target_ops mask_watchpoint: change int to target_hw_bp_type
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observer.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include "gdb_wait.h"
34 #include <fcntl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
37
38 /* Prototypes for supply_gregset etc. */
39 #include "gregset.h"
40 #include "ppc-tdep.h"
41 #include "ppc-linux-tdep.h"
42
43 /* Required when using the AUXV. */
44 #include "elf/common.h"
45 #include "auxv.h"
46
47 #include "nat/ppc-linux.h"
48
49 /* Similarly for the hardware watchpoint support. These requests are used
50 when the PowerPC HWDEBUG ptrace interface is not available. */
51 #ifndef PTRACE_GET_DEBUGREG
52 #define PTRACE_GET_DEBUGREG 25
53 #endif
54 #ifndef PTRACE_SET_DEBUGREG
55 #define PTRACE_SET_DEBUGREG 26
56 #endif
57 #ifndef PTRACE_GETSIGINFO
58 #define PTRACE_GETSIGINFO 0x4202
59 #endif
60
61 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
62 available. It exposes the debug facilities of PowerPC processors, as well
63 as additional features of BookE processors, such as ranged breakpoints and
64 watchpoints and hardware-accelerated condition evaluation. */
65 #ifndef PPC_PTRACE_GETHWDBGINFO
66
67 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
68 ptrace interface is not present in ptrace.h, so we'll have to pretty much
69 include it all here so that the code at least compiles on older systems. */
70 #define PPC_PTRACE_GETHWDBGINFO 0x89
71 #define PPC_PTRACE_SETHWDEBUG 0x88
72 #define PPC_PTRACE_DELHWDEBUG 0x87
73
74 struct ppc_debug_info
75 {
76 uint32_t version; /* Only version 1 exists to date. */
77 uint32_t num_instruction_bps;
78 uint32_t num_data_bps;
79 uint32_t num_condition_regs;
80 uint32_t data_bp_alignment;
81 uint32_t sizeof_condition; /* size of the DVC register. */
82 uint64_t features;
83 };
84
85 /* Features will have bits indicating whether there is support for: */
86 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
87 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
88 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
89 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
90
91 struct ppc_hw_breakpoint
92 {
93 uint32_t version; /* currently, version must be 1 */
94 uint32_t trigger_type; /* only some combinations allowed */
95 uint32_t addr_mode; /* address match mode */
96 uint32_t condition_mode; /* break/watchpoint condition flags */
97 uint64_t addr; /* break/watchpoint address */
98 uint64_t addr2; /* range end or mask */
99 uint64_t condition_value; /* contents of the DVC register */
100 };
101
102 /* Trigger type. */
103 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
104 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
105 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
106 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
107
108 /* Address mode. */
109 #define PPC_BREAKPOINT_MODE_EXACT 0x0
110 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
111 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
112 #define PPC_BREAKPOINT_MODE_MASK 0x3
113
114 /* Condition mode. */
115 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
116 #define PPC_BREAKPOINT_CONDITION_AND 0x1
117 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
118 #define PPC_BREAKPOINT_CONDITION_OR 0x2
119 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
120 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
121 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
122 #define PPC_BREAKPOINT_CONDITION_BE(n) \
123 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
124 #endif /* PPC_PTRACE_GETHWDBGINFO */
125
126 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
127 watchpoint (up to 512 bytes). */
128 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
129 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
130 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
131
132 /* Similarly for the general-purpose (gp0 -- gp31)
133 and floating-point registers (fp0 -- fp31). */
134 #ifndef PTRACE_GETREGS
135 #define PTRACE_GETREGS 12
136 #endif
137 #ifndef PTRACE_SETREGS
138 #define PTRACE_SETREGS 13
139 #endif
140 #ifndef PTRACE_GETFPREGS
141 #define PTRACE_GETFPREGS 14
142 #endif
143 #ifndef PTRACE_SETFPREGS
144 #define PTRACE_SETFPREGS 15
145 #endif
146
147 /* This oddity is because the Linux kernel defines elf_vrregset_t as
148 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
149 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
150 the vrsave as an extra 4 bytes at the end. I opted for creating a
151 flat array of chars, so that it is easier to manipulate for gdb.
152
153 There are 32 vector registers 16 bytes longs, plus a VSCR register
154 which is only 4 bytes long, but is fetched as a 16 bytes
155 quantity. Up to here we have the elf_vrregset_t structure.
156 Appended to this there is space for the VRSAVE register: 4 bytes.
157 Even though this vrsave register is not included in the regset
158 typedef, it is handled by the ptrace requests.
159
160 Note that GNU/Linux doesn't support little endian PPC hardware,
161 therefore the offset at which the real value of the VSCR register
162 is located will be always 12 bytes.
163
164 The layout is like this (where x is the actual value of the vscr reg): */
165
166 /* *INDENT-OFF* */
167 /*
168 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
169 <-------> <-------><-------><->
170 VR0 VR31 VSCR VRSAVE
171 */
172 /* *INDENT-ON* */
173
174 #define SIZEOF_VRREGS 33*16+4
175
176 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
177
178 /* This is the layout of the POWER7 VSX registers and the way they overlap
179 with the existing FPR and VMX registers.
180
181 VSR doubleword 0 VSR doubleword 1
182 ----------------------------------------------------------------
183 VSR[0] | FPR[0] | |
184 ----------------------------------------------------------------
185 VSR[1] | FPR[1] | |
186 ----------------------------------------------------------------
187 | ... | |
188 | ... | |
189 ----------------------------------------------------------------
190 VSR[30] | FPR[30] | |
191 ----------------------------------------------------------------
192 VSR[31] | FPR[31] | |
193 ----------------------------------------------------------------
194 VSR[32] | VR[0] |
195 ----------------------------------------------------------------
196 VSR[33] | VR[1] |
197 ----------------------------------------------------------------
198 | ... |
199 | ... |
200 ----------------------------------------------------------------
201 VSR[62] | VR[30] |
202 ----------------------------------------------------------------
203 VSR[63] | VR[31] |
204 ----------------------------------------------------------------
205
206 VSX has 64 128bit registers. The first 32 registers overlap with
207 the FP registers (doubleword 0) and hence extend them with additional
208 64 bits (doubleword 1). The other 32 regs overlap with the VMX
209 registers. */
210 #define SIZEOF_VSXREGS 32*8
211
212 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
213
214 /* On PPC processors that support the Signal Processing Extension
215 (SPE) APU, the general-purpose registers are 64 bits long.
216 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
217 ptrace calls only access the lower half of each register, to allow
218 them to behave the same way they do on non-SPE systems. There's a
219 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
220 read and write the top halves of all the general-purpose registers
221 at once, along with some SPE-specific registers.
222
223 GDB itself continues to claim the general-purpose registers are 32
224 bits long. It has unnamed raw registers that hold the upper halves
225 of the gprs, and the full 64-bit SIMD views of the registers,
226 'ev0' -- 'ev31', are pseudo-registers that splice the top and
227 bottom halves together.
228
229 This is the structure filled in by PTRACE_GETEVRREGS and written to
230 the inferior's registers by PTRACE_SETEVRREGS. */
231 struct gdb_evrregset_t
232 {
233 unsigned long evr[32];
234 unsigned long long acc;
235 unsigned long spefscr;
236 };
237
238 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
239 PTRACE_SETVSXREGS requests, for reading and writing the VSX
240 POWER7 registers 0 through 31. Zero if we've tried one of them and
241 gotten an error. Note that VSX registers 32 through 63 overlap
242 with VR registers 0 through 31. */
243 int have_ptrace_getsetvsxregs = 1;
244
245 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
246 PTRACE_SETVRREGS requests, for reading and writing the Altivec
247 registers. Zero if we've tried one of them and gotten an
248 error. */
249 int have_ptrace_getvrregs = 1;
250
251 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
252 PTRACE_SETEVRREGS requests, for reading and writing the SPE
253 registers. Zero if we've tried one of them and gotten an
254 error. */
255 int have_ptrace_getsetevrregs = 1;
256
257 /* Non-zero if our kernel may support the PTRACE_GETREGS and
258 PTRACE_SETREGS requests, for reading and writing the
259 general-purpose registers. Zero if we've tried one of
260 them and gotten an error. */
261 int have_ptrace_getsetregs = 1;
262
263 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
264 PTRACE_SETFPREGS requests, for reading and writing the
265 floating-pointers registers. Zero if we've tried one of
266 them and gotten an error. */
267 int have_ptrace_getsetfpregs = 1;
268
269 /* *INDENT-OFF* */
270 /* registers layout, as presented by the ptrace interface:
271 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
272 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
273 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
274 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
275 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
276 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
277 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
278 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
279 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
280 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
281 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
282 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
283 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
284 /* *INDENT_ON * */
285
286 static int
287 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
288 {
289 int u_addr = -1;
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
292 interface, and not the wordsize of the program's ABI. */
293 int wordsize = sizeof (long);
294
295 /* General purpose registers occupy 1 slot each in the buffer. */
296 if (regno >= tdep->ppc_gp0_regnum
297 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
298 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
299
300 /* Floating point regs: eight bytes each in both 32- and 64-bit
301 ptrace interfaces. Thus, two slots each in 32-bit interface, one
302 slot each in 64-bit interface. */
303 if (tdep->ppc_fp0_regnum >= 0
304 && regno >= tdep->ppc_fp0_regnum
305 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
306 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
307
308 /* UISA special purpose registers: 1 slot each. */
309 if (regno == gdbarch_pc_regnum (gdbarch))
310 u_addr = PT_NIP * wordsize;
311 if (regno == tdep->ppc_lr_regnum)
312 u_addr = PT_LNK * wordsize;
313 if (regno == tdep->ppc_cr_regnum)
314 u_addr = PT_CCR * wordsize;
315 if (regno == tdep->ppc_xer_regnum)
316 u_addr = PT_XER * wordsize;
317 if (regno == tdep->ppc_ctr_regnum)
318 u_addr = PT_CTR * wordsize;
319 #ifdef PT_MQ
320 if (regno == tdep->ppc_mq_regnum)
321 u_addr = PT_MQ * wordsize;
322 #endif
323 if (regno == tdep->ppc_ps_regnum)
324 u_addr = PT_MSR * wordsize;
325 if (regno == PPC_ORIG_R3_REGNUM)
326 u_addr = PT_ORIG_R3 * wordsize;
327 if (regno == PPC_TRAP_REGNUM)
328 u_addr = PT_TRAP * wordsize;
329 if (tdep->ppc_fpscr_regnum >= 0
330 && regno == tdep->ppc_fpscr_regnum)
331 {
332 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
333 kernel headers incorrectly contained the 32-bit definition of
334 PT_FPSCR. For the 32-bit definition, floating-point
335 registers occupy two 32-bit "slots", and the FPSCR lives in
336 the second half of such a slot-pair (hence +1). For 64-bit,
337 the FPSCR instead occupies the full 64-bit 2-word-slot and
338 hence no adjustment is necessary. Hack around this. */
339 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
340 u_addr = (48 + 32) * wordsize;
341 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
342 slot and not just its second word. The PT_FPSCR supplied when
343 GDB is compiled as a 32-bit app doesn't reflect this. */
344 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
345 && PT_FPSCR == (48 + 2*32 + 1))
346 u_addr = (48 + 2*32) * wordsize;
347 else
348 u_addr = PT_FPSCR * wordsize;
349 }
350 return u_addr;
351 }
352
353 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
354 registers set mechanism, as opposed to the interface for all the
355 other registers, that stores/fetches each register individually. */
356 static void
357 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
358 {
359 int ret;
360 gdb_vsxregset_t regs;
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
364
365 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
366 if (ret < 0)
367 {
368 if (errno == EIO)
369 {
370 have_ptrace_getsetvsxregs = 0;
371 return;
372 }
373 perror_with_name (_("Unable to fetch VSX register"));
374 }
375
376 regcache_raw_supply (regcache, regno,
377 regs + (regno - tdep->ppc_vsr0_upper_regnum)
378 * vsxregsize);
379 }
380
381 /* The Linux kernel ptrace interface for AltiVec registers uses the
382 registers set mechanism, as opposed to the interface for all the
383 other registers, that stores/fetches each register individually. */
384 static void
385 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
386 {
387 int ret;
388 int offset = 0;
389 gdb_vrregset_t regs;
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
392 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
393
394 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
395 if (ret < 0)
396 {
397 if (errno == EIO)
398 {
399 have_ptrace_getvrregs = 0;
400 return;
401 }
402 perror_with_name (_("Unable to fetch AltiVec register"));
403 }
404
405 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
406 long on the hardware. We deal only with the lower 4 bytes of the
407 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
408 there is no need to define an offset for it. */
409 if (regno == (tdep->ppc_vrsave_regnum - 1))
410 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
411
412 regcache_raw_supply (regcache, regno,
413 regs + (regno
414 - tdep->ppc_vr0_regnum) * vrregsize + offset);
415 }
416
417 /* Fetch the top 32 bits of TID's general-purpose registers and the
418 SPE-specific registers, and place the results in EVRREGSET. If we
419 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
420 zeros.
421
422 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
423 PTRACE_SETEVRREGS requests are supported is isolated here, and in
424 set_spe_registers. */
425 static void
426 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
427 {
428 if (have_ptrace_getsetevrregs)
429 {
430 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
431 return;
432 else
433 {
434 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
435 we just return zeros. */
436 if (errno == EIO)
437 have_ptrace_getsetevrregs = 0;
438 else
439 /* Anything else needs to be reported. */
440 perror_with_name (_("Unable to fetch SPE registers"));
441 }
442 }
443
444 memset (evrregset, 0, sizeof (*evrregset));
445 }
446
447 /* Supply values from TID for SPE-specific raw registers: the upper
448 halves of the GPRs, the accumulator, and the spefscr. REGNO must
449 be the number of an upper half register, acc, spefscr, or -1 to
450 supply the values of all registers. */
451 static void
452 fetch_spe_register (struct regcache *regcache, int tid, int regno)
453 {
454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456 struct gdb_evrregset_t evrregs;
457
458 gdb_assert (sizeof (evrregs.evr[0])
459 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
460 gdb_assert (sizeof (evrregs.acc)
461 == register_size (gdbarch, tdep->ppc_acc_regnum));
462 gdb_assert (sizeof (evrregs.spefscr)
463 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
464
465 get_spe_registers (tid, &evrregs);
466
467 if (regno == -1)
468 {
469 int i;
470
471 for (i = 0; i < ppc_num_gprs; i++)
472 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
473 &evrregs.evr[i]);
474 }
475 else if (tdep->ppc_ev0_upper_regnum <= regno
476 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
477 regcache_raw_supply (regcache, regno,
478 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
479
480 if (regno == -1
481 || regno == tdep->ppc_acc_regnum)
482 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
483
484 if (regno == -1
485 || regno == tdep->ppc_spefscr_regnum)
486 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
487 &evrregs.spefscr);
488 }
489
490 static void
491 fetch_register (struct regcache *regcache, int tid, int regno)
492 {
493 struct gdbarch *gdbarch = get_regcache_arch (regcache);
494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
495 /* This isn't really an address. But ptrace thinks of it as one. */
496 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
497 int bytes_transferred;
498 unsigned int offset; /* Offset of registers within the u area. */
499 gdb_byte buf[MAX_REGISTER_SIZE];
500
501 if (altivec_register_p (gdbarch, regno))
502 {
503 /* If this is the first time through, or if it is not the first
504 time through, and we have comfirmed that there is kernel
505 support for such a ptrace request, then go and fetch the
506 register. */
507 if (have_ptrace_getvrregs)
508 {
509 fetch_altivec_register (regcache, tid, regno);
510 return;
511 }
512 /* If we have discovered that there is no ptrace support for
513 AltiVec registers, fall through and return zeroes, because
514 regaddr will be -1 in this case. */
515 }
516 if (vsx_register_p (gdbarch, regno))
517 {
518 if (have_ptrace_getsetvsxregs)
519 {
520 fetch_vsx_register (regcache, tid, regno);
521 return;
522 }
523 }
524 else if (spe_register_p (gdbarch, regno))
525 {
526 fetch_spe_register (regcache, tid, regno);
527 return;
528 }
529
530 if (regaddr == -1)
531 {
532 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
533 regcache_raw_supply (regcache, regno, buf);
534 return;
535 }
536
537 /* Read the raw register using sizeof(long) sized chunks. On a
538 32-bit platform, 64-bit floating-point registers will require two
539 transfers. */
540 for (bytes_transferred = 0;
541 bytes_transferred < register_size (gdbarch, regno);
542 bytes_transferred += sizeof (long))
543 {
544 long l;
545
546 errno = 0;
547 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
548 regaddr += sizeof (long);
549 if (errno != 0)
550 {
551 char message[128];
552 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
553 gdbarch_register_name (gdbarch, regno), regno);
554 perror_with_name (message);
555 }
556 memcpy (&buf[bytes_transferred], &l, sizeof (l));
557 }
558
559 /* Now supply the register. Keep in mind that the regcache's idea
560 of the register's size may not be a multiple of sizeof
561 (long). */
562 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
563 {
564 /* Little-endian values are always found at the left end of the
565 bytes transferred. */
566 regcache_raw_supply (regcache, regno, buf);
567 }
568 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
569 {
570 /* Big-endian values are found at the right end of the bytes
571 transferred. */
572 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
573 regcache_raw_supply (regcache, regno, buf + padding);
574 }
575 else
576 internal_error (__FILE__, __LINE__,
577 _("fetch_register: unexpected byte order: %d"),
578 gdbarch_byte_order (gdbarch));
579 }
580
581 static void
582 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
583 {
584 int i;
585 struct gdbarch *gdbarch = get_regcache_arch (regcache);
586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
587 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
588
589 for (i = 0; i < ppc_num_vshrs; i++)
590 {
591 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
592 *vsxregsetp + i * vsxregsize);
593 }
594 }
595
596 static void
597 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
598 {
599 int i;
600 struct gdbarch *gdbarch = get_regcache_arch (regcache);
601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
602 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
603 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
604 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
605
606 for (i = 0; i < num_of_vrregs; i++)
607 {
608 /* The last 2 registers of this set are only 32 bit long, not
609 128. However an offset is necessary only for VSCR because it
610 occupies a whole vector, while VRSAVE occupies a full 4 bytes
611 slot. */
612 if (i == (num_of_vrregs - 2))
613 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
614 *vrregsetp + i * vrregsize + offset);
615 else
616 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
617 *vrregsetp + i * vrregsize);
618 }
619 }
620
621 static void
622 fetch_vsx_registers (struct regcache *regcache, int tid)
623 {
624 int ret;
625 gdb_vsxregset_t regs;
626
627 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
628 if (ret < 0)
629 {
630 if (errno == EIO)
631 {
632 have_ptrace_getsetvsxregs = 0;
633 return;
634 }
635 perror_with_name (_("Unable to fetch VSX registers"));
636 }
637 supply_vsxregset (regcache, &regs);
638 }
639
640 static void
641 fetch_altivec_registers (struct regcache *regcache, int tid)
642 {
643 int ret;
644 gdb_vrregset_t regs;
645
646 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
647 if (ret < 0)
648 {
649 if (errno == EIO)
650 {
651 have_ptrace_getvrregs = 0;
652 return;
653 }
654 perror_with_name (_("Unable to fetch AltiVec registers"));
655 }
656 supply_vrregset (regcache, &regs);
657 }
658
659 /* This function actually issues the request to ptrace, telling
660 it to get all general-purpose registers and put them into the
661 specified regset.
662
663 If the ptrace request does not exist, this function returns 0
664 and properly sets the have_ptrace_* flag. If the request fails,
665 this function calls perror_with_name. Otherwise, if the request
666 succeeds, then the regcache gets filled and 1 is returned. */
667 static int
668 fetch_all_gp_regs (struct regcache *regcache, int tid)
669 {
670 struct gdbarch *gdbarch = get_regcache_arch (regcache);
671 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
672 gdb_gregset_t gregset;
673
674 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
675 {
676 if (errno == EIO)
677 {
678 have_ptrace_getsetregs = 0;
679 return 0;
680 }
681 perror_with_name (_("Couldn't get general-purpose registers."));
682 }
683
684 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
685
686 return 1;
687 }
688
689 /* This is a wrapper for the fetch_all_gp_regs function. It is
690 responsible for verifying if this target has the ptrace request
691 that can be used to fetch all general-purpose registers at one
692 shot. If it doesn't, then we should fetch them using the
693 old-fashioned way, which is to iterate over the registers and
694 request them one by one. */
695 static void
696 fetch_gp_regs (struct regcache *regcache, int tid)
697 {
698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
700 int i;
701
702 if (have_ptrace_getsetregs)
703 if (fetch_all_gp_regs (regcache, tid))
704 return;
705
706 /* If we've hit this point, it doesn't really matter which
707 architecture we are using. We just need to read the
708 registers in the "old-fashioned way". */
709 for (i = 0; i < ppc_num_gprs; i++)
710 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
711 }
712
713 /* This function actually issues the request to ptrace, telling
714 it to get all floating-point registers and put them into the
715 specified regset.
716
717 If the ptrace request does not exist, this function returns 0
718 and properly sets the have_ptrace_* flag. If the request fails,
719 this function calls perror_with_name. Otherwise, if the request
720 succeeds, then the regcache gets filled and 1 is returned. */
721 static int
722 fetch_all_fp_regs (struct regcache *regcache, int tid)
723 {
724 gdb_fpregset_t fpregs;
725
726 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetfpregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get floating-point registers."));
734 }
735
736 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_fp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all floating-point registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_fp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetfpregs)
755 if (fetch_all_fp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_fprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
763 }
764
765 static void
766 fetch_ppc_registers (struct regcache *regcache, int tid)
767 {
768 int i;
769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
771
772 fetch_gp_regs (regcache, tid);
773 if (tdep->ppc_fp0_regnum >= 0)
774 fetch_fp_regs (regcache, tid);
775 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
776 if (tdep->ppc_ps_regnum != -1)
777 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
778 if (tdep->ppc_cr_regnum != -1)
779 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
780 if (tdep->ppc_lr_regnum != -1)
781 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
782 if (tdep->ppc_ctr_regnum != -1)
783 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
784 if (tdep->ppc_xer_regnum != -1)
785 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
786 if (tdep->ppc_mq_regnum != -1)
787 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
788 if (ppc_linux_trap_reg_p (gdbarch))
789 {
790 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
791 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
792 }
793 if (tdep->ppc_fpscr_regnum != -1)
794 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
795 if (have_ptrace_getvrregs)
796 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
797 fetch_altivec_registers (regcache, tid);
798 if (have_ptrace_getsetvsxregs)
799 if (tdep->ppc_vsr0_upper_regnum != -1)
800 fetch_vsx_registers (regcache, tid);
801 if (tdep->ppc_ev0_upper_regnum >= 0)
802 fetch_spe_register (regcache, tid, -1);
803 }
804
805 /* Fetch registers from the child process. Fetch all registers if
806 regno == -1, otherwise fetch all general registers or all floating
807 point registers depending upon the value of regno. */
808 static void
809 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
810 struct regcache *regcache, int regno)
811 {
812 /* Overload thread id onto process id. */
813 int tid = ptid_get_lwp (inferior_ptid);
814
815 /* No thread id, just use process id. */
816 if (tid == 0)
817 tid = ptid_get_pid (inferior_ptid);
818
819 if (regno == -1)
820 fetch_ppc_registers (regcache, tid);
821 else
822 fetch_register (regcache, tid, regno);
823 }
824
825 /* Store one VSX register. */
826 static void
827 store_vsx_register (const struct regcache *regcache, int tid, int regno)
828 {
829 int ret;
830 gdb_vsxregset_t regs;
831 struct gdbarch *gdbarch = get_regcache_arch (regcache);
832 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
833 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
834
835 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
836 if (ret < 0)
837 {
838 if (errno == EIO)
839 {
840 have_ptrace_getsetvsxregs = 0;
841 return;
842 }
843 perror_with_name (_("Unable to fetch VSX register"));
844 }
845
846 regcache_raw_collect (regcache, regno, regs +
847 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
848
849 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
850 if (ret < 0)
851 perror_with_name (_("Unable to store VSX register"));
852 }
853
854 /* Store one register. */
855 static void
856 store_altivec_register (const struct regcache *regcache, int tid, int regno)
857 {
858 int ret;
859 int offset = 0;
860 gdb_vrregset_t regs;
861 struct gdbarch *gdbarch = get_regcache_arch (regcache);
862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
863 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
864
865 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
866 if (ret < 0)
867 {
868 if (errno == EIO)
869 {
870 have_ptrace_getvrregs = 0;
871 return;
872 }
873 perror_with_name (_("Unable to fetch AltiVec register"));
874 }
875
876 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
877 long on the hardware. */
878 if (regno == (tdep->ppc_vrsave_regnum - 1))
879 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
880
881 regcache_raw_collect (regcache, regno,
882 regs + (regno
883 - tdep->ppc_vr0_regnum) * vrregsize + offset);
884
885 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
886 if (ret < 0)
887 perror_with_name (_("Unable to store AltiVec register"));
888 }
889
890 /* Assuming TID referrs to an SPE process, set the top halves of TID's
891 general-purpose registers and its SPE-specific registers to the
892 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
893 nothing.
894
895 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
896 PTRACE_SETEVRREGS requests are supported is isolated here, and in
897 get_spe_registers. */
898 static void
899 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
900 {
901 if (have_ptrace_getsetevrregs)
902 {
903 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
904 return;
905 else
906 {
907 /* EIO means that the PTRACE_SETEVRREGS request isn't
908 supported; we fail silently, and don't try the call
909 again. */
910 if (errno == EIO)
911 have_ptrace_getsetevrregs = 0;
912 else
913 /* Anything else needs to be reported. */
914 perror_with_name (_("Unable to set SPE registers"));
915 }
916 }
917 }
918
919 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
920 If REGNO is -1, write the values of all the SPE-specific
921 registers. */
922 static void
923 store_spe_register (const struct regcache *regcache, int tid, int regno)
924 {
925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
927 struct gdb_evrregset_t evrregs;
928
929 gdb_assert (sizeof (evrregs.evr[0])
930 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
931 gdb_assert (sizeof (evrregs.acc)
932 == register_size (gdbarch, tdep->ppc_acc_regnum));
933 gdb_assert (sizeof (evrregs.spefscr)
934 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
935
936 if (regno == -1)
937 /* Since we're going to write out every register, the code below
938 should store to every field of evrregs; if that doesn't happen,
939 make it obvious by initializing it with suspicious values. */
940 memset (&evrregs, 42, sizeof (evrregs));
941 else
942 /* We can only read and write the entire EVR register set at a
943 time, so to write just a single register, we do a
944 read-modify-write maneuver. */
945 get_spe_registers (tid, &evrregs);
946
947 if (regno == -1)
948 {
949 int i;
950
951 for (i = 0; i < ppc_num_gprs; i++)
952 regcache_raw_collect (regcache,
953 tdep->ppc_ev0_upper_regnum + i,
954 &evrregs.evr[i]);
955 }
956 else if (tdep->ppc_ev0_upper_regnum <= regno
957 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
958 regcache_raw_collect (regcache, regno,
959 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
960
961 if (regno == -1
962 || regno == tdep->ppc_acc_regnum)
963 regcache_raw_collect (regcache,
964 tdep->ppc_acc_regnum,
965 &evrregs.acc);
966
967 if (regno == -1
968 || regno == tdep->ppc_spefscr_regnum)
969 regcache_raw_collect (regcache,
970 tdep->ppc_spefscr_regnum,
971 &evrregs.spefscr);
972
973 /* Write back the modified register set. */
974 set_spe_registers (tid, &evrregs);
975 }
976
977 static void
978 store_register (const struct regcache *regcache, int tid, int regno)
979 {
980 struct gdbarch *gdbarch = get_regcache_arch (regcache);
981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
982 /* This isn't really an address. But ptrace thinks of it as one. */
983 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
984 int i;
985 size_t bytes_to_transfer;
986 gdb_byte buf[MAX_REGISTER_SIZE];
987
988 if (altivec_register_p (gdbarch, regno))
989 {
990 store_altivec_register (regcache, tid, regno);
991 return;
992 }
993 if (vsx_register_p (gdbarch, regno))
994 {
995 store_vsx_register (regcache, tid, regno);
996 return;
997 }
998 else if (spe_register_p (gdbarch, regno))
999 {
1000 store_spe_register (regcache, tid, regno);
1001 return;
1002 }
1003
1004 if (regaddr == -1)
1005 return;
1006
1007 /* First collect the register. Keep in mind that the regcache's
1008 idea of the register's size may not be a multiple of sizeof
1009 (long). */
1010 memset (buf, 0, sizeof buf);
1011 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1012 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1013 {
1014 /* Little-endian values always sit at the left end of the buffer. */
1015 regcache_raw_collect (regcache, regno, buf);
1016 }
1017 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1018 {
1019 /* Big-endian values sit at the right end of the buffer. */
1020 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1021 regcache_raw_collect (regcache, regno, buf + padding);
1022 }
1023
1024 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1025 {
1026 long l;
1027
1028 memcpy (&l, &buf[i], sizeof (l));
1029 errno = 0;
1030 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1031 regaddr += sizeof (long);
1032
1033 if (errno == EIO
1034 && (regno == tdep->ppc_fpscr_regnum
1035 || regno == PPC_ORIG_R3_REGNUM
1036 || regno == PPC_TRAP_REGNUM))
1037 {
1038 /* Some older kernel versions don't allow fpscr, orig_r3
1039 or trap to be written. */
1040 continue;
1041 }
1042
1043 if (errno != 0)
1044 {
1045 char message[128];
1046 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1047 gdbarch_register_name (gdbarch, regno), regno);
1048 perror_with_name (message);
1049 }
1050 }
1051 }
1052
1053 static void
1054 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1055 {
1056 int i;
1057 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1059 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1060
1061 for (i = 0; i < ppc_num_vshrs; i++)
1062 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1063 *vsxregsetp + i * vsxregsize);
1064 }
1065
1066 static void
1067 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1068 {
1069 int i;
1070 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1072 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1073 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1074 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1075
1076 for (i = 0; i < num_of_vrregs; i++)
1077 {
1078 /* The last 2 registers of this set are only 32 bit long, not
1079 128, but only VSCR is fetched as a 16 bytes quantity. */
1080 if (i == (num_of_vrregs - 2))
1081 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1082 *vrregsetp + i * vrregsize + offset);
1083 else
1084 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1085 *vrregsetp + i * vrregsize);
1086 }
1087 }
1088
1089 static void
1090 store_vsx_registers (const struct regcache *regcache, int tid)
1091 {
1092 int ret;
1093 gdb_vsxregset_t regs;
1094
1095 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1096 if (ret < 0)
1097 {
1098 if (errno == EIO)
1099 {
1100 have_ptrace_getsetvsxregs = 0;
1101 return;
1102 }
1103 perror_with_name (_("Couldn't get VSX registers"));
1104 }
1105
1106 fill_vsxregset (regcache, &regs);
1107
1108 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1109 perror_with_name (_("Couldn't write VSX registers"));
1110 }
1111
1112 static void
1113 store_altivec_registers (const struct regcache *regcache, int tid)
1114 {
1115 int ret;
1116 gdb_vrregset_t regs;
1117
1118 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1119 if (ret < 0)
1120 {
1121 if (errno == EIO)
1122 {
1123 have_ptrace_getvrregs = 0;
1124 return;
1125 }
1126 perror_with_name (_("Couldn't get AltiVec registers"));
1127 }
1128
1129 fill_vrregset (regcache, &regs);
1130
1131 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1132 perror_with_name (_("Couldn't write AltiVec registers"));
1133 }
1134
1135 /* This function actually issues the request to ptrace, telling
1136 it to store all general-purpose registers present in the specified
1137 regset.
1138
1139 If the ptrace request does not exist, this function returns 0
1140 and properly sets the have_ptrace_* flag. If the request fails,
1141 this function calls perror_with_name. Otherwise, if the request
1142 succeeds, then the regcache is stored and 1 is returned. */
1143 static int
1144 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1145 {
1146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1148 gdb_gregset_t gregset;
1149
1150 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1151 {
1152 if (errno == EIO)
1153 {
1154 have_ptrace_getsetregs = 0;
1155 return 0;
1156 }
1157 perror_with_name (_("Couldn't get general-purpose registers."));
1158 }
1159
1160 fill_gregset (regcache, &gregset, regno);
1161
1162 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1163 {
1164 if (errno == EIO)
1165 {
1166 have_ptrace_getsetregs = 0;
1167 return 0;
1168 }
1169 perror_with_name (_("Couldn't set general-purpose registers."));
1170 }
1171
1172 return 1;
1173 }
1174
1175 /* This is a wrapper for the store_all_gp_regs function. It is
1176 responsible for verifying if this target has the ptrace request
1177 that can be used to store all general-purpose registers at one
1178 shot. If it doesn't, then we should store them using the
1179 old-fashioned way, which is to iterate over the registers and
1180 store them one by one. */
1181 static void
1182 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1183 {
1184 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1186 int i;
1187
1188 if (have_ptrace_getsetregs)
1189 if (store_all_gp_regs (regcache, tid, regno))
1190 return;
1191
1192 /* If we hit this point, it doesn't really matter which
1193 architecture we are using. We just need to store the
1194 registers in the "old-fashioned way". */
1195 for (i = 0; i < ppc_num_gprs; i++)
1196 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1197 }
1198
1199 /* This function actually issues the request to ptrace, telling
1200 it to store all floating-point registers present in the specified
1201 regset.
1202
1203 If the ptrace request does not exist, this function returns 0
1204 and properly sets the have_ptrace_* flag. If the request fails,
1205 this function calls perror_with_name. Otherwise, if the request
1206 succeeds, then the regcache is stored and 1 is returned. */
1207 static int
1208 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1209 {
1210 gdb_fpregset_t fpregs;
1211
1212 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1213 {
1214 if (errno == EIO)
1215 {
1216 have_ptrace_getsetfpregs = 0;
1217 return 0;
1218 }
1219 perror_with_name (_("Couldn't get floating-point registers."));
1220 }
1221
1222 fill_fpregset (regcache, &fpregs, regno);
1223
1224 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1225 {
1226 if (errno == EIO)
1227 {
1228 have_ptrace_getsetfpregs = 0;
1229 return 0;
1230 }
1231 perror_with_name (_("Couldn't set floating-point registers."));
1232 }
1233
1234 return 1;
1235 }
1236
1237 /* This is a wrapper for the store_all_fp_regs function. It is
1238 responsible for verifying if this target has the ptrace request
1239 that can be used to store all floating-point registers at one
1240 shot. If it doesn't, then we should store them using the
1241 old-fashioned way, which is to iterate over the registers and
1242 store them one by one. */
1243 static void
1244 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1245 {
1246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1248 int i;
1249
1250 if (have_ptrace_getsetfpregs)
1251 if (store_all_fp_regs (regcache, tid, regno))
1252 return;
1253
1254 /* If we hit this point, it doesn't really matter which
1255 architecture we are using. We just need to store the
1256 registers in the "old-fashioned way". */
1257 for (i = 0; i < ppc_num_fprs; i++)
1258 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1259 }
1260
1261 static void
1262 store_ppc_registers (const struct regcache *regcache, int tid)
1263 {
1264 int i;
1265 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1267
1268 store_gp_regs (regcache, tid, -1);
1269 if (tdep->ppc_fp0_regnum >= 0)
1270 store_fp_regs (regcache, tid, -1);
1271 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1272 if (tdep->ppc_ps_regnum != -1)
1273 store_register (regcache, tid, tdep->ppc_ps_regnum);
1274 if (tdep->ppc_cr_regnum != -1)
1275 store_register (regcache, tid, tdep->ppc_cr_regnum);
1276 if (tdep->ppc_lr_regnum != -1)
1277 store_register (regcache, tid, tdep->ppc_lr_regnum);
1278 if (tdep->ppc_ctr_regnum != -1)
1279 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1280 if (tdep->ppc_xer_regnum != -1)
1281 store_register (regcache, tid, tdep->ppc_xer_regnum);
1282 if (tdep->ppc_mq_regnum != -1)
1283 store_register (regcache, tid, tdep->ppc_mq_regnum);
1284 if (tdep->ppc_fpscr_regnum != -1)
1285 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1286 if (ppc_linux_trap_reg_p (gdbarch))
1287 {
1288 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1289 store_register (regcache, tid, PPC_TRAP_REGNUM);
1290 }
1291 if (have_ptrace_getvrregs)
1292 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1293 store_altivec_registers (regcache, tid);
1294 if (have_ptrace_getsetvsxregs)
1295 if (tdep->ppc_vsr0_upper_regnum != -1)
1296 store_vsx_registers (regcache, tid);
1297 if (tdep->ppc_ev0_upper_regnum >= 0)
1298 store_spe_register (regcache, tid, -1);
1299 }
1300
1301 /* Fetch the AT_HWCAP entry from the aux vector. */
1302 static unsigned long
1303 ppc_linux_get_hwcap (void)
1304 {
1305 CORE_ADDR field;
1306
1307 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1308 return (unsigned long) field;
1309
1310 return 0;
1311 }
1312
1313 /* The cached DABR value, to install in new threads.
1314 This variable is used when the PowerPC HWDEBUG ptrace
1315 interface is not available. */
1316 static long saved_dabr_value;
1317
1318 /* Global structure that will store information about the available
1319 features provided by the PowerPC HWDEBUG ptrace interface. */
1320 static struct ppc_debug_info hwdebug_info;
1321
1322 /* Global variable that holds the maximum number of slots that the
1323 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1324 is available. */
1325 static size_t max_slots_number = 0;
1326
1327 struct hw_break_tuple
1328 {
1329 long slot;
1330 struct ppc_hw_breakpoint *hw_break;
1331 };
1332
1333 /* This is an internal VEC created to store information about *points inserted
1334 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1335 available. */
1336 typedef struct thread_points
1337 {
1338 /* The TID to which this *point relates. */
1339 int tid;
1340 /* Information about the *point, such as its address, type, etc.
1341
1342 Each element inside this vector corresponds to a hardware
1343 breakpoint or watchpoint in the thread represented by TID. The maximum
1344 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1345 the tuple is NULL, then the position in the vector is free. */
1346 struct hw_break_tuple *hw_breaks;
1347 } *thread_points_p;
1348 DEF_VEC_P (thread_points_p);
1349
1350 VEC(thread_points_p) *ppc_threads = NULL;
1351
1352 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1353 available. */
1354 #define PPC_DEBUG_CURRENT_VERSION 1
1355
1356 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1357 static int
1358 have_ptrace_hwdebug_interface (void)
1359 {
1360 static int have_ptrace_hwdebug_interface = -1;
1361
1362 if (have_ptrace_hwdebug_interface == -1)
1363 {
1364 int tid;
1365
1366 tid = ptid_get_lwp (inferior_ptid);
1367 if (tid == 0)
1368 tid = ptid_get_pid (inferior_ptid);
1369
1370 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1371 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1372 {
1373 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1374 provides any supported feature. */
1375 if (hwdebug_info.features != 0)
1376 {
1377 have_ptrace_hwdebug_interface = 1;
1378 max_slots_number = hwdebug_info.num_instruction_bps
1379 + hwdebug_info.num_data_bps
1380 + hwdebug_info.num_condition_regs;
1381 return have_ptrace_hwdebug_interface;
1382 }
1383 }
1384 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1385 have_ptrace_hwdebug_interface = 0;
1386 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1387 }
1388
1389 return have_ptrace_hwdebug_interface;
1390 }
1391
1392 static int
1393 ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1394 enum bptype type, int cnt, int ot)
1395 {
1396 int total_hw_wp, total_hw_bp;
1397
1398 if (have_ptrace_hwdebug_interface ())
1399 {
1400 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1401 available hardware watchpoints and breakpoints is stored at the
1402 hwdebug_info struct. */
1403 total_hw_bp = hwdebug_info.num_instruction_bps;
1404 total_hw_wp = hwdebug_info.num_data_bps;
1405 }
1406 else
1407 {
1408 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1409 consider having 1 hardware watchpoint and no hardware breakpoints. */
1410 total_hw_bp = 0;
1411 total_hw_wp = 1;
1412 }
1413
1414 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1415 || type == bp_access_watchpoint || type == bp_watchpoint)
1416 {
1417 if (cnt + ot > total_hw_wp)
1418 return -1;
1419 }
1420 else if (type == bp_hardware_breakpoint)
1421 {
1422 if (total_hw_bp == 0)
1423 {
1424 /* No hardware breakpoint support. */
1425 return 0;
1426 }
1427 if (cnt > total_hw_bp)
1428 return -1;
1429 }
1430
1431 if (!have_ptrace_hwdebug_interface ())
1432 {
1433 int tid;
1434 ptid_t ptid = inferior_ptid;
1435
1436 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1437 and whether the target has DABR. If either answer is no, the
1438 ptrace call will return -1. Fail in that case. */
1439 tid = ptid_get_lwp (ptid);
1440 if (tid == 0)
1441 tid = ptid_get_pid (ptid);
1442
1443 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1444 return 0;
1445 }
1446
1447 return 1;
1448 }
1449
1450 static int
1451 ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1452 CORE_ADDR addr, int len)
1453 {
1454 /* Handle sub-8-byte quantities. */
1455 if (len <= 0)
1456 return 0;
1457
1458 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1459 restrictions for watchpoints in the processors. In that case, we use that
1460 information to determine the hardcoded watchable region for
1461 watchpoints. */
1462 if (have_ptrace_hwdebug_interface ())
1463 {
1464 int region_size;
1465 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1466 watchpoints and can watch any access within an arbitrary memory
1467 region. This is useful to watch arrays and structs, for instance. It
1468 takes two hardware watchpoints though. */
1469 if (len > 1
1470 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1471 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1472 return 2;
1473 /* Check if the processor provides DAWR interface. */
1474 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1475 /* DAWR interface allows to watch up to 512 byte wide ranges which
1476 can't cross a 512 byte boundary. */
1477 region_size = 512;
1478 else
1479 region_size = hwdebug_info.data_bp_alignment;
1480 /* Server processors provide one hardware watchpoint and addr+len should
1481 fall in the watchable region provided by the ptrace interface. */
1482 if (region_size
1483 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1484 return 0;
1485 }
1486 /* addr+len must fall in the 8 byte watchable region for DABR-based
1487 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1488 ptrace interface, DAC-based processors (i.e., embedded processors) will
1489 use addresses aligned to 4-bytes due to the way the read/write flags are
1490 passed in the old ptrace interface. */
1491 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1492 && (addr + len) > (addr & ~3) + 4)
1493 || (addr + len) > (addr & ~7) + 8)
1494 return 0;
1495
1496 return 1;
1497 }
1498
1499 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1500 static int
1501 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1502 {
1503 return (a->trigger_type == b->trigger_type
1504 && a->addr_mode == b->addr_mode
1505 && a->condition_mode == b->condition_mode
1506 && a->addr == b->addr
1507 && a->addr2 == b->addr2
1508 && a->condition_value == b->condition_value);
1509 }
1510
1511 /* This function can be used to retrieve a thread_points by the TID of the
1512 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1513 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1514 provided TID will be created and returned. */
1515 static struct thread_points *
1516 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1517 {
1518 int i;
1519 struct thread_points *t;
1520
1521 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1522 if (t->tid == tid)
1523 return t;
1524
1525 t = NULL;
1526
1527 /* Do we need to allocate a new point_item
1528 if the wanted one does not exist? */
1529 if (alloc_new)
1530 {
1531 t = XNEW (struct thread_points);
1532 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1533 t->tid = tid;
1534 VEC_safe_push (thread_points_p, ppc_threads, t);
1535 }
1536
1537 return t;
1538 }
1539
1540 /* This function is a generic wrapper that is responsible for inserting a
1541 *point (i.e., calling `ptrace' in order to issue the request to the
1542 kernel) and registering it internally in GDB. */
1543 static void
1544 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1545 {
1546 int i;
1547 long slot;
1548 struct ppc_hw_breakpoint *p = XNEW (struct ppc_hw_breakpoint);
1549 struct hw_break_tuple *hw_breaks;
1550 struct cleanup *c = make_cleanup (xfree, p);
1551 struct thread_points *t;
1552 struct hw_break_tuple *tuple;
1553
1554 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1555
1556 errno = 0;
1557 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1558 if (slot < 0)
1559 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1560
1561 /* Everything went fine, so we have to register this *point. */
1562 t = hwdebug_find_thread_points_by_tid (tid, 1);
1563 gdb_assert (t != NULL);
1564 hw_breaks = t->hw_breaks;
1565
1566 /* Find a free element in the hw_breaks vector. */
1567 for (i = 0; i < max_slots_number; i++)
1568 if (hw_breaks[i].hw_break == NULL)
1569 {
1570 hw_breaks[i].slot = slot;
1571 hw_breaks[i].hw_break = p;
1572 break;
1573 }
1574
1575 gdb_assert (i != max_slots_number);
1576
1577 discard_cleanups (c);
1578 }
1579
1580 /* This function is a generic wrapper that is responsible for removing a
1581 *point (i.e., calling `ptrace' in order to issue the request to the
1582 kernel), and unregistering it internally at GDB. */
1583 static void
1584 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1585 {
1586 int i;
1587 struct hw_break_tuple *hw_breaks;
1588 struct thread_points *t;
1589
1590 t = hwdebug_find_thread_points_by_tid (tid, 0);
1591 gdb_assert (t != NULL);
1592 hw_breaks = t->hw_breaks;
1593
1594 for (i = 0; i < max_slots_number; i++)
1595 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1596 break;
1597
1598 gdb_assert (i != max_slots_number);
1599
1600 /* We have to ignore ENOENT errors because the kernel implements hardware
1601 breakpoints/watchpoints as "one-shot", that is, they are automatically
1602 deleted when hit. */
1603 errno = 0;
1604 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1605 if (errno != ENOENT)
1606 perror_with_name (_("Unexpected error deleting "
1607 "breakpoint or watchpoint"));
1608
1609 xfree (hw_breaks[i].hw_break);
1610 hw_breaks[i].hw_break = NULL;
1611 }
1612
1613 /* Return the number of registers needed for a ranged breakpoint. */
1614
1615 static int
1616 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1617 {
1618 return ((have_ptrace_hwdebug_interface ()
1619 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1620 2 : -1);
1621 }
1622
1623 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1624 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1625
1626 static int
1627 ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1628 struct gdbarch *gdbarch,
1629 struct bp_target_info *bp_tgt)
1630 {
1631 struct lwp_info *lp;
1632 struct ppc_hw_breakpoint p;
1633
1634 if (!have_ptrace_hwdebug_interface ())
1635 return -1;
1636
1637 p.version = PPC_DEBUG_CURRENT_VERSION;
1638 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1639 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1640 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1641 p.condition_value = 0;
1642
1643 if (bp_tgt->length)
1644 {
1645 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1646
1647 /* The breakpoint will trigger if the address of the instruction is
1648 within the defined range, as follows: p.addr <= address < p.addr2. */
1649 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1650 }
1651 else
1652 {
1653 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1654 p.addr2 = 0;
1655 }
1656
1657 ALL_LWPS (lp)
1658 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1659
1660 return 0;
1661 }
1662
1663 static int
1664 ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1665 struct gdbarch *gdbarch,
1666 struct bp_target_info *bp_tgt)
1667 {
1668 struct lwp_info *lp;
1669 struct ppc_hw_breakpoint p;
1670
1671 if (!have_ptrace_hwdebug_interface ())
1672 return -1;
1673
1674 p.version = PPC_DEBUG_CURRENT_VERSION;
1675 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1676 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1677 p.addr = (uint64_t) bp_tgt->placed_address;
1678 p.condition_value = 0;
1679
1680 if (bp_tgt->length)
1681 {
1682 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1683
1684 /* The breakpoint will trigger if the address of the instruction is within
1685 the defined range, as follows: p.addr <= address < p.addr2. */
1686 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1687 }
1688 else
1689 {
1690 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1691 p.addr2 = 0;
1692 }
1693
1694 ALL_LWPS (lp)
1695 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1696
1697 return 0;
1698 }
1699
1700 static int
1701 get_trigger_type (enum target_hw_bp_type type)
1702 {
1703 int t;
1704
1705 if (type == hw_read)
1706 t = PPC_BREAKPOINT_TRIGGER_READ;
1707 else if (type == hw_write)
1708 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1709 else
1710 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1711
1712 return t;
1713 }
1714
1715 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1716 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1717 or hw_access for an access watchpoint. Returns 0 on success and throws
1718 an error on failure. */
1719
1720 static int
1721 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1722 CORE_ADDR mask, enum target_hw_bp_type rw)
1723 {
1724 struct lwp_info *lp;
1725 struct ppc_hw_breakpoint p;
1726
1727 gdb_assert (have_ptrace_hwdebug_interface ());
1728
1729 p.version = PPC_DEBUG_CURRENT_VERSION;
1730 p.trigger_type = get_trigger_type (rw);
1731 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1732 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1733 p.addr = addr;
1734 p.addr2 = mask;
1735 p.condition_value = 0;
1736
1737 ALL_LWPS (lp)
1738 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1739
1740 return 0;
1741 }
1742
1743 /* Remove a masked watchpoint at ADDR with the mask MASK.
1744 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1745 or hw_access for an access watchpoint. Returns 0 on success and throws
1746 an error on failure. */
1747
1748 static int
1749 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1750 CORE_ADDR mask, enum target_hw_bp_type rw)
1751 {
1752 struct lwp_info *lp;
1753 struct ppc_hw_breakpoint p;
1754
1755 gdb_assert (have_ptrace_hwdebug_interface ());
1756
1757 p.version = PPC_DEBUG_CURRENT_VERSION;
1758 p.trigger_type = get_trigger_type (rw);
1759 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1760 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1761 p.addr = addr;
1762 p.addr2 = mask;
1763 p.condition_value = 0;
1764
1765 ALL_LWPS (lp)
1766 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1767
1768 return 0;
1769 }
1770
1771 /* Check whether we have at least one free DVC register. */
1772 static int
1773 can_use_watchpoint_cond_accel (void)
1774 {
1775 struct thread_points *p;
1776 int tid = ptid_get_lwp (inferior_ptid);
1777 int cnt = hwdebug_info.num_condition_regs, i;
1778 CORE_ADDR tmp_value;
1779
1780 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1781 return 0;
1782
1783 p = hwdebug_find_thread_points_by_tid (tid, 0);
1784
1785 if (p)
1786 {
1787 for (i = 0; i < max_slots_number; i++)
1788 if (p->hw_breaks[i].hw_break != NULL
1789 && (p->hw_breaks[i].hw_break->condition_mode
1790 != PPC_BREAKPOINT_CONDITION_NONE))
1791 cnt--;
1792
1793 /* There are no available slots now. */
1794 if (cnt <= 0)
1795 return 0;
1796 }
1797
1798 return 1;
1799 }
1800
1801 /* Calculate the enable bits and the contents of the Data Value Compare
1802 debug register present in BookE processors.
1803
1804 ADDR is the address to be watched, LEN is the length of watched data
1805 and DATA_VALUE is the value which will trigger the watchpoint.
1806 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1807 CONDITION_VALUE will hold the value which should be put in the
1808 DVC register. */
1809 static void
1810 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1811 uint32_t *condition_mode, uint64_t *condition_value)
1812 {
1813 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1814 rightmost_enabled_byte;
1815 CORE_ADDR addr_end_data, addr_end_dvc;
1816
1817 /* The DVC register compares bytes within fixed-length windows which
1818 are word-aligned, with length equal to that of the DVC register.
1819 We need to calculate where our watch region is relative to that
1820 window and enable comparison of the bytes which fall within it. */
1821
1822 align_offset = addr % hwdebug_info.sizeof_condition;
1823 addr_end_data = addr + len;
1824 addr_end_dvc = (addr - align_offset
1825 + hwdebug_info.sizeof_condition);
1826 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1827 addr_end_data - addr_end_dvc : 0;
1828 num_byte_enable = len - num_bytes_off_dvc;
1829 /* Here, bytes are numbered from right to left. */
1830 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1831 addr_end_dvc - addr_end_data : 0;
1832
1833 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1834 for (i = 0; i < num_byte_enable; i++)
1835 *condition_mode
1836 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1837
1838 /* Now we need to match the position within the DVC of the comparison
1839 value with where the watch region is relative to the window
1840 (i.e., the ALIGN_OFFSET). */
1841
1842 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1843 << rightmost_enabled_byte * 8);
1844 }
1845
1846 /* Return the number of memory locations that need to be accessed to
1847 evaluate the expression which generated the given value chain.
1848 Returns -1 if there's any register access involved, or if there are
1849 other kinds of values which are not acceptable in a condition
1850 expression (e.g., lval_computed or lval_internalvar). */
1851 static int
1852 num_memory_accesses (struct value *v)
1853 {
1854 int found_memory_cnt = 0;
1855 struct value *head = v;
1856
1857 /* The idea here is that evaluating an expression generates a series
1858 of values, one holding the value of every subexpression. (The
1859 expression a*b+c has five subexpressions: a, b, a*b, c, and
1860 a*b+c.) GDB's values hold almost enough information to establish
1861 the criteria given above --- they identify memory lvalues,
1862 register lvalues, computed values, etcetera. So we can evaluate
1863 the expression, and then scan the chain of values that leaves
1864 behind to determine the memory locations involved in the evaluation
1865 of an expression.
1866
1867 However, I don't think that the values returned by inferior
1868 function calls are special in any way. So this function may not
1869 notice that an expression contains an inferior function call.
1870 FIXME. */
1871
1872 for (; v; v = value_next (v))
1873 {
1874 /* Constants and values from the history are fine. */
1875 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1876 continue;
1877 else if (VALUE_LVAL (v) == lval_memory)
1878 {
1879 /* A lazy memory lvalue is one that GDB never needed to fetch;
1880 we either just used its address (e.g., `a' in `a.b') or
1881 we never needed it at all (e.g., `a' in `a,b'). */
1882 if (!value_lazy (v))
1883 found_memory_cnt++;
1884 }
1885 /* Other kinds of values are not fine. */
1886 else
1887 return -1;
1888 }
1889
1890 return found_memory_cnt;
1891 }
1892
1893 /* Verifies whether the expression COND can be implemented using the
1894 DVC (Data Value Compare) register in BookE processors. The expression
1895 must test the watch value for equality with a constant expression.
1896 If the function returns 1, DATA_VALUE will contain the constant against
1897 which the watch value should be compared and LEN will contain the size
1898 of the constant. */
1899 static int
1900 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1901 CORE_ADDR *data_value, int *len)
1902 {
1903 int pc = 1, num_accesses_left, num_accesses_right;
1904 struct value *left_val, *right_val, *left_chain, *right_chain;
1905
1906 if (cond->elts[0].opcode != BINOP_EQUAL)
1907 return 0;
1908
1909 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1910 num_accesses_left = num_memory_accesses (left_chain);
1911
1912 if (left_val == NULL || num_accesses_left < 0)
1913 {
1914 free_value_chain (left_chain);
1915
1916 return 0;
1917 }
1918
1919 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1920 num_accesses_right = num_memory_accesses (right_chain);
1921
1922 if (right_val == NULL || num_accesses_right < 0)
1923 {
1924 free_value_chain (left_chain);
1925 free_value_chain (right_chain);
1926
1927 return 0;
1928 }
1929
1930 if (num_accesses_left == 1 && num_accesses_right == 0
1931 && VALUE_LVAL (left_val) == lval_memory
1932 && value_address (left_val) == watch_addr)
1933 {
1934 *data_value = value_as_long (right_val);
1935
1936 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1937 the same type as the memory region referenced by LEFT_VAL. */
1938 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1939 }
1940 else if (num_accesses_left == 0 && num_accesses_right == 1
1941 && VALUE_LVAL (right_val) == lval_memory
1942 && value_address (right_val) == watch_addr)
1943 {
1944 *data_value = value_as_long (left_val);
1945
1946 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1947 the same type as the memory region referenced by RIGHT_VAL. */
1948 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1949 }
1950 else
1951 {
1952 free_value_chain (left_chain);
1953 free_value_chain (right_chain);
1954
1955 return 0;
1956 }
1957
1958 free_value_chain (left_chain);
1959 free_value_chain (right_chain);
1960
1961 return 1;
1962 }
1963
1964 /* Return non-zero if the target is capable of using hardware to evaluate
1965 the condition expression, thus only triggering the watchpoint when it is
1966 true. */
1967 static int
1968 ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
1969 CORE_ADDR addr, int len, int rw,
1970 struct expression *cond)
1971 {
1972 CORE_ADDR data_value;
1973
1974 return (have_ptrace_hwdebug_interface ()
1975 && hwdebug_info.num_condition_regs > 0
1976 && check_condition (addr, cond, &data_value, &len));
1977 }
1978
1979 /* Set up P with the parameters necessary to request a watchpoint covering
1980 LEN bytes starting at ADDR and if possible with condition expression COND
1981 evaluated by hardware. INSERT tells if we are creating a request for
1982 inserting or removing the watchpoint. */
1983
1984 static void
1985 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
1986 int len, enum target_hw_bp_type type,
1987 struct expression *cond, int insert)
1988 {
1989 if (len == 1
1990 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
1991 {
1992 int use_condition;
1993 CORE_ADDR data_value;
1994
1995 use_condition = (insert? can_use_watchpoint_cond_accel ()
1996 : hwdebug_info.num_condition_regs > 0);
1997 if (cond && use_condition && check_condition (addr, cond,
1998 &data_value, &len))
1999 calculate_dvc (addr, len, data_value, &p->condition_mode,
2000 &p->condition_value);
2001 else
2002 {
2003 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2004 p->condition_value = 0;
2005 }
2006
2007 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2008 p->addr2 = 0;
2009 }
2010 else
2011 {
2012 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2013 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2014 p->condition_value = 0;
2015
2016 /* The watchpoint will trigger if the address of the memory access is
2017 within the defined range, as follows: p->addr <= address < p->addr2.
2018
2019 Note that the above sentence just documents how ptrace interprets
2020 its arguments; the watchpoint is set to watch the range defined by
2021 the user _inclusively_, as specified by the user interface. */
2022 p->addr2 = (uint64_t) addr + len;
2023 }
2024
2025 p->version = PPC_DEBUG_CURRENT_VERSION;
2026 p->trigger_type = get_trigger_type (type);
2027 p->addr = (uint64_t) addr;
2028 }
2029
2030 static int
2031 ppc_linux_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
2032 enum target_hw_bp_type type,
2033 struct expression *cond)
2034 {
2035 struct lwp_info *lp;
2036 int ret = -1;
2037
2038 if (have_ptrace_hwdebug_interface ())
2039 {
2040 struct ppc_hw_breakpoint p;
2041
2042 create_watchpoint_request (&p, addr, len, type, cond, 1);
2043
2044 ALL_LWPS (lp)
2045 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2046
2047 ret = 0;
2048 }
2049 else
2050 {
2051 long dabr_value;
2052 long read_mode, write_mode;
2053
2054 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2055 {
2056 /* PowerPC 440 requires only the read/write flags to be passed
2057 to the kernel. */
2058 read_mode = 1;
2059 write_mode = 2;
2060 }
2061 else
2062 {
2063 /* PowerPC 970 and other DABR-based processors are required to pass
2064 the Breakpoint Translation bit together with the flags. */
2065 read_mode = 5;
2066 write_mode = 6;
2067 }
2068
2069 dabr_value = addr & ~(read_mode | write_mode);
2070 switch (type)
2071 {
2072 case hw_read:
2073 /* Set read and translate bits. */
2074 dabr_value |= read_mode;
2075 break;
2076 case hw_write:
2077 /* Set write and translate bits. */
2078 dabr_value |= write_mode;
2079 break;
2080 case hw_access:
2081 /* Set read, write and translate bits. */
2082 dabr_value |= read_mode | write_mode;
2083 break;
2084 }
2085
2086 saved_dabr_value = dabr_value;
2087
2088 ALL_LWPS (lp)
2089 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2090 saved_dabr_value) < 0)
2091 return -1;
2092
2093 ret = 0;
2094 }
2095
2096 return ret;
2097 }
2098
2099 static int
2100 ppc_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
2101 enum target_hw_bp_type type,
2102 struct expression *cond)
2103 {
2104 struct lwp_info *lp;
2105 int ret = -1;
2106
2107 if (have_ptrace_hwdebug_interface ())
2108 {
2109 struct ppc_hw_breakpoint p;
2110
2111 create_watchpoint_request (&p, addr, len, type, cond, 0);
2112
2113 ALL_LWPS (lp)
2114 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2115
2116 ret = 0;
2117 }
2118 else
2119 {
2120 saved_dabr_value = 0;
2121 ALL_LWPS (lp)
2122 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2123 saved_dabr_value) < 0)
2124 return -1;
2125
2126 ret = 0;
2127 }
2128
2129 return ret;
2130 }
2131
2132 static void
2133 ppc_linux_new_thread (struct lwp_info *lp)
2134 {
2135 int tid = ptid_get_lwp (lp->ptid);
2136
2137 if (have_ptrace_hwdebug_interface ())
2138 {
2139 int i;
2140 struct thread_points *p;
2141 struct hw_break_tuple *hw_breaks;
2142
2143 if (VEC_empty (thread_points_p, ppc_threads))
2144 return;
2145
2146 /* Get a list of breakpoints from any thread. */
2147 p = VEC_last (thread_points_p, ppc_threads);
2148 hw_breaks = p->hw_breaks;
2149
2150 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2151 for (i = 0; i < max_slots_number; i++)
2152 if (hw_breaks[i].hw_break)
2153 {
2154 /* Older kernels did not make new threads inherit their parent
2155 thread's debug state, so we always clear the slot and replicate
2156 the debug state ourselves, ensuring compatibility with all
2157 kernels. */
2158
2159 /* The ppc debug resource accounting is done through "slots".
2160 Ask the kernel the deallocate this specific *point's slot. */
2161 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2162
2163 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2164 }
2165 }
2166 else
2167 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2168 }
2169
2170 static void
2171 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2172 {
2173 int i;
2174 int tid = ptid_get_lwp (tp->ptid);
2175 struct hw_break_tuple *hw_breaks;
2176 struct thread_points *t = NULL, *p;
2177
2178 if (!have_ptrace_hwdebug_interface ())
2179 return;
2180
2181 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2182 if (p->tid == tid)
2183 {
2184 t = p;
2185 break;
2186 }
2187
2188 if (t == NULL)
2189 return;
2190
2191 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2192
2193 hw_breaks = t->hw_breaks;
2194
2195 for (i = 0; i < max_slots_number; i++)
2196 if (hw_breaks[i].hw_break)
2197 xfree (hw_breaks[i].hw_break);
2198
2199 xfree (t->hw_breaks);
2200 xfree (t);
2201 }
2202
2203 static int
2204 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2205 {
2206 siginfo_t siginfo;
2207
2208 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2209 return 0;
2210
2211 if (siginfo.si_signo != SIGTRAP
2212 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2213 return 0;
2214
2215 if (have_ptrace_hwdebug_interface ())
2216 {
2217 int i;
2218 struct thread_points *t;
2219 struct hw_break_tuple *hw_breaks;
2220 /* The index (or slot) of the *point is passed in the si_errno field. */
2221 int slot = siginfo.si_errno;
2222
2223 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2224
2225 /* Find out if this *point is a hardware breakpoint.
2226 If so, we should return 0. */
2227 if (t)
2228 {
2229 hw_breaks = t->hw_breaks;
2230 for (i = 0; i < max_slots_number; i++)
2231 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2232 && hw_breaks[i].hw_break->trigger_type
2233 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2234 return 0;
2235 }
2236 }
2237
2238 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2239 return 1;
2240 }
2241
2242 static int
2243 ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
2244 {
2245 CORE_ADDR addr;
2246 return ppc_linux_stopped_data_address (ops, &addr);
2247 }
2248
2249 static int
2250 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2251 CORE_ADDR addr,
2252 CORE_ADDR start, int length)
2253 {
2254 int mask;
2255
2256 if (have_ptrace_hwdebug_interface ()
2257 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2258 return start <= addr && start + length >= addr;
2259 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2260 mask = 3;
2261 else
2262 mask = 7;
2263
2264 addr &= ~mask;
2265
2266 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2267 return start <= addr + mask && start + length - 1 >= addr;
2268 }
2269
2270 /* Return the number of registers needed for a masked hardware watchpoint. */
2271
2272 static int
2273 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2274 CORE_ADDR addr, CORE_ADDR mask)
2275 {
2276 if (!have_ptrace_hwdebug_interface ()
2277 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2278 return -1;
2279 else if ((mask & 0xC0000000) != 0xC0000000)
2280 {
2281 warning (_("The given mask covers kernel address space "
2282 "and cannot be used.\n"));
2283
2284 return -2;
2285 }
2286 else
2287 return 2;
2288 }
2289
2290 static void
2291 ppc_linux_store_inferior_registers (struct target_ops *ops,
2292 struct regcache *regcache, int regno)
2293 {
2294 /* Overload thread id onto process id. */
2295 int tid = ptid_get_lwp (inferior_ptid);
2296
2297 /* No thread id, just use process id. */
2298 if (tid == 0)
2299 tid = ptid_get_pid (inferior_ptid);
2300
2301 if (regno >= 0)
2302 store_register (regcache, tid, regno);
2303 else
2304 store_ppc_registers (regcache, tid);
2305 }
2306
2307 /* Functions for transferring registers between a gregset_t or fpregset_t
2308 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2309 by the ptrace interface, not the current program's ABI. Eg. if a
2310 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2311 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2312
2313 void
2314 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2315 {
2316 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2317
2318 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2319 }
2320
2321 void
2322 fill_gregset (const struct regcache *regcache,
2323 gdb_gregset_t *gregsetp, int regno)
2324 {
2325 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2326
2327 if (regno == -1)
2328 memset (gregsetp, 0, sizeof (*gregsetp));
2329 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2330 }
2331
2332 void
2333 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2334 {
2335 const struct regset *regset = ppc_linux_fpregset ();
2336
2337 ppc_supply_fpregset (regset, regcache, -1,
2338 fpregsetp, sizeof (*fpregsetp));
2339 }
2340
2341 void
2342 fill_fpregset (const struct regcache *regcache,
2343 gdb_fpregset_t *fpregsetp, int regno)
2344 {
2345 const struct regset *regset = ppc_linux_fpregset ();
2346
2347 ppc_collect_fpregset (regset, regcache, regno,
2348 fpregsetp, sizeof (*fpregsetp));
2349 }
2350
2351 static int
2352 ppc_linux_target_wordsize (void)
2353 {
2354 int wordsize = 4;
2355
2356 /* Check for 64-bit inferior process. This is the case when the host is
2357 64-bit, and in addition the top bit of the MSR register is set. */
2358 #ifdef __powerpc64__
2359 long msr;
2360
2361 int tid = ptid_get_lwp (inferior_ptid);
2362 if (tid == 0)
2363 tid = ptid_get_pid (inferior_ptid);
2364
2365 errno = 0;
2366 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2367 if (errno == 0 && ppc64_64bit_inferior_p (msr))
2368 wordsize = 8;
2369 #endif
2370
2371 return wordsize;
2372 }
2373
2374 static int
2375 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2376 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2377 {
2378 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2379 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2380 gdb_byte *ptr = *readptr;
2381
2382 if (endptr == ptr)
2383 return 0;
2384
2385 if (endptr - ptr < sizeof_auxv_field * 2)
2386 return -1;
2387
2388 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2389 ptr += sizeof_auxv_field;
2390 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2391 ptr += sizeof_auxv_field;
2392
2393 *readptr = ptr;
2394 return 1;
2395 }
2396
2397 static const struct target_desc *
2398 ppc_linux_read_description (struct target_ops *ops)
2399 {
2400 int altivec = 0;
2401 int vsx = 0;
2402 int isa205 = 0;
2403 int cell = 0;
2404
2405 int tid = ptid_get_lwp (inferior_ptid);
2406 if (tid == 0)
2407 tid = ptid_get_pid (inferior_ptid);
2408
2409 if (have_ptrace_getsetevrregs)
2410 {
2411 struct gdb_evrregset_t evrregset;
2412
2413 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2414 return tdesc_powerpc_e500l;
2415
2416 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2417 Anything else needs to be reported. */
2418 else if (errno != EIO)
2419 perror_with_name (_("Unable to fetch SPE registers"));
2420 }
2421
2422 if (have_ptrace_getsetvsxregs)
2423 {
2424 gdb_vsxregset_t vsxregset;
2425
2426 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2427 vsx = 1;
2428
2429 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2430 Anything else needs to be reported. */
2431 else if (errno != EIO)
2432 perror_with_name (_("Unable to fetch VSX registers"));
2433 }
2434
2435 if (have_ptrace_getvrregs)
2436 {
2437 gdb_vrregset_t vrregset;
2438
2439 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2440 altivec = 1;
2441
2442 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2443 Anything else needs to be reported. */
2444 else if (errno != EIO)
2445 perror_with_name (_("Unable to fetch AltiVec registers"));
2446 }
2447
2448 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2449 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2450 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2451 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2452 half of the register are for Decimal Floating Point, we check if that
2453 feature is available to decide the size of the FPSCR. */
2454 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2455 isa205 = 1;
2456
2457 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2458 cell = 1;
2459
2460 if (ppc_linux_target_wordsize () == 8)
2461 {
2462 if (cell)
2463 return tdesc_powerpc_cell64l;
2464 else if (vsx)
2465 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2466 else if (altivec)
2467 return isa205
2468 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2469
2470 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2471 }
2472
2473 if (cell)
2474 return tdesc_powerpc_cell32l;
2475 else if (vsx)
2476 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2477 else if (altivec)
2478 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2479
2480 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2481 }
2482
2483 void _initialize_ppc_linux_nat (void);
2484
2485 void
2486 _initialize_ppc_linux_nat (void)
2487 {
2488 struct target_ops *t;
2489
2490 /* Fill in the generic GNU/Linux methods. */
2491 t = linux_target ();
2492
2493 /* Add our register access methods. */
2494 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2495 t->to_store_registers = ppc_linux_store_inferior_registers;
2496
2497 /* Add our breakpoint/watchpoint methods. */
2498 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2499 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2500 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2501 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2502 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2503 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2504 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2505 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2506 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2507 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2508 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2509 t->to_can_accel_watchpoint_condition
2510 = ppc_linux_can_accel_watchpoint_condition;
2511 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2512 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2513
2514 t->to_read_description = ppc_linux_read_description;
2515 t->to_auxv_parse = ppc_linux_auxv_parse;
2516
2517 observer_attach_thread_exit (ppc_linux_thread_exit);
2518
2519 /* Register the target. */
2520 linux_nat_add_target (t);
2521 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2522 }
This page took 0.121586 seconds and 5 git commands to generate.