struct siginfo vs. siginfo_t
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-1989, 1991-1992, 1994, 1996, 2000-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "observer.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbthread.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "target.h"
31 #include "linux-nat.h"
32
33 #include <stdint.h>
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <signal.h>
37 #include <sys/user.h>
38 #include <sys/ioctl.h>
39 #include "gdb_wait.h"
40 #include <fcntl.h>
41 #include <sys/procfs.h>
42 #include <sys/ptrace.h>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47 #include "ppc-linux-tdep.h"
48
49 /* Required when using the AUXV. */
50 #include "elf/common.h"
51 #include "auxv.h"
52
53 /* This sometimes isn't defined. */
54 #ifndef PT_ORIG_R3
55 #define PT_ORIG_R3 34
56 #endif
57 #ifndef PT_TRAP
58 #define PT_TRAP 40
59 #endif
60
61 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
62 If they aren't, we can provide them ourselves (their values are fixed
63 because they are part of the kernel ABI). They are used in the AT_HWCAP
64 entry of the AUXV. */
65 #ifndef PPC_FEATURE_CELL
66 #define PPC_FEATURE_CELL 0x00010000
67 #endif
68 #ifndef PPC_FEATURE_BOOKE
69 #define PPC_FEATURE_BOOKE 0x00008000
70 #endif
71 #ifndef PPC_FEATURE_HAS_DFP
72 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
73 #endif
74
75 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
76 configure time check. Some older glibc's (for instance 2.2.1)
77 don't have a specific powerpc version of ptrace.h, and fall back on
78 a generic one. In such cases, sys/ptrace.h defines
79 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
80 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
81 PTRACE_SETVRREGS to be. This also makes a configury check pretty
82 much useless. */
83
84 /* These definitions should really come from the glibc header files,
85 but Glibc doesn't know about the vrregs yet. */
86 #ifndef PTRACE_GETVRREGS
87 #define PTRACE_GETVRREGS 18
88 #define PTRACE_SETVRREGS 19
89 #endif
90
91 /* PTRACE requests for POWER7 VSX registers. */
92 #ifndef PTRACE_GETVSXREGS
93 #define PTRACE_GETVSXREGS 27
94 #define PTRACE_SETVSXREGS 28
95 #endif
96
97 /* Similarly for the ptrace requests for getting / setting the SPE
98 registers (ev0 -- ev31, acc, and spefscr). See the description of
99 gdb_evrregset_t for details. */
100 #ifndef PTRACE_GETEVRREGS
101 #define PTRACE_GETEVRREGS 20
102 #define PTRACE_SETEVRREGS 21
103 #endif
104
105 /* Similarly for the hardware watchpoint support. These requests are used
106 when the BookE kernel interface is not available. */
107 #ifndef PTRACE_GET_DEBUGREG
108 #define PTRACE_GET_DEBUGREG 25
109 #endif
110 #ifndef PTRACE_SET_DEBUGREG
111 #define PTRACE_SET_DEBUGREG 26
112 #endif
113 #ifndef PTRACE_GETSIGINFO
114 #define PTRACE_GETSIGINFO 0x4202
115 #endif
116
117 /* These requests are used when the BookE kernel interface is available.
118 It exposes the additional debug features of BookE processors, such as
119 ranged breakpoints and watchpoints and hardware-accelerated condition
120 evaluation. */
121 #ifndef PPC_PTRACE_GETHWDBGINFO
122
123 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
124 interface is not present in ptrace.h, so we'll have to pretty much include
125 it all here so that the code at least compiles on older systems. */
126 #define PPC_PTRACE_GETHWDBGINFO 0x89
127 #define PPC_PTRACE_SETHWDEBUG 0x88
128 #define PPC_PTRACE_DELHWDEBUG 0x87
129
130 struct ppc_debug_info
131 {
132 uint32_t version; /* Only version 1 exists to date. */
133 uint32_t num_instruction_bps;
134 uint32_t num_data_bps;
135 uint32_t num_condition_regs;
136 uint32_t data_bp_alignment;
137 uint32_t sizeof_condition; /* size of the DVC register. */
138 uint64_t features;
139 };
140
141 /* Features will have bits indicating whether there is support for: */
142 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
143 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
144 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
145 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
146
147 struct ppc_hw_breakpoint
148 {
149 uint32_t version; /* currently, version must be 1 */
150 uint32_t trigger_type; /* only some combinations allowed */
151 uint32_t addr_mode; /* address match mode */
152 uint32_t condition_mode; /* break/watchpoint condition flags */
153 uint64_t addr; /* break/watchpoint address */
154 uint64_t addr2; /* range end or mask */
155 uint64_t condition_value; /* contents of the DVC register */
156 };
157
158 /* Trigger type. */
159 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
160 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
161 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
162 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
163
164 /* Address mode. */
165 #define PPC_BREAKPOINT_MODE_EXACT 0x0
166 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
167 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
168 #define PPC_BREAKPOINT_MODE_MASK 0x3
169
170 /* Condition mode. */
171 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
172 #define PPC_BREAKPOINT_CONDITION_AND 0x1
173 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
174 #define PPC_BREAKPOINT_CONDITION_OR 0x2
175 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
176 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
177 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
178 #define PPC_BREAKPOINT_CONDITION_BE(n) \
179 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
180 #endif /* PPC_PTRACE_GETHWDBGINFO */
181
182
183
184 /* Similarly for the general-purpose (gp0 -- gp31)
185 and floating-point registers (fp0 -- fp31). */
186 #ifndef PTRACE_GETREGS
187 #define PTRACE_GETREGS 12
188 #endif
189 #ifndef PTRACE_SETREGS
190 #define PTRACE_SETREGS 13
191 #endif
192 #ifndef PTRACE_GETFPREGS
193 #define PTRACE_GETFPREGS 14
194 #endif
195 #ifndef PTRACE_SETFPREGS
196 #define PTRACE_SETFPREGS 15
197 #endif
198
199 /* This oddity is because the Linux kernel defines elf_vrregset_t as
200 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
201 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
202 the vrsave as an extra 4 bytes at the end. I opted for creating a
203 flat array of chars, so that it is easier to manipulate for gdb.
204
205 There are 32 vector registers 16 bytes longs, plus a VSCR register
206 which is only 4 bytes long, but is fetched as a 16 bytes
207 quantity. Up to here we have the elf_vrregset_t structure.
208 Appended to this there is space for the VRSAVE register: 4 bytes.
209 Even though this vrsave register is not included in the regset
210 typedef, it is handled by the ptrace requests.
211
212 Note that GNU/Linux doesn't support little endian PPC hardware,
213 therefore the offset at which the real value of the VSCR register
214 is located will be always 12 bytes.
215
216 The layout is like this (where x is the actual value of the vscr reg): */
217
218 /* *INDENT-OFF* */
219 /*
220 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
221 <-------> <-------><-------><->
222 VR0 VR31 VSCR VRSAVE
223 */
224 /* *INDENT-ON* */
225
226 #define SIZEOF_VRREGS 33*16+4
227
228 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
229
230 /* This is the layout of the POWER7 VSX registers and the way they overlap
231 with the existing FPR and VMX registers.
232
233 VSR doubleword 0 VSR doubleword 1
234 ----------------------------------------------------------------
235 VSR[0] | FPR[0] | |
236 ----------------------------------------------------------------
237 VSR[1] | FPR[1] | |
238 ----------------------------------------------------------------
239 | ... | |
240 | ... | |
241 ----------------------------------------------------------------
242 VSR[30] | FPR[30] | |
243 ----------------------------------------------------------------
244 VSR[31] | FPR[31] | |
245 ----------------------------------------------------------------
246 VSR[32] | VR[0] |
247 ----------------------------------------------------------------
248 VSR[33] | VR[1] |
249 ----------------------------------------------------------------
250 | ... |
251 | ... |
252 ----------------------------------------------------------------
253 VSR[62] | VR[30] |
254 ----------------------------------------------------------------
255 VSR[63] | VR[31] |
256 ----------------------------------------------------------------
257
258 VSX has 64 128bit registers. The first 32 registers overlap with
259 the FP registers (doubleword 0) and hence extend them with additional
260 64 bits (doubleword 1). The other 32 regs overlap with the VMX
261 registers. */
262 #define SIZEOF_VSXREGS 32*8
263
264 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
265
266 /* On PPC processors that support the Signal Processing Extension
267 (SPE) APU, the general-purpose registers are 64 bits long.
268 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
269 ptrace calls only access the lower half of each register, to allow
270 them to behave the same way they do on non-SPE systems. There's a
271 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
272 read and write the top halves of all the general-purpose registers
273 at once, along with some SPE-specific registers.
274
275 GDB itself continues to claim the general-purpose registers are 32
276 bits long. It has unnamed raw registers that hold the upper halves
277 of the gprs, and the full 64-bit SIMD views of the registers,
278 'ev0' -- 'ev31', are pseudo-registers that splice the top and
279 bottom halves together.
280
281 This is the structure filled in by PTRACE_GETEVRREGS and written to
282 the inferior's registers by PTRACE_SETEVRREGS. */
283 struct gdb_evrregset_t
284 {
285 unsigned long evr[32];
286 unsigned long long acc;
287 unsigned long spefscr;
288 };
289
290 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
291 PTRACE_SETVSXREGS requests, for reading and writing the VSX
292 POWER7 registers 0 through 31. Zero if we've tried one of them and
293 gotten an error. Note that VSX registers 32 through 63 overlap
294 with VR registers 0 through 31. */
295 int have_ptrace_getsetvsxregs = 1;
296
297 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
298 PTRACE_SETVRREGS requests, for reading and writing the Altivec
299 registers. Zero if we've tried one of them and gotten an
300 error. */
301 int have_ptrace_getvrregs = 1;
302
303 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
304 PTRACE_SETEVRREGS requests, for reading and writing the SPE
305 registers. Zero if we've tried one of them and gotten an
306 error. */
307 int have_ptrace_getsetevrregs = 1;
308
309 /* Non-zero if our kernel may support the PTRACE_GETREGS and
310 PTRACE_SETREGS requests, for reading and writing the
311 general-purpose registers. Zero if we've tried one of
312 them and gotten an error. */
313 int have_ptrace_getsetregs = 1;
314
315 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
316 PTRACE_SETFPREGS requests, for reading and writing the
317 floating-pointers registers. Zero if we've tried one of
318 them and gotten an error. */
319 int have_ptrace_getsetfpregs = 1;
320
321 /* *INDENT-OFF* */
322 /* registers layout, as presented by the ptrace interface:
323 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
327 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
335 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336 /* *INDENT_ON * */
337
338 static int
339 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
340 {
341 int u_addr = -1;
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
345 int wordsize = sizeof (long);
346
347 /* General purpose registers occupy 1 slot each in the buffer. */
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
351
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
359
360 /* UISA special purpose registers: 1 slot each. */
361 if (regno == gdbarch_pc_regnum (gdbarch))
362 u_addr = PT_NIP * wordsize;
363 if (regno == tdep->ppc_lr_regnum)
364 u_addr = PT_LNK * wordsize;
365 if (regno == tdep->ppc_cr_regnum)
366 u_addr = PT_CCR * wordsize;
367 if (regno == tdep->ppc_xer_regnum)
368 u_addr = PT_XER * wordsize;
369 if (regno == tdep->ppc_ctr_regnum)
370 u_addr = PT_CTR * wordsize;
371 #ifdef PT_MQ
372 if (regno == tdep->ppc_mq_regnum)
373 u_addr = PT_MQ * wordsize;
374 #endif
375 if (regno == tdep->ppc_ps_regnum)
376 u_addr = PT_MSR * wordsize;
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
388 the second half of such a slot-pair (hence +1). For 64-bit,
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
402 return u_addr;
403 }
404
405 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408 static void
409 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410 {
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = get_regcache_arch (regcache);
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431 }
432
433 /* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436 static void
437 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
438 {
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
442 struct gdbarch *gdbarch = get_regcache_arch (regcache);
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
454 perror_with_name (_("Unable to fetch AltiVec register"));
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
463
464 regcache_raw_supply (regcache, regno,
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
467 }
468
469 /* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477 static void
478 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479 {
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
492 perror_with_name (_("Unable to fetch SPE registers"));
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497 }
498
499 /* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
503 static void
504 fetch_spe_register (struct regcache *regcache, int tid, int regno)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 struct gdb_evrregset_t evrregs;
509
510 gdb_assert (sizeof (evrregs.evr[0])
511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
512 gdb_assert (sizeof (evrregs.acc)
513 == register_size (gdbarch, tdep->ppc_acc_regnum));
514 gdb_assert (sizeof (evrregs.spefscr)
515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
516
517 get_spe_registers (tid, &evrregs);
518
519 if (regno == -1)
520 {
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
525 &evrregs.evr[i]);
526 }
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
529 regcache_raw_supply (regcache, regno,
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
539 &evrregs.spefscr);
540 }
541
542 static void
543 fetch_register (struct regcache *regcache, int tid, int regno)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547 /* This isn't really an address. But ptrace thinks of it as one. */
548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
549 int bytes_transferred;
550 unsigned int offset; /* Offset of registers within the u area. */
551 char buf[MAX_REGISTER_SIZE];
552
553 if (altivec_register_p (gdbarch, regno))
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
561 fetch_altivec_register (regcache, tid, regno);
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
576 else if (spe_register_p (gdbarch, regno))
577 {
578 fetch_spe_register (regcache, tid, regno);
579 return;
580 }
581
582 if (regaddr == -1)
583 {
584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
585 regcache_raw_supply (regcache, regno, buf);
586 return;
587 }
588
589 /* Read the raw register using sizeof(long) sized chunks. On a
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
592 for (bytes_transferred = 0;
593 bytes_transferred < register_size (gdbarch, regno);
594 bytes_transferred += sizeof (long))
595 {
596 long l;
597
598 errno = 0;
599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
600 regaddr += sizeof (long);
601 if (errno != 0)
602 {
603 char message[128];
604 sprintf (message, "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
606 perror_with_name (message);
607 }
608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
609 }
610
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
613 (long). */
614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
618 regcache_raw_supply (regcache, regno, buf);
619 }
620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
625 regcache_raw_supply (regcache, regno, buf + padding);
626 }
627 else
628 internal_error (__FILE__, __LINE__,
629 _("fetch_register: unexpected byte order: %d"),
630 gdbarch_byte_order (gdbarch));
631 }
632
633 static void
634 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635 {
636 int i;
637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646 }
647
648 static void
649 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
650 {
651 int i;
652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
666 *vrregsetp + i * vrregsize + offset);
667 else
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize);
670 }
671 }
672
673 static void
674 fetch_vsx_registers (struct regcache *regcache, int tid)
675 {
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690 }
691
692 static void
693 fetch_altivec_registers (struct regcache *regcache, int tid)
694 {
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
706 perror_with_name (_("Unable to fetch AltiVec registers"));
707 }
708 supply_vrregset (regcache, &regs);
709 }
710
711 /* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719 static int
720 fetch_all_gp_regs (struct regcache *regcache, int tid)
721 {
722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_gp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763 }
764
765 /* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773 static int
774 fetch_all_fp_regs (struct regcache *regcache, int tid)
775 {
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791 }
792
793 /* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799 static void
800 fetch_fp_regs (struct regcache *regcache, int tid)
801 {
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815 }
816
817 static void
818 fetch_ppc_registers (struct regcache *regcache, int tid)
819 {
820 int i;
821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
823
824 fetch_gp_regs (regcache, tid);
825 if (tdep->ppc_fp0_regnum >= 0)
826 fetch_fp_regs (regcache, tid);
827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
828 if (tdep->ppc_ps_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
830 if (tdep->ppc_cr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
832 if (tdep->ppc_lr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
834 if (tdep->ppc_ctr_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
836 if (tdep->ppc_xer_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
838 if (tdep->ppc_mq_regnum != -1)
839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
845 if (tdep->ppc_fpscr_regnum != -1)
846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
849 fetch_altivec_registers (regcache, tid);
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
853 if (tdep->ppc_ev0_upper_regnum >= 0)
854 fetch_spe_register (regcache, tid, -1);
855 }
856
857 /* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
860 static void
861 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
862 struct regcache *regcache, int regno)
863 {
864 /* Overload thread id onto process id. */
865 int tid = TIDGET (inferior_ptid);
866
867 /* No thread id, just use process id. */
868 if (tid == 0)
869 tid = PIDGET (inferior_ptid);
870
871 if (regno == -1)
872 fetch_ppc_registers (regcache, tid);
873 else
874 fetch_register (regcache, tid, regno);
875 }
876
877 /* Store one VSX register. */
878 static void
879 store_vsx_register (const struct regcache *regcache, int tid, int regno)
880 {
881 int ret;
882 gdb_vsxregset_t regs;
883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
886
887 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
888 if (ret < 0)
889 {
890 if (errno == EIO)
891 {
892 have_ptrace_getsetvsxregs = 0;
893 return;
894 }
895 perror_with_name (_("Unable to fetch VSX register"));
896 }
897
898 regcache_raw_collect (regcache, regno, regs +
899 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
900
901 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
902 if (ret < 0)
903 perror_with_name (_("Unable to store VSX register"));
904 }
905
906 /* Store one register. */
907 static void
908 store_altivec_register (const struct regcache *regcache, int tid, int regno)
909 {
910 int ret;
911 int offset = 0;
912 gdb_vrregset_t regs;
913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
916
917 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
918 if (ret < 0)
919 {
920 if (errno == EIO)
921 {
922 have_ptrace_getvrregs = 0;
923 return;
924 }
925 perror_with_name (_("Unable to fetch AltiVec register"));
926 }
927
928 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
929 long on the hardware. */
930 if (regno == (tdep->ppc_vrsave_regnum - 1))
931 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
932
933 regcache_raw_collect (regcache, regno,
934 regs + (regno
935 - tdep->ppc_vr0_regnum) * vrregsize + offset);
936
937 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
938 if (ret < 0)
939 perror_with_name (_("Unable to store AltiVec register"));
940 }
941
942 /* Assuming TID referrs to an SPE process, set the top halves of TID's
943 general-purpose registers and its SPE-specific registers to the
944 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
945 nothing.
946
947 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
948 PTRACE_SETEVRREGS requests are supported is isolated here, and in
949 get_spe_registers. */
950 static void
951 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
952 {
953 if (have_ptrace_getsetevrregs)
954 {
955 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 return;
957 else
958 {
959 /* EIO means that the PTRACE_SETEVRREGS request isn't
960 supported; we fail silently, and don't try the call
961 again. */
962 if (errno == EIO)
963 have_ptrace_getsetevrregs = 0;
964 else
965 /* Anything else needs to be reported. */
966 perror_with_name (_("Unable to set SPE registers"));
967 }
968 }
969 }
970
971 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
972 If REGNO is -1, write the values of all the SPE-specific
973 registers. */
974 static void
975 store_spe_register (const struct regcache *regcache, int tid, int regno)
976 {
977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
979 struct gdb_evrregset_t evrregs;
980
981 gdb_assert (sizeof (evrregs.evr[0])
982 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
983 gdb_assert (sizeof (evrregs.acc)
984 == register_size (gdbarch, tdep->ppc_acc_regnum));
985 gdb_assert (sizeof (evrregs.spefscr)
986 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
987
988 if (regno == -1)
989 /* Since we're going to write out every register, the code below
990 should store to every field of evrregs; if that doesn't happen,
991 make it obvious by initializing it with suspicious values. */
992 memset (&evrregs, 42, sizeof (evrregs));
993 else
994 /* We can only read and write the entire EVR register set at a
995 time, so to write just a single register, we do a
996 read-modify-write maneuver. */
997 get_spe_registers (tid, &evrregs);
998
999 if (regno == -1)
1000 {
1001 int i;
1002
1003 for (i = 0; i < ppc_num_gprs; i++)
1004 regcache_raw_collect (regcache,
1005 tdep->ppc_ev0_upper_regnum + i,
1006 &evrregs.evr[i]);
1007 }
1008 else if (tdep->ppc_ev0_upper_regnum <= regno
1009 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1010 regcache_raw_collect (regcache, regno,
1011 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_acc_regnum)
1015 regcache_raw_collect (regcache,
1016 tdep->ppc_acc_regnum,
1017 &evrregs.acc);
1018
1019 if (regno == -1
1020 || regno == tdep->ppc_spefscr_regnum)
1021 regcache_raw_collect (regcache,
1022 tdep->ppc_spefscr_regnum,
1023 &evrregs.spefscr);
1024
1025 /* Write back the modified register set. */
1026 set_spe_registers (tid, &evrregs);
1027 }
1028
1029 static void
1030 store_register (const struct regcache *regcache, int tid, int regno)
1031 {
1032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1034 /* This isn't really an address. But ptrace thinks of it as one. */
1035 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1036 int i;
1037 size_t bytes_to_transfer;
1038 char buf[MAX_REGISTER_SIZE];
1039
1040 if (altivec_register_p (gdbarch, regno))
1041 {
1042 store_altivec_register (regcache, tid, regno);
1043 return;
1044 }
1045 if (vsx_register_p (gdbarch, regno))
1046 {
1047 store_vsx_register (regcache, tid, regno);
1048 return;
1049 }
1050 else if (spe_register_p (gdbarch, regno))
1051 {
1052 store_spe_register (regcache, tid, regno);
1053 return;
1054 }
1055
1056 if (regaddr == -1)
1057 return;
1058
1059 /* First collect the register. Keep in mind that the regcache's
1060 idea of the register's size may not be a multiple of sizeof
1061 (long). */
1062 memset (buf, 0, sizeof buf);
1063 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1064 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1065 {
1066 /* Little-endian values always sit at the left end of the buffer. */
1067 regcache_raw_collect (regcache, regno, buf);
1068 }
1069 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1070 {
1071 /* Big-endian values sit at the right end of the buffer. */
1072 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1073 regcache_raw_collect (regcache, regno, buf + padding);
1074 }
1075
1076 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1077 {
1078 long l;
1079
1080 memcpy (&l, &buf[i], sizeof (l));
1081 errno = 0;
1082 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1083 regaddr += sizeof (long);
1084
1085 if (errno == EIO
1086 && (regno == tdep->ppc_fpscr_regnum
1087 || regno == PPC_ORIG_R3_REGNUM
1088 || regno == PPC_TRAP_REGNUM))
1089 {
1090 /* Some older kernel versions don't allow fpscr, orig_r3
1091 or trap to be written. */
1092 continue;
1093 }
1094
1095 if (errno != 0)
1096 {
1097 char message[128];
1098 sprintf (message, "writing register %s (#%d)",
1099 gdbarch_register_name (gdbarch, regno), regno);
1100 perror_with_name (message);
1101 }
1102 }
1103 }
1104
1105 static void
1106 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1107 {
1108 int i;
1109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1112
1113 for (i = 0; i < ppc_num_vshrs; i++)
1114 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1115 *vsxregsetp + i * vsxregsize);
1116 }
1117
1118 static void
1119 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1120 {
1121 int i;
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1124 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1125 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1126 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1127
1128 for (i = 0; i < num_of_vrregs; i++)
1129 {
1130 /* The last 2 registers of this set are only 32 bit long, not
1131 128, but only VSCR is fetched as a 16 bytes quantity. */
1132 if (i == (num_of_vrregs - 2))
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize + offset);
1135 else
1136 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1137 *vrregsetp + i * vrregsize);
1138 }
1139 }
1140
1141 static void
1142 store_vsx_registers (const struct regcache *regcache, int tid)
1143 {
1144 int ret;
1145 gdb_vsxregset_t regs;
1146
1147 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1148 if (ret < 0)
1149 {
1150 if (errno == EIO)
1151 {
1152 have_ptrace_getsetvsxregs = 0;
1153 return;
1154 }
1155 perror_with_name (_("Couldn't get VSX registers"));
1156 }
1157
1158 fill_vsxregset (regcache, &regs);
1159
1160 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1161 perror_with_name (_("Couldn't write VSX registers"));
1162 }
1163
1164 static void
1165 store_altivec_registers (const struct regcache *regcache, int tid)
1166 {
1167 int ret;
1168 gdb_vrregset_t regs;
1169
1170 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1171 if (ret < 0)
1172 {
1173 if (errno == EIO)
1174 {
1175 have_ptrace_getvrregs = 0;
1176 return;
1177 }
1178 perror_with_name (_("Couldn't get AltiVec registers"));
1179 }
1180
1181 fill_vrregset (regcache, &regs);
1182
1183 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1184 perror_with_name (_("Couldn't write AltiVec registers"));
1185 }
1186
1187 /* This function actually issues the request to ptrace, telling
1188 it to store all general-purpose registers present in the specified
1189 regset.
1190
1191 If the ptrace request does not exist, this function returns 0
1192 and properly sets the have_ptrace_* flag. If the request fails,
1193 this function calls perror_with_name. Otherwise, if the request
1194 succeeds, then the regcache is stored and 1 is returned. */
1195 static int
1196 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1197 {
1198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1200 gdb_gregset_t gregset;
1201
1202 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 {
1204 if (errno == EIO)
1205 {
1206 have_ptrace_getsetregs = 0;
1207 return 0;
1208 }
1209 perror_with_name (_("Couldn't get general-purpose registers."));
1210 }
1211
1212 fill_gregset (regcache, &gregset, regno);
1213
1214 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 have_ptrace_getsetregs = 0;
1219 return 0;
1220 }
1221 perror_with_name (_("Couldn't set general-purpose registers."));
1222 }
1223
1224 return 1;
1225 }
1226
1227 /* This is a wrapper for the store_all_gp_regs function. It is
1228 responsible for verifying if this target has the ptrace request
1229 that can be used to store all general-purpose registers at one
1230 shot. If it doesn't, then we should store them using the
1231 old-fashioned way, which is to iterate over the registers and
1232 store them one by one. */
1233 static void
1234 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1235 {
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1238 int i;
1239
1240 if (have_ptrace_getsetregs)
1241 if (store_all_gp_regs (regcache, tid, regno))
1242 return;
1243
1244 /* If we hit this point, it doesn't really matter which
1245 architecture we are using. We just need to store the
1246 registers in the "old-fashioned way". */
1247 for (i = 0; i < ppc_num_gprs; i++)
1248 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1249 }
1250
1251 /* This function actually issues the request to ptrace, telling
1252 it to store all floating-point registers present in the specified
1253 regset.
1254
1255 If the ptrace request does not exist, this function returns 0
1256 and properly sets the have_ptrace_* flag. If the request fails,
1257 this function calls perror_with_name. Otherwise, if the request
1258 succeeds, then the regcache is stored and 1 is returned. */
1259 static int
1260 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1261 {
1262 gdb_fpregset_t fpregs;
1263
1264 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 {
1266 if (errno == EIO)
1267 {
1268 have_ptrace_getsetfpregs = 0;
1269 return 0;
1270 }
1271 perror_with_name (_("Couldn't get floating-point registers."));
1272 }
1273
1274 fill_fpregset (regcache, &fpregs, regno);
1275
1276 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 {
1278 if (errno == EIO)
1279 {
1280 have_ptrace_getsetfpregs = 0;
1281 return 0;
1282 }
1283 perror_with_name (_("Couldn't set floating-point registers."));
1284 }
1285
1286 return 1;
1287 }
1288
1289 /* This is a wrapper for the store_all_fp_regs function. It is
1290 responsible for verifying if this target has the ptrace request
1291 that can be used to store all floating-point registers at one
1292 shot. If it doesn't, then we should store them using the
1293 old-fashioned way, which is to iterate over the registers and
1294 store them one by one. */
1295 static void
1296 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1297 {
1298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int i;
1301
1302 if (have_ptrace_getsetfpregs)
1303 if (store_all_fp_regs (regcache, tid, regno))
1304 return;
1305
1306 /* If we hit this point, it doesn't really matter which
1307 architecture we are using. We just need to store the
1308 registers in the "old-fashioned way". */
1309 for (i = 0; i < ppc_num_fprs; i++)
1310 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311 }
1312
1313 static void
1314 store_ppc_registers (const struct regcache *regcache, int tid)
1315 {
1316 int i;
1317 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 store_gp_regs (regcache, tid, -1);
1321 if (tdep->ppc_fp0_regnum >= 0)
1322 store_fp_regs (regcache, tid, -1);
1323 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1324 if (tdep->ppc_ps_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_ps_regnum);
1326 if (tdep->ppc_cr_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_cr_regnum);
1328 if (tdep->ppc_lr_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_lr_regnum);
1330 if (tdep->ppc_ctr_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1332 if (tdep->ppc_xer_regnum != -1)
1333 store_register (regcache, tid, tdep->ppc_xer_regnum);
1334 if (tdep->ppc_mq_regnum != -1)
1335 store_register (regcache, tid, tdep->ppc_mq_regnum);
1336 if (tdep->ppc_fpscr_regnum != -1)
1337 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1338 if (ppc_linux_trap_reg_p (gdbarch))
1339 {
1340 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1341 store_register (regcache, tid, PPC_TRAP_REGNUM);
1342 }
1343 if (have_ptrace_getvrregs)
1344 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1345 store_altivec_registers (regcache, tid);
1346 if (have_ptrace_getsetvsxregs)
1347 if (tdep->ppc_vsr0_upper_regnum != -1)
1348 store_vsx_registers (regcache, tid);
1349 if (tdep->ppc_ev0_upper_regnum >= 0)
1350 store_spe_register (regcache, tid, -1);
1351 }
1352
1353 /* Fetch the AT_HWCAP entry from the aux vector. */
1354 static unsigned long
1355 ppc_linux_get_hwcap (void)
1356 {
1357 CORE_ADDR field;
1358
1359 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1360 return (unsigned long) field;
1361
1362 return 0;
1363 }
1364
1365 /* The cached DABR value, to install in new threads.
1366 This variable is used when we are dealing with non-BookE
1367 processors. */
1368 static long saved_dabr_value;
1369
1370 /* Global structure that will store information about the available
1371 features on this BookE processor. */
1372 static struct ppc_debug_info booke_debug_info;
1373
1374 /* Global variable that holds the maximum number of slots that the
1375 kernel will use. This is only used when the processor is BookE. */
1376 static size_t max_slots_number = 0;
1377
1378 struct hw_break_tuple
1379 {
1380 long slot;
1381 struct ppc_hw_breakpoint *hw_break;
1382 };
1383
1384 /* This is an internal VEC created to store information about *points inserted
1385 for each thread. This is used for BookE processors. */
1386 typedef struct thread_points
1387 {
1388 /* The TID to which this *point relates. */
1389 int tid;
1390 /* Information about the *point, such as its address, type, etc.
1391
1392 Each element inside this vector corresponds to a hardware
1393 breakpoint or watchpoint in the thread represented by TID. The maximum
1394 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1395 the tuple is NULL, then the position in the vector is free. */
1396 struct hw_break_tuple *hw_breaks;
1397 } *thread_points_p;
1398 DEF_VEC_P (thread_points_p);
1399
1400 VEC(thread_points_p) *ppc_threads = NULL;
1401
1402 /* The version of the kernel interface that we will use if the processor is
1403 BookE. */
1404 #define PPC_DEBUG_CURRENT_VERSION 1
1405
1406 /* Returns non-zero if we support the ptrace interface which enables
1407 booke debugging resources. */
1408 static int
1409 have_ptrace_booke_interface (void)
1410 {
1411 static int have_ptrace_booke_interface = -1;
1412
1413 if (have_ptrace_booke_interface == -1)
1414 {
1415 int tid;
1416
1417 tid = TIDGET (inferior_ptid);
1418 if (tid == 0)
1419 tid = PIDGET (inferior_ptid);
1420
1421 /* Check for kernel support for BOOKE debug registers. */
1422 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1423 {
1424 have_ptrace_booke_interface = 1;
1425 max_slots_number = booke_debug_info.num_instruction_bps
1426 + booke_debug_info.num_data_bps
1427 + booke_debug_info.num_condition_regs;
1428 }
1429 else
1430 {
1431 /* Old school interface and no BOOKE debug registers support. */
1432 have_ptrace_booke_interface = 0;
1433 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
1434 }
1435 }
1436
1437 return have_ptrace_booke_interface;
1438 }
1439
1440 static int
1441 ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
1442 {
1443 int total_hw_wp, total_hw_bp;
1444
1445 if (have_ptrace_booke_interface ())
1446 {
1447 /* For PPC BookE processors, the number of available hardware
1448 watchpoints and breakpoints is stored at the booke_debug_info
1449 struct. */
1450 total_hw_bp = booke_debug_info.num_instruction_bps;
1451 total_hw_wp = booke_debug_info.num_data_bps;
1452 }
1453 else
1454 {
1455 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1456 hardware breakpoints. */
1457 total_hw_bp = 0;
1458 total_hw_wp = 1;
1459 }
1460
1461 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1462 || type == bp_access_watchpoint || type == bp_watchpoint)
1463 {
1464 if (cnt > total_hw_wp)
1465 return -1;
1466 }
1467 else if (type == bp_hardware_breakpoint)
1468 {
1469 if (cnt > total_hw_bp)
1470 return -1;
1471 }
1472
1473 if (!have_ptrace_booke_interface ())
1474 {
1475 int tid;
1476 ptid_t ptid = inferior_ptid;
1477
1478 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1479 and whether the target has DABR. If either answer is no, the
1480 ptrace call will return -1. Fail in that case. */
1481 tid = TIDGET (ptid);
1482 if (tid == 0)
1483 tid = PIDGET (ptid);
1484
1485 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1486 return 0;
1487 }
1488
1489 return 1;
1490 }
1491
1492 static int
1493 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1494 {
1495 /* Handle sub-8-byte quantities. */
1496 if (len <= 0)
1497 return 0;
1498
1499 /* The new BookE ptrace interface tells if there are alignment restrictions
1500 for watchpoints in the processors. In that case, we use that information
1501 to determine the hardcoded watchable region for watchpoints. */
1502 if (have_ptrace_booke_interface ())
1503 {
1504 /* DAC-based processors (i.e., embedded processors), like the PowerPC 440
1505 have ranged watchpoints and can watch any access within an arbitrary
1506 memory region. This is useful to watch arrays and structs, for
1507 instance. It takes two hardware watchpoints though. */
1508 if (len > 1
1509 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)
1510 return 2;
1511 else if (booke_debug_info.data_bp_alignment
1512 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1513 + booke_debug_info.data_bp_alignment))
1514 return 0;
1515 }
1516 /* addr+len must fall in the 8 byte watchable region for DABR-based
1517 processors (i.e., server processors). Without the new BookE ptrace
1518 interface, DAC-based processors (i.e., embedded processors) will use
1519 addresses aligned to 4-bytes due to the way the read/write flags are
1520 passed in the old ptrace interface. */
1521 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1522 && (addr + len) > (addr & ~3) + 4)
1523 || (addr + len) > (addr & ~7) + 8)
1524 return 0;
1525
1526 return 1;
1527 }
1528
1529 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1530 static int
1531 booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1532 {
1533 return (a->trigger_type == b->trigger_type
1534 && a->addr_mode == b->addr_mode
1535 && a->condition_mode == b->condition_mode
1536 && a->addr == b->addr
1537 && a->addr2 == b->addr2
1538 && a->condition_value == b->condition_value);
1539 }
1540
1541 /* This function can be used to retrieve a thread_points by the TID of the
1542 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1543 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1544 provided TID will be created and returned. */
1545 static struct thread_points *
1546 booke_find_thread_points_by_tid (int tid, int alloc_new)
1547 {
1548 int i;
1549 struct thread_points *t;
1550
1551 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1552 if (t->tid == tid)
1553 return t;
1554
1555 t = NULL;
1556
1557 /* Do we need to allocate a new point_item
1558 if the wanted one does not exist? */
1559 if (alloc_new)
1560 {
1561 t = xmalloc (sizeof (struct thread_points));
1562 t->hw_breaks
1563 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1564 t->tid = tid;
1565 VEC_safe_push (thread_points_p, ppc_threads, t);
1566 }
1567
1568 return t;
1569 }
1570
1571 /* This function is a generic wrapper that is responsible for inserting a
1572 *point (i.e., calling `ptrace' in order to issue the request to the
1573 kernel) and registering it internally in GDB. */
1574 static void
1575 booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1576 {
1577 int i;
1578 long slot;
1579 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1580 struct hw_break_tuple *hw_breaks;
1581 struct cleanup *c = make_cleanup (xfree, p);
1582 struct thread_points *t;
1583 struct hw_break_tuple *tuple;
1584
1585 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1586
1587 errno = 0;
1588 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1589 if (slot < 0)
1590 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1591
1592 /* Everything went fine, so we have to register this *point. */
1593 t = booke_find_thread_points_by_tid (tid, 1);
1594 gdb_assert (t != NULL);
1595 hw_breaks = t->hw_breaks;
1596
1597 /* Find a free element in the hw_breaks vector. */
1598 for (i = 0; i < max_slots_number; i++)
1599 if (hw_breaks[i].hw_break == NULL)
1600 {
1601 hw_breaks[i].slot = slot;
1602 hw_breaks[i].hw_break = p;
1603 break;
1604 }
1605
1606 gdb_assert (i != max_slots_number);
1607
1608 discard_cleanups (c);
1609 }
1610
1611 /* This function is a generic wrapper that is responsible for removing a
1612 *point (i.e., calling `ptrace' in order to issue the request to the
1613 kernel), and unregistering it internally at GDB. */
1614 static void
1615 booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1616 {
1617 int i;
1618 struct hw_break_tuple *hw_breaks;
1619 struct thread_points *t;
1620
1621 t = booke_find_thread_points_by_tid (tid, 0);
1622 gdb_assert (t != NULL);
1623 hw_breaks = t->hw_breaks;
1624
1625 for (i = 0; i < max_slots_number; i++)
1626 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1627 break;
1628
1629 gdb_assert (i != max_slots_number);
1630
1631 /* We have to ignore ENOENT errors because the kernel implements hardware
1632 breakpoints/watchpoints as "one-shot", that is, they are automatically
1633 deleted when hit. */
1634 errno = 0;
1635 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1636 if (errno != ENOENT)
1637 perror_with_name (_("Unexpected error deleting "
1638 "breakpoint or watchpoint"));
1639
1640 xfree (hw_breaks[i].hw_break);
1641 hw_breaks[i].hw_break = NULL;
1642 }
1643
1644 /* Return the number of registers needed for a ranged breakpoint. */
1645
1646 static int
1647 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1648 {
1649 return ((have_ptrace_booke_interface ()
1650 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1651 2 : -1);
1652 }
1653
1654 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1655 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1656
1657 static int
1658 ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1659 struct bp_target_info *bp_tgt)
1660 {
1661 struct lwp_info *lp;
1662 struct ppc_hw_breakpoint p;
1663
1664 if (!have_ptrace_booke_interface ())
1665 return -1;
1666
1667 p.version = PPC_DEBUG_CURRENT_VERSION;
1668 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1669 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1670 p.addr = (uint64_t) bp_tgt->placed_address;
1671 p.condition_value = 0;
1672
1673 if (bp_tgt->length)
1674 {
1675 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1676
1677 /* The breakpoint will trigger if the address of the instruction is
1678 within the defined range, as follows: p.addr <= address < p.addr2. */
1679 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1680 }
1681 else
1682 {
1683 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1684 p.addr2 = 0;
1685 }
1686
1687 ALL_LWPS (lp)
1688 booke_insert_point (&p, TIDGET (lp->ptid));
1689
1690 return 0;
1691 }
1692
1693 static int
1694 ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1695 struct bp_target_info *bp_tgt)
1696 {
1697 struct lwp_info *lp;
1698 struct ppc_hw_breakpoint p;
1699
1700 if (!have_ptrace_booke_interface ())
1701 return -1;
1702
1703 p.version = PPC_DEBUG_CURRENT_VERSION;
1704 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1705 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1706 p.addr = (uint64_t) bp_tgt->placed_address;
1707 p.condition_value = 0;
1708
1709 if (bp_tgt->length)
1710 {
1711 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1712
1713 /* The breakpoint will trigger if the address of the instruction is within
1714 the defined range, as follows: p.addr <= address < p.addr2. */
1715 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1716 }
1717 else
1718 {
1719 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1720 p.addr2 = 0;
1721 }
1722
1723 ALL_LWPS (lp)
1724 booke_remove_point (&p, TIDGET (lp->ptid));
1725
1726 return 0;
1727 }
1728
1729 static int
1730 get_trigger_type (int rw)
1731 {
1732 int t;
1733
1734 if (rw == hw_read)
1735 t = PPC_BREAKPOINT_TRIGGER_READ;
1736 else if (rw == hw_write)
1737 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1738 else
1739 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1740
1741 return t;
1742 }
1743
1744 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1745 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1746 or hw_access for an access watchpoint. Returns 0 on success and throws
1747 an error on failure. */
1748
1749 static int
1750 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1751 CORE_ADDR mask, int rw)
1752 {
1753 struct lwp_info *lp;
1754 struct ppc_hw_breakpoint p;
1755
1756 gdb_assert (have_ptrace_booke_interface ());
1757
1758 p.version = PPC_DEBUG_CURRENT_VERSION;
1759 p.trigger_type = get_trigger_type (rw);
1760 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1761 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1762 p.addr = addr;
1763 p.addr2 = mask;
1764 p.condition_value = 0;
1765
1766 ALL_LWPS (lp)
1767 booke_insert_point (&p, TIDGET (lp->ptid));
1768
1769 return 0;
1770 }
1771
1772 /* Remove a masked watchpoint at ADDR with the mask MASK.
1773 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1774 or hw_access for an access watchpoint. Returns 0 on success and throws
1775 an error on failure. */
1776
1777 static int
1778 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1779 CORE_ADDR mask, int rw)
1780 {
1781 struct lwp_info *lp;
1782 struct ppc_hw_breakpoint p;
1783
1784 gdb_assert (have_ptrace_booke_interface ());
1785
1786 p.version = PPC_DEBUG_CURRENT_VERSION;
1787 p.trigger_type = get_trigger_type (rw);
1788 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1789 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1790 p.addr = addr;
1791 p.addr2 = mask;
1792 p.condition_value = 0;
1793
1794 ALL_LWPS (lp)
1795 booke_remove_point (&p, TIDGET (lp->ptid));
1796
1797 return 0;
1798 }
1799
1800 /* Check whether we have at least one free DVC register. */
1801 static int
1802 can_use_watchpoint_cond_accel (void)
1803 {
1804 struct thread_points *p;
1805 int tid = TIDGET (inferior_ptid);
1806 int cnt = booke_debug_info.num_condition_regs, i;
1807 CORE_ADDR tmp_value;
1808
1809 if (!have_ptrace_booke_interface () || cnt == 0)
1810 return 0;
1811
1812 p = booke_find_thread_points_by_tid (tid, 0);
1813
1814 if (p)
1815 {
1816 for (i = 0; i < max_slots_number; i++)
1817 if (p->hw_breaks[i].hw_break != NULL
1818 && (p->hw_breaks[i].hw_break->condition_mode
1819 != PPC_BREAKPOINT_CONDITION_NONE))
1820 cnt--;
1821
1822 /* There are no available slots now. */
1823 if (cnt <= 0)
1824 return 0;
1825 }
1826
1827 return 1;
1828 }
1829
1830 /* Calculate the enable bits and the contents of the Data Value Compare
1831 debug register present in BookE processors.
1832
1833 ADDR is the address to be watched, LEN is the length of watched data
1834 and DATA_VALUE is the value which will trigger the watchpoint.
1835 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1836 CONDITION_VALUE will hold the value which should be put in the
1837 DVC register. */
1838 static void
1839 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1840 uint32_t *condition_mode, uint64_t *condition_value)
1841 {
1842 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1843 rightmost_enabled_byte;
1844 CORE_ADDR addr_end_data, addr_end_dvc;
1845
1846 /* The DVC register compares bytes within fixed-length windows which
1847 are word-aligned, with length equal to that of the DVC register.
1848 We need to calculate where our watch region is relative to that
1849 window and enable comparison of the bytes which fall within it. */
1850
1851 align_offset = addr % booke_debug_info.sizeof_condition;
1852 addr_end_data = addr + len;
1853 addr_end_dvc = (addr - align_offset
1854 + booke_debug_info.sizeof_condition);
1855 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1856 addr_end_data - addr_end_dvc : 0;
1857 num_byte_enable = len - num_bytes_off_dvc;
1858 /* Here, bytes are numbered from right to left. */
1859 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1860 addr_end_dvc - addr_end_data : 0;
1861
1862 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1863 for (i = 0; i < num_byte_enable; i++)
1864 *condition_mode
1865 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1866
1867 /* Now we need to match the position within the DVC of the comparison
1868 value with where the watch region is relative to the window
1869 (i.e., the ALIGN_OFFSET). */
1870
1871 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1872 << rightmost_enabled_byte * 8);
1873 }
1874
1875 /* Return the number of memory locations that need to be accessed to
1876 evaluate the expression which generated the given value chain.
1877 Returns -1 if there's any register access involved, or if there are
1878 other kinds of values which are not acceptable in a condition
1879 expression (e.g., lval_computed or lval_internalvar). */
1880 static int
1881 num_memory_accesses (struct value *v)
1882 {
1883 int found_memory_cnt = 0;
1884 struct value *head = v;
1885
1886 /* The idea here is that evaluating an expression generates a series
1887 of values, one holding the value of every subexpression. (The
1888 expression a*b+c has five subexpressions: a, b, a*b, c, and
1889 a*b+c.) GDB's values hold almost enough information to establish
1890 the criteria given above --- they identify memory lvalues,
1891 register lvalues, computed values, etcetera. So we can evaluate
1892 the expression, and then scan the chain of values that leaves
1893 behind to determine the memory locations involved in the evaluation
1894 of an expression.
1895
1896 However, I don't think that the values returned by inferior
1897 function calls are special in any way. So this function may not
1898 notice that an expression contains an inferior function call.
1899 FIXME. */
1900
1901 for (; v; v = value_next (v))
1902 {
1903 /* Constants and values from the history are fine. */
1904 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1905 continue;
1906 else if (VALUE_LVAL (v) == lval_memory)
1907 {
1908 /* A lazy memory lvalue is one that GDB never needed to fetch;
1909 we either just used its address (e.g., `a' in `a.b') or
1910 we never needed it at all (e.g., `a' in `a,b'). */
1911 if (!value_lazy (v))
1912 found_memory_cnt++;
1913 }
1914 /* Other kinds of values are not fine. */
1915 else
1916 return -1;
1917 }
1918
1919 return found_memory_cnt;
1920 }
1921
1922 /* Verifies whether the expression COND can be implemented using the
1923 DVC (Data Value Compare) register in BookE processors. The expression
1924 must test the watch value for equality with a constant expression.
1925 If the function returns 1, DATA_VALUE will contain the constant against
1926 which the watch value should be compared and LEN will contain the size
1927 of the constant. */
1928 static int
1929 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1930 CORE_ADDR *data_value, int *len)
1931 {
1932 int pc = 1, num_accesses_left, num_accesses_right;
1933 struct value *left_val, *right_val, *left_chain, *right_chain;
1934
1935 if (cond->elts[0].opcode != BINOP_EQUAL)
1936 return 0;
1937
1938 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1939 num_accesses_left = num_memory_accesses (left_chain);
1940
1941 if (left_val == NULL || num_accesses_left < 0)
1942 {
1943 free_value_chain (left_chain);
1944
1945 return 0;
1946 }
1947
1948 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1949 num_accesses_right = num_memory_accesses (right_chain);
1950
1951 if (right_val == NULL || num_accesses_right < 0)
1952 {
1953 free_value_chain (left_chain);
1954 free_value_chain (right_chain);
1955
1956 return 0;
1957 }
1958
1959 if (num_accesses_left == 1 && num_accesses_right == 0
1960 && VALUE_LVAL (left_val) == lval_memory
1961 && value_address (left_val) == watch_addr)
1962 {
1963 *data_value = value_as_long (right_val);
1964
1965 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1966 the same type as the memory region referenced by LEFT_VAL. */
1967 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1968 }
1969 else if (num_accesses_left == 0 && num_accesses_right == 1
1970 && VALUE_LVAL (right_val) == lval_memory
1971 && value_address (right_val) == watch_addr)
1972 {
1973 *data_value = value_as_long (left_val);
1974
1975 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1976 the same type as the memory region referenced by RIGHT_VAL. */
1977 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1978 }
1979 else
1980 {
1981 free_value_chain (left_chain);
1982 free_value_chain (right_chain);
1983
1984 return 0;
1985 }
1986
1987 free_value_chain (left_chain);
1988 free_value_chain (right_chain);
1989
1990 return 1;
1991 }
1992
1993 /* Return non-zero if the target is capable of using hardware to evaluate
1994 the condition expression, thus only triggering the watchpoint when it is
1995 true. */
1996 static int
1997 ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
1998 struct expression *cond)
1999 {
2000 CORE_ADDR data_value;
2001
2002 return (have_ptrace_booke_interface ()
2003 && booke_debug_info.num_condition_regs > 0
2004 && check_condition (addr, cond, &data_value, &len));
2005 }
2006
2007 /* Set up P with the parameters necessary to request a watchpoint covering
2008 LEN bytes starting at ADDR and if possible with condition expression COND
2009 evaluated by hardware. INSERT tells if we are creating a request for
2010 inserting or removing the watchpoint. */
2011
2012 static void
2013 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2014 int len, int rw, struct expression *cond,
2015 int insert)
2016 {
2017 if (len == 1
2018 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2019 {
2020 int use_condition;
2021 CORE_ADDR data_value;
2022
2023 use_condition = (insert? can_use_watchpoint_cond_accel ()
2024 : booke_debug_info.num_condition_regs > 0);
2025 if (cond && use_condition && check_condition (addr, cond,
2026 &data_value, &len))
2027 calculate_dvc (addr, len, data_value, &p->condition_mode,
2028 &p->condition_value);
2029 else
2030 {
2031 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2032 p->condition_value = 0;
2033 }
2034
2035 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2036 p->addr2 = 0;
2037 }
2038 else
2039 {
2040 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2041 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2042 p->condition_value = 0;
2043
2044 /* The watchpoint will trigger if the address of the memory access is
2045 within the defined range, as follows: p->addr <= address < p->addr2.
2046
2047 Note that the above sentence just documents how ptrace interprets
2048 its arguments; the watchpoint is set to watch the range defined by
2049 the user _inclusively_, as specified by the user interface. */
2050 p->addr2 = (uint64_t) addr + len;
2051 }
2052
2053 p->version = PPC_DEBUG_CURRENT_VERSION;
2054 p->trigger_type = get_trigger_type (rw);
2055 p->addr = (uint64_t) addr;
2056 }
2057
2058 static int
2059 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2060 struct expression *cond)
2061 {
2062 struct lwp_info *lp;
2063 int ret = -1;
2064
2065 if (have_ptrace_booke_interface ())
2066 {
2067 struct ppc_hw_breakpoint p;
2068
2069 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2070
2071 ALL_LWPS (lp)
2072 booke_insert_point (&p, TIDGET (lp->ptid));
2073
2074 ret = 0;
2075 }
2076 else
2077 {
2078 long dabr_value;
2079 long read_mode, write_mode;
2080
2081 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2082 {
2083 /* PowerPC 440 requires only the read/write flags to be passed
2084 to the kernel. */
2085 read_mode = 1;
2086 write_mode = 2;
2087 }
2088 else
2089 {
2090 /* PowerPC 970 and other DABR-based processors are required to pass
2091 the Breakpoint Translation bit together with the flags. */
2092 read_mode = 5;
2093 write_mode = 6;
2094 }
2095
2096 dabr_value = addr & ~(read_mode | write_mode);
2097 switch (rw)
2098 {
2099 case hw_read:
2100 /* Set read and translate bits. */
2101 dabr_value |= read_mode;
2102 break;
2103 case hw_write:
2104 /* Set write and translate bits. */
2105 dabr_value |= write_mode;
2106 break;
2107 case hw_access:
2108 /* Set read, write and translate bits. */
2109 dabr_value |= read_mode | write_mode;
2110 break;
2111 }
2112
2113 saved_dabr_value = dabr_value;
2114
2115 ALL_LWPS (lp)
2116 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2117 saved_dabr_value) < 0)
2118 return -1;
2119
2120 ret = 0;
2121 }
2122
2123 return ret;
2124 }
2125
2126 static int
2127 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2128 struct expression *cond)
2129 {
2130 struct lwp_info *lp;
2131 int ret = -1;
2132
2133 if (have_ptrace_booke_interface ())
2134 {
2135 struct ppc_hw_breakpoint p;
2136
2137 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2138
2139 ALL_LWPS (lp)
2140 booke_remove_point (&p, TIDGET (lp->ptid));
2141
2142 ret = 0;
2143 }
2144 else
2145 {
2146 saved_dabr_value = 0;
2147 ALL_LWPS (lp)
2148 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2149 saved_dabr_value) < 0)
2150 return -1;
2151
2152 ret = 0;
2153 }
2154
2155 return ret;
2156 }
2157
2158 static void
2159 ppc_linux_new_thread (struct lwp_info *lp)
2160 {
2161 int tid = TIDGET (lp->ptid);
2162
2163 if (have_ptrace_booke_interface ())
2164 {
2165 int i;
2166 struct thread_points *p;
2167 struct hw_break_tuple *hw_breaks;
2168
2169 if (VEC_empty (thread_points_p, ppc_threads))
2170 return;
2171
2172 /* Get a list of breakpoints from any thread. */
2173 p = VEC_last (thread_points_p, ppc_threads);
2174 hw_breaks = p->hw_breaks;
2175
2176 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2177 for (i = 0; i < max_slots_number; i++)
2178 if (hw_breaks[i].hw_break)
2179 booke_insert_point (hw_breaks[i].hw_break, tid);
2180 }
2181 else
2182 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2183 }
2184
2185 static void
2186 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2187 {
2188 int i;
2189 int tid = TIDGET (tp->ptid);
2190 struct hw_break_tuple *hw_breaks;
2191 struct thread_points *t = NULL, *p;
2192
2193 if (!have_ptrace_booke_interface ())
2194 return;
2195
2196 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2197 if (p->tid == tid)
2198 {
2199 t = p;
2200 break;
2201 }
2202
2203 if (t == NULL)
2204 return;
2205
2206 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2207
2208 hw_breaks = t->hw_breaks;
2209
2210 for (i = 0; i < max_slots_number; i++)
2211 if (hw_breaks[i].hw_break)
2212 xfree (hw_breaks[i].hw_break);
2213
2214 xfree (t->hw_breaks);
2215 xfree (t);
2216 }
2217
2218 static int
2219 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2220 {
2221 siginfo_t *siginfo_p;
2222
2223 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
2224
2225 if (siginfo_p->si_signo != SIGTRAP
2226 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2227 return 0;
2228
2229 if (have_ptrace_booke_interface ())
2230 {
2231 int i;
2232 struct thread_points *t;
2233 struct hw_break_tuple *hw_breaks;
2234 /* The index (or slot) of the *point is passed in the si_errno field. */
2235 int slot = siginfo_p->si_errno;
2236
2237 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2238
2239 /* Find out if this *point is a hardware breakpoint.
2240 If so, we should return 0. */
2241 if (t)
2242 {
2243 hw_breaks = t->hw_breaks;
2244 for (i = 0; i < max_slots_number; i++)
2245 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2246 && hw_breaks[i].hw_break->trigger_type
2247 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2248 return 0;
2249 }
2250 }
2251
2252 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
2253 return 1;
2254 }
2255
2256 static int
2257 ppc_linux_stopped_by_watchpoint (void)
2258 {
2259 CORE_ADDR addr;
2260 return ppc_linux_stopped_data_address (&current_target, &addr);
2261 }
2262
2263 static int
2264 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2265 CORE_ADDR addr,
2266 CORE_ADDR start, int length)
2267 {
2268 int mask;
2269
2270 if (have_ptrace_booke_interface ()
2271 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2272 return start <= addr && start + length >= addr;
2273 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2274 mask = 3;
2275 else
2276 mask = 7;
2277
2278 addr &= ~mask;
2279
2280 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2281 return start <= addr + mask && start + length - 1 >= addr;
2282 }
2283
2284 /* Return the number of registers needed for a masked hardware watchpoint. */
2285
2286 static int
2287 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2288 CORE_ADDR addr, CORE_ADDR mask)
2289 {
2290 if (!have_ptrace_booke_interface ()
2291 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2292 return -1;
2293 else if ((mask & 0xC0000000) != 0xC0000000)
2294 {
2295 warning (_("The given mask covers kernel address space "
2296 "and cannot be used.\n"));
2297
2298 return -2;
2299 }
2300 else
2301 return 2;
2302 }
2303
2304 static void
2305 ppc_linux_store_inferior_registers (struct target_ops *ops,
2306 struct regcache *regcache, int regno)
2307 {
2308 /* Overload thread id onto process id. */
2309 int tid = TIDGET (inferior_ptid);
2310
2311 /* No thread id, just use process id. */
2312 if (tid == 0)
2313 tid = PIDGET (inferior_ptid);
2314
2315 if (regno >= 0)
2316 store_register (regcache, tid, regno);
2317 else
2318 store_ppc_registers (regcache, tid);
2319 }
2320
2321 /* Functions for transferring registers between a gregset_t or fpregset_t
2322 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2323 by the ptrace interface, not the current program's ABI. Eg. if a
2324 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2325 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2326
2327 void
2328 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2329 {
2330 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2331
2332 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2333 }
2334
2335 void
2336 fill_gregset (const struct regcache *regcache,
2337 gdb_gregset_t *gregsetp, int regno)
2338 {
2339 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2340
2341 if (regno == -1)
2342 memset (gregsetp, 0, sizeof (*gregsetp));
2343 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2344 }
2345
2346 void
2347 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2348 {
2349 const struct regset *regset = ppc_linux_fpregset ();
2350
2351 ppc_supply_fpregset (regset, regcache, -1,
2352 fpregsetp, sizeof (*fpregsetp));
2353 }
2354
2355 void
2356 fill_fpregset (const struct regcache *regcache,
2357 gdb_fpregset_t *fpregsetp, int regno)
2358 {
2359 const struct regset *regset = ppc_linux_fpregset ();
2360
2361 ppc_collect_fpregset (regset, regcache, regno,
2362 fpregsetp, sizeof (*fpregsetp));
2363 }
2364
2365 static int
2366 ppc_linux_target_wordsize (void)
2367 {
2368 int wordsize = 4;
2369
2370 /* Check for 64-bit inferior process. This is the case when the host is
2371 64-bit, and in addition the top bit of the MSR register is set. */
2372 #ifdef __powerpc64__
2373 long msr;
2374
2375 int tid = TIDGET (inferior_ptid);
2376 if (tid == 0)
2377 tid = PIDGET (inferior_ptid);
2378
2379 errno = 0;
2380 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2381 if (errno == 0 && msr < 0)
2382 wordsize = 8;
2383 #endif
2384
2385 return wordsize;
2386 }
2387
2388 static int
2389 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2390 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2391 {
2392 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2393 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
2394 gdb_byte *ptr = *readptr;
2395
2396 if (endptr == ptr)
2397 return 0;
2398
2399 if (endptr - ptr < sizeof_auxv_field * 2)
2400 return -1;
2401
2402 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2403 ptr += sizeof_auxv_field;
2404 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2405 ptr += sizeof_auxv_field;
2406
2407 *readptr = ptr;
2408 return 1;
2409 }
2410
2411 static const struct target_desc *
2412 ppc_linux_read_description (struct target_ops *ops)
2413 {
2414 int altivec = 0;
2415 int vsx = 0;
2416 int isa205 = 0;
2417 int cell = 0;
2418
2419 int tid = TIDGET (inferior_ptid);
2420 if (tid == 0)
2421 tid = PIDGET (inferior_ptid);
2422
2423 if (have_ptrace_getsetevrregs)
2424 {
2425 struct gdb_evrregset_t evrregset;
2426
2427 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2428 return tdesc_powerpc_e500l;
2429
2430 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2431 Anything else needs to be reported. */
2432 else if (errno != EIO)
2433 perror_with_name (_("Unable to fetch SPE registers"));
2434 }
2435
2436 if (have_ptrace_getsetvsxregs)
2437 {
2438 gdb_vsxregset_t vsxregset;
2439
2440 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2441 vsx = 1;
2442
2443 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2444 Anything else needs to be reported. */
2445 else if (errno != EIO)
2446 perror_with_name (_("Unable to fetch VSX registers"));
2447 }
2448
2449 if (have_ptrace_getvrregs)
2450 {
2451 gdb_vrregset_t vrregset;
2452
2453 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2454 altivec = 1;
2455
2456 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2457 Anything else needs to be reported. */
2458 else if (errno != EIO)
2459 perror_with_name (_("Unable to fetch AltiVec registers"));
2460 }
2461
2462 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2463 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2464 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2465 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2466 half of the register are for Decimal Floating Point, we check if that
2467 feature is available to decide the size of the FPSCR. */
2468 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2469 isa205 = 1;
2470
2471 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2472 cell = 1;
2473
2474 if (ppc_linux_target_wordsize () == 8)
2475 {
2476 if (cell)
2477 return tdesc_powerpc_cell64l;
2478 else if (vsx)
2479 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2480 else if (altivec)
2481 return isa205
2482 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2483
2484 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2485 }
2486
2487 if (cell)
2488 return tdesc_powerpc_cell32l;
2489 else if (vsx)
2490 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2491 else if (altivec)
2492 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2493
2494 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2495 }
2496
2497 void _initialize_ppc_linux_nat (void);
2498
2499 void
2500 _initialize_ppc_linux_nat (void)
2501 {
2502 struct target_ops *t;
2503
2504 /* Fill in the generic GNU/Linux methods. */
2505 t = linux_target ();
2506
2507 /* Add our register access methods. */
2508 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2509 t->to_store_registers = ppc_linux_store_inferior_registers;
2510
2511 /* Add our breakpoint/watchpoint methods. */
2512 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2513 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2514 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2515 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2516 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2517 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2518 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2519 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2520 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2521 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2522 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2523 t->to_can_accel_watchpoint_condition
2524 = ppc_linux_can_accel_watchpoint_condition;
2525 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2526 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2527
2528 t->to_read_description = ppc_linux_read_description;
2529 t->to_auxv_parse = ppc_linux_auxv_parse;
2530
2531 observer_attach_thread_exit (ppc_linux_thread_exit);
2532
2533 /* Register the target. */
2534 linux_nat_add_target (t);
2535 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2536 }
This page took 0.085721 seconds and 5 git commands to generate.