~(read_mode | write_mode);
2071 switch (rw)
2072 {
2073 case hw_read:
2074 /* Set read and translate bits. */
2075 dabr_value |= read_mode;
2076 break;
2077 case hw_write:
2078 /* Set write and translate bits. */
2079 dabr_value |= write_mode;
2080 break;
2081 case hw_access:
2082 /* Set read, write and translate bits. */
2083 dabr_value |= read_mode | write_mode;
2084 break;
2085 }
2086
2087 saved_dabr_value = dabr_value;
2088
2089 ALL_LWPS (lp)
2090 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2091 saved_dabr_value) < 0)
2092 return -1;
2093
2094 ret = 0;
2095 }
2096
2097 return ret;
2098 }
2099
2100 static int
2101 ppc_linux_remove_watchpoint (struct target_ops *self,
2102 CORE_ADDR addr, int len, int rw,
2103 struct expression *cond)
2104 {
2105 struct lwp_info *lp;
2106 int ret = -1;
2107
2108 if (have_ptrace_hwdebug_interface ())
2109 {
2110 struct ppc_hw_breakpoint p;
2111
2112 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2113
2114 ALL_LWPS (lp)
2115 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2116
2117 ret = 0;
2118 }
2119 else
2120 {
2121 saved_dabr_value = 0;
2122 ALL_LWPS (lp)
2123 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2124 saved_dabr_value) < 0)
2125 return -1;
2126
2127 ret = 0;
2128 }
2129
2130 return ret;
2131 }
2132
2133 static void
2134 ppc_linux_new_thread (struct lwp_info *lp)
2135 {
2136 int tid = ptid_get_lwp (lp->ptid);
2137
2138 if (have_ptrace_hwdebug_interface ())
2139 {
2140 int i;
2141 struct thread_points *p;
2142 struct hw_break_tuple *hw_breaks;
2143
2144 if (VEC_empty (thread_points_p, ppc_threads))
2145 return;
2146
2147 /* Get a list of breakpoints from any thread. */
2148 p = VEC_last (thread_points_p, ppc_threads);
2149 hw_breaks = p->hw_breaks;
2150
2151 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2152 for (i = 0; i < max_slots_number; i++)
2153 if (hw_breaks[i].hw_break)
2154 {
2155 /* Older kernels did not make new threads inherit their parent
2156 thread's debug state, so we always clear the slot and replicate
2157 the debug state ourselves, ensuring compatibility with all
2158 kernels. */
2159
2160 /* The ppc debug resource accounting is done through "slots".
2161 Ask the kernel the deallocate this specific *point's slot. */
2162 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2163
2164 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2165 }
2166 }
2167 else
2168 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2169 }
2170
2171 static void
2172 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2173 {
2174 int i;
2175 int tid = ptid_get_lwp (tp->ptid);
2176 struct hw_break_tuple *hw_breaks;
2177 struct thread_points *t = NULL, *p;
2178
2179 if (!have_ptrace_hwdebug_interface ())
2180 return;
2181
2182 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2183 if (p->tid == tid)
2184 {
2185 t = p;
2186 break;
2187 }
2188
2189 if (t == NULL)
2190 return;
2191
2192 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2193
2194 hw_breaks = t->hw_breaks;
2195
2196 for (i = 0; i < max_slots_number; i++)
2197 if (hw_breaks[i].hw_break)
2198 xfree (hw_breaks[i].hw_break);
2199
2200 xfree (t->hw_breaks);
2201 xfree (t);
2202 }
2203
2204 static int
2205 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2206 {
2207 siginfo_t siginfo;
2208
2209 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2210 return 0;
2211
2212 if (siginfo.si_signo != SIGTRAP
2213 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2214 return 0;
2215
2216 if (have_ptrace_hwdebug_interface ())
2217 {
2218 int i;
2219 struct thread_points *t;
2220 struct hw_break_tuple *hw_breaks;
2221 /* The index (or slot) of the *point is passed in the si_errno field. */
2222 int slot = siginfo.si_errno;
2223
2224 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2225
2226 /* Find out if this *point is a hardware breakpoint.
2227 If so, we should return 0. */
2228 if (t)
2229 {
2230 hw_breaks = t->hw_breaks;
2231 for (i = 0; i < max_slots_number; i++)
2232 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2233 && hw_breaks[i].hw_break->trigger_type
2234 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2235 return 0;
2236 }
2237 }
2238
2239 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2240 return 1;
2241 }
2242
2243 static int
2244 ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
2245 {
2246 CORE_ADDR addr;
2247 return ppc_linux_stopped_data_address (ops, &addr);
2248 }
2249
2250 static int
2251 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2252 CORE_ADDR addr,
2253 CORE_ADDR start, int length)
2254 {
2255 int mask;
2256
2257 if (have_ptrace_hwdebug_interface ()
2258 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2259 return start <= addr && start + length >= addr;
2260 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2261 mask = 3;
2262 else
2263 mask = 7;
2264
2265 addr &= ~mask;
2266
2267 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2268 return start <= addr + mask && start + length - 1 >= addr;
2269 }
2270
2271 /* Return the number of registers needed for a masked hardware watchpoint. */
2272
2273 static int
2274 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2275 CORE_ADDR addr, CORE_ADDR mask)
2276 {
2277 if (!have_ptrace_hwdebug_interface ()
2278 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2279 return -1;
2280 else if ((mask & 0xC0000000) != 0xC0000000)
2281 {
2282 warning (_("The given mask covers kernel address space "
2283 "and cannot be used.\n"));
2284
2285 return -2;
2286 }
2287 else
2288 return 2;
2289 }
2290
2291 static void
2292 ppc_linux_store_inferior_registers (struct target_ops *ops,
2293 struct regcache *regcache, int regno)
2294 {
2295 /* Overload thread id onto process id. */
2296 int tid = ptid_get_lwp (inferior_ptid);
2297
2298 /* No thread id, just use process id. */
2299 if (tid == 0)
2300 tid = ptid_get_pid (inferior_ptid);
2301
2302 if (regno >= 0)
2303 store_register (regcache, tid, regno);
2304 else
2305 store_ppc_registers (regcache, tid);
2306 }
2307
2308 /* Functions for transferring registers between a gregset_t or fpregset_t
2309 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2310 by the ptrace interface, not the current program's ABI. Eg. if a
2311 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2312 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2313
2314 void
2315 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2316 {
2317 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2318
2319 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2320 }
2321
2322 void
2323 fill_gregset (const struct regcache *regcache,
2324 gdb_gregset_t *gregsetp, int regno)
2325 {
2326 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2327
2328 if (regno == -1)
2329 memset (gregsetp, 0, sizeof (*gregsetp));
2330 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2331 }
2332
2333 void
2334 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2335 {
2336 const struct regset *regset = ppc_linux_fpregset ();
2337
2338 ppc_supply_fpregset (regset, regcache, -1,
2339 fpregsetp, sizeof (*fpregsetp));
2340 }
2341
2342 void
2343 fill_fpregset (const struct regcache *regcache,
2344 gdb_fpregset_t *fpregsetp, int regno)
2345 {
2346 const struct regset *regset = ppc_linux_fpregset ();
2347
2348 ppc_collect_fpregset (regset, regcache, regno,
2349 fpregsetp, sizeof (*fpregsetp));
2350 }
2351
2352 static int
2353 ppc_linux_target_wordsize (void)
2354 {
2355 int wordsize = 4;
2356
2357 /* Check for 64-bit inferior process. This is the case when the host is
2358 64-bit, and in addition the top bit of the MSR register is set. */
2359 #ifdef __powerpc64__
2360 long msr;
2361
2362 int tid = ptid_get_lwp (inferior_ptid);
2363 if (tid == 0)
2364 tid = ptid_get_pid (inferior_ptid);
2365
2366 errno = 0;
2367 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2368 if (errno == 0 && ppc64_64bit_inferior_p (msr))
2369 wordsize = 8;
2370 #endif
2371
2372 return wordsize;
2373 }
2374
2375 static int
2376 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2377 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2378 {
2379 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2380 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2381 gdb_byte *ptr = *readptr;
2382
2383 if (endptr == ptr)
2384 return 0;
2385
2386 if (endptr - ptr < sizeof_auxv_field * 2)
2387 return -1;
2388
2389 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2390 ptr += sizeof_auxv_field;
2391 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2392 ptr += sizeof_auxv_field;
2393
2394 *readptr = ptr;
2395 return 1;
2396 }
2397
2398 static const struct target_desc *
2399 ppc_linux_read_description (struct target_ops *ops)
2400 {
2401 int altivec = 0;
2402 int vsx = 0;
2403 int isa205 = 0;
2404 int cell = 0;
2405
2406 int tid = ptid_get_lwp (inferior_ptid);
2407 if (tid == 0)
2408 tid = ptid_get_pid (inferior_ptid);
2409
2410 if (have_ptrace_getsetevrregs)
2411 {
2412 struct gdb_evrregset_t evrregset;
2413
2414 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2415 return tdesc_powerpc_e500l;
2416
2417 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2418 Anything else needs to be reported. */
2419 else if (errno != EIO)
2420 perror_with_name (_("Unable to fetch SPE registers"));
2421 }
2422
2423 if (have_ptrace_getsetvsxregs)
2424 {
2425 gdb_vsxregset_t vsxregset;
2426
2427 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2428 vsx = 1;
2429
2430 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2431 Anything else needs to be reported. */
2432 else if (errno != EIO)
2433 perror_with_name (_("Unable to fetch VSX registers"));
2434 }
2435
2436 if (have_ptrace_getvrregs)
2437 {
2438 gdb_vrregset_t vrregset;
2439
2440 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2441 altivec = 1;
2442
2443 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2444 Anything else needs to be reported. */
2445 else if (errno != EIO)
2446 perror_with_name (_("Unable to fetch AltiVec registers"));
2447 }
2448
2449 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2450 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2451 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2452 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2453 half of the register are for Decimal Floating Point, we check if that
2454 feature is available to decide the size of the FPSCR. */
2455 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2456 isa205 = 1;
2457
2458 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2459 cell = 1;
2460
2461 if (ppc_linux_target_wordsize () == 8)
2462 {
2463 if (cell)
2464 return tdesc_powerpc_cell64l;
2465 else if (vsx)
2466 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2467 else if (altivec)
2468 return isa205
2469 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2470
2471 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2472 }
2473
2474 if (cell)
2475 return tdesc_powerpc_cell32l;
2476 else if (vsx)
2477 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2478 else if (altivec)
2479 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2480
2481 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2482 }
2483
2484 void _initialize_ppc_linux_nat (void);
2485
2486 void
2487 _initialize_ppc_linux_nat (void)
2488 {
2489 struct target_ops *t;
2490
2491 /* Fill in the generic GNU/Linux methods. */
2492 t = linux_target ();
2493
2494 /* Add our register access methods. */
2495 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2496 t->to_store_registers = ppc_linux_store_inferior_registers;
2497
2498 /* Add our breakpoint/watchpoint methods. */
2499 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2500 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2501 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2502 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2503 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2504 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2505 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2506 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2507 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2508 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2509 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2510 t->to_can_accel_watchpoint_condition
2511 = ppc_linux_can_accel_watchpoint_condition;
2512 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2513 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2514
2515 t->to_read_description = ppc_linux_read_description;
2516 t->to_auxv_parse = ppc_linux_auxv_parse;
2517
2518 observer_attach_thread_exit (ppc_linux_thread_exit);
2519
2520 /* Register the target. */
2521 linux_nat_add_target (t);
2522 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2523 }
This page took 0.107979 seconds and 5 git commands to generate.